WO2024087477A1 - 改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法 - Google Patents

改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法 Download PDF

Info

Publication number
WO2024087477A1
WO2024087477A1 PCT/CN2023/083151 CN2023083151W WO2024087477A1 WO 2024087477 A1 WO2024087477 A1 WO 2024087477A1 CN 2023083151 W CN2023083151 W CN 2023083151W WO 2024087477 A1 WO2024087477 A1 WO 2024087477A1
Authority
WO
WIPO (PCT)
Prior art keywords
mno2
adsorbent
ion sieve
lithium ion
modified lithium
Prior art date
Application number
PCT/CN2023/083151
Other languages
English (en)
French (fr)
Inventor
胡鑫
李波
乔延超
陈若葵
阮丁山
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024087477A1 publication Critical patent/WO2024087477A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the field of metallurgical technology, and in particular to a modified lithium ion sieve, a MnO2 adsorbent, a preparation method and application thereof, and a method for extracting lithium from a salt lake.
  • Lithium resources are widely used in lithium-ion batteries and other related fields. With the rapid development of the lithium-ion battery industry, the demand for lithium resources in industrial production is increasing at an increasingly faster rate. In recent years, there has even been a situation where lithium raw materials are in short supply.
  • the lithium content in salt lakes is low, while the content of other metals such as magnesium is high. Due to the similar properties of magnesium and lithium, it is difficult to selectively extract lithium resources from salt lakes.
  • the main methods for extracting lithium from salt lakes included precipitation, calcination leaching, carbonization, nanofiltration membrane, solvent extraction and adsorption.
  • the adsorption method uses lithium ion sieves to adsorb lithium ions. Due to its large adsorption capacity and high selectivity, it is considered to be a promising method for extracting lithium from salt lakes.
  • lithium ion sieves can be divided into metal oxide type (TiO 2 or MnO 2 , referred to as MO) and metal phosphate type (MPO 4 , M is Fe, Mn or Ti, referred to as MPO).
  • MO metal oxide type
  • MPO 4 metal phosphate type
  • MO type ion sieve has a better adsorption effect on lithium and has certain industrial benefits, so it is gradually used in the field of lithium extraction from salt lakes.
  • MO-based ion sieves have low lithium adsorption capacity and short cycle life.
  • One of the purposes of the present invention is to provide a modified lithium ion sieve, which has a large Li + adsorption capacity and a high adsorption efficiency, and is beneficial to improving the cycle life of the adsorbent.
  • a second object of the present invention is to provide a method for preparing the modified lithium ion sieve.
  • the third object of the present invention is to provide a MnO2 adsorbent containing the above-mentioned modified lithium ion sieve.
  • a fourth object of the present invention is to provide a method for preparing the above-mentioned MnO2 adsorbent.
  • a fifth object of the present invention is to provide a chromatographic column containing the above-mentioned MnO2 adsorbent.
  • the sixth object of the present invention is to provide an application of the modified lithium ion sieve or MnO2 adsorbent in extracting lithium.
  • a seventh object of the present invention is to provide a method for extracting lithium from a salt lake.
  • the present application provides a modified lithium ion sieve, which is a MnO2 nanosheet material with a three-dimensional layered skeleton structure.
  • the modified lithium ion sieve includes a main structure in which multiple layers of MnO2 nanosheets are arranged in sequence and at intervals, and a supporting skeleton is provided between two adjacent layers of MnO2 nanosheets.
  • the specific surface area of the MnO 2 nanosheet material is not less than 75 m 2 /g.
  • the gap between two adjacent layers of MnO2 nanosheets is greater than 0 nm and ⁇ 100 nm.
  • the present application provides a method for preparing the modified lithium ion sieve according to the aforementioned embodiment, comprising the following steps:
  • the A x MnO 2 material is treated with acid, separated from the solid and liquid, and dried to obtain the HMnO 2 material; wherein A is an alkali metal element, 0 ⁇ x ⁇ 1;
  • the HMnO2 material was mixed with an aqueous solution of a proppant, ultrasonically treated, and the nanosheet material was collected to obtain MnO2 nanosheets.
  • the A x MnO 2 material is prepared by the following method: mixing an alkali metal compound with a manganese oxide and calcining the mixture.
  • the manganese oxide includes at least one of MnO 2 , Mn 2 O 3 , and Mn 3 O 4 .
  • the alkali metal in the alkali metal compound includes at least one of lithium, sodium and potassium.
  • the molar amount of alkali metal in the alkali metal compound does not exceed the molar amount of manganese in the manganese oxide.
  • the molar ratio of the alkali metal in the alkali metal compound to the manganese in the manganese oxide is 0.5-0.8:1.
  • the calcination temperature is 700-1200°C, preferably 800-1000°C.
  • the calcination time is 6-24 hours, preferably 12-18 hours.
  • the concentration of the acid used for acid treatment of the A x MnO 2 material is 0.1-6 mol/L, preferably 0.3-1.5 mol/L.
  • the solid-liquid ratio of A x MnO 2 material to acid is 1 g: 1-10 mL; preferably 1 g: 2-5 mL.
  • the acid treatment time is 0.1-24h, preferably 1-6h;
  • the drying temperature is 40-80°C, preferably 50-70°C;
  • the drying time is 3-18 hours, preferably 6-15 hours.
  • the concentration of the proppant in the aqueous solution of the proppant is 0.01-5 g/L, preferably 0.1-3 g/L.
  • the solid-to-liquid ratio of the aqueous solution of HMnO2 material to the proppant is 10-100 g:1L, preferably 20-50 g:1L.
  • the proppant includes an organic ammonium substance, preferably at least one of tetra-n-butylammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide and tetrapropylammonium hydroxide.
  • the ultrasonic treatment time is 0.5-24 h, preferably 1-6 h.
  • collecting the nanosheet material includes: subjecting the material obtained after ultrasonic treatment to low-speed centrifugation, collecting the upper suspension, and obtaining deprotonated MnO2 nanosheet material.
  • collecting the nanosheet material further comprises: subjecting the deprotonated MnO2 nanosheet material to high-speed centrifugation, collecting the solid phase, and obtaining the MnO2 nanosheet.
  • the solid phase is further dried.
  • the rotation speed of the low-speed centrifugation is 3000-10000 r/min, preferably 5000-8000 r/min.
  • the rotation speed of the high-speed centrifugation is 10000-20000 r/min, preferably 14000-18000 r/min.
  • the temperature for drying the solid phase is 40-80°C, preferably 50-70°C.
  • the solid phase is dried for 3-18 hours, preferably 6-12 hours.
  • the present application provides a MnO2 adsorbent, which is an agglomerate of the modified lithium ion sieve of the aforementioned embodiment and a binder.
  • the agglomerates are particles with a particle size of millimeters.
  • the present application provides a method for preparing a MnO2 adsorbent as in the aforementioned embodiment, comprising the following steps: mixing the modified lithium ion sieve as in the aforementioned embodiment with a binder and an organic solvent, and then transferring into an aqueous phase to obtain agglomerates.
  • the method further comprises drying the agglomerates.
  • the mass ratio of the modified lithium ion sieve to the binder is 5-100:1, preferably 10-30:1.
  • the binder includes at least one of sodium carboxymethyl cellulose (CMC), styrene-butadiene rubber (SBR), polyvinyl alcohol (PVA) and polyvinyl chloride (PVC), preferably includes at least one of polyvinyl alcohol (PVA) and polyvinyl chloride (PVC).
  • CMC sodium carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • PVA polyvinyl alcohol
  • PVC polyvinyl chloride
  • PVC polyvinyl chloride
  • the solid-liquid ratio of the modified lithium ion sieve to the organic solvent is 1 g: 0.1-12 mL, preferably 1 g: 1-6 mL.
  • the agglomerates are dried at 40-80°C, preferably 50-70°C.
  • the agglomerates are dried for 3-18 hours, preferably 6-12 hours.
  • the present application provides a chromatographic column, wherein the adsorbent thereof includes the MnO2 adsorbent of the aforementioned embodiment.
  • the filling amount of the MnO 2 adsorbent in the chromatographic column is 30-80% of the volume of the chromatographic column.
  • the present application provides the use of the modified lithium ion sieve according to any one of the aforementioned embodiments or the MnO2 adsorbent according to the aforementioned embodiments in extracting lithium elements.
  • the modified lithium ion sieve or MnO2 adsorbent is used for lithium extraction from salt lakes.
  • the present application provides a method for extracting lithium from a salt lake, comprising the following steps: introducing salt lake brine to be extracted into a chromatographic column filled with the above-mentioned MnO2 adsorbent, and after the MnO2 adsorbent is saturated with adsorption, washing out the MnO2 adsorbent, and then performing a desorption treatment to obtain a lithium-rich desorption effluent.
  • the flow rate of the salt lake brine entering the chromatographic column is 1-100 mL/min, preferably 10-30 mL/min.
  • the adsorption time is 0.1-6 h, preferably 0.5-3 h.
  • the desorption agent used in the desorption treatment is an acid, preferably hydrochloric acid.
  • the flow rate of the desorption reagent is 0.1-50 mL/min, preferably 1-6 mL/min.
  • the concentration of the desorption agent is 0.1-10 mol/L, preferably 0.3-1.5 mol/L.
  • the desorption time is 0.3-9 h, preferably 1-3 h.
  • the modified lithium ion sieve provided in the present application is a MnO2 nanosheet material with a three-dimensional layered skeleton structure, which has a large specific surface area.
  • the modified lithium ion sieve has a skeleton between the layers, which makes it have a stable layered structure. Even if the volume expands during use, it is not easy to collapse, thus having a longer cycle life.
  • FIG1 is a SEM image of the modified lithium ion sieve synthesized in Example 1;
  • FIG. 2 is a SEM image of the unmodified lithium ion sieve of Comparative Example 1.
  • the inventor proposed that the main reason for the low lithium adsorption capacity of traditional MO-based ion sieves is that traditional MO-based ion sieves have fewer lithium diffusion sites; the main reason for the short cycle life of traditional MO-based ion sieves is that their volume expansion rate is large and their structure collapses quickly during use.
  • the present application creatively proposes a modified lithium ion sieve, which is a MnO2 nanosheet material with a three-dimensional layered skeleton structure.
  • the MnO2 nanosheet material includes a main structure in which multiple layers of MnO2 nanosheets are arranged in sequence, and a supporting skeleton is provided between two adjacent layers of MnO2 nanosheets.
  • the specific surface area of the MnO2 nanosheet material provided in the present application is not less than 75m2 /g, for example, it can be 75m2 /g, 78m2 /g, 80m2 /g, 82m2 /g, 84m2 /g, 86m2/g, 88m2 / g, 91m2 /g, 92m2 /g, 95m2 /g or 98m2 /g, etc.
  • the gap between two adjacent layers of MnO2 nanosheets is greater than 0 nm and ⁇ 100 nm, such as 0.1 nm, 0.5 nm, 1 nm, 5 nm, 10 nm, 20 nm, 50 nm, 80 nm or 100 nm, etc., or any other value within the range of greater than 0 nm and ⁇ 100 nm.
  • the modified lithium ion sieve provided in the present application has a larger specific surface area, can provide more adsorption sites and a shorter ion diffusion distance, and has a large adsorption capacity for Li + ; and the modified lithium ion sieve also has a skeleton between the layers, so that it has a stable layered structure. During use, even if the volume expands, it is not easy to cause collapse, and thus has a longer cycle life.
  • the present application also provides a method for preparing the modified lithium ion sieve, which may include the following steps:
  • the A x MnO 2 material in S1 is a nanosheet structure containing an alkali metal, which can be prepared by the following method: mixing an alkali metal compound with a manganese oxide, and calcining the mixture.
  • the manganese oxide may include at least one of MnO 2 , Mn 2 O 3 and Mn 3 O 4 , for example.
  • the alkali metal in the alkali metal compound may include, for example, at least one of lithium, sodium, and potassium.
  • the molar amount of the alkali metal in the above-mentioned alkali metal compound does not exceed the molar amount of manganese in the manganese oxide, which can be understood as: the molar ratio of the alkali metal in the alkali metal compound to the manganese in the manganese oxide is 0 (not included)-1:1, such as 0.1:1, 0.2:1, 0.3:1, 0.4:1, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1 or 1:1, etc., and can also be any other value in the range of 0 (not included)-1:1; preferably 0.5-0.8:1.
  • the calcination of the mixture of the alkali metal compound and the manganese oxide can be carried out at 700-1200° C.
  • the calcination temperature can be 700° C., 750° C., 800° C., 850° C., 900° C., 950° C., 1000° C., 1050° C., 1100° C., 1150° C. or 1200° C., or any other value within the range of 700-1200° C.; preferably 800-1000° C.
  • the calcination temperature exceeds 1200°C, other phases may be generated or the product may have other morphologies, resulting in the inability to obtain nanosheet HMnO2 materials subsequently; if the calcination temperature is lower than 800°C, the calcination time will be greatly extended.
  • the calcination time after mixing the alkali metal compound and manganese oxide can be 6-24h, such as 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h or 24h, etc., or any other value within the range of 6-24h; preferably 12-18h.
  • the acid used to treat the A x MnO 2 material is a dilute acid, such as dilute hydrochloric acid, dilute sulfuric acid, dilute nitric acid or dilute phosphoric acid.
  • the alkali metal ions in the A x MnO 2 material can be replaced by H + (ie, H + occupies the position of the original alkali metal) to obtain the HMnO 2 material (which still has a nanosheet structure).
  • the concentration of the above-mentioned dilute acid can be 0.1-6mol/L, such as 0.1mol/L, 0.2mol/L, 0.5mol/L, 1mol/L, 1.5mol/L, 2mol/L, 2.5mol/L, 3mol/L, 3.5mol/L, 4mol/L, 4.5mol/L, 5mol/L, 5.5mol/L or 6mol/L, etc., and can also be any other value within the range of 0.1-6mol/L; preferably 0.3-1.5mol/L.
  • the solid-liquid ratio of A x MnO 2 material to acid can be 1g:1-10mL, such as 1g:1mL, 1g:2mL, 1g:3mL, 1g:4mL, 1g:5mL, 1g:6mL, 1g:7mL, 1g:8mL, 1g:9mL or 101g:1mL, etc., or any other value within the range of 1g:1-10mL; preferably 1g:2-5mL.
  • the acid will not be able to fully contact with the solid A x MnO 2 material and will not be able to completely replace the alkali metal ions in the A x MnO 2 material.
  • the acid treatment time of the A x MnO 2 material is 0.1-24 h, such as 0.1 h, 0.5 h, 1 h, 2 h, 5 h, 8 h, 10 h, 15 h, 20 h or 24 h, etc., and can also be any other value within the range of 0.1-24 h; preferably 1-6 h.
  • solid-liquid separation can be performed by filtration.
  • the drying process after solid-liquid separation may involve a drying temperature of 40-80°C, such as 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C or 80°C, etc., or any other value within the range of 40-80°C; preferably 50-70°C.
  • the corresponding drying time can be 3-18 hours, such as 3h, 5h, 8h, 10h, 12h, 15h or 18h, etc., or any other value within the range of 3-18h; preferably, it is 6-15h.
  • the concentration of the proppant in the aqueous solution of the proppant can be 0.01-5 g/L, such as 0.01 g/L, 0.05 g/L, 1 g/L, 1.5 g/L, 2 g/L, 2.5 g/L, 3 g/L, 3.5 g/L, 4 g/L, 4.5 g/L or 5 g/L, etc., or it can be any other value within the range of 0.01-5 g/L; preferably it is 0.1-3 g/L.
  • the solid-to-liquid ratio of the aqueous solution of HMnO2 material and proppant can be 10-100g:1L, such as 10g:1L, 20g:1L, 30g:1L, 40g:1L, 50g:1L, 60g:1L, 70g:1L, 80g:1L, 90g:1L or 100g:1L, etc., or it can be any other value within the range of 10-100g:1L; preferably it is 20-50g:1L.
  • the proppant mainly plays a supporting role and can be inserted between two adjacent layers of MnO2 nanosheets as a supporting skeleton to prevent the layered MnO2 nanosheets from collapsing and overlapping.
  • the concentration and content of the proppant must ensure that it can completely replace the H + in the HMnO2 material. If the concentration or content of the proppant is too high, not only will the efficiency be low, but it will also make the material alkaline, which is not conducive to subsequent treatment; if the concentration or content of the proppant is too low, it will not be able to completely replace the H + in the HMnO2 material.
  • the proppant includes an organic ammonium substance, such as at least one of tetra-n-butylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (Et 4 NOH) and tetrapropylammonium hydroxide (TPAOH), preferably tetra-n-butylammonium hydroxide.
  • TSAOH tetra-n-butylammonium hydroxide
  • TMAOH tetramethylammonium hydroxide
  • TMAOH tetraethylammonium hydroxide
  • TPAOH tetrapropylammonium hydroxide
  • the ultrasonic treatment time can be 0.5-24 h, such as 0.5 h, 1 h, 2 h, 5 h, 8 h, 10 h, 12 h, 15 h, 18 h, 20 h, 22 h or 24 h, or any other value within the range of 0.5-24 h; preferably 1-6 h.
  • the HMnO2 material can be fully exfoliated and deprotonated to obtain the MnO2 nanosheet structure.
  • collecting the nanosheet material may include: subjecting the material obtained after ultrasonic treatment to low-speed centrifugation, collecting the upper suspension, and obtaining the deprotonated MnO2 nanosheet material.
  • the deprotonated MnO2 nanosheet material is subjected to high-speed centrifugation, and the solid phase is collected to obtain MnO2 nanosheets.
  • the rotation speed of low-speed centrifugation can be 3000-8000r/min, such as 3000r/min, 4000r/min, 5000r/min, 6000r/min, 7000r/min or 8000r/min, etc., or any other value within the range of 3000-8000r/min; preferably 5000-8000r/min.
  • the rotation speed of the high-speed centrifugation can be 10000-20000 r/min, such as 10000 r/min, 12000 r/min, 15000 r/min, 18000 r/min or 20000 r/min, etc., or any other value within the range of 10000-20000 r/min; preferably 14000-18000 r/min.
  • the temperature for drying the solid phase can be 40-80°C, such as 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C or 80°C, etc., or any other value within the range of 40-80°C; preferably, it is 50-70°C.
  • the drying time for the solid phase can be 3-18 h, such as 3 h, 5 h, 8 h, 10 h 12 h, 15 h or 18 h, or any other value within the range of 3-18 h; preferably, it is 6-12 h.
  • the higher the drying temperature the shorter the corresponding drying time.
  • the drying temperature is too high, the material structure will be destroyed and the nanosheet structure will collapse.
  • the present application also provides a MnO2 adsorbent, which is an agglomerate of the above-mentioned modified lithium ion sieve and a binder.
  • the agglomerates are particles with a particle size of millimeters.
  • the particle size of the particles may be 1-100 mm.
  • the present application also provides a method for preparing the above-mentioned MnO2 adsorbent, comprising the following steps: mixing the above-mentioned modified lithium ion sieve with a binder and an organic solvent, and then transferring to an aqueous phase to obtain an agglomerate, which can improve the adsorption capacity of the lithium ion sieve.
  • the mass ratio of the modified lithium ion sieve to the binder can be 5-100:1, such as 5:1, 10:1, 15:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1, 50:1, 55:1, 60:1, 65:1, 70:1, 75:1, 80:1, 85:1, 90:1, 95:1 or 100:1, etc., and can also be any other value within the range of 5-100:1; preferably 10-30:1.
  • the binder may include at least one of sodium carboxymethyl cellulose, styrene-butadiene rubber, polyvinyl alcohol and polyvinyl chloride, preferably at least one of polyvinyl alcohol and polyvinyl chloride.
  • the liquid ratio of the modified lithium ion sieve to the organic solvent can be 1g:0.1-12mL, such as 1g:0.1mL, 1g:0.5mL, 1g:1mL, 1g:2mL, 1g:5mL, 1g:8mL, 1g:10mL or 1g:12mL, etc.; preferably 1g:1-6mL.
  • the organic solvent may illustratively include alcohols (such as methanol or ethanol, etc.) or N-methylpyrrolidone, preferably includes N-methylpyrrolidone.
  • the modified lithium ion sieve After the modified lithium ion sieve is mixed with a binder and an organic solvent, it becomes a slurry that is not easy to form particles. The slurry is transferred as a whole into water. On the one hand, the organic solvent can be removed during the drying process to avoid high pollution caused by the organic solvent to the subsequent lithium extraction process. On the other hand, the modified lithium ion sieve can be agglomerated into uniform particles under the condition of a binder.
  • the agglomerates are dried.
  • the agglomerates can be dried at 40-80°C.
  • the drying temperature can be 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75°C or 80°C, or any other value within the range of 40-80°C; preferably, it is 50-70°C.
  • the drying time for the agglomerates is 3-18 hours, such as 3 hours, 5 hours, 8 hours, 10 hours, 12 hours, 15 hours or 18 hours, etc., and can also be any other value within the range of 3-18 hours; preferably 6-12.
  • the present application also provides a chromatographic column, the adsorbent contained in the chromatographic column includes the above-mentioned MnO2 adsorbent.
  • the filling amount of the MnO2 adsorbent in the chromatographic column can be 30-80% of the volume of the chromatographic column, such as 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% or 80%, etc., or it can be any other value within the range of 30-80%.
  • the present application also provides the use of the modified lithium ion sieve or the MnO2 adsorbent in extracting lithium elements.
  • modified lithium ion sieves or MnO2 adsorbents can be used to extract lithium from salt lakes.
  • the present application also provides a method for extracting lithium from a salt lake, which may include the following steps: introducing salt lake brine to be extracted into a chromatographic column filled with a MnO2 adsorbent, and after the MnO2 adsorbent is saturated with adsorption, washing out the MnO2 adsorbent, and then performing a desorption treatment to obtain a lithium-rich desorption effluent.
  • the flow rate of the salt lake brine entering the chromatographic column can be 1-100mL/min, such as 1mL/min, 2mL/min, 5mL/min, 10mL/min, 20mL/min, 50mL/min, 80mL/min or 100mL/min, etc., or it can be any other value within the range of 1-100mL/min; preferably it is 10-30mL/min.
  • the above flow rate can ensure that the MnO2 adsorbent is in full contact with the salt lake brine. If the flow rate is too large, the MnO2 adsorbent will not be in full contact with the salt lake brine; if the flow rate is too small, the adsorption efficiency will be reduced.
  • the adsorption time can be 0.1-6h, such as 0.1h, 0.2h, 0.5h, 1h, 1.5h, 2h, 5.5h, 3h, 3.5h, 4h, 4.5h, 5h, 5.5h or 6h, or any other value within the range of 0.1-6h; preferably 0.5-3h.
  • the MnO2 adsorbent will not be able to fully contact with the salt lake brine; if the adsorption time is too long, the adsorption efficiency will be reduced.
  • the desorption agent used in the above desorption treatment is an acid, such as hydrochloric acid, sulfuric acid, nitric acid or phosphoric acid, preferably hydrochloric acid.
  • the flow rate of the desorption reagent can be 0.1-50mL/min, such as 0.1mL/min, 0.2mL/min, 0.5mL/min, 1mL/min, 2mL/min, 5mL/min, 10mL/min, 15mL/min, 2mL/min, 25mL/min, 30mL/min, 35mL/min, 40mL/min, 45mL/min or 50mL/min, or any other value within the range of 0.1-50mL/min; preferably 1-6mL/min.
  • the concentration of the desorption reagent is 0.1-10mol/L, such as 0.1mol/L, 0.mol/L, 0.5mol/L, 1mol/L, 2mol/L, 3mol/L, 4mol/L, 5mol/L, 6mol/L, 7mol/L, 8mol/L, 9mol/L or 10mol/L, etc., and can also be any other value within the range of 0.1-10mol/L; preferably 0.3-1.5mol/L.
  • the desorption time is 0.3-9h, such as 0.3h, 0.5h, 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h or 9h, etc., and can also be any other value within the range of 0.3-9h; preferably, it is 1-3h.
  • the MnO2 adsorbent can be reused.
  • This embodiment provides a MnO2 adsorbent, which can be prepared in the following manner:
  • Step (1) 5 g of Mn 2 O 3 and 2.35 g of Na 2 CO 3 were mixed and calcined at 800°C for 12 h to obtain Na x MnO 2 material;
  • Step (2) Take 5 g of the material obtained in step (1) and treat it with 15 mL of 1.5 mol/L dilute hydrochloric acid for 3 h, filter it and dry it at 55 ° C for 12 h to obtain HMnO 2 material;
  • Step (3) Disperse the material (5 g) prepared in step (2) in 200 mL of a 1 g/L TBAOH aqueous solution and subject it to ultrasonic treatment for 5 h to obtain a MnO2 material exfoliated into nanosheets;
  • Step (4) centrifuge the material after ultrasonic treatment at a low speed of 7000 r/min, collect the upper suspension, and then centrifuge at a high speed of 16000 r/min to collect the MnO2 nanosheet solid material, and then dry it at 50°C for 7h (the SEM image of the obtained solid material is shown in Figure 1);
  • Step (5) The solid material (5 g) dried in step (4) and 0.17 g of PVC binder are mixed in 20 mL of NMP solvent to make a slurry, and then gradually transferred into water to allow the solid material to agglomerate into uniform particles under the condition of the binder, and then dried at 55°C for 12 hours to obtain a MnO2 adsorbent.
  • the adsorbent particles are filled into a chromatographic column (the filling amount is 50% of the volume of the chromatographic column), and then salt lake brine is circulated into the chromatographic column at a flow rate of 20mL/min for 2h; after the adsorbent is saturated with adsorption, deionized water is passed into the column to clean the adsorbent, and then 0.4mol/L hydrochloric acid is passed at a rate of 1mL/min for 3h for desorption treatment, and the desorbed liquid is a lithium-rich solution.
  • This embodiment provides a MnO2 adsorbent, which can be prepared in the following manner:
  • Step (1) 10 g of MnO 2 and 6.66 g of CH 3 COONa were mixed and calcined at 800° C. for 12 h to obtain Na x MnO 2 material;
  • Step (2) Take 10 g of the material obtained in step (1) and treat it with 20 mL of 3 mol/L dilute hydrochloric acid for 6 h, filter it and dry it at 60 ° C for 8 h to obtain HMnO 2 material;
  • Step (3) Disperse the material (10 g) prepared in step (2) in 200 mL of a 0.1 g/L TBAOH aqueous solution and subject it to ultrasonic treatment for 4 h to obtain a MnO2 material exfoliated into nanosheets;
  • Step (4) centrifuging the material after ultrasonic treatment at a low speed of 6000 r/min, collecting the upper suspension, and then centrifuging at a high speed of 14000 r/min to collect the MnO2 nanosheet solid material, and then drying it at 65°C for 8 hours;
  • Step (5) The solid material (10 g) dried in step (4) and 0.5 g of PVC binder are mixed in 30 mL of NMP solvent to make a slurry, and then gradually transferred into water to allow the solid material to agglomerate into uniform particles under the condition of the binder, and then dried at 70°C for 6 hours to obtain a MnO2 adsorbent.
  • the adsorbent particles are filled into a chromatographic column (the filling amount is 50% of the volume of the chromatographic column), and then salt lake brine is circulated into the chromatographic column at a flow rate of 15mL/min for 0.5h; after the adsorbent is saturated with adsorption, deionized water is passed into the column to clean the adsorbent, and then 0.3mol/L hydrochloric acid is passed at a rate of 2mL/min for 2h for desorption treatment, and the desorbed liquid is a lithium-rich solution.
  • This embodiment provides a MnO2 adsorbent, which can be prepared in the following manner:
  • Step (1) 8 g of Mn 3 O 4 and 5.15 g of KNO 3 were mixed and calcined at 900 °C for 16 h to obtain K x MnO 2 material;
  • Step (2) Take 8 g of the material obtained in step (1) and treat it with 28 mL of 2 mol/L dilute hydrochloric acid for 1 h, filter it and dry it at 50 ° C for 15 h to obtain HMnO 2 material;
  • Step (3) Disperse the material (8 g) prepared in step (2) in 240 mL of a 0.5 g/L TBAOH aqueous solution and subject it to ultrasonic treatment for 3 h to obtain a MnO2 material exfoliated into nanosheets;
  • Step (4) centrifuging the material after ultrasonic treatment at a low speed of 5000 r/min, collecting the upper suspension, and then centrifuging at a high speed of 18000 r/min to collect the MnO2 nanosheet solid material, and then drying it at 70°C for 6 hours;
  • Step (5) The solid material (8 g) dried in step (4) and 0.8 g of PVC binder are mixed in 16 mL of NMP solvent to make a slurry, and then gradually transferred into water to allow the solid material to agglomerate into uniform particles under the condition of the binder, and then dried at 60°C for 8 hours to obtain a MnO2 adsorbent.
  • the adsorbent particles are filled into a chromatographic column (the filling amount is 50% of the volume of the chromatographic column), and then salt lake brine is circulated into the chromatographic column at a flow rate of 25mL/min for 1.2h; after the adsorbent is saturated with adsorption, deionized water is passed into the column to clean the adsorbent, and then 0.1mol/L hydrochloric acid is passed at a rate of 3mL/min for 1h for desorption treatment, and the desorbed liquid is a lithium-rich solution.
  • This embodiment provides a MnO2 adsorbent, which can be prepared in the following manner:
  • Step (1) 7 g of Mn 2 O 3 and 2.62 g of Li 2 CO 3 were mixed and calcined at 1000°C for 14 h to obtain Li x MnO 2 material;
  • Step (2) Take 7 g of the material obtained in step (1) and treat it with 28 mL of 2.4 mol/L dilute hydrochloric acid for 2 h, filter it and dry it at 65 ° C for 9 h to obtain HMnO 2 material;
  • Step (3) Disperse the material (7 g) prepared in step (2) in 350 mL of a 2 g/L TBAOH aqueous solution and subject it to ultrasonic treatment for 1 h to obtain a MnO2 material exfoliated into nanosheets;
  • Step (4) centrifuging the material after ultrasonic treatment at a low speed of 5500 r/min to collect the upper suspension, and then centrifuging at a high speed of 15000 r/min to collect the MnO2 nanosheet solid material, and then drying it at 55°C for 12 hours;
  • Step (5) The solid material (7 g) dried in step (4) and 0.35 g of PVC binder are mixed in 7 mL of NMP solvent to make a slurry, and then gradually transferred into water to allow the solid material to agglomerate into uniform particles under the condition of the binder, and then dried at 50°C for 9 hours to obtain a MnO2 adsorbent.
  • the adsorbent particles are filled into a chromatographic column (the filling amount is 50% of the volume of the chromatographic column), and then salt lake brine is circulated into the chromatographic column at a flow rate of 30mL/min for 2.5h; after the adsorbent is saturated with adsorption, deionized water is passed into the column to wash the adsorbent, and then 0.5mol/L hydrochloric acid is passed at a rate of 4mL/min for 1.5h for desorption treatment, and the desorbed liquid is a lithium-rich solution.
  • This embodiment provides a MnO2 adsorbent, which can be prepared in the following manner:
  • Step (1) 15 g of MnO 2 and 2.48 g of LiOH were mixed and calcined at 1000° C. for 18 h to obtain Li x MnO 2 material;
  • Step (2) Take 15 g of the material obtained in step (1) and treat it with 75 mL of 1 mol/L dilute hydrochloric acid for 5 h, filter it and dry it at 70 ° C for 6 h to obtain HMnO 2 material;
  • Step (3) Disperse the material (15 g) prepared in step (2) in 750 mL of a 3 g/L TBAOH aqueous solution and subject it to ultrasonic treatment for 2 h to obtain a MnO2 material exfoliated into nanosheets;
  • Step (4) centrifuging the material after ultrasonic treatment at a low speed of 8000 r/min, collecting the upper suspension, and then centrifuging at a high speed of 17000 r/min to collect the MnO2 nanosheet solid material, and then drying it at 60°C for 9 hours;
  • Step (5) The solid material (15 g) dried in step (4) and 1 g of PVC binder are mixed in 90 mL of NMP solvent to make a slurry, and then gradually transferred into water to allow the solid material to agglomerate into uniform particles under the condition of the binder, and then dried at 65°C for 6 hours to obtain a MnO2 adsorbent.
  • the adsorbent particles are filled into a chromatographic column (the filling amount is 50% of the volume of the chromatographic column), and then salt lake brine is circulated into the chromatographic column at a flow rate of 10mL/min for 3h; after the adsorbent is saturated with adsorption, deionized water is passed into the column to wash the adsorbent, and then 0.2mol/L hydrochloric acid is passed at a rate of 6mL/min for 2.5h for desorption treatment, and the desorbed liquid is a lithium-rich solution.
  • step (2) is TMAOH.
  • step (1) the calcination temperature is 700° C. and the calcination time is 24 h.
  • step (1) the calcination temperature is 1200° C. and the calcination time is 6 hours.
  • step (2) the concentration of the dilute acid is 0.1 mol/L.
  • step (2) the concentration of the dilute acid is 6 mol/L.
  • step (2) the liquid-to-solid ratio is 1 mL:1 g.
  • step (2) the liquid-to-solid ratio is 10 mL:1 g.
  • step (2) the drying temperature is 40° C. and the drying time is 18 h.
  • step (2) the drying temperature is 80° C. and the drying time is 3 h.
  • step (3) the concentration of TBAOH is 0.01 g/L.
  • step (3) the concentration of TBAOH is 5 g/L.
  • step (3) the liquid-to-solid ratio is 10 g:1 L.
  • step (3) the liquid-to-solid ratio is 100 g:1 L.
  • step (3) the ultrasonic treatment time is 0.5 h.
  • step (3) the ultrasonic treatment time is 24 hours.
  • step (4) the rotation speed of the low-speed centrifugation is 3000 r/min, and the rotation speed of the high-speed centrifugation is 10000 r/min.
  • step (4) the rotation speed of the low-speed centrifugation is 8000 r/min, and the rotation speed of the high-speed centrifugation is 20000 r/min.
  • step (4) the drying temperature is 40° C. and the drying time is 18 h.
  • step (4) the drying temperature is 80° C. and the drying time is 3 h.
  • step (5) the mass ratio of the solid material to the binder is 5:1.
  • step (5) the mass ratio of the solid material to the binder is 100:1.
  • step (5) the solid-liquid ratio of the solid material to the organic solvent is 1 g:0.1 mL.
  • step (5) the solid-liquid ratio of the solid material to the organic solvent is 1 g:12 mL.
  • step (5) the drying temperature is 40° C. and the drying time is 18 h.
  • step (5) the drying temperature is 80° C. and the drying time is 3 h.
  • Example 1 The difference between this comparative example and Example 1 is that the MnO2 nanosheets are directly prepared as lithium ion sieves (the SEM image of which is shown in FIG2 ), that is, the MnO2 nanosheets are not modified.
  • step (1) the calcination temperature is 500°C.
  • step (1) the calcination temperature is 1500°C.
  • step (2) the concentration of the dilute acid is 0.05 mol/L.
  • step (2) the concentration of the dilute acid is 8 mol/L.
  • step (2) the liquid-to-solid ratio is 0.5 mL:1 g.
  • step (2) the liquid-to-solid ratio is 15 mL: 1 g.
  • step (2) the drying temperature is 100°C.
  • step (3) the concentration of TBAOH is 0.005 g/L.
  • step (3) the concentration of TBAOH is 10 g/L.
  • step (3) the liquid-to-solid ratio is 5g:1L.
  • step (3) the liquid-to-solid ratio is 120 g:1 L.
  • step (4) only low-speed centrifugation is performed without high-speed centrifugation.
  • step (4) only high-speed centrifugation is performed without low-speed centrifugation.
  • step (4) the drying temperature is 100°C.
  • step (5) the mass ratio of the solid material to the binder is 2:1.
  • step (5) the mass ratio of the solid material to the binder is 120:1.
  • step (5) the solid-liquid ratio of the solid material to the organic solvent is 1 g:0.05 mL.
  • step (5) the solid-liquid ratio of the solid material to the organic solvent is 1 g:15 mL.
  • step (5) the drying temperature is 100°C.
  • the specific surface areas of the lithium ion sieve materials of each embodiment and comparative example are shown in Table 2.
  • the lithium adsorption per unit lithium ion sieve of each embodiment and comparative example is shown in Table 3, and the manganese dissolution rate per unit lithium ion sieve of each embodiment and comparative example is shown in Table 4.
  • the MnO2 adsorbent made from the modified lithium ion sieve provided in the present application can increase the adsorption amount by more than 30% compared with the MnO2 adsorbent made from the unmodified lithium ion sieve, and the Mn dissolution rate is also significantly reduced, which greatly improves the use value of the MO-based lithium ion sieve and fully reduces the cost of use.
  • the modified lithium ion sieve provided in this application has a larger specific surface area, and the corresponding lithium adsorption amount is significantly improved; and the modified lithium ion sieve provided in this application has a three-dimensional layered skeleton structure, which provides better cycle stability and a longer service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法,属于冶金技术领域。该改性锂离子筛为三维层状骨架结构的MnO2纳米片材料,其具有较大比表面积以及稳定的层状结构,可以提供较多的吸附位点以及较短的离子扩散距离,对Li+吸附量大,吸附效率较高,有利于提高吸附剂的循环寿命。由上述改性锂离子筛进一步得到的MnO2吸附剂或色谱柱,具有较高的锂吸附量以及使用寿命,适用于盐湖提锂。

Description

改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法 技术领域
本发明涉及冶金技术领域,具体而言,涉及一种改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法。
背景技术
锂资源在锂离子电池等相关领域有着广泛的应用,随着锂离子电池行业的快速发展,工业生产对锂资源的需求量增速愈来愈快,甚至近年来已出现锂原料供不应求的局面。
我国锂资源储量相对较大,而这些锂资源主要集中在西藏及青海地区盐湖中,因此如何从盐湖中高效快捷提取锂元素一直是一个待解决的科学问题。
盐湖中锂含量低,镁等其它金属含量高,由于镁锂性质相近,从盐湖中选择性提取锂资源难度较大。过去,盐湖提锂方法主要有沉淀法、煅烧浸取法、碳化法、纳滤膜法、溶剂萃取法及吸附法等,其中吸附法应用锂离子筛对锂离子进行吸附,由于吸附量大、选择性高而被认为是一种有前景的盐湖提锂方法。
按化学组成可以将锂离子筛分为金属氧化物型(TiO2或MnO2,简称MO)和金属磷酸盐型(MPO4,M为Fe、Mn或Ti,简称MPO)。相较于后者,MO型离子筛对锂的吸附效果较好,具有一定工业化效益,因此逐渐被应用于盐湖提锂领域。
然而,传统MO基离子筛对锂的吸附量较低,循环寿命较短。
鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种改性锂离子筛,其对Li+吸附量大,吸附效率较高,有利于提高吸附剂的循环寿命。
本发明的目的之二在于提供一种上述改性锂离子筛的制备方法。
本发明的目的之三在于提供一种含有上述改性锂离子筛的MnO2吸附剂。
本发明的目的之四在于提供一种含有上述MnO2吸附剂的制备方法。
本发明的目的之五在于提供一种含有上述MnO2吸附剂的色谱柱。
本发明的目的之六在于提供一种上述改性锂离子筛或MnO2吸附剂在提取锂元素中的应用。
本发明的目的之七在于提供一种盐湖提锂方法。
本申请可这样实现:
第一方面,本申请提供一种改性锂离子筛,其为三维层状骨架结构的MnO2纳米片材料。
在可选的实施方式中,改性锂离子筛包括多层MnO2纳米片依次间隔设置的主体结构,相邻两层MnO2纳米片之间具有支撑骨架。
在可选的实施方式中,MnO2纳米片材料的比表面积不低于75m2/g。
在可选的实施方式中,相邻两层MnO2纳米片之间的间隙大于0nm且≤100nm。
第二方面,本申请提供如前述实施方式的改性锂离子筛的制备方法,包括以下步骤:
将AxMnO2材料进行酸处理,固液分离,干燥,得到HMnO2材料;其中,A为碱金属元素,0<x<1;
将HMnO2材料与支撑剂的水溶液混合,超声处理,收集纳米片材料,获得MnO2纳米片。
在可选的实施方式中,AxMnO2材料经以下方法制备得到:将碱金属化合物与锰的氧化物混合,煅烧。
在可选的实施方式中,锰的氧化物包括MnO2、Mn2O3和Mn3O4中的至少一种。
在可选的实施方式中,碱金属化合物中的碱金属包括锂、钠及钾中的至少一种。
在可选的实施方式中,碱金属化合物中碱金属的摩尔量不超过锰的氧化物中锰的摩尔量。
在可选的实施方式中,碱金属化合物中的碱金属与锰的氧化物中的锰的摩尔比为0.5-0.8:1。
在可选的实施方式中,煅烧温度为700-1200℃,优选为800-1000℃。
在可选的实施方式中,煅烧时间为6-24h,优选为12-18h。
在可选的实施方式中,对AxMnO2材料进行酸处理所用的酸的浓度为0.1-6mol/L,优选为0.3-1.5mol/L。
在可选的实施方式中,AxMnO2材料与酸的固液比为1g:1-10mL;优选为1g:2-5mL。
在可选的实施方式中,酸处理的时间为0.1-24h,优选为1-6h;
在可选的实施方式中,干燥温度为40-80℃,优选为50-70℃;
在可选的实施方式中,干燥时间为3-18h,优选为6-15h。
在可选的实施方式中,支撑剂的水溶液中,支撑剂的浓度为0.01-5g/L,优选为0.1-3g/L。
在可选的实施方式中,HMnO2材料与支撑剂的水溶液的固液比为10-100g:1L,优选为20-50g:1L。
在可选的实施方式中,支撑剂包括有机铵类物质,优选包括四正丁基氢氧化氨、四甲基氢氧化铵、四乙基氢氧化铵和四丙基氢氧化铵中的至少一种。
在可选的实施方式中,超声处理时间为0.5-24h,优选为1-6h。
在可选的实施方式中,收集纳米片材料包括:将超声处理后得到的物料进行低速离心,收集上层悬浮液,获得去质子化的MnO2纳米片材料。
在可选的实施方式中,收集纳米片材料还包括:将去质子化的MnO2纳米片材料进行高速离心,收集固相物,得到MnO2纳米片。
在可选的实施方式中,收集固相物后,还包括对固相物进行干燥。
在可选的实施方式中,低速离心的转速为3000-10000r/min,优选为5000-8000r/min。
在可选的实施方式中,高速离心的转速为10000-20000r/min,优选为14000-18000r/min。
在可选的实施方式中,对固相物进行干燥的温度为40-80℃,优选为50-70℃。
在可选的实施方式中,对固相物进行干燥的时间为3-18h,优选为6-12h。
第三方面,本申请提供一种MnO2吸附剂,其为前述实施方式的改性锂离子筛与粘结剂的团聚物。
在可选的实施方式中,团聚物为粒径为毫米级的颗粒物。
第四方面,本申请提供如前述实施方式的MnO2吸附剂的制备方法,包括以下步骤:将如前述实施方式的改性锂离子筛与粘结剂以及有机溶剂混合,随后转入水相,获得团聚物。
在可选的实施方式中,还包括对团聚物进行干燥。
在可选的实施方式中,改性锂离子筛与粘结剂的质量比为5-100:1,优选为10-30:1。
在可选的实施方式中,粘结剂包括羧甲基纤维素钠(CMC)、丁苯橡胶(SBR)、聚乙烯醇(PVA)及聚氯乙烯(PVC)中的至少一种,优选包括聚乙烯醇(PVA)及聚氯乙烯(PVC)中的至少一种。
在可选的实施方式中,改性锂离子筛与有机溶剂的料液比为1g:0.1-12mL,优选为1g:1-6mL。
在可选的实施方式中,对团聚物进行干燥是于40-80℃的条件下进行,优选为50-70℃。
在可选的实施方式中,对团聚物进行干燥的时间为3-18h,优选为6-12h。
第五方面,本申请提供一种色谱柱,其吸附剂包括前述实施方式的MnO2吸附剂。
在可选的实施方式中,MnO2吸附剂在色谱柱中的填充量为色谱柱体积的30-80%。
第六方面,本申请提供如前述实施方式任一项的改性锂离子筛或前述实施方式的MnO2吸附剂在提取锂元素中的应用。
在可选的实施方式中,改性锂离子筛或MnO2吸附剂用于盐湖提锂。
第七方面,本申请提供一种盐湖提锂方法,包括以下步骤:于填充有上述MnO2吸附剂的色谱柱中通入待提取的盐湖卤水,待MnO2吸附剂吸附饱和后,洗出MnO2吸附剂,随后进行解吸处理,得到富锂的解吸排出液。
在可选的实施方式中,盐湖卤水的通入色谱柱的流速为1-100mL/min,优选为10-30mL/min。
在可选的实施方式中,吸附时间为0.1-6h,优选为0.5-3h。
在可选的实施方式中,解吸处理所用的解吸试剂为酸,优选为盐酸。
在可选的实施方式中,解吸试剂的流速为0.1-50mL/min,优选为1-6mL/min。
在可选的实施方式中,解吸试剂的浓度为0.1-10mol/L,优选为0.3-1.5mol/L。
在可选的实施方式中,解吸时间为0.3-9h,优选为1-3h。
本申请的有益效果包括:
本申请提供的改性锂离子筛为三维层状骨架结构的MnO2纳米片材料,其具有较大比表面 积,可以提供更多吸附位点以及较短的离子扩散距离,对Li+吸附量大;并且,该改性锂离子筛在片层间还具有骨架,从而使其具有稳定的层状结构,在使用过程中,即使体积膨胀,也不容易导致坍塌,进而具有较长的循环寿命。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1合成改性锂离子筛的SEM图谱;
图2为对比例1未改性锂离子筛的SEM图谱。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本申请提供的改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法进行具体说明。
发明人经研究提出,导致传统MO基离子筛对锂的吸附量较低的主要原因在于传统MO基离子筛锂扩散位点少;导致传统MO基离子筛循环寿命较短的主要原因在于其使用过程体积膨胀率大,结构坍塌快。
基于此,本申请创造性地提出了一种改性锂离子筛,其为三维层状骨架结构的MnO2纳米片材料。
可参考地,该MnO2纳米片材料包括多层MnO2纳米片依次间隔设置的主体结构,相邻两层MnO2纳米片之间具有支撑骨架。
在一些优选的实施方式中,本申请所提供的MnO2纳米片材料的比表面积不低于75m2/g,例如可以为75m2/g、78m2/g、80m2/g、82m2/g、84m2/g、86m2/g、88m2/g、91m2/g、92m2/g、95m2/g或98m2/g等。
在可选的实施方式中,相邻两层MnO2纳米片之间的间隙大于0nm且≤100nm,如可以为0.1nm、0.5nm、1nm、5nm、10nm、20nm、50nm、80nm或100nm等,也可以为大于0nm且≤100nm范围内的其它任意值。
需说明的是,若相邻两层MnO2纳米片之间的间隙超过100nm,容易导致纳米片结构坍塌。
承上,本申请提供的改性锂离子筛具有较大比表面积,可以提供更多吸附位点以及较短的离子扩散距离,对Li+吸附量大;并且,该改性锂离子筛在片层间还具有骨架,从而使其具有稳定的层状结构,在使用过程中,即使体积膨胀,也不容易导致坍塌,进而具有较长的循环寿命。
相应地,本申请还提供了上述改性锂离子筛的制备方法,例如可包括以下步骤:
S1:将AxMnO2材料进行酸处理,固液分离,干燥,得到HMnO2材料;其中,A为碱金属元素,0<x<1;
S2:将HMnO2材料与支撑剂的水溶液混合,超声处理,收集纳米片材料,获得MnO2纳米片。
作为参考地,S1中的上述AxMnO2材料为含有碱金属的纳米片结构,其可经以下方法制备得到:将碱金属化合物与锰的氧化物混合,煅烧。
其中,锰的氧化物例如可包括MnO2、Mn2O3和Mn3O4中的至少一种。
碱金属化合物中的碱金属例如可包括锂、钠及钾中的至少一种。
在一些可选的实施方式中,上述碱金属化合物中碱金属的摩尔量不超过锰的氧化物中锰的摩尔量,可理解为:碱金属化合物中的碱金属与锰的氧化物中的锰的摩尔比为0(不含)-1:1,如0.1:1、0.2:1、0.3:1、0.4:1、0.5:1、0.6:1、0.7:1、0.8:1、0.9:1或1:1等,也可以为0(不含)-1:1范围内的其它任意值;优选为0.5-0.8:1。
需说明的是,若碱金属化合物用量过多,容易导致后续酸的H+对碱金属元素提取以及支撑剂置换H+不彻底。若碱金属化合物用量过少,会导致不易合成AxMnO2。将碱金属的用量控制在本申请范围,一方面较易合成AxMnO2,另一方面有利于提高对Li+的吸附量。
作为参考地,碱金属化合物与锰的氧化物混合后的煅烧可在700-1200℃的条件下进行。例如,煅烧温度可以为700℃、750℃、800℃、850℃、900℃、950℃、1000℃、1050℃、1100℃、1150℃或1200℃等,也可以为700-1200℃范围内的其它任意值;优选为800-1000℃。
需说明的是,若该煅烧温度超过1200℃,可能会生成其它相或使产品具有其它形貌,导致后续不能获得纳米片的HMnO2材料;若煅烧温度低于800℃,会对大大延长煅烧时间。
相应地,碱金属化合物与锰的氧化物混合后的煅烧时间可以为6-24h,如6h、8h、10h、12h、14h、16h、18h、20h、22h或24h等,也可以为6-24h范围内的其它任意值;优选为12-18h。
作为参考地,在S1中,对AxMnO2材料进行酸处理的酸为稀酸,例如可以为稀盐酸、稀硫酸、稀硝酸或稀磷酸等。
通过对AxMnO2材料进行酸处理,可用H+置换出AxMnO2材料中碱金属离子(也即H+占据原来碱金属的位置),获得HMnO2材料(该材料依然呈纳米片结构)。
需说明的是,若不采用置换方式,而是直接除去AxMnO2中的碱金属,会导致材料后续发生坍塌。采用酸中的H+进行置换,可平衡电荷,不但使得材料不会坍塌,而且,还有利于后续支撑剂的置换。
上述稀酸的浓度可以为0.1-6mol/L,如0.1mol/L、0.2mol/L、0.5mol/L、1mol/L、1.5mol/L、2mol/L、2.5mol/L、3mol/L、3.5mol/L、4mol/L、4.5mol/L、5mol/L、5.5mol/L或6mol/L等,也可以为0.1-6mol/L范围内的其它任意值;优选为0.3-1.5mol/L。
若稀酸的浓度过高,会破坏材料的形貌和结构。
AxMnO2材料与酸的固液比可以为1g:1-10mL,如1g:1mL、1g:2mL、1g:3mL、1g:4mL、1g:5mL、1g:6mL、1g:7mL、1g:8mL、1g:9mL或101g:1mL等,也可以为1g:1-10mL范围内的其它任意值;优选为1g:2-5mL。
若液体用量过低,会导致酸无法与固体AxMnO2材料充分接触,无法完全置换出AxMnO2材料中的碱金属离子。
本申请中,对AxMnO2材料进行酸处理的时间为0.1-24h,如0.1h、0.5h、1h、2h、5h、8h、10h、15h、20h或24h等,也可以为0.1-24h范围内的其它任意值;优选为1-6h。
作为参考地,对AxMnO2材料进行酸处理后,可采用过滤的方式进行固液分离。
固液分离后进行的干燥过程,所涉及的干燥温度可以为40-80℃,如40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等,也可以为40-80℃范围内的其它任意值;优选为50-70℃。
相应的干燥时间可以为3-18h,如3h、5h、8h、10h、12h、15h或18h等,也可以为3-18h范围内的其它任意值;优选为6-15h。
干燥温度越高,对应的干燥时间越短。但干燥温度过高,会导致破坏材料结构。
在S2中,支撑剂的水溶液中,支撑剂的浓度可以为0.01-5g/L,如0.01g/L、0.05g/L、1g/L、1.5g/L、2g/L、2.5g/L、3g/L、3.5g/L、4g/L、4.5g/L或5g/L等,也可以为0.01-5g/L范围内的其它任意值;优选为0.1-3g/L。
HMnO2材料与支撑剂的水溶液的固液比可以为10-100g:1L,如10g:1L、20g:1L、30g:1L、40g:1L、50g:1L、60g:1L、70g:1L、80g:1L、90g:1L或100g:1L等,也可以为10-100g:1L范围内的其它任意值;优选为20-50g:1L。
需说明的是,支撑剂主要起到支撑作用,可作为支撑骨架插入相邻两层MnO2纳米片之间,避免层状MnO2纳米片发生坍塌并重叠在一起。
支撑剂的浓度和含量需确保其能够将HMnO2材料中的H+完全置换。若支撑剂的浓度或含量过高,不但效益低,而且还会使材料具有碱性,不利于后续处理;若支撑剂的浓度或含量过低,会导致其无法将HMnO2材料中的H+完全置换出来。
示例性地,上述支撑剂包括有机铵类物质,如四正丁基氢氧化氨(TBAOH)、四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(Et4NOH)及四丙基氢氧化铵(TPAOH)中的至少一种,优选包括四正丁基氢氧化氨。
在S2中,超声处理时间可以为0.5-24h,如0.5h、1h、2h、5h、8h、10h、12h、15h、18h、20h、22h或24h等,也可以为0.5-24h范围内的其它任意值;优选为1-6h。
通过S2的处理,可将HMnO2材料充分剥离并去质子化得到MnO2纳米片结构。
在S3中,收集纳米片材料可包括:将超声处理后得到的物料进行低速离心,收集上层悬浮液,获得去质子化的MnO2纳米片材料。
进一步地,将去质子化的MnO2纳米片材料进行高速离心,收集固相物,得到MnO2纳米片。
收集固相物后,还可对固相物进行干燥。
在收集纳米片材料过程中,低速离心的转速可以为3000-8000r/min,如3000r/min、4000r/min、5000r/min、6000r/min、7000r/min或8000r/min等,也可以为3000-8000r/min范围内的其它任意值;优选为5000-8000r/min。
将悬浮液进行高速离心的过程中,高速离心的转速可以为10000-20000r/min,如10000r/min、12000r/min、15000r/min、18000r/min或20000r/min等,也可以为10000-20000r/min范围内的其它任意值;优选为14000-18000r/min。
作为参考地,对固相物进行干燥的温度可以为40-80℃,如40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等,也可以为40-80℃范围内的其它任意值;优选为50-70℃。
相应地,对固相物进行干燥的时间可以为3-18h,如3h、5h、8h、10h12h、15h或18等,也可以为3-18h范围内的其它任意值;优选为6-12h。
同理地,干燥温度越高,对应的干燥时间越短。但干燥温度过高,会导致破坏材料结构,使纳米片结构坍塌。
此外,本申请还提供了一种MnO2吸附剂,其为上述改性锂离子筛与粘结剂的团聚物。
优选地,该团聚物为粒径为毫米级的颗粒物。示例性地,该颗粒物的粒径可以为1-100mm。
相应地,本申请还提供了上述MnO2吸附剂的制备方法,包括以下步骤:将上述改性锂离子筛与粘结剂以及有机溶剂混合,随后转入水相,获得团聚物,能够提高对锂离子筛的吸附能力。作为参考地,改性锂离子筛与粘结剂的质量比可以为5-100:1,如5:1、10:1、15:1、20:1、25:1、30:1、35:1、40:1、45:1、50:1、55:1、60:1、65:1、70:1、75:1、80:1、85:1、90:1、95:1或100:1等,也可以为5-100:1范围内的其它任意值;优选为10-30:1。
若粘结剂过多,会降低团聚物中改性锂离子筛的占比,降低吸附能力;若粘结剂过少,不能达到较佳的粘结效果,会使得改性锂离子筛大部分呈分散状态,无法有效团聚。
示例性地,上述粘结剂可包括羧甲基纤维素钠、丁苯橡胶、聚乙烯醇及聚氯乙烯中的至少一种,优选包括聚乙烯醇及聚氯乙烯中的至少一种。
作为参考地,改性锂离子筛与有机溶剂的料液比可以为1g:0.1-12mL,如1g:0.1mL、1g:0.5mL、1g:1mL、1g:2mL、1g:5mL、1g:8mL、1g:10mL或1g:12mL等;优选为1g:1-6mL。
上述有机溶剂示例性地可以包括醇类(如甲醇或乙醇等)或N-甲基吡咯烷酮,优选包括N-甲基吡咯烷酮。
改性锂离子筛与粘结剂以及有机溶剂混合后,其为浆料,不容易形成颗粒,将浆料整体转入水中,一方面可在干燥过程中除去有机溶剂,避免有机溶剂对后续提锂过程造成高污染,另一方面能够使改性锂离子筛在粘结剂的条件下团聚成均匀颗粒。
进一步地,对团聚物进行干燥。
对团聚物进行干燥可以于40-80℃的条件下进行,例如,该干燥温度可以为40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃或80℃等,也可以为40-80℃范围内的其它任意值;优选为50-70℃。
对团聚物进行干燥的时间为3-18h,如3h、5h、8h、10h、12h、15h或18h等,也可以为3-18h范围内的其它任意值;优选为6-12。
此外,本申请还提供了一种色谱柱,其所含的吸附剂包括上述MnO2吸附剂。
作为参考地,MnO2吸附剂在色谱柱中的填充量可以为色谱柱体积的30-80%,如30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%等,也可以为30-80%范围内的其它任意值。
此外,本申请还提供了上述改性锂离子筛或上述MnO2吸附剂在提取锂元素中的应用。
例如,改性锂离子筛或MnO2吸附剂可用于盐湖提锂。
相应地,本申请还提供了一种盐湖提锂方法,可包括以下步骤:于填充有MnO2吸附剂的色谱柱中通入待提取的盐湖卤水,待MnO2吸附剂吸附饱和后,洗出MnO2吸附剂,随后进行解吸处理,得到富锂的解吸排出液。
作为参考地,盐湖卤水的通入色谱柱的流速可以为1-100mL/min,如1mL/min、2mL/min、5mL/min、10mL/min、20mL/min、50mL/min、80mL/min或100mL/min等,也可以为1-100mL/min范围内的其它任意值;优选为10-30mL/min。
上述流速可确保吸MnO2吸附剂与盐湖卤水充分接触,若流速过大,会导致MnO2吸附剂与盐湖卤水无法充分接触;若流速过小,会降低吸附效率。
吸附时间可以为0.1-6h,如0.1h、0.2h、0.5h、1h、1.5h、2h、5.5h、3h、3.5h、4h、4.5h、5h、5.5h或6h等,也可以为0.1-6h范围内的其它任意值;优选为0.5-3h。
同理地,若吸附时间过短,会导致MnO2吸附剂与盐湖卤水无法充分接触;若吸附时间过长,会降低吸附效率。
作为参考地,上述解吸处理所用的解吸试剂为酸,如盐酸、硫酸、硝酸或磷酸等,优选为盐酸。
解吸试剂的流速可以为0.1-50mL/min,如0.1mL/min、0.2mL/min、0.5mL/min、1mL/min、2mL/min、5mL/min、10mL/min、15mL/min、2mL/min、25mL/min、30mL/min、35mL/min、40mL/min、45mL/min或50mL/min等,也可以为0.1-50mL/min范围内的其它任意值;优选为1-6mL/min。
解吸试剂的浓度为0.1-10mol/L,如0.1mol/L、0.mol/L、0.5mol/L、1mol/L、2mol/L、3mol/L、4mol/L、5mol/L、6mol/L、7mol/L、8mol/L、9mol/L或10mol/L等,也可以为0.1-10mol/L范围内的其它任意值;优选为0.3-1.5mol/L。
解吸时间为0.3-9h,如0.3h、0.5h、1h、2h、3h、4h、5h、6h、7h、8h或9h等,也可以为0.3-9h范围内的其它任意值;优选为1-3h。
通过解吸,MnO2吸附剂可重复利用。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种MnO2吸附剂,其可按以下方式制备得到:
步骤(1):将5g的Mn2O3与2.35g的Na2CO3混合后在800℃煅烧12h,得到NaxMnO2材料;
步骤(2):取5g步骤(1)所得材料用15mL的浓度为1.5mol/L的稀盐酸处理3h,过滤后在55℃干燥12h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(5g)分散在200mL浓度为1g/L的TBAOH水溶液中,并保持5h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于7000r/min条件下低速离心,收集上层悬浮液,然后于16000r/min条件下高速离心,收集MnO2纳米片固体材料,再在50℃进行7h干燥处理(所得的固体材料的SEM图如图1所示);
步骤(5):将步骤(4)干燥处理后的固体材料(5g)与0.17g的PVC粘结剂在20mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于55℃进行12h干燥处理,获得MnO2吸附剂。
在获得上述MnO2吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按20mL/min的流速循环2h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按1mL/min速度保持3h通入0.4mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例2
本实施例提供一种MnO2吸附剂,其可按以下方式制备得到:
步骤(1):将10g的MnO2与6.66g的CH3COONa混合后在800℃煅烧12h,得到NaxMnO2材料;
步骤(2):取10g步骤(1)所得材料用20mL的浓度为3mol/L的稀盐酸处理6h,过滤后在60℃干燥8h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(10g)分散在200mL浓度为0.1g/L的TBAOH水溶液中,并保持4h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于6000r/min条件下低速离心,收集上层悬浮液,然后于14000r/min条件下高速离心,收集MnO2纳米片固体材料,再在65℃进行8h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(10g)与0.5g的PVC粘结剂在30mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于70℃进行6h干燥处理,获得MnO2吸附剂。
在获得上述MnO2吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按15mL/min的流速循环0.5h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按2mL/min速度保持2h通入0.3mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例3
本实施例提供一种MnO2吸附剂,其可按以下方式制备得到:
步骤(1):将8g的Mn3O4与5.15g的KNO3混合后在900℃煅烧16h,得到KxMnO2材料;
步骤(2):取8g步骤(1)所得材料用28mL的浓度为2mol/L的稀盐酸处理1h,过滤后在50℃干燥15h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(8g)分散在240mL浓度为0.5g/L的TBAOH水溶液中,并保持3h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于5000r/min条件下低速离心,收集上层悬浮液,然后于18000r/min条件下高速离心,收集MnO2纳米片固体材料,再在70℃进行6h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(8g)与0.8g的PVC粘结剂在16mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于60℃进行8h干燥处理,获得MnO2吸附剂。
在获得上述MnO2吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按25mL/min的流速循环1.2h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按3mL/min速度保持1h通入0.1mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例4
本实施例提供一种MnO2吸附剂,其可按以下方式制备得到:
步骤(1):将7g的Mn2O3与2.62g的Li2CO3混合后在1000℃煅烧14h,得到LixMnO2材料;
步骤(2):取7g步骤(1)所得材料用28mL的浓度为2.4mol/L的稀盐酸处理2h,过滤后在65℃干燥9h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(7g)分散在350mL浓度为2g/L的TBAOH水溶液中,并保持1h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于5500r/min条件下低速离心,收集上层悬浮液,然后于15000r/min条件下高速离心,收集MnO2纳米片固体材料,再在55℃进行12h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(7g)与0.35g的PVC粘结剂在7mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于50℃进行9h干燥处理,获得MnO2吸附剂。
在获得上述MnO2吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按30mL/min的流速循环2.5h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按4mL/min速度保持1.5h通入0.5mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例5
本实施例提供一种MnO2吸附剂,其可按以下方式制备得到:
步骤(1):将15g的MnO2与2.48g的LiOH混合后在1000℃煅烧18h,得到LixMnO2材料;
步骤(2):取15g步骤(1)所得材料用75mL的浓度为1mol/L的稀盐酸处理5h,过滤后在70℃干燥6h,得到HMnO2材料;
步骤(3):将步骤(2)中制备的材料(15g)分散在750mL浓度为3g/L的TBAOH水溶液中,并保持2h超声处理,获得剥离成纳米片的MnO2材料;
步骤(4):将超声处理后的物料于8000r/min条件下低速离心,收集上层悬浮液,然后于17000r/min条件下高速离心,收集MnO2纳米片固体材料,再在60℃进行9h干燥处理;
步骤(5):将步骤(4)干燥处理后的固体材料(15g)与1g的PVC粘结剂在90mL的NMP溶剂中混匀制浆,然后逐渐转入水中使固体材料在粘结剂的条件下团聚为均匀颗粒,随后于65℃进行6h干燥处理,获得MnO2吸附剂。
在获得上述MnO2吸附剂之后,将该吸附剂颗粒填充进色谱柱(填充量为色谱柱体积的50%)中,然后向色谱柱按10mL/min的流速循环3h通入盐湖卤水;待吸附剂吸附饱和后,向柱中通入去离子水用于清洗吸附剂,然后按6mL/min速度保持2.5h通入0.2mol/L的盐酸进行解吸处理,解吸排出液即为富锂溶液。
实施例6
本实施例与实施例1的区别在于:步骤(2)中支撑剂为TMAOH。
实施例7
本实施例与实施例1的区别在于:步骤(1)中,煅烧温度为700℃,时间为24h。
实施例8
本实施例与实施例1的区别在于:步骤(1)中,煅烧温度为1200℃,时间为6h。
实施例9
本实施例与实施例1的区别在于:步骤(2)中,稀酸浓度为0.1mol/L。
实施例10
本实施例与实施例1的区别在于:步骤(2)中,稀酸浓度为6mol/L。
实施例11
本实施例与实施例1的区别在于:步骤(2)中,液固比为1mL:1g。
实施例12
本实施例与实施例1的区别在于:步骤(2)中,液固比为10mL:1g。
实施例13
本实施例与实施例1的区别在于:步骤(2)中,干燥温度为40℃,干燥时间为18h。
实施例14
本实施例与实施例1的区别在于:步骤(2)中,干燥温度为80℃,干燥时间为3h。
实施例15
本实施例与实施例1的区别在于:步骤(3)中,TBAOH浓度为0.01g/L。
实施例16
本实施例与实施例1的区别在于:步骤(3)中,TBAOH浓度为5g/L。
实施例17
本实施例与实施例1的区别在于:步骤(3)中,液固比为10g:1L。
实施例18
本实施例与实施例1的区别在于:步骤(3)中,液固比为100g:1L。
实施例19
本实施例与实施例1的区别在于:步骤(3)中,超声处理时间为0.5h。
实施例20
本实施例与实施例1的区别在于:步骤(3)中,超声处理时间为24h。
实施例21
本实施例与实施例1的区别在于:步骤(4)中,低速离心的转速为3000r/min,高速离心的转速为10000r/min。
实施例22
本实施例与实施例1的区别在于:步骤(4)中,低速离心的转速为8000r/min,高速离心的转速为20000r/min。
实施例23
本实施例与实施例1的区别在于:步骤(4)中,干燥温度为40℃,干燥时间为18h。
实施例24
本实施例与实施例1的区别在于:步骤(4)中,干燥温度为80℃,干燥时间为3h。
实施例25
本实施例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为5:1。
实施例26
本实施例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为100:1。
实施例27
本实施例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:0.1mL。
实施例28
本实施例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:12mL。
实施例29
本实施例与实施例1的区别在于:步骤(5)中,干燥温度为40℃,干燥时间为18h。
实施例30
本实施例与实施例1的区别在于:步骤(5)中,干燥温度为80℃,干燥时间为3h。
对比例1
本对比例与实施例1区别在于:直接将MnO2纳米片制备为锂离子筛(其SEM图如图2所示),也即,未对MnO2纳米片进行改性处理。
对比例2
本对比例与实施例1的区别在于:步骤(1)中,煅烧温度为500℃。
对比例3
本对比例与实施例1的区别在于:步骤(1)中,煅烧温度为1500℃。
对比例4
本对比例与实施例1的区别在于:步骤(2)中,稀酸浓度为0.05mol/L。
对比例5
本对比例与实施例1的区别在于:步骤(2)中,稀酸浓度为8mol/L。
对比例6
本对比例与实施例1的区别在于:步骤(2)中,液固比为0.5mL:1g。
对比例7
本对比例与实施例1的区别在于:步骤(2)中,液固比为15mL:1g。
对比例8
本对比例与实施例1的区别在于:步骤(2)中,干燥温度为100℃,
对比例9
本对比例与实施例1的区别在于:步骤(3)中,TBAOH浓度为0.005g/L。
对比例10
本对比例与实施例1的区别在于:步骤(3)中,TBAOH浓度为10g/L。
对比例11
本对比例与实施例1的区别在于:步骤(3)中,液固比为5g:1L。
对比例12
本对比例与实施例1的区别在于:步骤(3)中,液固比为120g:1L。
对比例13
本对比例与对实施例1的区别在于:步骤(4)中,只进行低速离心,无高速离心。
对比例14
本对比例与实施例1的区别在于:步骤(4)中,只进行高速离心,无低速离心。
对比例15
本对比例与实施例1的区别在于:步骤(4)中,干燥温度为100℃。
对比例16
本对比例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为2:1。
对比例17
本对比例与实施例1的区别在于:步骤(5)中,固体材料与粘结剂的质量比为120:1。
对比例18
本对比例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:0.05mL。
对比例19
本对比例与实施例1的区别在于:步骤(5)中,固体材料与有机溶剂的固液比为1g:15mL。
对比例20
本对比例与实施例1的区别在于:步骤(5)中,干燥温度为100℃。
试验例
上述实施例1-30以及对比例1-20均处理相同的盐湖卤水,该盐湖卤水中的主要元素的浓度如表1所示。
各实施例和对比例的锂离子筛材料的比表面积如表2所示。各实施例及对比例的单位锂离子筛锂吸附量如表3所示,各实施例及对比例的单位锂离子筛锰溶出率如表4所示。
表1盐湖卤水中主要元素的浓度
表2锂离子筛材料比表面积

表3单位锂离子筛锂吸附量


表4单位锂离子筛锰溶出率

由上可以看出,本申请提供的由改性锂离子筛制得的MnO2吸附剂能够较未改性锂离子筛锂制得的MnO2吸附剂在吸附量方面提高30%以上,Mn溶出率也显著降低,极大地提高了MO基锂离子筛的使用价值并充分降低了使用成本。
此外,通过对比各实施例和对比例可以看出,实施例2对应的效果最佳,说明在该实施例的条件最优。而当其制备条件发生变化后,相应的效果会变差。
综上所述,本本申请提供的改性锂离子筛具备较大的比表面积,相应的锂吸附量显著提高;且本申请提供的改性锂离子筛具有三维层状骨架结构,提供了更好的循环稳定性,具有更长久的使用寿命。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种改性锂离子筛,其特征在于,所述改性锂离子筛为三维层状骨架结构的MnO2纳米片材料。
  2. 根据权利要求1所述的改性锂离子筛,其特征在于,所述改性锂离子筛包括多层MnO2纳米片依次间隔设置的主体结构,相邻两层MnO2纳米片之间具有支撑骨架;
    优选地,所述MnO2纳米片材料的比表面积不低于75m2/g;
    优选地,相邻两层MnO2纳米片之间的间隙大于0nm且≤100nm。
  3. 如权利要求1或2所述的改性锂离子筛的制备方法,其特征在于,包括以下步骤:将AxMnO2材料进行酸处理,固液分离,干燥,得到HMnO2材料;其中,A为碱金属元素,0<x<1;
    将HMnO2材料与支撑剂的水溶液混合,超声处理,收集纳米片材料,获得MnO2纳米片;
    优选地,所述AxMnO2材料经以下方法制备得到:将碱金属化合物与锰的氧化物混合,煅烧;
    优选地,锰的氧化物包括MnO2、Mn2O3和Mn3O4中的至少一种;
    优选地,所述碱金属化合物中的碱金属包括锂、钠及钾中的至少一种;
    优选地,所述碱金属化合物中碱金属的摩尔量不超过锰的氧化物中锰的摩尔量,更优地,所述碱金属化合物中的碱金属与锰的氧化物中的锰的摩尔比为0.5-0.8:1;
    优选地,煅烧温度为700-1200℃,更优为800-1000℃;
    优选地,煅烧时间为6-24h,更优为12-18h。
  4. 根据权利要求3所述的制备方法,其特征在于,对所述AxMnO2材料进行酸处理所用的酸的浓度为0.1-6mol/L;和/或,所述支撑剂的水溶液中,所述支撑剂的浓度为0.01-5g/L;
    优选地,所述酸的浓度为0.3-1.5mol/L;和/或,所述支撑剂的浓度为0.1-3g/L;
    优选地,所述AxMnO2材料与所述酸的固液比为1g:1-10mL;更优为1g:2-5mL;
    优选地,酸处理的时间为0.1-24h,更优为1-6h;
    优选地,干燥温度为40-80℃,更优为50-70℃;
    优选地,干燥时间为3-18h,更优为6-15h;
    优选地,HMnO2材料与所述支撑剂的水溶液的固液比为10-100g:1L,更优为20-50g:1L;
    优选地,所述支撑剂包括有机铵类物质,更优包括四正丁基氢氧化氨、四甲基氢氧化铵、四乙基氢氧化铵和四丙基氢氧化铵中的至少一种;
    优选地,超声处理时间为0.5-24h,更优为1-6h。
  5. 根据权利要求3所述的制备方法,其特征在于,收集纳米片材料包括:将超声处理后得到的物料进行低速离心,收集上层悬浮液,获得去质子化的MnO2纳米片材料;
    优选地,收集纳米片材料还包括:将去质子化的MnO2纳米片材料进行高速离心,收集固相物,得到MnO2纳米片;
    优选地,收集固相物后,还包括对所述固相物进行干燥;
    优选地,低速离心的转速为3000-8000r/min,更优为5000-8000r/min;
    优选地,高速离心的转速为10000-20000r/min,更优为14000-18000r/min;
    优选地,对所述固相物进行干燥的温度为40-80℃,更优为50-70℃;
    优选地,对所述固相物进行干燥的时间为3-18h,更优为6-12h。
  6. 一种MnO2吸附剂,其特征在于,所述MnO2吸附剂为权利要求1或2所述的改性锂离子筛与粘结剂的团聚物;
    优选地,所述团聚物为粒径为毫米级的颗粒物。
  7. 如权利要求6所述的MnO2吸附剂的制备方法,其特征在于,包括以下步骤:将权利要求1或2所述的改性锂离子筛与粘结剂以及有机溶剂混合,随后转入水相,获得团聚物;
    优选地,还包括对团聚物进行干燥;
    优选地,所述改性锂离子筛与所述粘结剂的质量比为5-100:1,更优为10-30:1;
    优选地,所述粘结剂包括羧甲基纤维素钠、丁苯橡胶、聚乙烯醇及聚氯乙烯中的至少一种,更优包括聚乙烯醇及聚氯乙烯中的至少一种;
    优选地,所述改性锂离子筛与所述有机溶剂的料液比为1g:0.1-12mL,更优为1g:1-6mL;
    优选地,对团聚物进行干燥是于40-80℃的条件下进行,更优为50-70℃;
    优选地,对团聚物进行干燥的时间为3-18h,更优为6-12h。
  8. 一种色谱柱,其特征在于,所述色谱柱的吸附剂为包括权利要求6所述的MnO2吸附剂;
    优选地,所述MnO2吸附剂在所述色谱柱中的填充量为所述色谱柱体积的30-80%。
  9. 如权利要求1-2任一项所述的改性锂离子筛或权利要求6所述的MnO2吸附剂在提取锂元素中的应用;
    优选地,所述改性锂离子筛或所述MnO2吸附剂用于盐湖提锂。
  10. 一种盐湖提锂方法,其特征在于,包括以下步骤:于填充有权利要求6所述的MnO2吸附剂的色谱柱中通入待提取的盐湖卤水,待所述MnO2吸附剂吸附饱和后,洗出MnO2吸附剂,随后进行解吸处理,得到富锂的解吸排出液;
    优选地,所述盐湖卤水的通入所述色谱柱的流速为1-100mL/min,优选为10-30mL/min;
    优选地,吸附时间为0.1-6h,更优为0.5-3h;
    优选地,解吸处理所用的解吸试剂为酸,更优为盐酸;
    优选地,所述解吸试剂的流速为0.1-50mL/min,更优为1-6mL/min;
    优选地,所述解吸试剂的浓度为0.1-10mol/L,更优为0.3-1.5mol/L;
    优选地,解吸时间为0.3-9h,更优为1-3h。
PCT/CN2023/083151 2022-10-25 2023-03-22 改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法 WO2024087477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211310012.5A CN115594223A (zh) 2022-10-25 2022-10-25 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法
CN202211310012.5 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024087477A1 true WO2024087477A1 (zh) 2024-05-02

Family

ID=84849775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083151 WO2024087477A1 (zh) 2022-10-25 2023-03-22 改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法

Country Status (2)

Country Link
CN (1) CN115594223A (zh)
WO (1) WO2024087477A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594223A (zh) * 2022-10-25 2023-01-13 广东邦普循环科技有限公司(Cn) 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314152A (ja) * 2004-04-28 2005-11-10 National Institute For Materials Science 層状二酸化マンガンナノベルト及びその製造方法
US20080119350A1 (en) * 2006-11-20 2008-05-22 Korea Institute Of Geosciences And Mineral Resources Ion exchange type lithium adsorbent using filter and method for preparing the same
CN101961634A (zh) * 2010-09-16 2011-02-02 中南大学 一种锰系锂离子筛吸附剂及其前躯体的制备方法
CN104525094A (zh) * 2015-01-09 2015-04-22 重庆工商大学 一种锰系离子筛吸附剂及其前驱体的制备方法
CN106298272A (zh) * 2016-10-28 2017-01-04 南京工程学院 一种超电容用金属离子掺杂花状MnO2纳米片及其制备方法
CN111826524A (zh) * 2020-07-13 2020-10-27 礼思(上海)材料科技有限公司 一种利用吸附剂从盐湖卤水中提锂的方法
CN112591798A (zh) * 2020-12-15 2021-04-02 青海大学 一种柱状锰系锂离子筛化合物的制备方法
CN112871127A (zh) * 2021-01-18 2021-06-01 江苏特丰新材料科技有限公司 一种高孔隙率锂离子筛颗粒的制备方法
CN113522227A (zh) * 2021-06-30 2021-10-22 哈尔滨工业大学(深圳) 高比表面积的改性二氧化锰及其制备方法和应用
CN114130375A (zh) * 2021-11-15 2022-03-04 成都开飞高能化学工业有限公司 一种膜状锂离子筛吸附剂的制备方法
CN115594223A (zh) * 2022-10-25 2023-01-13 广东邦普循环科技有限公司(Cn) 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354203C (zh) * 2005-12-19 2007-12-12 北京化工大学 一种氨基酸插层二氧化锰及其制备方法
CN100516146C (zh) * 2006-09-22 2009-07-22 北京化工大学 一种含二氧化锰纳米片的紫外屏蔽剂及其制备、使用方法
JP5219385B2 (ja) * 2007-03-01 2013-06-26 パナソニック株式会社 アルカリ乾電池用活物質及びその製造方法並びにそれを用いた電池
US20120213995A1 (en) * 2011-02-22 2012-08-23 University Of South Carolina Flexible Zn2SnO4/MnO2 Core/Shell Nanocable - Carbon Microfiber Hybrid Composites for High Performance Supercapacitor Electrodes
CN102921408B (zh) * 2012-11-27 2015-06-10 广东工业大学 一种层状氧化锰多孔材料催化剂的制备方法及其应用
CN103121724B (zh) * 2012-12-24 2014-12-24 华东理工大学 一种制备锂离子筛MnO2·0.5H2O及其前驱体Li1.6Mn1.6O4的方法
CN103647040A (zh) * 2013-11-12 2014-03-19 江苏华东锂电技术研究院有限公司 电极浆料、负电极及应用该负电极的锂离子电池
CN107275121B (zh) * 2017-07-12 2019-12-10 广东工业大学 一种具有自愈合的超级电容器及其制备方法
KR102077796B1 (ko) * 2017-12-15 2020-02-14 주식회사 엘지화학 이산화망간/탄소 나노 복합체의 제조 방법
CN108987715A (zh) * 2018-07-23 2018-12-11 芜湖彰鸿工程技术有限公司 一种锂离子电池负极浆料及其制备方法
CN109126889A (zh) * 2018-08-03 2019-01-04 湖南大学 一种适于电催化水氧化的锰氧化物/金属卟啉复合层状夹心纳米材料
CN109678219B (zh) * 2018-12-28 2022-05-13 湘潭大学 一种纳米层状镍钴锰酸锂的制备方法
CN111471308A (zh) * 2020-04-27 2020-07-31 郭仁圆 一种抗老化改性沥青及其制备方法
CN111671899A (zh) * 2020-06-16 2020-09-18 西北工业大学 一种二氧化锰纳米片杂化水凝胶的制备方法及抗肿瘤应用
CN111933456A (zh) * 2020-08-11 2020-11-13 苏州柯诺思高新材料有限公司 一种MnO2/碳纤维复合电极的制备方法及具有其的电容器
CN112076717A (zh) * 2020-09-10 2020-12-15 南京工业大学 一种熔融浸渍反应制备锂离子筛的方法
KR102366563B1 (ko) * 2020-11-24 2022-02-23 한국에너지기술연구원 금속-유기 골격체 및 2차원 시트를 포함하는 하이브리드 복합체

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314152A (ja) * 2004-04-28 2005-11-10 National Institute For Materials Science 層状二酸化マンガンナノベルト及びその製造方法
US20080119350A1 (en) * 2006-11-20 2008-05-22 Korea Institute Of Geosciences And Mineral Resources Ion exchange type lithium adsorbent using filter and method for preparing the same
CN101961634A (zh) * 2010-09-16 2011-02-02 中南大学 一种锰系锂离子筛吸附剂及其前躯体的制备方法
CN104525094A (zh) * 2015-01-09 2015-04-22 重庆工商大学 一种锰系离子筛吸附剂及其前驱体的制备方法
CN106298272A (zh) * 2016-10-28 2017-01-04 南京工程学院 一种超电容用金属离子掺杂花状MnO2纳米片及其制备方法
CN111826524A (zh) * 2020-07-13 2020-10-27 礼思(上海)材料科技有限公司 一种利用吸附剂从盐湖卤水中提锂的方法
CN112591798A (zh) * 2020-12-15 2021-04-02 青海大学 一种柱状锰系锂离子筛化合物的制备方法
CN112871127A (zh) * 2021-01-18 2021-06-01 江苏特丰新材料科技有限公司 一种高孔隙率锂离子筛颗粒的制备方法
CN113522227A (zh) * 2021-06-30 2021-10-22 哈尔滨工业大学(深圳) 高比表面积的改性二氧化锰及其制备方法和应用
CN114130375A (zh) * 2021-11-15 2022-03-04 成都开飞高能化学工业有限公司 一种膜状锂离子筛吸附剂的制备方法
CN115594223A (zh) * 2022-10-25 2023-01-13 广东邦普循环科技有限公司(Cn) 改性锂离子筛、二氧化锰吸附剂及其制备方法与应用、盐湖提锂方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, LIJUN: "Research Progress on Preparation Methods for Precursors of Lithium Ion-Sieve", TECHNOLOGY INNOVATION AND APPLICATION, KEJI CHUANGXIN YU YINGYONG ZAZHISHE, CN, no. 30, 31 December 2021 (2021-12-31), CN , pages 84 - 88, XP009554745, ISSN: 2095-2945, DOI: 10.19981/j.CN23-1581/G3.2021.30.020 *

Also Published As

Publication number Publication date
CN115594223A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
CN103035890B (zh) 硅与石墨烯复合电极材料及其制备方法
Zhao et al. Synthesis of porous fiber-supported lithium ion-sieve adsorbent for lithium recovery from geothermal water
CN107369801A (zh) 一种MXene修饰复合隔膜及其制备方法与在锂硫电池中的应用
Chitrakar et al. Magnesium-doped manganese oxide with lithium ion-sieve property: lithium adsorption from salt lake brine
WO2024087477A1 (zh) 改性锂离子筛、MnO2吸附剂及其制备方法与应用、盐湖提锂方法
CN111647746A (zh) 膜电极材料及其制备方法及应用于吸附-电耦合法提取锂
CN110013822A (zh) 一种废旧锂离子电池回收并联产锂吸附剂的方法
CN112794324B (zh) 一种高介孔率木质素多级孔碳材料及其制备方法与应用
CN103832997A (zh) 石墨烯/炭黑复合材料及制备方法和应用
JP2024504492A (ja) 電波吸収材料を含有する複合a型分子篩原料粉末、オールゼオライト分子篩、これらの製造方法、及び使用
CN108607500A (zh) 一种用于高镁锂比盐湖卤水提锂的凝胶吸附剂及制备方法
CN116487559A (zh) 一种空腔定制化碳硅复合材料及其制备方法和应用
WO2023083062A1 (zh) 一种钛基锂离子交换体的制备方法
CN114649516B (zh) 一种木质素炭/氧化镍纳米复合材料及其制备方法与应用
WO2023165022A1 (zh) 多孔水化硅酸钙及其制备方法、吸附剂及其应用
CN110474122A (zh) 一种利用锰酸锂废料制备锂离子筛的方法及该锂离子筛
CN113149089B (zh) 一种氮掺杂石墨烯镍钒电极材料及其制备方法
CN113041988B (zh) 一种钛系锂离子筛及其制备方法与应用
CN109621922A (zh) 一种整体式酚醛树脂基锂离子筛及其制备方法和应用
CN104324691B (zh) 一种高co2吸附性能碳吸附剂的制备方法
WO2024119629A1 (zh) 氟离子吸附剂的制备方法
WO2023124974A1 (zh) 锂吸附剂、锂吸附剂的制备方法及盐湖提锂方法
KR100569863B1 (ko) 겔 공법에 의한 이온 교환형 나노-리튬 망간 산화물 분말흡착제의 제조 방법
CN117654443B (zh) 一种锂吸附剂及其制备方法
CN116237026A (zh) 纳米提锂吸附剂、其制备方法与应用其的电化学反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881078

Country of ref document: EP

Kind code of ref document: A1