WO2024085383A1 - 음이온 교환막 및 그 제조방법 - Google Patents

음이온 교환막 및 그 제조방법 Download PDF

Info

Publication number
WO2024085383A1
WO2024085383A1 PCT/KR2023/011068 KR2023011068W WO2024085383A1 WO 2024085383 A1 WO2024085383 A1 WO 2024085383A1 KR 2023011068 W KR2023011068 W KR 2023011068W WO 2024085383 A1 WO2024085383 A1 WO 2024085383A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchange
formula
exchange membrane
porous polymer
polymer support
Prior art date
Application number
PCT/KR2023/011068
Other languages
English (en)
French (fr)
Inventor
김지환
추정주
차봉준
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Publication of WO2024085383A1 publication Critical patent/WO2024085383A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an anion exchange membrane and a method of manufacturing the same.
  • An ion exchange membrane is a synthetic resin membrane that selects cations and anions and allows only one side to pass through.
  • a cation exchange membrane has a negatively charged functional group and can selectively transmit cations, while an anion exchange membrane has a positively charged functional group and can selectively transmit anions.
  • ion exchange membranes require high permeability, low electrical resistance, excellent mechanical strength, and high chemical stability.
  • This anion exchange membrane can be applied to water treatment systems such as electrodialysis, bipolar membrane electrodialysis, capacitive desalination, and electric deionization, or to systems such as fuel cells, water electrolysis, reverse electrodialysis, and redox flow batteries.
  • Systems using an anion exchange membrane can apply acid or alkaline raw water to the process, and acid or alkali may be generated during process operation of the raw water.
  • a perfluorine-based anion exchange membrane can be used as an anion exchange membrane, but due to its high price, a hydrocarbon-based anion exchange membrane is used in actual systems.
  • hydrocarbon-based anion exchange membranes have limitations in application processes and conditions due to chemical resistance issues.
  • anion exchange membranes have a certain amount of support fraction within the membrane, so there is a limit to increasing the ion exchange capacity to improve membrane properties.
  • an ion exchange membrane with high ion exchange capacity and improved surface hardness is provided with good crack resistance.
  • a method for manufacturing the above-described ion exchange membrane is provided.
  • Porous polymer support and an electrolyte containing an anion exchange polymer
  • the electrolyte is located on the surface and inside the pores of the porous polymer support, and the anion exchange polymer is a cross-linked product of a composition containing a cross-linkable monomer and a water-soluble monomer represented by the following formula (1),
  • An anion exchange membrane is provided in which the water-soluble monomer is a nonionic compound containing a vinyl group.
  • X - is F - , Cl - , Br - , or I - .
  • composition for forming an anion exchange polymer comprising a crosslinkable monomer represented by the following formula (1), a water-soluble monomer, a photoinitiator, and a solvent;
  • a method for manufacturing an anion exchange membrane including the step of manufacturing an anion exchange membrane by peeling the polyester-based film from a porous polymer support on which the anion exchange polymer is formed on the surface and inside the pores.
  • X - is F - , Cl - , Br - , or I - .
  • the ion exchange membrane has strong chemical resistance, so it can be used in high-concentration acid and alkali conditions.
  • it is an ion exchange membrane containing a porous support, a cross-linking agent containing an ionic group is applied and the surface of the porous support is surrounded by an electrolyte, so that ions are removed.
  • the ion exchange capacity is increased, so the concentrated desalting performance is improved, and the surface hardness of the ion exchange membrane is improved, thereby improving crack resistance.
  • a typical anion exchange membrane has a structure in which an anion exchange polymer having a cationic functional group is placed on top of a support.
  • Anion exchange membranes require high permeability for anions, low electrical resistance, excellent mechanical strength, and chemical stability.
  • an anion exchange membrane for example, a perfluorine-based anion exchange membrane or a hydrocarbon-based anion membrane are known.
  • hydrocarbon-based anion exchange membranes are cheaper than perfluorine-based anion exchange membranes, but their chemical resistance is not sufficient.
  • hydrocarbon-based anion exchange membranes have a certain amount of support fraction, so there is a limit to the increase in ion exchange capacity to increase concentration desalination performance.
  • the present inventors solve the above-mentioned problems and provide an anion exchange membrane with increased electrolyte content in the ion exchange membrane and improved chemical resistance.
  • An anion exchange membrane includes a porous polymer support; and an electrolyte containing an anion exchange polymer, wherein the electrolyte is located on the surface and inside the pores of the porous polymer support, and the anion exchange polymer includes a crosslinkable monomer and a water-soluble monomer represented by the following formula (1): is a cross-linked product of the composition,
  • An anion exchange membrane is provided in which the water-soluble monomer is a nonionic compound containing a vinyl group.
  • water-soluble monomers water-soluble means that a uniform solution is created when mixed with water.
  • X - is F - , Cl - , Br -, or I - .
  • the vinyl group is a functional group capable of crosslinking with the crosslinkable monomer of Formula 1.
  • the water-soluble monomer has a vinyl group and forms a crosslink with the crosslinkable monomer of the formula (1) below, and is selected from the formulas (3) to (9) in the crosslinking product of a composition containing a crosslinkable monomer and a water-soluble monomer represented by the formula (1) below. Used to form groups.
  • R' and R" are independently of each other -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, - (CH 2 ) k -CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ),
  • R 1 and R 2 are independently -(CH 2 ) k -CH 3 , and k and j are independently integers from 0 to 10.
  • the content of the water-soluble monomer is 2 to 80% by weight, 3 to 50% by weight, 5 to 40% by weight, or 10 to 40% by weight based on 100% by weight of the total weight of the crosslinkable monomer and water-soluble monomer represented by Formula 1. %am.
  • the content of the water-soluble monomer is within the above range, the ion exchange performance of the ion exchange membrane is improved without deteriorating the solubility characteristics of the composition for forming an anion exchange polymer.
  • the anion exchange polymer according to one embodiment not only has improved surface hardness but also has stronger chemical resistance compared to the case where the anion exchange polymer consists only of a crosslinking product of the crosslinkable monomer of Formula 1 without a water-soluble monomer, so it can be used against high concentrations of acid and alkali. It can be used under certain conditions.
  • the anion exchange polymer according to one embodiment is a polymer represented by the following formula (2).
  • -R- is selected from the groups represented by Formulas 3 to 9 below,
  • R' and R" are independently of each other -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, - (CH 2 ) k -CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ),
  • R 1 and R 2 are independently of each other -(CH 2 ) k -CH 3 , k and j are independently of each other an integer of 0 to 10, for example 0, 1 to 10, m and n are each other Independently, it is a positive integer from 1 to 20, an integer from 1 to 10, or an integer from 1 to 8.
  • the anion exchange polymer may be selected, for example, from polymers represented by the following formulas 10 to 16.
  • n and n are independently positive integers from 1 to 20,
  • n and n are independently positive integers from 1 to 20,
  • R' is -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, -(CH 2 ) k - CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ), and R 1 and R 2 are independently -(CH 2 ) k -CH 3 , k and j are independently integers from 0 to 10,
  • n and n are independently positive integers from 1 to 20,
  • R' is -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, -(CH 2 ) k - CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ), and R 1 and R 2 are independently -(CH 2 ) k -CH 3 , k and j are independently integers from 0 to 10,
  • n and n are independently positive integers from 1 to 20,
  • R' and R" are independently of each other -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, - (CH 2 ) k -CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ), and R 1 and R 2 are independently of each other -(CH 2 ) k -CH 3 , and k and j are independently integers from 0 to 10,
  • n and n are independently positive integers from 1 to 20,
  • R' and R" are independently of each other -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, - (CH 2 ) k -CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ), and R 1 and R 2 are independently of each other -(CH 2 ) k -CH 3 , and k and j are independently integers from 0 to 10,
  • n and n are independently positive integers from 1 to 20,
  • R' is -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, -(CH 2 ) k - CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ), and R 1 and R 2 are independently -(CH 2 ) k -CH 3 , k and j are independently integers from 0 to 10,
  • m and n are independently positive integers of 1 to 20, and R' is -(CH 2 -CH 2 -O) k -(CH 2 ) j -CH 3 , -(CH 2 ) k -CH 3 , -(CH 2 ) k -OH, -(CH 2 ) k -CH 3 -(CH 2 ) k -OH or -(CH 2 ) k -N-(R 1 )(R 2 ), R 1 and R 2 are independently -(CH 2 ) k -CH 3 , and k and j are independently integers from 0 to 10.
  • the method for manufacturing the ion exchange membrane includes providing a porous polymer support; Preparing a composition for forming an anion exchange polymer comprising a crosslinkable monomer represented by the following formula (1), a water-soluble monomer, a photoinitiator, and a solvent; Impregnating the porous polymer support with the composition for forming an anion exchange polymer and filling the surface and pores of the porous polymer support with the composition; Pressing a polyester-based film on at least one side of a porous polymer support filled with the composition to produce a laminate in which the polyester-based film and the porous polymer support are laminated; Irradiating light to the laminate and crosslinking the composition to form an anion exchange polymer, which is a crosslinking product of the composition, on the surface of the porous polymer support and inside the pores; and manufacturing an anion exchange membrane by peeling the polyester-based film from the porous polymer support on which the anion exchange polymer is formed on the surface and inside the pores.
  • the porous polymer support Before performing the step of preparing the porous polymer support by immersing it in a composition for forming an anionic polymer, which is an ion exchange resin solution, so that the ion exchange resin solution surrounds the pores and the outer surface of the porous polymer support, the porous polymer support is immersed in a surfactant solution. It may further include the step of making the surface of the porous polymer support hydrophilic by dipping and drying it.
  • the hydrophilization step may be performed depending on the degree of hydrophilization of the porous polymer support or the structure of the porous polymer support. If the degree of hydrophilization of the porous polymer support is sufficient or the pores of the substrate are sufficiently large to be filled with the ion exchange resin solution. If present, it can be omitted.
  • the porous polymer support may be made of a sponge-shaped, three-dimensional network-shaped membrane structure, or non-woven structure.
  • Porous polymer supports include, for example, polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, polybenzimidazole, polyarylene sulfide, polyetheretherketone, polyethersulfone, polysulfone, polystyrene, and polyaryleneethersulfone. , and polyether ketone. Among them, it may include one selected from polyethylene, polypropylene, and polyvinyl alcohol.
  • the porous support membrane structure has a porosity of 30% to 80%.
  • % may represent volume %.
  • the pore size may represent the average diameter if the pore is spherical, or the major axis length if the pore is non-spherical.
  • Pore size and porosity are measured from BET method and/or surface SEM images,
  • Porosity can be obtained through area ratio in cross-sectional SEM image analysis.
  • the immersion may be performed for 0.1 to 10 minutes, or 0.5 to 8 minutes. If the immersion is performed for less than 0.1 minutes, a problem may occur in which the ion exchange resin solution does not fill the pores of the substrate as the surface of the porous polymer support is not sufficiently hydrophilized, and if the immersion is performed for more than 10 minutes, If this is done, problems such as reduced production speed and increased production costs may occur.
  • the drying may be performed immediately after the immersion, and may be performed for 1 to 20 minutes at a temperature of 40 to 90°C, or may be performed for 1 to 10 minutes at a temperature of 40 to 80°C. .
  • the surfactant solution may include 0.001 to 6% by weight of surfactant and the remaining amount of solvent, or may include 0.01 to 4% by weight and the remaining amount of solvent, or 0.05 to 3% by weight and the remaining amount of solvent. may include.
  • the surfactant is included in an amount of less than 0.001% by weight in the surfactant solution, the surface of the porous polymer support may not become hydrophilic and a problem may occur in which the ion exchange resin solution does not fill the pores of the substrate, and 6% by weight If it is contained in excess of , problems may occur where the surfactant is eluted or the amount of ion exchange resin is reduced.
  • any known surfactant can be used without limitation, for example, dodecylbenzenesulfonic acid (DBSA), alkylbenzenesulfonic acid (ABS), linearalklybenzenesulfonic acid (LAS), alpha One or more materials selected from sulfonic acid (AS), alphaolefinsulfonic acid (AOS), alcoholpolyoxyethyleneether (AE), and alcoholpolyoxyethyleneethersulfonic acid (AES) You can use it.
  • the surfactant may be dodecylbenzenesulfonic acid.
  • the hydrophilic part of the surfactant replaces the surface of the porous polymer support, thereby making it hydrophilic.
  • the outer surface of the porous polymer support but also the entire inner pore surface can be made hydrophilic by the surfactant.
  • the degree of hydrophilization of the porous polymer support is sufficient or if the pores of the porous polymer support are sufficiently large to be filled with the composition for forming an anion exchange polymer, it may be omitted.
  • the surfactant solution may include 0.001% to 6% by weight of surfactant and the balance of solvent.
  • the surfactant solution may include 0.01% to 4% by weight and the balance of solvent, or may include 0.05% to 3% by weight and the balance of solvent. If the surfactant is included in an amount of less than 0.001% by weight in the surfactant solution, the surface of the porous polymer support may not become hydrophilic and the composition for forming an anion exchange polymer may not fill the pores of the porous polymer support. If the surfactant is included in more than 6% by weight in the surfactant solution, the surfactant may be eluted or the filling amount of the composition for forming an anion exchange polymer may be reduced.
  • the immersion can be performed for 0.1 to 10 minutes, or 0.5 to 8 minutes. If the immersion is performed for less than 0.1 minutes, the ion exchange resin may not be sufficiently filled in the porous polymer support, which may cause problems such as deterioration in the performance of the ion exchange membrane or leakage. If performed in excess, problems such as reduced production speed and increased production costs may occur.
  • the pores of the porous polymer support may be filled with the ion exchange resin solution, thereby filling the pores.
  • the ion exchange resin may be in a form that covers the outer surface of the substrate.
  • drying may be further performed after the immersion, and the drying may be performed immediately after the immersion, and may be performed for 2 to 20 minutes at a temperature of 40 to 90 ° C., or for 3 minutes at a temperature of 40 to 80 ° C. Can be performed for ⁇ 10 minutes.
  • the composition for forming an anionic polymer which is the ion exchange resin solution, may include a crosslinkable monomer of Formula 1, which is an electrolyte monomer having a cationic group, a water-soluble monomer, a photoinitiator, and a solvent.
  • the crosslinkable monomer of Formula 1 which is an electrolyte monomer having a cationic group, and the water-soluble monomer can be crosslinked to form a crosslinked product.
  • the total content of the crosslinkable monomer and water-soluble monomer of Formula 1 described above can be adjusted by conditions such as the thickness of the porous polymer support.
  • the thickness of the porous polymer support may be 10 ⁇ m to 130 ⁇ m, 20 to 110 ⁇ m, or 30 to 100 ⁇ m.
  • the total content of the crosslinkable monomer and water-soluble monomer of Formula 1 is 30 to 85% by weight, 35 to 80% by weight, or 40 to 75% by weight, based on 100% by weight of the composition for forming an anionic polymer.
  • the ion exchange performance of the ion exchange membrane may deteriorate, and if it exceeds 85% by weight, the ion exchange performance may decrease.
  • the solubility of electrolyte monomers may decrease.
  • X - is F - , Cl - , Br - , or I - .
  • the photoinitiator may be 0.01% by weight to 2% by weight or 0.1% by weight to 1% by weight based on 100% by weight of the composition for forming an anion exchange polymer.
  • the photoinitiator may be used without limitation as long as it is a photoinitiator available in the art, but for example, it may be 2-hydroxy-2-methylpropiophenone.
  • the solvent may be used without limitation as long as it is available in the art. For example, it may be a water-soluble solvent such as water, methanol, or ethanol, or it may be distilled water. The solvent may be included in the remaining amount excluding the crosslinking monomer and photoinitiator represented by Formula 1 in the composition for forming an anion exchange polymer.
  • the light irradiation may irradiate ultraviolet rays at a light quantity of 2000 mJ/cm2 to 10000 mJ/cm2 based on UVC.
  • an ion exchange membrane with improved ion exchange capacity can be manufactured.
  • the composition for forming an anion exchange polymer is impregnated with the porous polymer support to fill the surface and pores of the porous polymer support with the composition.
  • the impregnation can be performed for 0.1 minutes to 20 minutes, for example, 0.5 minutes to 15 minutes. If the impregnation is performed for less than 0.1 minutes, the composition for forming an anion exchange polymer may not sufficiently fill the pores of the porous polymer support, and the performance of the anion exchange membrane may deteriorate or leak may occur. If the impregnation is performed for more than 20 minutes, production speed may be reduced and production costs may increase.
  • the composition for forming an anion exchange polymer can be filled into the pores of the porous polymer support, and the composition for forming an anion exchange polymer can cover the outer surface of the porous polymer support.
  • a polyester-based film is pressed on at least one side of the porous polymer support filled with the composition to produce a laminate in which the polyester-based film and the porous polymer support are laminated.
  • the polyester-based film can be pressed to the upper or/and lower surface of the porous polymer support through roll calendering.
  • the polyester-based film may be, for example, a polyethylene terephthalate film.
  • the thickness of the polyester film may be 10 ⁇ m to 150 ⁇ m, for example, 20 ⁇ m to 120 ⁇ m or 30 ⁇ m to 100 ⁇ m. If the thickness of the polyester film is less than 10 ⁇ m, lamination defects such as tearing of the film may occur when laminated with a support filled with an anion exchange polymer.
  • the cross-linking reaction may not sufficiently occur because the thickness of the polyester-based film is too thick and light is not sufficiently irradiated to the porous polymer support during the cross-linking reaction described later.
  • One side of the polyester film that is in contact with the porous polymer support may be untreated or may be subjected to release treatment. By using such a film, it is possible to prevent the anion exchange polymer from being removed from the surface of the support by hindering its bonding with the porous polymer support having a hydrophilic surface.
  • the compression may be performed at a temperature of 10°C to 35°C, for example, 15°C to 30°C and a pressure of about 0 bar to 5 bar. The pressure can be appropriately adjusted considering the thickness of the porous polymer support and the thickness of the polyester film.
  • the light may be ultraviolet, for example UVA, UVB, UVC or/and UVV.
  • the light irradiation may be performed using UVC as an ultraviolet ray with a light quantity of 2000 mJ/cm2 to 10000 mJ/cm2, for example, may be performed with a light quantity of 2000 mJ/cm2 to 8000 mJ/cm2. .
  • the crosslinking reaction of the composition for forming an anion exchange polymer may not proceed smoothly, and if the irradiated ultraviolet ray is a light quantity and irradiation time exceeding the above range, the energy is too strong and Porous polymer supports and polyester-based films may be melted or carbonized.
  • the polyester-based film is peeled from the porous polymer support on which the anion exchange polymer is formed on the surface and inside the pores to prepare an anion exchange membrane.
  • the peeling may be accomplished by pulling the polyester-based film attached to the porous polymer support in the opposite direction using a detachment roll.
  • the ion exchange membrane manufactured according to the above manufacturing method includes a porous polymer support; and an anionic polymer, which is an ion exchange resin that fills the pores of the porous polymer support and surrounds the outer surface of the substrate.
  • the ion exchange membrane may have an average thickness of 10 to 200 ⁇ m, for example, 12 to 150 ⁇ m. If the average thickness is less than 10 ⁇ m, the durability of the ion exchange membrane may be reduced and there is a risk of damage to the membrane during operation, and desalination and concentration performance may be reduced due to unnecessary salt penetration. If it exceeds 200 ⁇ m, sheet resistance is high. The power consumption required for operation is large, and desalination and concentration performance may be reduced.
  • the ion exchange membrane may have an ion exchange capacity of 1.5 meq/g or more, or 1.6 meq/g or more.
  • the ion exchange membrane according to one embodiment is applied to electrodialysis, bipolar membrane electrodialysis, electrodeionization, capacitive deionization, or water electrolysis, or It can be applied to energy systems such as fuel cells, water electrolysis, reverse electrodialysis, and redox flow cells.
  • a 60 ⁇ m thick polypropylene porous polymer support (porosity: 55%) was prepared.
  • the porous polymer support was immersed in a composition for forming an anion exchange polymer, which is an ion exchange resin solution, for 5 minutes to fill the porous polymer support with the ion exchange resin solution.
  • the composition for forming an anion exchange polymer contains 56% by weight of the crosslinkable monomer of Chemical Formula 1-1 obtained according to Preparation Example 1, 14% by weight of the compound of Chemical Formula 17 as a water-soluble monomer, and 2-hydroxy-2- as a photoinitiator.
  • a composition for forming an anion exchange polymer was prepared by mixing 0.6% by weight of methylpropiophenone (manufactured by Ciba) and the remaining amount of distilled water. In the composition for forming an anion exchange polymer, the mixing weight ratio of crosslinkable monomer and water-soluble monomer is 4:1.
  • the composition for forming an anion exchange polymer was impregnated with the polypropylene porous polymer support, and the surface and pores of the porous polymer support were filled with the composition.
  • the porous polymer support filled with the composition is put into a pressing roll, and a polyester film with a thickness of 50 ⁇ m is pressed on the upper and lower surfaces of the porous polymer support at room temperature (25 ° C.), so that the polyester film and the porous polymer support are combined.
  • a laminate was manufactured.
  • the laminate was irradiated with UVC at an intensity of 3000 mJ/cm2 to form an anion exchange polymer represented by the following formula (10), which is a cross-linking product of the composition, on the surface of the porous polymer support and inside the pores.
  • An anion exchange membrane was manufactured by peeling the polyester film from the porous polymer support on which the anion exchange polymer was formed on the surface and inside the pores.
  • n 1
  • An ion exchange membrane was prepared in the same manner as in Example 1, but under the conditions shown in Table 1 below to prepare ion exchange membranes of Examples 2 and 3, respectively.
  • Example 2 The same procedure as in Example 1 was carried out, except that a polyvinyl alcohol (PVA) porous polymer support with a thickness of 125 ⁇ m (porosity: 55%) was used instead of a polypropylene porous polymer support with a thickness of 60 ⁇ m (porosity: 55%).
  • PVA polyvinyl alcohol
  • An ion exchange membrane was prepared.
  • An ion exchange membrane was prepared in the same manner as in Example 1, except that when preparing the composition for forming an anion exchange polymer, the mixing weight ratio of the crosslinkable monomer and the water-soluble monomer was changed from 4:1 to 6:1.
  • An ion exchange membrane was prepared in the same manner as in Example 1, except that when preparing the composition for forming an anion exchange polymer, the mixing weight ratio of the crosslinkable monomer and the water-soluble monomer was changed to 2:1 instead of 4:1.
  • An ion exchange membrane was prepared in the same manner as in Example 1, except that only the crosslinkable monomer of Formula 1-1 was used without the water-soluble monomer when preparing the composition for forming an anion exchange membrane.
  • An ion exchange membrane was manufactured in the same manner as in Example 1, but under the conditions shown in Table 1 below.
  • Evaluation Example 1 Evaluation of physical properties of ion exchange membrane
  • Samples were prepared by cutting each anion exchange membrane into a size of 5 cm x 5 cm. The sample was immersed in 0.5 M NaCl aqueous solution for 24 hours. The sample was placed between electrodes for measuring sheet resistance, and the line resistance of the anion exchange membrane (R 1 ) and the resistance of the 0.5 M NaCl aqueous solution (R 2 ) were measured using an LCR meter (E4908A, Agilent). Sheet resistance (Rm) was obtained by substituting the measured resistance values (R 1 , R 2 ) into Equation 1 below.
  • Rm( ⁇ cm2) (R 1 - R 2 ) x S
  • Rm is the sheet resistance of the anion exchange membrane
  • R 1 is the linear resistance of the anion exchange membrane
  • R 2 is the resistance of 0.5 M NaCl aqueous solution
  • S is the area of the electrode.
  • Samples were prepared by cutting each anion exchange membrane into a size of 5 cm x 5 cm. The sample was washed with distilled water and excess moisture was removed with a tissue. After filling the vial with 70 ml of 1M NaCl solution, the sample from which the moisture was removed was placed in the 1M NaCl solution and immersed for more than 12 hours to perform primary pretreatment. Then, the sample that had completed the first pretreatment was washed several times with distilled water and excess moisture was removed with a tissue. After filling 70 ml of 0.5M Na 2 CO 3 solution in a vial, the sample from which water was removed was placed in 0.5 M Na 2 CO 3 solution and immersed for more than 12 hours to perform secondary pretreatment.
  • the sample that had completed the secondary pretreatment was removed from the vial, the remaining solution was titrated with 0.01M AgNO 3 solution, and the volume of the AgNO 3 solution added during titration was recorded.
  • the sample was washed several times with distilled water and dried in a hot air oven at 80°C for 15 minutes. After drying was completed, the weight of the dried anion exchange membrane was measured.
  • the ion exchange capacity (IEC) was obtained by substituting the measured weight of the dried anion exchange membrane into Equation 2 below.
  • IEC (meq/g) (Titration reagent volume (ml) x 0.01)/Weight of dried anion exchange membrane (g)
  • Pencil hardness was measured using a surface hardness meter (HEIDON 14FW) under the conditions of a weight of 750g, a speed of 30mm/min, and a force of 19.6N. After fixing the ion exchange membrane with tape, a pencil was placed and the degree of scratches on the membrane surface was observed up to 2 cm from the starting point of hardness measurement. As a result of observation, if no cracks occurred on the surface, the test was conducted by increasing the pencil hardness, and measurements were performed in the same manner until cracks occurred.
  • HEIDON 14FW surface hardness meter
  • the ion exchange membranes of Examples 1 to 3 use a cross-linking product of the compound of Formula 1-1 and the compound of Formula 17 as an anion exchange polymer, and are supported by a porous polymer with an anion porosity of 45 to 55%.
  • a chain polypropylene membrane is used, and it can be seen that the ion exchange capacity of this ion exchange membrane is excellent at more than 1.5 meq/g.
  • the ion exchange membranes of Examples 4 to 6, like those of Examples 1 to 3 have excellent ion exchange capacities of 1.5 meq/g or more.
  • the ion exchange membrane of Comparative Example 2 which uses a porous polymer support with a porosity of less than 30%, has poor physical properties as the ion exchange capacity is less than 1.5 meq/g, unlike the ion exchange membranes of Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

다공성 고분자 지지체; 및 음이온 교환 폴리머를 함유하는 전해질;을 포함하 고, 상기 전해질은 상기 다공성 고분자 지지체의 표면 및 기공의 내부에 위치하고, 상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머와 수용해성 모노머를 포함하는 조성물의 가교 결합 생성물이며, 상기 수용해성 모노머는 비닐기를 보유하는 비이온성 화합물인, 음이온 교환막 및 그 제조방법을 제공한다. 화학식 1 중, X-는 F-, Cl-, Br-, 또는 I-이다.

Description

음이온 교환막 및 그 제조방법
본 발명은 음이온교환막 및 그 제조방법에 관한 것이다.
이온교환막은 양이온과 음이온을 선택하여 한쪽만을 투과시키는 합성수지막을 말한다. 양이온교환막은 음전하를 띄는 작용기를 가지고 있어 양이온을 선택적으로 투과시킬 수 있으며, 음이온교환막은 반대로 양전하를 띄는 작용기를 가지고 있어 음이온을 선택적으로 투과시킬 수 있다. 일반적으로 이온교환막은 높은 투과선택성, 낮은 전기저항, 우수한 기계적 강도, 높은 화학적 안정성 등이 요구된다.
이러한 음이온 교환막은 전기투석, 바이폴라막 전기투석, 축전식 탈염, 전기 탈이온 등의 수처리 시스템에 적용되거나 또는 연료전지, 수전해, 역전기투석, 산화환원 흐름전지 등의 시스템에 적용될 수 있다. 음이온 교환막이 적용되는 시스템은 산 또는 알칼리 원수를 공정에 적용할 수 있으며, 원수의 공정 운전 중 산 또는 알칼리가 발생할 수 있다. 여기에 음이온 교환막으로서 과불소계 음이온 교환막이 사용될 수 있으나 비싼 가격으로 실제 시스템에서는 탄화수소계 음이온 교환막을 적용하고 있다. 그러나 탄화수소계 음이온 교환막은 내화학성 문제로 적용 공정 및 조건에 한계가 있다. 또한 음이온 교환막은 막 내에 지지체 분율이 일정부분 존재하므로 막 물성을 향상시키기 위해 이온교환용량을 증가시키는 데 한계가 있다.
일측면에 따라 이온교환막 내 전해질의 함량을 높임으로써 이온교환용량이 높고 표면경도가 개선되어 내크랙성이 좋은 이온교환막을 제공하는 것이다.
다른 측면에 따라 상술한 이온교환막의 제조방법을 제공하는 것이다.
일 측면에 따라,
다공성 고분자 지지체; 및 음이온 교환 폴리머를 함유하는 전해질;
을 포함하고,
상기 전해질은 상기 다공성 고분자 지지체의 표면 및 기공의 내부에 위치하고, 상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머와 수용해성 모노머를 포함하는 조성물의 가교 결합 생성물이며,
상기 수용해성 모노머는 비닐기를 보유하는 비이온성 화합물인, 음이온 교환막이 제공된다.
<화학식 1>
Figure PCTKR2023011068-appb-img-000001
화학식 1 중, X-는 F-, Cl-, Br-, 또는 I-이다.
다른 측면에 따라 다공성 고분자 지지체를 제공하는 단계;
하기 화학식 1로 표시되는 가교성 모노머, 수용해성 모노머, 광 개시제, 및 용매를 포함하는 음이온 교환 폴리머 형성용 조성물을 제조하는 단계;
상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시키는 단계;
상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 상기 다공성 고분자 지지체가 합지된 적층체를 제조하는 단계;
상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성하는 단계; 및
상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하는 단계;를 포함하는, 음이온 교환막의 제조방법이 제공된다.
[화학식 1]
Figure PCTKR2023011068-appb-img-000002
화학식 1 중, X-는 F-, Cl-, Br-, 또는 I-이다.
일 측면에 따른 이온교환막은 내화학성이 강하기 때문에 고농도의 산과 알칼리 조건에서 사용이 가능하며, 다공성 지지체를 포함하는 이온교환막임에도 불구하고 이온기를 포함하는 가교제를 적용하고 다공성 지지체 표면을 전해질이 둘러싸고 있어 이온교환막 내 전해질의 함량을 높임으로써 이온교환용량이 높아 농축탈염성능이 개선되고 이온교환막의 표면경도가 향상되어 내크랙성이 개선된다.
이하, 일구현예에 따른 이온교환막 및 그 제조방법에 대해 보다 상세하게 설명한다.
일반적인 음이온 교환막은 지지체 상부에 양이온 작용기를 갖는 음이온 교환 폴리머가 배치된 구조를 갖는다. 음이온 교환막은 음이온에 대한 높은 선택투과성, 낮은 전기저항, 우수한 기계적 강도와 화학적 안정성이 요구된다.
음이온 교환막은 예를 들어 과불소계 음이온 교환막, 또는 탄화수소계 음이온막이 알려져 있다. 그 중에서, 탄화수소계 음이온 교환막은 과불소계 음이온 교환막에 비하여 저렴하지만 내화학성이 충분치 않다. 또한 탄화수소계 음이온 교환막은 지지체 분율이 일정부분 존재하여 농축탈염성능 등을 높이기 위한 이온교환용량의 증가에 한계가 있다.
본 발명자들은 상술한 문제점을 해결하여 이온교환막내 전해질의 함량을 높이고 내화학성이 개선된 음이온 교환막을 제공한다.
일구현예에 따른 음이온 교환막은 다공성 고분자 지지체; 및 음이온 교환 폴리머를 함유하는 전해질;을 포함하고, 상기 전해질은 상기 다공성 고분자 지지체의 표면 및 기공의 내부에 위치하고,상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머와 수용해성 모노머를 포함하는 조성물의 가교 결합 생성물이며,
상기 수용해성 모노머는 비닐기를 보유하는 비이온성 화합물인, 음이온 교환막이 제공된다. 수용해성 모노머에서 수용해성의 의미는 물과 혼합시 균일한 용액을 생성하는 것을 나타낸다.
<화학식 1>
Figure PCTKR2023011068-appb-img-000003
화학식 1 중, X-는 F-, Cl-, Br-, 또는 I-이다.
상기 수용해성 모노머에서 비닐기는 화학식 1의 가교성 모노머와 가교결합이 가능한 관능기이다.
수용해성 모노머는 비닐기를 보유하여 하기 화학식 1의 가교성 모노머와 가교결합을 형성하여 하기 화학식 1로 표시되는 가교성 모노머와 수용해성 모노머를 포함하는 조성물의 가교 결합 생성물에서 하기 화학식 3 내지 9 중에서 선택된 그룹을 형성하는데 이용된다.
<화학식 3> <화학식 4> <화학식 5> <화학식 6> <화학식 7> <화학식 8>
Figure PCTKR2023011068-appb-img-000004
<화학식 9>
Figure PCTKR2023011068-appb-img-000005
화학식 3 내지 9 중, *는 결합 영역을 나타내며,
R' 및 R"는 서로 독립적으로 -(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2)이며,
R1 및 R2는 서로 독립적으로 -(CH2)k-CH3이며, k와 j는 서로 독립적으로 0 내지 10의 정수이다.
상기 수용해성 모노머의 함량은 화학식 1로 표시되는 가교성 모노머와 수용해성 모노머의 총중량 100 중량%를 기준으로 하여 2 내지 80 중량%, 3 내지 50 중량%, 5 내지 40 중량% 또는 10 내지 40 중량%이다. 수용해성 모노머의 함량이 상기 범위일 때 음이온 교환 폴리머 형성용 조성물의 용해도 특성이 저하됨이 없이 이온교환막의 이온교환성능이 개선된다.
일구현예에 따른 음이온 교환 폴리머는 음이온 교환 폴리머가 수용해성 모노머 없이 화학식 1의 가교성 모노머의 가교결합 생성물로만 이루어진 경우와 비교하여 표면경도가 개선될 뿐만 아니라 내화학성이 더 강하기 때문에 고농도의 산과 알칼리 조건에서 사용이 가능하다.
일구현예에 따른 음이온 교환 폴리머는 하기 화학식 2로 표시되는 폴리머이다.
<화학식 2>
Figure PCTKR2023011068-appb-img-000006
화학식 2 중, -R-은 하기 화학식 3 내지 9로 표시되는 그룹 중에서 선택되며,
<화학식 3> <화학식 4> <화학식 5> <화학식 6> <화학식 7> <화학식 8>
Figure PCTKR2023011068-appb-img-000007
<화학식 9>
Figure PCTKR2023011068-appb-img-000008
이며,
화학식 3 내지 9 중, *는 결합 영역을 나타내며,
R' 및 R"는 서로 독립적으로 -(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2)이며,
R1 및 R2는 서로 독립적으로 -(CH2)k-CH3이며, k와 j는 서로 독립적으로 0 내지 10의 정수, 예를 들어 0, 1 내지 10의 정수이며, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수, 1 내지 10의 정수, 또는 1 내지 8의 정수이다.
상기 음이온 교환 폴리머는 예를 들어 하기 화학식 10 내지 16으로 표시되는 폴리머 중에서 선택될 수 있다.
<화학식 10>
Figure PCTKR2023011068-appb-img-000009
화학식 10 중, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이고,
<화학식 11>
Figure PCTKR2023011068-appb-img-000010
화학식 11 중, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이고,
R'은 -(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2) 이고, R1 및 R2는 서로 독립적으로 -(CH2)k-CH3 이며, k와 j는 서로 독립적으로 0 내지 10의 정수이고,
<화학식 12>
Figure PCTKR2023011068-appb-img-000011
화학식 12 중, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이고,
R'은 -(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2) 이고, R1 및 R2는 서로 독립적으로 -(CH2)k-CH3 이며, k와 j는 서로 독립적으로 0 내지 10의 정수이고,
<화학식 13>
Figure PCTKR2023011068-appb-img-000012
화학식 13 중, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이고,
R'및 R"은 서로 독립적으로 -(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2) 이고, R1 및 R2는 서로 독립적으로 -(CH2)k-CH3 이며, k와 j는 서로 독립적으로 0 내지 10의 정수이고,
<화학식 14>
Figure PCTKR2023011068-appb-img-000013
화학식 14 중, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이고,
R'및 R"은 서로 독립적으로 -(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2) 이고, R1 및 R2는 서로 독립적으로 -(CH2)k-CH3 이며, k와 j는 서로 독립적으로 0 내지 10의 정수이고,
<화학식 15>
Figure PCTKR2023011068-appb-img-000014
화학식 15 중, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이고,
R'은-(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2) 이고, R1 및 R2는 서로 독립적으로 -(CH2)k-CH3 이며, k와 j는 서로 독립적으로 0 내지 10의 정수이고,
<화학식 16>
Figure PCTKR2023011068-appb-img-000015
화학식 16 중, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이고, R'은-(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2) 이고, R1 및 R2는 서로 독립적으로 -(CH2)k-CH3 이며, k와 j는 서로 독립적으로 0 내지 10의 정수이다.
상기 이온교환막의 제조방법은 다공성 고분자 지지체를 제공하는 단계; 하기 화학식 1로 표시되는 가교성 모노머, 수용해성 모노머, 광 개시제, 및 용매를 포함하는 음이온 교환 폴리머 형성용 조성물을 제조하는 단계; 상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시키는 단계; 상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 상기 다공성 고분자 지지체가 합지된 적층체를 제조하는 단계; 상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성하는 단계; 및 상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하는 단계;를 포함한다.
상기 다공성 고분자 지지체를 이온교환수지 용액인 음이온 폴리머 형성용 조성물에 침지시켜 이온교환수지 용액이 다공성 고분자 지지체의 공극 및 외표면을 둘러싸도록 제조하는 단계를 수행하기 전에, 상기 다공성 고분자 지지체를 계면활성제 용액에 침지 및 건조시켜 다공성 고분자 지지체 표면을 친수화시키는 단계;를 더 포함할 수 있다.
상기 친수화시키는 단계는 다공성 고분자 지지체의 친수화 정도 또는 다공성 고분자 지지체의 구조에 따라 수행할 수 있으며, 다공성 고분자 지지체의 친수화 정도가 충분한 경우 또는 기재의 공극이 충분히 커 이온교환수지 용액이 충진될 수 있는 경우 생략할 수 있다.
다공성 고분자 지지체는 스펀지 형상, 3차원 네트워크 형상의 멤브레인 구조체 또는 부직포 구조체로 이루어질 수 있다.
다공성 고분자 지지체는, 예를 들어 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리비닐알콜, 폴리벤즈이미다졸, 폴리아릴렌술파이드, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리술폰, 폴리스티렌, 폴리아릴렌에테르술폰, 및 폴리에테르케톤으로부터 선택된 1종 이상의 폴리머를 포함할 수 있다. 그 중에서도 폴리에틸렌, 폴리프로필렌 및 폴리비닐알콜 중에서 선택된 1종을 포함할 수 있다.
상기 다공성 지지체인 멤브레인 구조체의 공극률이 30 % 내지 80 %이다. 여기에서 %는 부피%를 나타낼 수 있다.
본 명세서에서 기공 크기는 기공이 구형인 경우 평균직경을 나타낼 수 있고, 기공이 비구형인 장축길이를 나타낸다.
기공 크기 및 공극률은 BET법 및/또는 표면 SEM 이미지로부터 측정하고,
기공도는 단면 SEM 이미지 분석에서 면적비를 통하여 구할 수 있다.
상기 친수화 단계에서, 상기 침지는 0.1 ~ 10분 동안, 또는 0.5 ~ 8분 동안 수행할 수 있다. 만일, 상기 침지를 0.1분 미만으로 수행하는 경우 다공성 고분자 지지체의 표면이 충분하게 친수화되지 않음에 따라 이온교환수지 용액이 기재의 세공에 충진되지 않는 문제가 발생할 수 있고, 10분을 초과하여 수행하는 경우 생산속도 감소 및 생산비용이 증가하는 등의 문제가 발생할 수 있다.
또한, 상기 친수화 단계에서, 상기 건조는 상기 침지 직후 수행할 수 있으며, 40 ~ 90℃의 온도 하에서 1 ~ 20분 동안 수행하거나 또는 40 ~ 80℃의 온도 하에서 1 ~ 10분 동안 수행할 수 있다.
한편, 상기 계면활성제 용액은 계면활성제 0.001 ~ 6중량% 및 잔량의 용매를 포함할 수 있고, 또는 0.01 ~ 4중량% 및 잔량의 용매를 포함할 수 있으며, 또는 0.05 ~ 3중량% 및 잔량의 용매를 포함할 수 있다.
만약 상기 계면활성제를 상기 계면활성제 용액 중에서 0.001중량% 미만으로 포함하는 경우, 다공성 고분자 지지체의 표면이 친수화되지 않아 이온교환수지 용액이 기재의 세공에 충진되지 않는 문제가 발생할 수 있고, 6중량%를 초과하여 포함하는 경우 계면활성제가 용출되거나 이온교환수지 충진량이 저하되는 문제가 발생할 수 있다.
계면활성제는 공지된 계면활성제라면 제한없이 사용할 수 있으나, 예를 들어 도데실벤젠술폰산(dodecylbenzenesulfonic acid, DBSA), 알킬벤젠술폰산 (alkylbenzenesulfonic acid, ABS), 리니어알킬벤젠술폰산(linearalklybenzenesulfonic acid, LAS), 알파술폰산(alphasulfonic acid, AS), 알파올레핀술폰산(alphaolefinsulfonic acid, AOS), 알콜폴리옥시에틸렌에테르(alcoholpolyoxyethyleneether, AE), 및 알콜폴리옥시에틸렌에테르술폰산(alcoholpolyoxyethyleneethersulfonic acid, AES)로부터 선택되는 1종 이상의 재료를 사용할 수 있다. 예를 들어, 상기 계면활성제는 도데실벤젠술폰산을 사용할 수 있다. 상기 계면활성제는 소수부가 소수성인 상기 다공성 고분자 지지체 표면과 소수성-소수성 상호작용(hydrophobic hydrophobic interaction)에 의해 결합되면 계면활성제의 친수부가 다공성 고분자 지지체의 표면을 대신하게 되어 친수화가 이루어질 수 있다. 여기에서 계면활성제에 의하여 다공성 고분자 지지체의 겉 표면뿐만 아니라 내부의 기공 표면 전체가 친수화될 수 있다. 그러나 다공성 고분자 지지체의 친수화 정도가 충분한 경우 또는 다공성 고분자 지지체의 기공이 충분히 커 음이온 교환 폴리머 형성용 조성물이 충진될 수 있는 경우에는 생략할 수도 있다.
계면활성제 용액은 계면활성제 0.001 중량% 내지 6 중량% 및 잔량의 용매를 포함할 수 있다. 예를 들어, 상기 계면활성제 용액은 0.01 중량% 내지 4 중량% 및 잔량의 용매를 포함할 수 있거나 또는 0.05 중량% 내지 3 중량% 및 잔량의 용매를 포함할 수 있다. 상기 계면활성제를 상기 계면활성제 용액 중에서 0.001 중량% 미만으로 포함한다면, 다공성 고분자 지지체의 표면이 친수화되지 않아 음이온 교환 폴리머 형성용 조성물이 다공성 고분자 지지체의 기공에 충진되지 않을 수 있다. 상기 계면활성제를 상기 계면활성제 용액 중에서 6 중량% 초과로 포함한다면, 계면활성제가 용출되거나 또는 음이온 교환 폴리머 형성용 조성물의 충진량이 저하될 수 있다.
다음으로, 상기 침지는 0.1 ~ 10분 동안, 또는 0.5 ~ 8분 동안 수행할 수 있다. 만일, 상기 침지를 0.1분 미만으로 수행하는 경우 이온교환수지가 다공성 고분자 지지체 내에 충분하게 충진되지 않음에 따라 이온교환막의 성능이 저하하거나 리크(leak)가 발생하는 문제가 발생할 수 있고, 10분을 초과하여 수행하는 경우 생산속도 감소 및 생산비용이 증가하는 등의 문제가 발생할 수 있다.
상기한 침지를 통해 상기 다공성 고분자 지지체의 기공에 상기 이온교환수지 용액이 채워져 세공 충진된 형태일 수 있다. 또한 이온교환수지가 기재의 외표면을 감싸는 형태일 수 있다.
한편, 상기 침지 후 건조를 더 수행할 수 있고, 상기 건조는 상기 침지 직후 수행할 수 있으며, 40 ~ 90℃의 온도 하에서 2 ~ 20분 동안 수행할 수 있고, 또는 40 ~ 80℃의 온도 하에서 3 ~ 10분 동안 수행할 수 있다.
상기 이온교환수지 용액인 음이온 폴리머 형성용 조성물은 양이온기를 가지는 전해질 모노머인 화학식 1의 가교성 모노머, 수용해성 모노머, 광개시제 및 용매를 포함할 수 있다.
상기 이온교환수지 용액을 자외선을 조사함으로써 상기 양이온기를 가지는 전해질 모노머인 화학식 1의 가교성 모노머과 수용해성 모노머가 가교되어 가교결합 생성물을 형성할 수 있다.
상술한 화학식 1의 가교성 모노머와 수용해성 모노머의 총함량은 다공성 고분자 지지체의 두께와 같은 조건에 의해 조절할 수 있다.
상기 다공성 고분자 지지체의 두께는 10 ㎛ 내지 130 ㎛, 20 내지 110 ㎛, 또는 30 내지 100 ㎛일 수 있다.
화학식 1의 가교성 모노머와 수용해성 모노머의 총함량은 음이온 폴리머 형성용 조성물 100 중량%를 기준으로 하여 30 ~ 85중량%, 35 ~ 80중량%, 또는 40 ~ 75중량%이다.
만일, 상기 화학식 1의 가교성 모노머와 수용해성 모노머의 총함량이 30중량% 미만으로 포함하는 경우 이온교환막의 이온교환 성능이 저하되는 문제가 발생할 수 있고, 85중량%를 초과하는 경우에는 이온교환전해질 모노머의 용해도가 저하될 수 있다.
[화학식 1]
Figure PCTKR2023011068-appb-img-000016
화학식 1 중, X-는 F-, Cl-, Br-, 또는 I-이다.
광 개시제는 음이온 교환 폴리머 형성용 조성물 전체 100 중량%를 기준으로 하여 0.01 중량% 내지 2 중량%일 수 있거나 0.1 중량% 내지 1 중량%일 수 있다.
상기 광 개시제는 당해 기술분야에서 사용가능한 광 개시제라면 제한없이 사용할 수 있으나, 예를 들어 2-히드록시-2-메틸프로피오페논(2-hydroxy-2-methylpropiophenone)일 수 있다. 상기 용매는 당해 기술분야에서 사용가능한 용매라면 제한없이 사용할 수 있으나, 예를 들어 물, 메탄올 또는 에탄올 들의 수용성 용매일 수 있으며, 증류수일 수 있다. 상기 용매는 음이온 교환 폴리머 형성용 조성물 중에서 상기 화학식 1로 표시되는 가교성 모노머 및 광 개시제를 제외한 잔량으로 포함될 수 있다.
상기 광 조사는 자외선을 UVC기준 2000mJ/㎠ 내지 10000 mJ/㎠의 광량으로 조사할 수 있다. 이러한 조건에서 광조사를 실시할 때 이온교환용량이 개선된 이온교환막을 제조할 수 있다.
다음으로, 상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시킨다. 상기 함침은 0.1 분 내지 20 분간 수행할 수 있고, 예를 들어 0.5 분 내지 15 분간 수행할 수 있다. 상기 함침을 0.1 분 미만으로 수행하면, 음이온 교환 폴리머 형성용 조성물이 상기 다공성 고분자 지지체의 기공 내부에 충분히 충진되지 않아 음이온 교환막의 성능이 저하하거나 누출(leak)이 발생할 수 있다. 상기 함침을 20 분 초과로 수행하면, 생산속도가 감소되고 생산비용이 증가할 수 있다. 상기 함침을 통해 음이온 교환 폴리머 형성용 조성물이 다공성 고분자 지지체의 기공에 채워져 충진될 수 있고, 음이온 교환 폴리머 형성용 조성물이 다공성 고분자 지지체의 외부 표면을 감쌀 수 있다.
다음으로, 상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 다공성 고분자 지지체가 합지된 적층체를 제조한다.
폴리에스테르계 필름은 상기 다공성 고분자 지지체의 상면 또는/및 하면에 롤 캘린더링을 통해 압착시킬 수 있다. 상기 폴리에스테르계 필름은 예를 들어 폴리에틸렌테레프탈레이트 필름일 수 있다. 상기 폴리에스테르계 필름의 두께는 10 ㎛ 내지 150 ㎛일 수 있으며, 예를 들어 20 ㎛ 내지 120 ㎛ 또는 30 ㎛ 내지 100 ㎛일 수 있다. 상기 폴리에스테르계 필름의 두께가 10 ㎛ 미만이면, 음이온교환 폴리머가 충진된 지지체와 합지 시 필름이 우는 등과 같은 합지 불량이 발생할 수 있다. 상기 폴리에스테르계 필름의 두께가 150 ㎛ 초과인 경우, 후술하는 가교 반응시 폴리에스테르계 필름의 두께가 너무 두꺼워 광이 상기 다공성 고분자 지지체에 충분히 조사되지 않아 가교 반응이 충분히 일어나지 않을 수 있다. 상기 폴리에스테르계 필름은 상기 다공성 고분자 지지체와 접촉하는 일 면이 무처리이거나 이형처리가 된 것일 수 있다. 이러한 필름을 사용함으로써 친수화된 표면을 갖는 다공성 고분자 지지체와의 결합을 방해하여 지지체 표면에 음이온 교환 폴리머가 제거되지 않도록 할 수 있다. 상기 압착은 10 ℃ 내지 35 ℃의 온도, 예를 들어 15 ℃ 내지 30 ℃의 온도에서 약 0 bar 내지 5 bar의 압력으로 수행할 수 있다. 상기 압력은 다공성 고분자 지지체의 두께와 폴리에스테르계 필름의 두께를 고려하여 적절하게 조절될 수 있다.
다음으로, 상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성한다.
상기 광은 자외선일 수 있으며, 예를 들어 UVA, UVB, UVC 또는/및 UVV를 이용할 수 있다. 예를 들어, 상기 광 조사는 자외선으로 UVC를 사용하여 2000 mJ/㎠ 내지 10000 mJ/㎠ 의 광량으로 수행할 수 있고, 예를 들어 2000 mJ/㎠ 내지 8000 mJ/㎠ 의 광량으로 수행할 수 있다. 조사되는 자외선이 상기 범위 미만의 광량 및 조사시간이라면, 음이온 교환 폴리머 형성용 조성물의 가교 반응이 원활히 진행되지 않을 수 있으며, 조사되는 자외선이 상기 범위 초과의 광량 및 조사시간이라면, 에너지가 너무 강하여 상기 다공성 고분자 지지체 및 폴리에스테르계 필름이 용융되거나 탄화될 수 있다.
마지막으로, 상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조한다. 상기 박리는 상기 다공성 고분자 지지체에 부착된 폴리에스테르계 필름을 탈착롤을 이용하여 반대방향으로 당겨 이루어질 수 있다.
상기 제조방법에 따라 제조된 이온교환막은 다공성 고분자 지지체; 및 상기 다공성 고분자 지지체에 기공에 충진되고 기재의 외표면을 감싸는 이온교환수지인 음이온 폴리머;를 포함할 수 있다.
이온교환막은 평균 두께가 10 ~ 200 ㎛ 일 수 있고, 예를 들어 12 ~ 150 ㎛일 수 있다. 만일 상기 평균 두께가 10 ㎛ 미만일 경우 이온교환막의 내구성이 저하되어 운전 중 막 손상의 우려가 있으며, 불필요한 염의 투과로 인한 탈염 및 농축 성능이 저하될 수 있고, 200 ㎛를 초과하는 경우에는 면저항이 높아 운전에 필요한 전력 소모가 크며, 탈염 및 농축 성능이 저하될 수 있다.
또한, 상기 이온교환막은 이온교환용량이 1.5meq/g 이상, 또는 1.6meq/g 이상일 수 있다.
일구현예에 따른 이온교환막은 전기투석(Electrodialysis), 바이폴라막 전기투석(Bipolar membrane electrodialysis), 전기탈이온(Electrodeionization), 축전식 탈염(Capacitive deionization) 또는 수전해 시스템(water electrolysis)에 적용되거나 또는 연료전지, 수전해, 역전기투석, 산화환원 흐름전지 등의 에너지 시스템에 적용될 수 있다.
이하, 본 발명을 하기 실시예들을 통해 설명한다. 이때, 하기 실시예들은 발명을 예시하기 위하여 제시된 것일 뿐, 본 발명의 권리범위가 하기 실시예들에 의해 한정되는 것은 아니다.
[실시예]
제조예 1: 화학식 1의 가교성 모노머의 제조
메탄올에 용해한 1,4-디아자바이시클로[2,2,2]옥탄 용액에 에틸아세테이트에 용해한 4-비닐벤질 클로라이드 용액을 비닐벤질 클로라이드와 1,4-디아자바이시클로[2,2,2]옥탄의 몰비가 2:1이 되도록 첨가하고, 불활성 분위기 하에 상온에서 교반하여 혼합물을 제조하였다. 상기 혼합물을 여과하고 메탄올로 세척한 후, 상온(25℃)에서 진공 하에 건조하여 하기 화학식 1-1로 표시되는 가교성 모노머를 수득하였다.
<화학식 1-1>
Figure PCTKR2023011068-appb-img-000017
실시예 1: 이온교환막의 제조
두께 60 ㎛의 폴리프로필렌 다공성 고분자 지지체(공극률: 55%)를 준비하였다. 상기 다공성 고분자 지지체를 이온교환수지 용액인 음이온 교환 폴리머 형성용 조성물에 5분 동안 침지시켜 다공성 고분자 지지체에 이온교환수지 용액을 충진시켰다.
이 때, 상기 음이온 교환 폴리머 형성용 조성물은 상기 제조예 1에 따라 얻은 화학식 1-1의 가교성 모노머 56중량%, 수용해성 모노머인 화학식 17의 화합물 14중량% 광개시제인 2-히드록시-2-메틸프로피오페논(Ciba사 제조) 0.6중량% 및 잔량의 증류수를 혼합하여 음이온 교환 폴리머 형성용 조성물을 제조하였다. 음이온 교환 폴리머 형성용 조성물에서 가교성 모노머와 수용해성 모노머의 혼합중량비는 4:1이다.
<화학식 1-1>
Figure PCTKR2023011068-appb-img-000018
<화학식 17>
Figure PCTKR2023011068-appb-img-000019
상기 음이온 교환 폴리머 형성용 조성물에 상기 폴리프로필렌 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시켰다. 상기 조성물이 충진된 다공성 고분자 지지체를 압착롤에 투입하고 상온(25℃)에서 상기 다공성 고분자 지지체의 상면과 하면에 두께 50 ㎛의 폴리에스테르 필름을 압착시켜 상기 폴리에스테르 필름과 상기 다공성 고분자 지지체가 합지된 적층체를 제조하였다. 상기 적층체에 자외선으로 UVC를 이용하여 3000mJ/㎠ 광량으로 조사하여 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 하기 화학식 10으로 표시되는 음이온 교환 폴리머를 형성하였다. 상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하였다.
<화학식 10>
Figure PCTKR2023011068-appb-img-000020
화학식 10 중, m은 4이고, n은 1이다.
실시예 2 ~ 실시예 3: 이온교환막의 제조
실시예 1과 동일한 방법으로 이온교환막을 제조하되, 하기 표 1의 조건으로 실시하여 실시예 2 및 실시예 3의 이온교환막을 각각 제조하였다.
실시예 4: 이온교환막의 제조
두께 60 ㎛의 폴리프로필렌 다공성 고분자 지지체(공극률: 55%) 대신 두께 125 ㎛의 폴리비닐알콜(PVA) 다공성 고분자 지지체(공극률: 55%)를 이용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 이온교환막을 제조하였다.
실시예 5: 이온교환막의 제조
음이온 교환 폴리머 형성용 조성물 제조시 가교성 모노머와 수용해성 모노머의 혼합중량비가 4:1 대신 6:1으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하여 이온교환막을 제조하였다.
실시예 6: 이온교환막의 제조
음이온 교환 폴리머 형성용 조성물 제조시 가교성 모노머와 수용해성 모노머의 혼합중량비가 4:1 대신 2:1으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하여 이온교환막을 제조하였다.
비교예 1: 이온교환막의 제조
음이온 교환막 형성용 조성물 제조시 수용해성 모노머 없이 화학식 1-1의 가교성 모노머만을 이용한 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 이온교환막을 제조하였다.
<화학식 1-1>
Figure PCTKR2023011068-appb-img-000021
비교예 2: 이온교환막의 제조
실시예 1과 동일한 방법으로 이온교환막을 제조하되, 하기 표 1의 조건으로 실시하여 이온교환막을 제조하였다.
평가예 1: 이온교환막의 물성 평가
실시예 1 ~ 실시예 6, 비교예 1 및 비교예 2에서 제조한 이온교환막을 하기와 같은 방법으로 실험하여 물성을 평가하였고, 그 평가 결과를 하기 표 2 내지 표 6에 나타내었다.
(1) 면저항(Ω·㎠)
각각의 음이온 교환막을 5 cm X 5 cm 크기로 잘라 샘플을 준비하였다. 상기 샘플을 0.5 M NaCl 수용액에 24 시간 침지시켰다. 상기 샘플을 면저항 측정용 전극 사이에 위치시키고 LCR meter (E4908A, Agilent사)를 이용하여 음이온 교환막의 선저항(R1), 0.5 M NaCl 수용액의 저항(R2)을 측정하였다. 측정한 저항값(R1, R2)을 하기 식 1에 대입하여 면저항(Rm)을 구하였다.
[식 1]
Rm(Ω·㎠) = (R1 - R2) x S
식 중에서,
Rm은 음이온 교환막의 면저항이고,
R1은 음이온 교환막의 선저항이고,
R2는 0.5 M NaCl 수용액의 저항이고,
S는 전극의 면적이다.
(2) 이온교환용량(Ion Exchange Capacity; IEC, meq/g)
각각의 음이온 교환막을 5 cm X 5 cm 크기로 잘라 샘플을 준비하였다. 상기 샘플을 증류수로 세정한 후 티슈로 여분의 물기를 제거하였다. 1M NaCl 용액 70 ml를 바이알에 채운 후 상기 물기가 제거된 샘플을 1M NaCl 용액에 넣어 12시간 이상 침지하여 1차 전처리를 하였다. 그리고 나서, 1차 전처리를 마친 샘플을 증류수로 수회 세척하고 티슈로 여분의 물기를 제거하였다. 0.5M Na2CO3 용액 70 ml를 바이알에 채운 후 상기 물기가 제거된 샘플을 0.5M Na2CO3 용액에 넣어 12시간 이상 침지하여 2차 전처리를 하였다. 그리고나서, 2차 전처리를 마친 샘플은 바이알에서 꺼내고, 남은 용액을 0.01M AgNO3 용액으로 적정(titration)하고 적정시 투입된 AgNO3 용액의 부피를 기록하였다. 상기 샘플을 증류수로 수회 세척한 후 80 ℃ 열풍오븐에서 15분간 건조시켰다. 건조가 완료된 후 건조된 음이온 교환막의 무게를 측정하였다. 측정한 건조된 음이온 교환막의 무게를 하기 식 2에 대입하여 이온교환용량(IEC)을 구하였다.
[식 2]
IEC(meq/g) = (적정시약부피(ml) x 0.01)/건조된 음이온 교환막의 무게(g)
(3) 표면경도
표면경도계(HEIDON 14FW)를 사용하여 추 무게 750g, 속도 30mm/min, Force 19.6N의 조건으로 연필경도를 측정했다. 이온교환막을 테이프로 고정한 후 연필을 위치시키고 경도 측정 시작점부터 2cm 지점까지 막 표면이 긁히는 정도를 관찰했다. 관찰 결과 표면에 크랙이 발생하지 않는 경우 연필경도를 증가하여 테스트를 실시했으며, 크랙이 발생할 때까지 같은 방법으로 측정을 실시했다.
구분 실시예1 실시예2 실시예3 실시예4 실시예
5
실시예
6
비교예1 비교예2
다공성지지체 소재 PP PP PP PVA PP PP PP PP
다공성지지체 공극률(%) 55 45 48 77 45 45 55 28
다공성지지체두께(㎛) 60 80 110 125 80 80 60 120
면저항
(Ω·㎠)
3.0 7.6 9.6 2.5 7.2 8.8 1.7 19.8
이온교환용량
(meq/g)
2.4 1.8 1.6 2.3 1.9 1.5 2.5 1.0
표면경도 HB HB HB HB HB F 3B HB
상기 표 1을 참조하여, 실시예 1 내지 3의 이온교환막은 음이온 교환 폴리머로서 화학식 1-1의 화합물과 화학식 17의 화합물의 가교결합 생성물을 이용하며, 음이온 공극률이 45 내지 55%인 다공성 고분자 지지체인 폴리프로필렌막을 사용하며, 이 이온교환막의 이온교환용량이 1.5meq/g 이상으로 우수한 것을 확인할 수 있다. 그리고 실시예 4 내지 6의 이온교환막은 실시예 1 내지 3의 경우와 마찬가지로 이온교환용량이 1.5meq/g 이상으로 우수한 것을 확인할 수 있다.
이에 비하여 공극률이 30% 미만인 다공성 고분자 지지체를 사용하는 비교예 2의 이온교환막은 실시예 1 내지 3의 이온교환막과 달리 이온교환용량이 1.5meq/g 미만으로 물성이 불량한 것을 확인할 수 있다.
실시예 1 내지 4 및 비교예 2의 이온 교환막에서 표면경도는 표 1에 나타난 바와 같이 HB로 나타나 지지체에 따른 차이는 나타나지 않았다. 그리고 실시예 1 내지 6의 이온 교환막의 표면경도는 비교예 1의 경우 대비 개선된 결과를 나타냈다.
이상 첨부된 도면을 참조하여 예시적인 일구현예에 대해 상세하게 설명하였으나, 본 창의적 사상은 이러한 예에 한정되지 않는다. 본 창의적 사상이 속하는 기술 분야에서 통상의 지식을 가진 자라면 특허 청구범위에 기재된 기술적 사상의 범위 내에서 각종 변경예 또는 수정예를 도출할 수 있음은 자명하며, 이것들도 당연히 본 창의적 사상의 기술적 범위에 속하는 것이다.

Claims (11)

  1. 다공성 고분자 지지체; 및 음이온 교환 폴리머를 함유하는 전해질;을 포함하고,
    상기 전해질은 상기 다공성 고분자 지지체의 표면 및 기공의 내부에 위치하고,
    상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머와 수용해성 모노머를 포함하는 조성물의 가교 결합 생성물이며,
    상기 수용해성 모노머는 비닐기를 보유하는 비이온성 화합물인, 음이온 교환막:
    <화학식 1>
    Figure PCTKR2023011068-appb-img-000022
    화학식 1 중, X-는 F-, Cl-, Br-, 또는 I-이다.
  2. 제1항에 있어서,
    상기 수용해성 모노머의 함량은 화학식 1로 표시되는 가교성 모노머와 수용해성 모노머의 총중량 100 중량%를 기준으로 하여 5 내지 80 중량%인 음이온 교환막.
  3. 제1항에 있어서,
    상기 음이온 교환 폴리머가 하기 화학식 2로 표시되는 폴리머인 음이온 교환막:
    <화학식 2>
    Figure PCTKR2023011068-appb-img-000023
    화학식 2 중, -R-은 하기 화학식 3 내지 9로 표시되는 그룹 중에서 선택되며,
    <화학식 3> <화학식 4><화학식 5> <화학식 6><화학식 7> <화학식 8>
    Figure PCTKR2023011068-appb-img-000024
    <화학식 9>
    Figure PCTKR2023011068-appb-img-000025
    이며,
    화학식 3 내지 9 중, *는 결합 영역을 나타내며,
    R' 및 R"는 서로 독립적으로 -(CH2-CH2-O)k-(CH2)j-CH3, -(CH2)k-CH3, -(CH2)k-OH, -(CH2)k-CH3-(CH2)k-OH 또는 -(CH2)k-N-(R1)(R2)이며,
    R1 및 R2는 서로 독립적으로 -(CH2)k-CH3이며, k와 j는 서로 독립적으로 0 내지 10의 정수이고, m 및 n은 서로 독립적으로 1 내지 20의 양의 정수이다.
  4. 제1항에 있어서,
    상기 다공성 지지체의 공극률이 30 % 내지 80 %이고, 다공성 지지체의 두께가 10 내지 110 ㎛인, 음이온 교환막.
  5. 제1항에 있어서
    상기 다공성 고분자 지지체는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리비닐알콜, 폴리벤즈이미다졸, 폴리아릴렌술파이드, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리술폰, 폴리스티렌, 폴리아릴렌에테르술폰, 및 폴리에테르케톤으로부터 선택된 1종 이상의 폴리머를 포함하는, 음이온 교환막.
  6. 제1항에 있어서,
    상기 음이온 교환막의 이온교환용량(IEC)이 1.5 meq/g 이상인, 음이온 교환막.
  7. 제1항에 있어서,
    상기 음이온 교환막의 평균 두께가 10 ㎛ 내지 200 ㎛인, 음이온 교환막.
  8. 제1항에 있어서,
    상기 음이온 교환막의 면저항이 10 Ω·㎠ 이하인, 음이온 교환막.
  9. 제1항에 있어서,
    상기 음이온 교환막이 전기투석(Electrodialysis), 바이폴라막 전기투석(Bipolar membrane electrodialysis), 전기탈이온(Electrodeionization), 축전식 탈염(Capacitive deionization) 또는 수전해 시스템(water electrolysis)에 사용되는, 음이온 교환막.
  10. 다공성 고분자 지지체를 제공하는 단계;
    하기 화학식 1로 표시되는 가교성 모노머, 수용해성 모노머, 광 개시제, 및 용매를 포함하는 음이온 교환 폴리머 형성용 조성물을 제조하는 단계;
    상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시키는 단계;
    상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 상기 다공성 고분자 지지체가 합지된 적층체를 제조하는 단계;
    상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성하는 단계; 및
    상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하는 단계;를 포함하여 제1항 내지 제9항 중 어느 한 항의 음이온 교환막을 제조하는, 음이온 교환막의 제조방법:
    [화학식 1]
    Figure PCTKR2023011068-appb-img-000026
    화학식 1 중, X-는 F-, Cl-, Br-, 또는 I-이다.
  11. 제10항에 있어서,
    상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시키기 전에, 상기 다공성 고분자 지지체를 계면활성제 용액에 침지 및 건조하여 친수화된 표면을 갖는 다공성 고분자 지지체를 제조하는 단계를 더 포함하는, 음이온 교환막의 제조방법.
PCT/KR2023/011068 2022-10-19 2023-07-28 음이온 교환막 및 그 제조방법 WO2024085383A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220134819A KR20240054625A (ko) 2022-10-19 2022-10-19 음이온 교환막 및 그 제조방법
KR10-2022-0134819 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024085383A1 true WO2024085383A1 (ko) 2024-04-25

Family

ID=90737674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011068 WO2024085383A1 (ko) 2022-10-19 2023-07-28 음이온 교환막 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20240054625A (ko)
WO (1) WO2024085383A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235849A (ja) * 1998-12-14 2000-08-29 Sumitomo Electric Ind Ltd 電池用隔膜
KR101330571B1 (ko) * 2012-06-12 2013-11-19 (주) 시온텍 하이브리드 이온교환막 제조방법
JP6313454B2 (ja) * 2014-08-19 2018-04-18 富士フイルム株式会社 高分子膜形成用組成物及びその製造方法、高分子膜、分離膜モジュール、並びに、イオン交換装置
WO2021193161A1 (ja) * 2020-03-27 2021-09-30 株式会社アストム アニオン交換膜及びその製造方法
WO2021198432A1 (en) * 2020-04-02 2021-10-07 Fujifilm Manufacturing Europe Bv Membrane stacks and their uses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235849A (ja) * 1998-12-14 2000-08-29 Sumitomo Electric Ind Ltd 電池用隔膜
KR101330571B1 (ko) * 2012-06-12 2013-11-19 (주) 시온텍 하이브리드 이온교환막 제조방법
JP6313454B2 (ja) * 2014-08-19 2018-04-18 富士フイルム株式会社 高分子膜形成用組成物及びその製造方法、高分子膜、分離膜モジュール、並びに、イオン交換装置
WO2021193161A1 (ja) * 2020-03-27 2021-09-30 株式会社アストム アニオン交換膜及びその製造方法
WO2021198432A1 (en) * 2020-04-02 2021-10-07 Fujifilm Manufacturing Europe Bv Membrane stacks and their uses

Also Published As

Publication number Publication date
KR20240054625A (ko) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
US7838138B2 (en) Fuel cell electrolyte membrane with basic polymer
KR100526649B1 (ko) 중합체 전해질 막의 제조방법 및 당해 방법으로 제조한 중합체 전해질 막
WO2013147520A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2019240500A1 (ko) 패턴화 전극접착층이 구비된 전기화학소자용 분리막 및 상기 분리막의 제조방법
WO2014178620A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2019212210A1 (ko) 표면 이온 교환 고분자 전해질이 제거된 세공충진 이온 교환 고분자 전해질 복합막 및 이의 제조방법
WO2013103257A1 (ko) 내오염성이 우수한 역삼투막 및 그 제조방법
WO2019039820A2 (ko) 다공성 복합 분리막 및 이의 제조방법
WO2021172706A1 (ko) 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도
Yang et al. Sulfonated poly (phenylene oxide) membranes as promising materials for new proton exchange membranes
WO2011078465A2 (ko) 강도가 개선된 다공성 지지체, 그를 이용한 강화 복합전해질 막, 그 막을 구비한 막-전극 어셈블리 및 연료전지
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2015047008A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2018048134A1 (ko) 연료전지용 막-전극 계면 접착층, 이를 이용한 막-전극 접합체 및 연료전지
KR20150054235A (ko) 방사선에 의해서 화학적 안정성이 향상된 가교 술폰화 폴리에테르에테르케톤 양이온교환막 및 이의 제조 방법
WO2024085383A1 (ko) 음이온 교환막 및 그 제조방법
WO2012134095A2 (ko) 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지
WO2018190660A1 (ko) 다공막의 친수화 방법 및 이를 이용한 이온교환막의 제조방법
WO2023210898A1 (ko) 음이온 교환막
WO2024019307A1 (ko) 음이온 교환막 및 이의 제조방법
WO2021034068A1 (ko) 1가 음이온 선택성 이온 교환막
WO2019245154A1 (ko) 고분자 지지체를 포함하는 양이온교환막 및 그의 제조방법
KR20170004413A (ko) 연료전지용 막-전극 복합체 및 그 제조방법
KR102241065B1 (ko) 음이온 교환막 및 그 제조방법