WO2021172706A1 - 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도 - Google Patents

카바졸계 음이온 교환 소재, 그의 제조방법 및 용도 Download PDF

Info

Publication number
WO2021172706A1
WO2021172706A1 PCT/KR2020/016404 KR2020016404W WO2021172706A1 WO 2021172706 A1 WO2021172706 A1 WO 2021172706A1 KR 2020016404 W KR2020016404 W KR 2020016404W WO 2021172706 A1 WO2021172706 A1 WO 2021172706A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
anion exchange
allyl
perfluoroaryl
aryl
Prior art date
Application number
PCT/KR2020/016404
Other languages
English (en)
French (fr)
Inventor
이장용
양석환
신상훈
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to US17/800,285 priority Critical patent/US20230105570A1/en
Publication of WO2021172706A1 publication Critical patent/WO2021172706A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/13Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G10/00Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or halogenated aromatic hydrocarbons only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/23Carbon monoxide or syngas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/133Rod-like building block
    • C08G2261/1334Step-ladder-type, e.g. polyfluorenes or polycarbazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbazole-based anion exchange material, a method for preparing the same, and a use thereof.
  • water electrolysis redox flow cell, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED), or capacitive deionization: It relates to an anion exchange material that can be used as a membrane for CDI), a separation membrane comprising the same, and a manufacturing method and use thereof.
  • a proton exchange membrane fuel cell (PEMFC) using a polymer electrolyte can directly convert chemical energy into electrical energy and emit non-toxic substances such as water, so it is an alternative energy for automobiles and portable appliances.
  • the system is getting a lot of attention.
  • An important factor in the PEMFC is a polymer electrolyte membrane (PEM) that determines the performance and durability of the PEMFC and separates both electrodes. Therefore, high proton conductivity, strong mechanical properties, water-stable dimensions and low cost are essential in the selection of PEM.
  • an electrolyte membrane used in a polymer electrolyte fuel cell can be divided into a perfluorinated polymer electrolyte and a hydrocarbon polymer electrolyte.
  • the fluorinated polymer electrolyte is chemically stable due to a strong bonding force between carbon and fluorine (CF) and a shielding effect, which is a characteristic of fluorine atoms, and has excellent mechanical properties. It is being commercialized as a polymer membrane for electrolyte fuel cells.
  • the fluorinated polymer electrolyte membrane has disadvantages such as low industrial use due to its high price against excellent performance, high methanol crossover through which methanol passes through the polymer membrane, and decreasing the efficiency of the polymer membrane at temperatures above 80°C. Therefore, research on hydrocarbon ion exchange membranes that are competitive in terms of price is being actively conducted.
  • Water electrolysis is a technology that electrochemically decomposes water to produce hydrogen and oxygen.
  • the unit cell has an anion exchange membrane, an anode electrode formed on one side of the anion exchange membrane, and the other side of the anion exchange membrane including a cathode electrode.
  • a plurality of unit cells are stacked in series to form a water electrolysis stack, and the water electrolysis stack receives an aqueous alkali solution (KOH or NaOH) from an electrolyte tank, and water is decomposed at the anode to generate hydrogen and hydroxide ions (OH - ) .
  • the generated hydroxide ions are transferred through the intermediate anion exchange membrane, and an electrochemical reaction occurs in the cathode where oxygen is generated from the hydroxide ions.
  • GDL Gas Diffusion Layer
  • polystyrene poly(styrene)
  • poly(phenylene oxide) poly(phenylene) containing functional groups such as dazolium, benzimidazolium, phosphonium, etc.
  • Pumatech's FAA-3 has been developed and sold as a separator and binder material, but its performance and durability are insufficient to be applied to actual systems.
  • Aemion was commercialized, and Dioxide Materials in the United States commercialized an anion exchange membrane product called Sustainion for the purpose of applying it to an electrochemical system for reduction of carbon dioxide.
  • Sustainion for the purpose of applying it to an electrochemical system for reduction of carbon dioxide.
  • better performance and durability than currently developed anion exchange materials are required.
  • the development of an anion exchange material with increased molecular weight, which has a great influence on polymer properties and durability is the most important requirement for commercial use of an electrochemical system using an anion exchange membrane, even for a material with the same structure.
  • Japanese Patent Application Laid-Open No. 2019-530760 which is a related art, describes cross-linked alkylated poly(benzimidazole) and poly(imidazole) polymer materials and fuel cells and water electrolysis devices including these polymer materials, Water electrolysis, redox flow cell, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, Anion exchange membranes having various applications, such as electrodialysis (ED), reverse electrodialysis (RED), or capacitive deionization (CDI), have solubility in solvents and control molecular weight through separation membranes, etc. The improvement of physical and chemical stability and durability of materials is further demanded.
  • ED electrodialysis
  • RED reverse electrodialysis
  • CDI capacitive deionization
  • the present invention was developed to solve the above problems, and by using an anion exchange material, a carbazole-based polymer with improved physical properties and durability by maximizing molecular weight by introducing a chain extender into the molecular structure is electrolyzed using an anion exchange material, redox flow battery, fuel
  • An object of the present invention is to provide a separator for a battery, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), reverse electrodialysis (RED), or capacitive deionization (CDI).
  • the present invention is to provide a water electrolysis device comprising a carbazole-based polymer as an anion exchange membrane for water electrolysis (Anion Exchange Membrane for Water Electrolysis: AEMWE).
  • preparing a mixture of a halogen-containing carbazole-based monomer and a chain-extended carbazole-based comonomer having two or more carbazole groups in the molecular structure preparing a polycarbazole-based polymer including a halogen-containing chain extender in which the bonds between monomers constituting the main chain are all C-C bonds by using the mixture with a polymerization reaction using a superacid catalyst; and providing an anion exchanger through quaternization of the polycarbazole-based polymer including the halogen-containing chain extender.
  • the present invention provides a water electrolyzer comprising an anion exchange membrane for water electrolysis (AEMWE).
  • AEMWE anion exchange membrane for water electrolysis
  • the present invention is soluble in a solvent by providing an anion exchange material based on a carbazole-based material in which the main chain does not include a linking group having electron donating properties such as -O- and -S- in the main chain, and the main chain is all CC bonds.
  • ED electrodialysis
  • RED reverse electrodialysis
  • CDI capacitive deionization
  • FIG. 2 shows the results of 1 H-NMR spectrum analysis of the carbazole-based monomer (M2) according to an embodiment of the present invention.
  • FIG. 3 shows the results of 1 H-NMR spectrum analysis of a carbazole-based anion exchange material including a chain extender according to an embodiment of the present invention.
  • FIG. 5 is a solubility analysis result of a polycarbazole-based anion exchange material including a chain extender prepared according to an embodiment of the present invention in a solvent.
  • FIG. 6 is a result of analyzing mechanical properties in a dry state of a polycarbazole-based anion exchange material including a chain extender prepared according to an embodiment of the present invention.
  • the present invention relates to a carbazole-based anion exchange material, a manufacturing method and use thereof, and more particularly, to water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition, electrodialysis (ED), Provided are an anion exchange material that can be used as a membrane for reverse electrodialysis (RED) or capacitive deionization (CDI), a separation membrane including the same, and a manufacturing method thereof.
  • RED reverse electrodialysis
  • CDI capacitive deionization
  • preparing a mixture of a halogen-containing carbazole-based monomer and a chain-extended comonomer having two or more carbazole groups in the molecular structure preparing a polycarbazole-based polymer including a halogen-containing chain extender in which the bonds between monomers constituting the main chain are all C-C bonds by using the mixture with a polymerization reaction using a superacid catalyst; and providing an anion exchanger through quaternization of the polycarbazole-based polymer including the halogen-containing chain extender.
  • the 'polycarbazole-based polymer including a chain extension group' described in the specification of the present invention as a whole has two or more carbazole groups in the molecular structure through a linking group such as an alkyl group, as in the monomer (Monomer 2: M2) of Scheme 1 below. It refers to polycarbazole including a chain extending group in the molecular structure prepared by using the linked monomer as a 'chain-extending carbazole-based comonomer'.
  • the mixing ratio of the 'chain-extended comonomer' having two or more carbazole groups in the molecular structure capable of exhibiting an effect of increasing molecular weight without cross-linking reaction is preferably 0.1 to 5 mol% based on the total number of moles of monomers.
  • the inclusion of the 'chain-extended comonomer' in this range has a superior effect of increasing the molecular weight rather than the occurrence of cross-linking due to the reactivity of the carbazole.
  • the polycarbazole-based anion exchange material according to an embodiment of the present invention may be prepared according to the method of Scheme 1 below.
  • the halogen-containing carbazole-based monomer is mixed and reacted with a carbazole compound and a halogen-containing hydrocarbon-based compound, cooling and precipitating the reaction product, and preparing the reaction product It may include the steps of extraction and purification.
  • the carbazole-based compound may be a mixture of a halogen-containing carbazole-based monomer and a 'chain-extended carbazole-based comonomer' having two or more carbazole groups in the molecular structure, and in this case, a 'chain having two or more carbazole groups' in the molecular structure
  • the mixing ratio of 'extended comonomer' is preferably 0.1 to 5 mol% based on the total number of moles of monomer.
  • the halogen atom of the halogen-containing hydrocarbon-based compound may be any one of chlorine (Cl), bromine (Br), and iodine (I).
  • the acetic acid catalyst is trifluoromethanesulfonic acid (CF 3 SO 3 H) or fluorosulfonic acid (fluorosulfonic acid: HSO 3 F),
  • the polycarbazole-based polymer including the halogen-containing chain extender may have a chemical structure of Formula 1 below.
  • the substituents represented by R 1 to R 5 are each independently an alkyl group, an aryl group, an allyl group, an alkyl group including a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group, optionally A perfluoroalkyl group containing one or more oxygen, nitrogen, or sulfur atoms in its chain, a perfluoroaryl group, an -O- perfluoroaryl group, an alkyl group containing at least one anion exchange group, an aryl group, an allyl group , an alkyl group containing a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group and an -O-perfluoroaryl group, wherein the substituents may be the same or different within each repeating unit or for each repeating unit,
  • the anion exchanger is each independently an amine group, an ammonium group, an amino group, an imine group, a sulfonium group, a phosphonium group, a pyridyl group, a carbazolyl group, an imidazolyl group, a guanidinium group, a ruthenium group, a cobaltocenium group, a piperidi Any one or more anion exchange functional groups selected from the nium group or an anion exchange functional group in a salt state thereof,
  • X 1 to X 5 are each independently a hydrogen atom or any one of halogen atoms chlorine (Cl), bromine (Br), and iodine (I), X 1 and At least one of X3 is a halogen atom,
  • Z is an alkyl group, an aryl group, an allyl group, an alkyl group containing a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group, optionally purple containing one or more oxygen, nitrogen, or sulfur atoms in its chain Luoroalkyl group, perfluoroaryl group, -O- perfluoroaryl group, alkyl group containing at least one anion exchange group, aryl group, allyl group, alkyl group containing fluorine atom, aryl group, allyl group, cya group a no group, a perfluoroalkyl group, and an -O-perfluoroaryl group;
  • l, m, and n which are the number of repeating units, are integers of 100,000 or less.
  • the halogen-containing carbazole-based monomer is the halogen-containing polycarbazole-based monomer in which all bonds between monomers constituting the main chain are CC bonds using the polymerization reaction using the acetic acid catalyst. It can be made of polymer.
  • the polymerization reaction is carried out by a CC bond synthesis method using the acetic acid catalyst, and the main chain does not contain electron donor groups such as -O- and -S- and contains the halogen having the chemical structure of Formula 1 consisting of all CC bonds.
  • a polycarbazole-based polymer including a chain extender may be prepared.
  • the polycarbazole-based anion exchange material including the halogen-containing chain extender may have a chemical structure of Formula 2 below.
  • the substituents represented by R 1 to R 5 are each independently an alkyl group, an aryl group, an allyl group, an alkyl group including a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group, optionally A perfluoroalkyl group containing one or more oxygen, nitrogen, or sulfur atoms in its chain, a perfluoroaryl group, an -O- perfluoroaryl group, an alkyl group containing at least one anion exchange group, an aryl group, an allyl group , an alkyl group containing a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group and an -O-perfluoroaryl group, wherein the substituents may be the same or different within each repeating unit or for each repeating unit,
  • the anion exchanger is each independently an amine group, an ammonium group, an amino group, an imine group, a sulfonium group, a phosphonium group, a pyridyl group, a carbazolyl group, an imidazolyl group, a guanidinium group, a ruthenium group, a cobaltocenium group, a piperidi Any one or more anion exchange functional groups selected from the nium group or an anion exchange functional group in a salt state thereof,
  • X 1 to X 5 are each independently a hydrogen atom or any one of halogen atoms chlorine (Cl), bromine (Br), and iodine (I), X 1 and At least one of X3 is a halogen atom,
  • Z is an alkyl group, an aryl group, an allyl group, an alkyl group containing a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group, optionally purple containing one or more oxygen, nitrogen, or sulfur atoms in its chain Luoroalkyl group, perfluoroaryl group, -O- perfluoroaryl group, alkyl group containing at least one anion exchange group, aryl group, allyl group, alkyl group containing fluorine atom, aryl group, allyl group, cya group a no group, a perfluoroalkyl group, and an -O-perfluoroaryl group;
  • l, m, and n the number of repeating units, are integers less than or equal to 100,000, among which l and m may be 0, and 1 ⁇ (l+m)/n ⁇ 1,000 satisfies the condition of
  • W 1 to W 5 are each independently a hydrogen atom or an anion exchange group
  • W 1 and At least one of W 3 is an anion exchanger
  • the anion exchanger is each independently an amine group, an ammonium group, an amino group, an imine group, a sulfonium group, a phosphonium group, a pyridyl group, a carbazolyl group, an imidazolyl group, a guanidinium group , a ruthenium group, a cobaltocenium group, any one or more anion exchange functional groups selected from a piperidinium group, or an anion exchange functional group in a salt state thereof.
  • the acetic acid catalyst may be used in an amount of 0.1 to 100 equivalents based on the total amount of the halogen-containing carbazole-based monomer. Preferably, it may be used in an amount of 1 to 20 equivalents based on the total amount of the halogen-containing carbazole-based monomer.
  • the preparing of the halogen-containing polycarbazole-based polymer may include mixing the halogen-containing carbazole-based monomer and the acetic acid catalyst in a solvent and stirring the mixture, at this time the solvent
  • An organic solvent containing a halogen element such as CCl 4 , CHCl 3 , CH 2 Cl 2 , C 2 H 2 Cl 4 , iodine, bromine or fluorine may be used.
  • the polycarbazole-based polymer including the halogen-containing chain extender may be prepared as an anion exchange material having the anion conductive group by the quaternization reaction.
  • the anion conductive group is substituted at the halogen element position of the polycarbazole-based polymer including the halogen-containing chain extension group by the quaternization to prepare a polycarbazole-based anion exchange material having the chemical structure of Formula 2 below can
  • the substituents represented by R 1 to R 5 are each independently an alkyl group, an aryl group, an allyl group, an alkyl group including a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group, optionally A perfluoroalkyl group containing one or more oxygen, nitrogen, or sulfur atoms in its chain, a perfluoroaryl group, an -O- perfluoroaryl group, an alkyl group containing at least one anion exchange group, an aryl group, an allyl group , an alkyl group containing a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group and an -O-perfluoroaryl group, wherein the substituents may be the same or different within each repeating unit or for each repeating unit,
  • the anion exchanger is each independently an amine group, an ammonium group, an amino group, an imine group, a sulfonium group, a phosphonium group, a pyridyl group, a carbazolyl group, an imidazolyl group, a guanidinium group, a ruthenium group, a cobaltocenium group, a piperidi Any one or more anion exchange functional groups selected from the nium group or an anion exchange functional group in a salt state thereof,
  • X 1 to X 5 are each independently a hydrogen atom or any one of halogen atoms chlorine (Cl), bromine (Br), and iodine (I), X 1 and At least one of X3 is a halogen atom,
  • Z is an alkyl group, an aryl group, an allyl group, an alkyl group containing a fluorine atom, an aryl group, an allyl group, a cyano group, a perfluoroalkyl group, optionally purple containing one or more oxygen, nitrogen, or sulfur atoms in its chain Luoroalkyl group, perfluoroaryl group, -O- perfluoroaryl group, alkyl group containing at least one anion exchange group, aryl group, allyl group, alkyl group containing fluorine atom, aryl group, allyl group, cya group a no group, a perfluoroalkyl group, and an -O-perfluoroaryl group;
  • l, m, and n the number of repeating units, are integers less than or equal to 100,000.
  • W 1 to W 5 are each independently a hydrogen atom or an anion exchange group
  • W 1 and At least one of W 3 is an anion exchanger
  • the anion exchanger is each independently an amine group, an ammonium group, an amino group, an imine group, a sulfonium group, a phosphonium group, a pyridyl group, a carbazolyl group, an imidazolyl group, a guanidinium group , a ruthenium group, a cobaltocenium group, any one or more anion exchange functional groups selected from a piperidinium group, or an anion exchange functional group in a salt state thereof.
  • the present invention provides a separation membrane comprising a polycarbazole-based anion exchange material prepared according to the above manufacturing method.
  • the separation membrane may be any one selected from the group consisting of a single membrane, a reinforced membrane, a composite membrane, and a reinforced composite membrane made of the corresponding ion exchange material.
  • the single membrane is an ion exchange material according to an embodiment of the present invention.
  • the reinforced membrane is polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, polystyrene, polysulfone, polyvinyl alcohol, polybenz, to improve the physical properties of the membrane.
  • Ion using a porous membrane based on imidazole, polyimide, polyamideimide, glass fiber, cellulose, or a mixture thereof or a porous membrane based on an organic or inorganic material having pores therein as a support
  • the composite membrane uses the ion exchange material according to an embodiment of the present invention as a main material to lower crossover of fuel and active material or to improve performance.
  • It may be in a form containing inorganic or organic-inorganic hybrid nanoparticles and additives
  • the reinforced composite membrane is a form in which the concepts of the above-mentioned composite membrane and reinforced membrane are applied together. It may be in the form prepared by impregnating the inorganic material-based porous support.
  • the separator is used for water electrolysis, redox flow battery, fuel cell, carbon dioxide reduction, electrochemical ammonia production and decomposition,
  • ED electrodialysis
  • RED reverse electrodialysis
  • CDI capacitive deionization
  • the separator is an anion exchange membrane for water electrolysis (AEMWE) can be
  • the present invention provides a water electrolysis device, characterized in that it comprises a separation membrane comprising a polycarbazole-based anion exchange material prepared according to the above manufacturing method as an anion exchange membrane for water electrolysis (AEMWE). .
  • a carbazole-based anion exchange material according to an embodiment of the present invention was prepared according to the method of Scheme 1 below.
  • a halogen-containing carbazole-based monomer (Monomer 1: M1) of Scheme 1 was prepared as follows. First, 200mL of N,N'dimethylformamide (N,N*?**?*-dimethylformamide) and carbazole (10.0g) and dibromohexane (43.0g) in a flask substituted with an argon atmosphere ) is dissolved in After adjusting the flask in the dissolved solution to 0 °C using an ice bath, potassium hydroxide (3.4 g) is added and reacted for 24 hours. When the reaction is completed, the reaction product is obtained by precipitation using ice water and extraction with methylene chloride (MC). The obtained reaction product was purified through column chromatography, and then recrystallized from ethanol to prepare a halogen-containing carbazole-based monomer (M1) of Scheme 1 above.
  • FIGS. 1 (b) and (C) are 1 H-NMR spectrum and COZY of a halogen-containing carbazole-based monomer The results of NMR analysis are shown.
  • the chain-extended carbazole-based monomer (Monomer2: M2) of Scheme 1 according to an embodiment of the present invention was prepared as follows.
  • FIG. 2 shows the results of 1 H-NMR spectrum analysis of the carbazole-based monomer (M2) according to an embodiment of the present invention.
  • a halogen-containing polycarbazole-based polymer (QPC-CLn-Br) according to an embodiment of the present invention was prepared by the following method.
  • a polycarbazole-based anion-exchange material to which an anion-exchange group is imparted through quaternization of a halogen-containing polycarbazole-based polymer according to the present invention was prepared by the following method.
  • a 45 wt% trimethylamine solution is slowly dropped into a solution in which the halogen-containing halogen-containing polycarbazole-based polymer (QPC-CLn-Br) prepared according to Preparation Example 3 is dissolved at 10 wt% in dimethylformamide (DMF).
  • the polycarbazole-based anion exchange material (QPC-CLn-TMA) having an anion conductive group according to an embodiment of the present invention was prepared by precipitation in tertiary distilled water.
  • Figure 3 shows the results of 1 H-NMR spectrum analysis of the carbazole-based anion exchange material according to an embodiment of the present invention.
  • the molecular weight of the prepared polymer was measured using GPC.
  • GPC GPC
  • HR 3 and 4 columns were used and Waters' 2414 model was used as a detector, and the prepared polymer was dissolved in a DMAc solution in which 0.05 M LiBr was dissolved and injected.
  • analysis was performed at 25 °C and flow rate of 1.0 mL/min, and the results are summarized in Table 1.
  • the chain extender used in the preparation of the present invention has three or more reaction points, it can be used as a crosslinking agent, so it is very important to use an appropriate ratio in consideration of its reactivity.
  • Table 1 it can be seen that the developed QPC-CL3-Br has the same reaction process as compared to the comparative example, but has a very large molecular weight that is improved by 3 times or more even with the addition of a small amount of chain extender. This can have a great influence on the improvement of physical properties and durability of the material.
  • the 'chain-extended carbazole-based comonomer' which is a monomer in which two or more carbazole groups are connected through a linking group such as an alkyl group in the molecular structure, can serve as a crosslinking agent, so that it is crosslinked when used in excess. have.
  • a linking group such as an alkyl group in the molecular structure
  • the mixing ratio of the 'chain-extended comonomer' having two or more carbazole groups in the molecular structure capable of exhibiting an effect of increasing molecular weight without cross-linking reaction is preferably 0.1 to 5 mol% based on the total number of moles of monomers.
  • the inclusion of 'chain-extended comonomer' in this range has a superior effect of increasing the molecular weight rather than the occurrence of cross-linking due to the reactivity of carbazole, and through this, the molecular weight is effectively maximized and a solution process possible polymer main chain can be created.
  • the membranes of Examples and Comparative Examples were measured and compared to tensile strength using a Universal Testing Machine (UTM), and Lloyd Instrument LR5K was used as the UTM, Wet and dry membranes were measured, and the cross head speed was performed under the condition of 10 mm/min.
  • UTM Universal Testing Machine
  • Lloyd Instrument LR5K Lloyd Instrument LR5K
  • Table 2 summarizes the results measured in FIGS. 6 and 7 .
  • this compares the physical properties of a material with a maximum molecular weight by introducing a chain extension type crosslinking agent and a low molecular weight material without it.
  • Molecular weight is a very important factor in determining the physical properties of a material, and it can be seen that when the molecular weight is improved, the tensile strength is improved by 20% and 30%, respectively, in dry and wet conditions. In particular, considering that water electrolysis is operated in a wet state, physical properties improved by 30% compared to the conventional one in a wet state can have a significant impact on the durability of the entire system.
  • soaking test was performed for 1,000 hours in 1M KOH aqueous solution at 80°C, and the ionic conductivity (OH - ) of the sample was measured every 100 hours during the operation, and the measurement was performed using a 4-terminal ion conductivity cell. was measured using an impedance measuring instrument (Solartron 1280) in a humidification chamber (SH-241, ESPEC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본원 발명은 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도에 대한 것으로 보다 구체적으로는 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 막으로 사용할 수 있는 음이온 교환소재 및 이를 포함하는 분리막, 그의 제조방법 및 용도에 대한 것이다. 본원 발명에 따르면 안정성이 우수한 카바졸계 소재를 기반으로 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 음이온 교환소재를 제공함으로써 용매에 용해성을 가지면서도 분자량을 획기적으로 향상시켜 물리적 화학적 안정성과 내구성이 향상된 분리막을 제조할 수 있는 장점이 있다.

Description

카바졸계 음이온 교환 소재, 그의 제조방법 및 용도
본원 발명은 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도에 대한 것이다.
보다 구체적으로는 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 막으로 사용할 수 있는 음이온 교환소재 및 이를 포함하는 분리막, 그의 제조방법 및 용도에 대한 것이다.
본 출원은 2020년 02월 28일에 출원된 한국 특허출원 제10-2020-0025271호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 인구 증가로 인한 화석연료의 고갈, 공해 및 전기에너지에 대한 수요 증가는 대체 에너지원의 개발을 필요로 한다. 따라서, 많은 연구자들이 전기에너지를 생산할 수 있는 새로운 시스템의 발명을 시도하고 있다.
그 중 고분자 전해질을 사용하는 양성자 교환막 연료전지(proton exchange membrane fuel cell; PEMFC)는 화학에너지를 전기에너지로 직접 전환할 수 있고 물과 같은 비독성 물질을 배출하므로 자동차 및 휴대용 가전 등을 위한 대체 에너지 시스템으로서 상당히 주목받고 있다. 상기 PEMFC에 있어서 중요한 요소는, PEMFC의 성능 및 내구성을 결정하며, 양 전극을 분리시키는 고분자 전해질 막(polymer electrolyte membrane; PEM)이다. 따라서, 높은 양성자 전도도, 강한 기계적 성질, 물에서 안정한 치수 및 낮은 단가가 PEM의 선택에 있어서 필수적이다.
일반적으로 고분자 전해질 연료전지에서 사용되는 전해질 막은 불소화된 고분자(perfluorinated polymer) 전해질과 탄화수소계(hydrocarbon) 고분자 전해질로 나눌 수 있다. 상기 불소화된 고분자 전해질은 탄소-불소(CF) 간의 강한 결합력과 불소원자의 특징인 가림(shielding) 효과로 화학적으로 안정하며, 기계적인 물성도 우수하고, 특히 수소이온 교환막으로 전도성이 높으므로 현재 고분자 전해질형 연료전지의 고분자 막으로 상용화되고 있다. 미국 듀퐁(Du Pont)사의 상품인 나피온(Nafion, 퍼플루오르화 술폰산 중합체)은 상용화된 수소이온 교환막의 대표적인 예로서, 이온전도도, 화학적 안정성, 이온 선택성 등이 우수하여 현재 가장 널리 사용되고 있다. 그러나 불소화된 고분자 전해질 막은 우수한 성능에 반하여 높은 가격으로 인해 산업용으로서의 이용도가 낮으며, 메탄올이 고분자 막을 통과하는 메탄올 투과성(methanol crossover)이 높고, 80℃ 이상의 온도에서 고분자 막의 효율이 감소하는 단점이 있어 가격면에서 경쟁성 있는 탄화수소 이온 교환막에 대한 연구가 활발히 진행되고 있다.
한편, 화석 연료를 대신한 대체에너지의 수요 증가로 인하여 고효율이면서도 값싸고 환경 친화적인 에너지 변환이나 저장 시스템에 대한 관심이 높아지는 가운데 환경과 에너지 문제를 고려한 중요한 대안으로 상용화 가능성이 높은 수전해를 통한 연료생산이 많은 주목을 받고 있다. 수전해는 물을 전기 화학적으로 분해하여 수소와 산소를 생산시키는 기술로, 음이온 교확막 기반 수전해 방식에서 단위 셀은 음이온 교환막과, 음이온 교환막의 일측에 형성된 애노드 전극과, 음이온 교환막의 타측에 형성된 캐소드 전극을 포함한다. 복수의 단위 셀이 직렬로 적층되어 수전해 스택을 구성하며, 수전해 스택은 전해액 탱크로부터 알칼리 수용액(KOH 또는 NaOH)을 공급받아 양극에서는 물이 분해되어 수소와 수산화이온(OH -)이 발생된다. 생성된 수산화이온은 중간 음이온 교환막을 통해 전달되어지고 음극에서는 수산화이온으로부터 산소가 발생되는 전기화학반응이 일어난다. 이러한 각각의 전기 화학반응은 가스확산층(Gas Diffusion Layer, GDL) 위의 촉매에서 일어나게 되고, 이 때 음이온 교환막은 중간 전해질로서 젖은 상태에서 높은 수산화이온의 전도성을 나타내며, 낮은 기체투과도로 인해 수전해로 생성된 수소와 산소를 분리해주는 역할을 한다.
위와 같은 전기화학 시스템에서 양이온교환막이 아닌 음이온교환막을 사용할 경우 높은 pH조건 하에서 운전되므로 기존의 고가의 백금계 귀금속 촉매가 아닌 저가의 촉매를 사용할 수 있어 전체적인 시스템 가격을 낮출 수 있다는 장점이 있으며, 실제 스택 제조 비용 중 약 50%가 촉매 비용이라는 것을 감안하면 음이온교환막을 사용하는 전기화학 시스템이 보다 경제성이 높음을 알 수 있다. 그럼에도 불구하고 음이온교환막 기반의 전기화학 시스템은 핵심 화학소재인 음이온교환막의 낮은 성능 및 내구성으로 인해서 상용화에 어려움을 격고 있다.
이러한, 연료전지, 수전해, 레독스 흐름전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)장치에 사용할 수 있는 분리막으로는 화학적, 기계적으로 안정적인 음이온 교환막이 바람직한 것으로 알려져 있어 이러한 용도로 사용할 수 있는 다양한 고분자 재료가 개발되어 왔고, 이들의 고분자 재료의 대표적인 예로서는 테트라알킬암모늄, 벤질 트리메틸암모늄, 이미다졸륨, 벤즈 이미다졸륨, 포스포늄 등의 기능성기를 포함하는 폴리(아릴렌 에테르 설폰), 폴리(올레핀), 폴리(스티렌), 폴리(페닐렌 옥사이드) 및 폴리(페닐렌) 등의 사용이 검토되어 왔다. 현재 독일 퓨마텍사의 FAA-3가 분리막 및 바인더 소재로서 개발되어 판매되고 있으나 성능 및 내구성은 실제 시스템에 적용되기에는 많이 부족하고, 최근에는 연료전지, 수전해 시스템에 적용을 위해 캐나다의 Ionomer사에서 Aemion이 상용화 되었고, 미국의 Dioxide Materials사에서는 이산화탄소의 환원을 위한 전기화학 시스템에 적용을 위한 목적으로 Sustainion이라는 음이온교환막 제품이 상용화 되었으나 이 역시도 내구성과 막의 성능에 문제가 있는 것으로 알려져 있는 등 실제 상용화를 위해서는 현재 개발된 음이온교환 소재보다 우수한 성능 및 내구성이 요구된다. 특히 동일한 구조의 소재라 하더라도 고분자 물성 및 내구성에 큰 영향을 미치는 분자량을 증대시킨 음이온교환소재의 개발은 음이온교환막을 사용하는 전기화학 시스템의 상업적 활용을 위해 가장 중요한 요구사항이다.
이와 관련된 종래기술인 일본 공개특허 특개2019-530760호에는 가교된 알킬화 폴리(벤즈이미다졸) 및 폴리(이미다졸) 고분자 재료 및 이들의 고분자 재료를 포함하는 연료전지 및 수전해 장치에 대하여 기재되어 있으나, 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI) 등 다양한 응용분야를 가지는 음이온 교환막은 용매에 대한 용해도를 가지면서 분자량의 조절 등을 통하여 분리막 소재의 물리적 화학적 안정성 및 내구성의 향상이 더욱 요구되고 있는 실정이다.
본원 발명은 상기 문제점들을 해결하기 위해 개발된 것으로, 분자 구조 내에 사슬연장기를 도입함으로서 분자량을 극대화하여 물성 및 내구성을 향상시킨 카바졸계 고분자를 음이온 교환소재를 사용하여 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 분리막을 제공하는 것을 목적으로 한다.
또한, 본원 발명에서는 카바졸계 고분자를 수전해용 음이온교환막(Anion Exchange Membrane for Water Electorolysis: AEMWE)으로 포함하는 것을 특징으로 하는 수전해 장치를 제공하고자 한다.
본원 발명에서는 상기 과제를 해결하기 위하여 할로겐 함유 카바졸계 단량체 및 분자 구조 내에 2개 이상의 카바졸기를 가지는 사슬연장형 카바졸계 공단량체의 혼합물을 준비하는 단계; 상기 혼합물을 초산성 촉매(superacid catalyst)를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자를 제조하는 단계; 및 상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자의 4차화 반응(quaternization)을 통하여 음이온 교환기를 부여하는 단계를 포함하는 것을 특징으로 하는 폴리카바졸계 음이온 교환소재의 제조방법을 제공한다.
또한, 본원 발명에서는 그 용도가 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 분리막을 제공한다.
또한, 본원 발명에서는 수전해용 음이온교환막(Anion Exchange Membrane for Water Electorolysis: AEMWE)으로 포함하는 수전해장치를 제공한다.
본원 발명은 주쇄에 -O-, -S- 등의 전자주게(electron donating) 특성의 연결기를 포함하지 않고 주쇄가 모두 C-C 결합으로 이루어진 카바졸계 소재를 기반으로 하는 음이온 교환소재를 제공함으로써 용매에 용해성을 가지면서도 소량의 사슬연장기를 도입함으로서 분자량을 획기적으로 향상시켜 물리적 화학적 안정성과 내구성이 향상된 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 분리막을 제조할 수 있는 큰 장점이 있다.
도 1은 본원 발명의 일 구현예에 따른 할로겐 함유 카바졸계 단량체(M1)의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다.
도 2는 본원 발명의 일 구현예에 따른 카바졸계 단량체(M2)의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다.
도 3은 본원 발명의 일 구현예에 따른 사슬연장기를 포함하는 카바졸계 음이온 교환소재의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다.
도 4는 본원 발명의 일 구현예에 따라 제조된 사슬연장기를 포함하는 폴리카바졸계 음이온교환소재의 NMP 용매에 대한 용해도 분석 결과이다.
도 5는 본원 발명의 일 구현예에 따라 제조된 사슬연장기를 포함하는 폴리카바졸계 음이온교환소재의 용매에 대한 용해도 분석 결과이다.
도 6은 본원 발명의 일 구현예에 따라 제조된 사슬연장기를 포함하는폴리카바졸계 음이온교환소재의 건조 상태에서의 기계적 물성을 분석한 결과이다.
도 7은 본원 발명의 일 구현예에 따라 제조된 사슬연장기를 포함하는폴리카바졸계 음이온교환소재의 습윤 상태에서의 기계적 물성을 분석한 결과이다.
도 8은 본원 발명의 일 구현예에 따라 제조된 사슬연장기를 포함하는 폴리카바졸계 음이온교환소재의 화학적 안정성을 측정한 결과이다.
이하, 본원 발명에 대해 상세하게 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본원 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본원 발명은 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도에 대한 것으로 보다 구체적으로는 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 막으로 사용할 수 있는 음이온 교환소재 및 이를 포함하는 분리막 및 그의 제조방법을 제공한다.
본원 발명에서는 상기 과제를 해결하기 위하여 할로겐 함유 카바졸계 단량체 및 분자 구조내에 2개 이상의 카바졸기를 가지는 사슬연장형 공단량체의 혼합물을 준비하는 단계; 상기 혼합물을 초산성 촉매(superacid catalyst)를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자를 제조하는 단계; 및 상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자의 4차화 반응(quaternization)을 통하여 음이온 교환기를 부여하는 단계를 포함하는 것을 특징으로 하는 폴리카바졸계 음이온 교환소재의 제조방법을 제공한다.
본원 발명의 명세서에서 전반적으로 기재하고 있는 ‘사슬연장기를 포함하는 폴리카바졸계 고분자’는 하기 반응식 1의 단량체(Monomer 2: M2)와 같이 분자 구조 내에 2개 이상의 카바졸기가 알킬기 등의 연결기를 통하여 연결된 단량체를 ‘사슬연장형 카바졸계 공단량체’로 사용하여 제조된 분자 구조 내에 사슬연장기를 포함하는 폴리카바졸을 의미한다. 즉, 하나의 카바졸기를 가지는 치환 또는 비치환 카바졸 단량체와 분자 구조 내에 2개 이상의 카바졸기가 알킬기 등의 연결기를 통하여 연결된 치환 또는 비치환 카바졸 단량체를 공단량체로 하여 제조된 모든 형태의 폴리카바졸을 의미하는 것으로 이때 사용되는 분자 구조 내에 2개 이상의 카바졸기를 가지는 ‘사슬연장형 카바졸계 공단량체’는 과량 함유시에는 가교제로서 역할을 할 수 도 있으나 카바졸의 반응성을 고려하여 적정양을 사용할 시 가교되지 않고 분자량의 증대 효과를 보일 수 있다. 이때 가교반응이 일어나지 않고 분자량의 증대 효과를 나타낼 수 있는 분자 구조 내에 2개 이상의 카바졸기를 가지는 ‘사슬연장형 공단량체’의 혼합 비율은 전체 단량체 몰수를 기준으로 0.1 내지 5 mol%가 바람직하다. 이러한 범위에서의 ‘사슬연장형 공단량체’의 함유는 카바졸의 반응성에 의하여 가교결합의 발생보다는 분자량의 증대 효과가 우월하게 일어난다.
본원 발명의 일 구현예에 따른 폴리카바졸계 음이온 교환소재는 하기의 반응식 1의 방법에 따라 제조될 수 있다.
<반응식 1>
Figure PCTKR2020016404-appb-img-000001
본원 발명의 일 구현예에 따른 제조방법에 있어서, 상기 할로겐 함유 카바졸계 단량체는 카바졸 화합물 및 할로겐 함유 탄화수소계 화합물을 혼합 및 반응시키는 단계, 반응 생성물을 냉각 및 침전시키는 단계, 및 상기 반응 생성물을 추출 및 정제하는 단계를 포함할 수 있다.
이때, 카바졸계 화합물은 할로겐 함유 카바졸계 단량체 및 분자 구조 내에 2개 이상의 카바졸기를 가지는 ‘사슬연장형 카바졸계 공단량체’의 혼합물일 수 있고, 이때 분자 구조 내에 2개 이상의 카바졸기를 가지는 ‘사슬연장형 공단량체’의 혼합 비율은 전체 단량체 몰수를 기준으로 0.1 내지 5 mol%가 바람직하다.
본원 발명의 일 구현예에 따르면, 상기 할로겐 함유 탄화수소계 화합물의 할로겐 원자는 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나일 수 있다.
본원 발명의 일 구현예에 따른 제조방법에 있어서, 상기 초산성 촉매는 트리플루오로메탄술폰산(trifluoromethanesulfonic acid: CF 3SO 3H) 또는 플루오로술폰산(fluorosulfonic acid: HSO 3F)이고,
상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자는 하기 화학식 1의 화학구조를 가질 수 있다.
<화학식 1>
Figure PCTKR2020016404-appb-img-000002
상기 화학식 1에서, R 1 ~ R 5로 표현되는 치환체는 각각 독립적으로 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이며 본 치환체는 각 반복 단위 내에 또는 반복 단위 별로 동일하거나 상이할 수 있고,
상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이고,
X 1 ~ X 5는 각각 독립적으로 수소원자이거나 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이되, X 1 X3 중 적어도 어느 하나는 할로겐 원자이며,
Z는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이고,
반복단위의 수인 l, m 및 n은 100,000이하의 정수로 중 l 과 m은 0 일 수 있고, 1< (l+m)/n <1,000의 조건을 만족한다.
본원 발명의 일 구현예에 따른 제조방법에 있어서, 상기 할로겐 함유 카바졸계 단량체는 상기 초산성 촉매를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 상기 할로겐 함유 폴리카바졸계 고분자로 제조될 수 있다. 상기 중합반응은 상기 초산성 촉매에 의한 C-C 결합 합성법에 의해 것으로, 주쇄에 -O-, -S- 등의 전자주게기가 포함되지 않고 모두 C-C 결합으로 이루어진 상기 화학식 1의 화학구조를 갖는 상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자가 제조될 수 있다.
본원 발명의 일 구현예에 따르면, 상기 할로겐 함유 사슬연장기를 포함하는폴리카바졸계 음이온 교환소재는 하기 화학식 2의 화학구조를 가질 수 있다.
<화학식 2>
Figure PCTKR2020016404-appb-img-000003
상기 화학식 2에서, R 1 ~ R 5로 표현되는 치환체는 각각 독립적으로 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이며 본 치환체는 각 반복 단위 내에 또는 반복 단위 별로 동일하거나 상이할 수 있고,
상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이고,
X 1 ~ X 5는 각각 독립적으로 수소원자이거나 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이되, X 1 X3 중 적어도 어느 하나는 할로겐 원자이며,
Z는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이고,
반복단위의 수인 l, m 및 n은 100,000이하의 정수로 중 l 과 m은 0 일 수 있고, 1< (l+m)/n <1,000 의 조건을 만족하며,
W 1 ~ W 5는 각각 독립적으로 수소원자이거나 음이온교환기이되, W 1 W 3 중 적어도 어느 하나는 음이온 교환기이고, 상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이다.
본원 발명의 일 구현예에 따르면, 상기 초산성 촉매는 상기 할로겐 함유 카바졸계 단량체의 총량 기준 0.1 내지 100 당량으로 사용될 수 있다. 바람직하게는 상기 할로겐 함유 카바졸계 단량체의 총량 기준 1 내지 20 당량으로 사용될 수 있다.
본원 발명의 일 구현예에 따르면, 상기 할로겐 함유 폴리카바졸계 고분자를 제조하는 단계는, 상기 할로겐 함유 카바졸계 단량체 및 상기 초산성 촉매가 용매에 혼합되어 교반되는 것을 포함할 수 있고, 이 때 상기 용매는 CCl 4, CHCl 3, CH 2Cl 2, C 2H 2Cl 4, 요오드, 브롬 또는 불소 등 할로겐 원소를 함유하는 유기용매가 사용될 수 있다.
본원 발명의 일 구현예에 따른 제조방법에 있어서, 상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자는 상기 4차화 반응에 의해 상기 음이온 전도성기를 가지는 음이온 교환소재로 제조될 수 있다. 상기 4차화 반응(quaternization)에 의해 상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자의 상기 할로겐 원소 위치에 상기 음이온 전도성기가 치환되어 하기 화학식 2의 화학구조를 갖는 폴리카바졸계 음이온 교환소재가 제조될 수 있다.
<화학식 2>
Figure PCTKR2020016404-appb-img-000004
상기 화학식 2에서, R 1 ~ R 5로 표현되는 치환체는 각각 독립적으로 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이며 본 치환체는 각 반복 단위 내에 또는 반복 단위 별로 동일하거나 상이할 수 있고,
상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이고,
X 1 ~ X 5는 각각 독립적으로 수소원자이거나 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이되, X 1 X3 중 적어도 어느 하나는 할로겐 원자이며,
Z는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이고,
반복단위의 수인 l, m 및 n은 100,000이하의 정수로 중 l 과 m은 0 일 수 있고, 1< (l+m)/n <1,000 의 조건을 만족하며,
W 1 ~ W 5는 각각 독립적으로 수소원자이거나 음이온교환기이되, W 1 W 3 중 적어도 어느 하나는 음이온 교환기이고, 상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이다.
또한, 본원 발명에서는 상기 제조방법에 따라 제조되는 폴리카바졸계 음이온 교환소재를 포함하는 것을 특징으로 하는 분리막을 제공한다.
이때 분리막은 해당 이온교환소재로 제조된 단일막, 강화막, 복합막 및 강화복합막으로 이루어지는 군에서 선택되는 중 어느 하나일 수 있고, 구체적으로 단일막은 본원 발명의 일 구현예에 따른 이온교환소재를 주 재료로 제조된 분리막을 의미하고, 강화막은 막의 물리적인 특성을 향상시키기 위해 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌, 폴리비닐리덴프루오라이드, 폴리스티렌, 폴리술폰, 폴리비닐알코올, 폴리벤즈이미다졸, 폴리이미드, 폴리아마이드이미드, 유리섬유, 셀룰로오스 혹은 이들의 혼합체를 기반으로 하는 다공성 막 또는 내부에 기공을 갖는 유기 혹은 무기 소재 기반의 다공성 막을 지지체로 하여 본원 발명의 일 구현예에 따른 이온교환소재를 함침한 형태일 수 있으며, 복합막은 본원 발명의 일 구현예에 따른 이온교환소재를 주 재료로 하여 연료 및 활성물질의 크로스오버(cross over)를 낮추거나 성능을 향상시킬 수 있는 유기계 혹은 무기계 혹은 유무기 하이브리드계 나노입자 및 첨가제를 포함하는 형태 일 수 있고, 강화복합막은 위에서 언급한 복합막과 강화막의 개념을 함께 적용한 형태로서 나노입자 및 첨가제를 포함하는 음이온교환소재의 복합막을 유기 혹은 무기 소재 기반의 다공성 지지체에 함침하여 제조한 형태 일 수 있다.
이때, 상기 분리막은 그 용도가 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용이고, 보다 바람직하게 상기 분리막은 수전해용 음이온교환막(Anion Exchange Membrane for Water Electorolysis: AEMWE)일 수 있다.
또한, 본원 발명에서는 상기 제조방법에 따라 제조되는 폴리카바졸계 음이온 교환소재를 포함하는 분리막을 수전해용 음이온교환막(Anion Exchange Membrane for Water Electorolysis: AEMWE)으로 포함하는 것을 특징으로 하는 수전해장치를 제공한다.
이하, 본원 발명의 바람직한 실시 예를 첨부한 도면과 같이 본원이 속하는 기술 분야에서 일반적인 지식을 가진 자가 쉽게 실시할 수 있도록 본원의 구현 예 및 실시 예를 상세히 설명한다. 특히 이것에 의해 본원 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한을 받지 않는다. 또한, 본원 발명의 내용은 여러 가지 다른 형태의 장비로 구현될 수 있으며, 여기에서 설명하는 구현 예 및 실시 예에 한정되지 않는다.
본원 발명의 일 구현예에 따른 카바졸계 음이온 교환소재는 하기의 반응식 1의 방법에 따라 제조하였다.
<반응식 1>
Figure PCTKR2020016404-appb-img-000005
<제조예 1> 할로겐 함유 카바졸계 단량체(M1)의 제조
본원 발명의 일 구현예에 따른 상기 반응식 1의 할로겐 함유 카바졸계 단량체(Monomer 1: M1)는 다음과 같이 제조하였다. 먼저, 아르곤 분위기로 치환된 플라스크에 카바졸(cabazole, 10.0g) 및 디브로모헥산(dibromohexane, 43.0g)을 200mL의 N,N'디메틸포름아미드(N,N*?**?*-dimethylformamide)에 용해시켜준다. 용해된 용액에 들어있는 플라스크를 아이스베스를 사용하여 0 ℃로 맞춰준 뒤, 수산화칼륨(3.4g)을 첨가하여 24 시간동안 반응시켜준다. 반응이 종료되면 아이스워터(iced water)를 이용하여 침전시킨 후, 메틸렌클로라이드(methylene chloride, MC)로 추출하여 반응 생성물을 얻는다. 얻어진 반응 생성물은 컬럼크로마토그래피(column chromatography)를 통해 정제시킨 후, 에탄올로 재결정시켜 상기 반응식 1의 할로겐 함유 카바졸계 단량체(M1)를 제조하였다.
도 1은 본원 발명의 일 구현예에 따른 할로겐 함유 카바졸계 단량체의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다. 도 1의 (a)는 본원 발명의 일 구현예에 따른 할로겐 함유 카바졸계 단량체의 구조식을 나타낸 것이고, 도 1의 (b) 및 (C)는 할로겐 함유 카바졸계 단량체의 1H-NMR 스펙트럼 및 COZY NMR 분석결과를 나타낸 것이다.
1H-NMR 스팩트럼 분석을 위해, 500MHz Bruker AVANCE 장비를 사용하였고, tetramethylsilane(TMS) 기준으로 하였으며, 용매로는 DMSO-d 6(δ= 2.50 ppm) 및 CDCl 3(δ= 7.28 ppm)을 사용하였다.
<제조예 2> 사슬연장형 카바졸계 공단량체(M2)의 제조
본원 발명의 일 구현예에 따른 상기 반응식 1의 사슬연장형 카바졸계 단량체(Monomer2: M2)는 다음과 같이 제조하였다.
아르곤 분위기로 치환된 플라스크에 카바졸(cabazole, 47.3g) 및 수산화칼륨(potassium hydroxide, 15.9g)을 355mL의 N,N'디메틸포름아미드(N,N'-dimethylformamide)에 용해시켜준다. 용해된 용액에 들어있는 플라스크를 아이스베스를 사용하여 0 ℃로 맞춰준 뒤, 디브로모헥산(dibromohexane, 34.5g)을 첨가하여 30분동안 교반한 후, 상온으로 온도를 올려 48시간 동안 반응을 진행시킨다. 반응이 종료되면 수산화칼륨을 제거하기 위해 여과를 진행한 뒤, 메틸렌클로라이드(methylene chloride, MC)와 증류수를 2대 1 비율로 만든 용액에 반응물을 넣은 뒤 1시간 동안 교반을 진행해준다. 교반을 끝낸 후 상분리 된 층을 분리깔대기(seperatory funnel)을 이용하여 메틸렌클로라이드 층만 분리시켜준다. 분리된 메틸렌클로라이드 층을 과포화된 염화나트륨(sodium chloride) 용액을 사용하여 세척 해준다. 세척된 반응물에 존재하는 여분의 수분을 제거하기 위하여 황산마그네슘(magnesium sulfate)를 사용하여 제거해준다. 여과를 통하여 황산마그네슘을 제거해준 후, 회전증발농축기(rotary evaporator)를 사용하여 용매를 제거해준다. 용매를 제거하고 남은 생성물을은 메탄올을 사용하여 재결정시켜 상기 반응식 1의 카바졸계 단량체(Monomer 2: M2)를 제조하였다.
도 2는 본원 발명의 일 구현예에 따른 카바졸계 단량체(M2)의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다.
<제조예 3> 할로겐 함유 폴리카바졸계 고분자(QPC-CLn-Br)의 제조
본원 발명의 일 구현예에 따른 할로겐 함유 폴리카바졸계 고분자(QPC-CLn-Br)는 다음의 방법으로 제조하였다.
완전히 건조시킨 플라스크를 준비하여 상기 반응식 1의 M1 (10g), M2(M1의 n mol%), 트리플루오로아세톤(trifluoroacetone) (4.4g), 트리플루오로메탄술폰산(trifluoromethanesulfonic acid) (43.2g)을 메틸렌클로라이드(methylene chloride) (24ml)에 녹인 후 0°C에서 Ar 분위기하에서 약 2h동안 교반하고 상온으로 온도를 올려준 후 24h 동안 반응을 진행하여 반응 종료 후, 혼합물을 메탄올로 세척하여 얻어진 고분자를 80 ℃ 진공에서 건조한 후 QPC-CLn-Br 고분자를 얻었다. 합성된 고분자를 1H-NMR 분광법에 의하여 분석, 방향족 수소와 지방족 수소의 개수 비교로 고분자 합성을 확인하였다.
<제조예 4> 폴리카바졸계 음이온 교환소재(QPC-CLn-TMA)의 제조
본원 발명에 따른 할로겐 함유 폴리카바졸계 고분자의 4차화 반응(quaternization)을 통하여 음이온 교환기를 부여한 폴리카바졸계 음이온교환소재는 다음의 방법으로 제조하였다.
상기 제조예 3에 따라 제조된 할로겐 함유 할로겐 함유 폴리카바졸계 고분자(QPC-CLn-Br)가 디메틸포름아미드(DMF)에 10wt%로 용해된 용액에 45wt%의 트리메틸아민(trimethylamine) 용액을 천천히 방울방울 첨가하여 24시간동안 반응시킨 후, 3차 증류수에 침전시켜 본 발명의 일 구현예에 따른 음이온 전도성기를 가지는 폴리카바졸계 음이온 교환소재(QPC-CLn-TMA)를 제조하였다.
도 3은 본원 발명의 일 구현예에 따른 카바졸계 음이온 교환소재의 1H-NMR 스팩트럼 분석 결과를 나타낸 것이다.
<비교예> 폴리카바졸계 음이온 교환소재(QPC-TMA)의 제조
앞서 기재한 제조방법에 따라 제조한 폴리카바졸계 음이온 교환소재와의 비교를 위하여 제조예 2의 단량체(M2)를 사용하지 않는 점만 다른 제조예 3 및 제조예 4와 동일한 방법을 사용하여 하기 화학식 3의 폴리카바졸계 음이온 교환소재(QPC-TMA)를 제조하였다.
<화학식 3>
Figure PCTKR2020016404-appb-img-000006
<분석예> 폴리카바졸계 음이온교환소재의 특성평가
먼저, 1H NMR 스팩트럼은 500MHz Bruker AVANCE 장비를 사용하였고, tetramethylsilane (TMS) 기준으로 하였으며, 용매로는 DMSO-d 6 (δ = 2.50 ppm) 와 CDCl 3 (δ = 7.28 ppm) 를 사용하였다.
도 4 는 본원 발명의 일 구현예에 따라 제조된 폴리카바졸계 음이온교환소재의 NMP 용매에 대한 용해도 분석을 진행한 결과이다.
제조된 고분자의 분자량은 GPC를 사용하여 측정하였으며, GPC는 HR 3, 4 컬럼을 사용하고 detector로 Waters사의 2414 model을 이용하여, 0.05 M LiBr 가 녹아져 있는 DMAc 용액에 제조된 고분자를 녹여 주사하였으며, 분석은 25 ℃, flow rate는 1.0 mL/min으로 실험을 수행하여 그 결과를 표 1에 정리하였다.
수평균 분자량(g/mol) 중량평균 분자량(g/mol) PDI
실시예(QPC-CL3-Br) 55,966 238,017 4.25
비교예(QPC-Br) 44,786 67,624 1.51
본원 발명의 제조에서 사용된 사슬연장기는 3개 이상의 반응점을 갖고 있어 가교제로 사용이 될 수 있어서 이의 반응성을 고려한 적절한 비율의 사용이 매우 중요하다. 표 1에서 확인할 수 있다시피 개발한 QPC-CL3-Br은 비교예와 비교하여 동일한 반응 공정을 갖지만 소량의 사슬연장기의 첨부만으로도 3배 이상 향상된 매우 큰 분자량을 갖는 것을 알 수 있다. 이는 본 소재의 물성 및 내구성의 향상에 큰 영향을 줄 수 있다.
표 1을 통하여 비교예에 비하여 실시예의 고분자는 보다 높은 분자량의 고분자로 제조되었음을 알 수 있다.
도 4는 본원 발명의 일 구현예에 따라 제조된 폴리카바졸계 음이온교환소재의 NMP 용매에 대한 용해도 분석을 진행한 결과이다.
도 5는 본원 발명의 일 구현예에 따라 제조된 폴리카바졸계 음이온교환소재의 DMF 용매에 대한 용해도 분석을 진행한 결과이다.
도 4와 도 5에서 볼 수 있듯이 분자 구조 내에 2개 이상의 카바졸기가 알킬기 등의 연결기를 통하여 연결된 단량체인 ‘사슬연장형 카바졸계 공단량체’는 가교제로서 역할을 할 수 있으므로 과량 사용시 가교됨을 알 수 있다. 그러나 카바졸의 반응성을 고려하여 적정양을 사용할 시 가교되지 않고 분자량의 증대 효과를 보일 수 있다. 이때 가교반응이 일어나지 않고 분자량의 증대 효과를 나타낼 수 있는 분자 구조 내에 2개 이상의 카바졸기를 가지는 ‘사슬연장형 공단량체’의 혼합 비율은 전체 단량체 몰수를 기준으로 0.1 내지 5 mol%가 바람직하다. 이러한 범위에서의 ‘사슬연장형 공단량체’의 함유는 카바졸의 반응성에 의하여 가교결합의 발생보다는 분자량의 증대 효과가 우월하게 일어나고, 이를 통해서 효과적으로 분자량이 극대화되고 용액 공정이 가능한 고분자 주쇄를 만들 수 있음을 알 수 있다.
본원 발명의 일 구현예에 따라 제조된 음이온교환막의 물리적 강도를 비교하기 위해 실시예 및 비교예의 막을 Universal Testing Machine (UTM)을 이용하여 인장강도를 측정 비교하였고, UTM은 Lloyd Instrument LR5K를 사용하였으며, 젖은 상태와 건조 상태의 막을 측정하였으며, 이 때 cross head의 속도는 10 mm/min의 조건에서 수행하였다.
도 6은 본원 발명의 일 구현예에 따라 제조된 폴리카바졸계 음이온교환소재의 건조 상태에서의 기계적 물성을 분석한 결과이다.
도 7은 본원 발명의 일 구현예에 따라 제조된 폴리카바졸계 음이온교환소재의 습윤 상태에서의 기계적 물성을 분석한 결과이다.
하기 표 2에는 도 6 및 도 7에서 측정한 결과를 정리하였다.
인장강도(MPa) 연신율(%) 탄성율(MPa)
건조 습윤 건조 습율 건조 습윤
실시예
(QPC-CL3-TMA)
30.0 12.2 8.0 5.0 840 406
비교예
(QPC-TMA)
25.0 9.4 12.5 4.4 612 325
도 6, 도 7 및 이의 결과를 정리한 표 2에서 보는 바와 같이 이는 사슬연장형 가교제를 도입하여 분자량을 극대화한 소재와 그렇지 않은 저분자량 소재의 물리적 특성을 비교하교 있다. 분자량은 소재의 물리적 특성을 결정하는 매우 중요한 요인으로서 분자량의 향상 시 건조 및 습윤시에 인장강도가 각각 20% 와 30% 향상된 것을 알 수 있다. 특히 수전해의 경우 젖은 상태에서 구동된다는 것을 고려할 때 습윤상태에서 기존에 비해 30% 향상된 물성은 전체 시스템의 내구성에도 큰 영향을 미칠 수 있다.
화학적 내구성의 비교를 위해 1M KOH 수용액에 80℃의 조건하에서 1,000시간 동안 soaking test를 수행하였고, 수행 중 100시간 마다 시료의 이온전도도(OH -)를 측정하였으며, 이의 측정은 4단자 이온전도도셀을 이용하여 가습챔버 (SH-241, ESPEC) 안에서 임피던스 측정기 (Solartron 1280)을 이용하여 측정하였다.
도 8은 본원 발명의 일 구현예에 따라 제조된 사슬연장기를 포함하는 폴리카바졸계 음이온교환소재의 화학적 안정성을 측정한 결과이다.
수전해의 경우 매우 가혹한 조건에서 구동되기 때문에 이의 화학적 안정성이 매우 중요하다. 이에 개발된 소재의 화학적 내구성을 가속평가하기 위해 80℃의 1M KOH용액에 개발한 QPC-CL3-TMA와 현재 음이온교환막 수전해용으로 판매되고 있는 독일 퓨마텍사의 FAA-3를 각각 넣고 100시간마다 이의 이온전도도를 측정함으로서 화학적 내구성을 비교하였다. 도 8에서와 같이 상용막인 FAA-3의 경우 초기부터 급격한 성능의 감소를 보였고, 300시간 후에는 초기에 비해 90%나 감소된 이온전도도를 보였다. 반면 개발 소재의 경우 매우 우수한 화학적 내구성을 보였다. 특히, 사슬연장형 가교제를 도입함으로서 분자량을 극대화한 QPC-CL3-TMA의 경우 저분자량의 소재에 비해서도 매우 우수한 화학적 내구성을 보이는 것을 확인 할 수 있었다.

Claims (11)

  1. 할로겐 함유 카바졸계 단량체 및 분자 구조 내에 2개 이상의 카바졸기를 가지는 사슬연장형 카바졸계 공단량체의 혼합물을 준비하는 단계;
    상기 혼합물을 초산성 촉매(superacid catalyst)를 이용한 중합반응을 이용하여 주쇄를 구성하는 단량체간 결합이 모두 C-C 결합으로 이루어진 하기 화학식 1의 화학구조를 가지는 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자를 제조하는 단계; 및
    상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자의 4차화 반응(quaternization)을 통하여 음이온 교환기를 부여하는 단계를 포함하는 것을 특징으로 하는 폴리카바졸계 음이온 교환소재의 제조방법:
    <화학식 1>
    Figure PCTKR2020016404-appb-img-000007
    상기 화학식 1에서, R 1 ~ R 5로 표현되는 치환체는 각각 독립적으로 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이며 본 치환체는 각 반복 단위 내에 또는 반복 단위 별로 동일하거나 상이할 수 있고,
    상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이고,
    X 1 ~ X 5는 각각 독립적으로 수소원자이거나 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이되, X 1 X3 중 적어도 어느 하나는 할로겐 원자이며,
    Z는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이고,
    반복단위의 수인 l, m 및 n은 100,000이하의 정수로 중 l 과 m은 0 일 수 있고, 1< (l+m)/n <1,000의 조건을 만족한다.
  2. 청구항 1에 있어서,
    상기 초산성 촉매는 트리플루오로메탄술폰산(trifluoromethanesulfonic acid: TFSA, CF3SO3H) 또는 플루오로술폰산(fluorosulfonic acid: HSO3F) 중 어느 하나인 것을 특징으로 하는 폴리카바졸계 음이온 교환소재의 제조방법.
  3. 청구항 1에 있어서,
    상기 음이온 교환소재는 하기 화학식 2의 화학구조를 가지는 것을 특징으로 하는 폴리카바졸계 음이온 교환소재의 제조방법:
    <화학식 2>
    Figure PCTKR2020016404-appb-img-000008
    상기 화학식 2에서, R 1 ~ R 5로 표현되는 치환체는 각각 독립적으로 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이며 본 치환체는 각 반복 단위 내에 또는 반복 단위 별로 동일하거나 상이할 수 있고,
    상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이고,
    X 1 ~ X 5는 각각 독립적으로 수소원자이거나 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이되, X 1 X3 중 적어도 어느 하나는 할로겐 원자이며,
    Z는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이고,
    반복단위의 수인 l, m 및 n은 100,000이하의 정수로 중 l 과 m은 0 일 수 있고, 1< (l+m)/n <1,000의 조건을 만족하며,
    W 1 ~ W 5는 각각 독립적으로 수소원자이거나 음이온교환기이되, W 1 W 3 중 적어도 어느 하나는 음이온 교환기이고, 상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이다.
  4. 청구항 1에 있어서,
    상기 초산성 촉매는 할로겐 함유 카바졸계 단량체의 총량 기준 0.1 내지 100 당량 사용하는 것을 특징으로 하는 폴리카바졸계 음이온 교환소재의 제조방법.
  5. 청구항 1에 있어서,
    상기 할로겐 함유 사슬연장기를 포함하는 폴리카바졸계 고분자를 제조하는 단계는 CCl 4, CHCl 3, CH 2Cl 2, C 2H 2Cl 4, 또는 할로겐 원소를 함유하는 유기용매를 사용하는 것을 특징으로 하는 폴리카바졸계 음이온 교환소재의 제조방법.
  6. 하기 화학식 2의 화학구조를 가지는 것을 특징으로 하는 사슬연장기를 포함하는 폴리카바졸계 음이온 교환소재:
    <화학식 2>
    Figure PCTKR2020016404-appb-img-000009
    상기 화학식 2에서, R 1 ~ R 5로 표현되는 치환체는 각각 독립적으로 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이며 본 치환체는 각 반복 단위 내에 또는 반복 단위 별로 동일하거나 상이할 수 있고,
    상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이고,
    X 1 ~ X 5는 각각 독립적으로 수소원자이거나 할로겐 원자 염소(Cl), 브롬(Br), 요오드(I) 중 어느 하나이되, X 1 X3 중 적어도 어느 하나는 할로겐 원자이며,
    Z는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기, 선택적으로 그 쇄에 하나 이상의 산소, 질소, 또는 황 원자를 포함하는 퍼플루오로알킬기, 퍼플루오로아릴기, -O- 퍼플루오로아릴기, 적어도 하나 이상의 음이온 교환기를 포함하는 알킬기, 아릴기, 알릴기, 플루오린 원자를 포함하는 알킬기, 아릴기, 알릴기, 시아노기, 퍼플루오로알킬기 및 -O- 퍼플루오로아릴기이고,
    반복단위의 수인 l, m 및 n은 100,000이하의 정수로 중 l 과 m은 0 일 수 있고, 1< (l+m)/n <1,000의 조건을 만족하며,
    W 1 ~ W 5는 각각 독립적으로 수소원자이거나 음이온교환기이되, W 1 W 3 중 적어도 어느 하나는 음이온 교환기이고, 상기 음이온 교환기는 각각 독립적으로 아민기, 암모늄기, 아미노기, 이민기, 술포늄기, 포스포늄기, 피리딜기, 카바졸릴기, 이미다졸릴기, 구아니디늄기, 루테늄기, 코발토세늄기, 피페리디늄기에서 선택되는 어느 하나 이상의 음이온 교환 작용기 또는 이들의 염 상태의 음이온 교환 작용기이다.
  7. 청구항 6에 따른 사슬연장기를 포함하는 폴리카바졸계 음이온 교환소재를 포함하는 분리막.
  8. 청구항 7에 있어서,
    상기 분리막은 단일막, 강화막, 복합막 및 강화복합막으로 이루어지는 군에서 선택되는 중 어느 하나인 것을 특징으로 하는 분리막.
  9. 청구항 7에 있어서,
    상기 분리막은 그 용도가 수전해, 레독스 흐름전지, 연료전지, 이산화탄소 환원, 전기화학적 암모니아 생산 및 분해, 전기투석(electrodialysis: ED), 역전기투석(reverse electrodialysis: RED) 또는 축전식탈염(capacitive deionization: CDI)용 막인 것을 특징으로 하는 분리막.
  10. 청구항 7에 있어서,
    상기 분리막은 수전해용 음이온교환막(Anion Exchange Membrane for Water Electorolysis: AEMWE)인 것을 특징으로 하는 분리막.
  11. 청구항 7에 따른 분리막를 수전해용 음이온교환막(Anion Exchange Membrane for Water Electorolysis: AEMWE)으로 포함하는 것을 특징으로 하는 수전해장치.
PCT/KR2020/016404 2020-02-28 2020-11-19 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도 WO2021172706A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/800,285 US20230105570A1 (en) 2020-02-28 2020-11-19 Carbazole-based anion exchange material, preparation method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0025271 2020-02-28
KR1020200025271A KR102284854B1 (ko) 2020-02-28 2020-02-28 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도

Publications (1)

Publication Number Publication Date
WO2021172706A1 true WO2021172706A1 (ko) 2021-09-02

Family

ID=77148301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016404 WO2021172706A1 (ko) 2020-02-28 2020-11-19 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도

Country Status (3)

Country Link
US (1) US20230105570A1 (ko)
KR (1) KR102284854B1 (ko)
WO (1) WO2021172706A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023219897A1 (en) * 2022-05-10 2023-11-16 Uop Llc Anion exchange polymers and membranes for electrolysis
US11980879B2 (en) 2021-09-14 2024-05-14 Uop Llc Anion exchange polymers and membranes for electrolysis

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851683B (zh) * 2021-08-27 2023-10-20 重庆大学 一种咔唑类聚芳烃哌啶阴离子交换膜的制备方法
KR20230086523A (ko) 2021-12-08 2023-06-15 한국화학연구원 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법
KR102505138B1 (ko) * 2022-08-17 2023-03-02 주식회사 에스디비 탄소 또는 질소를 포함하는 접합 고리형 방향족계 고분자-sebs 가교결합막을 포함하는 음이온 교환막 및 이의 제조방법
KR20240048350A (ko) 2022-10-06 2024-04-15 서울대학교산학협력단 태양광 물분해용 광전극 및 그 제조방법
KR20240065667A (ko) 2022-11-07 2024-05-14 서울대학교산학협력단 태양광 물분해용 광전극 및 그 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170051743A (ko) * 2015-10-30 2017-05-12 한국화학연구원 폴리페닐렌계 친수성 주쇄 구조를 갖는 음이온 전도성 블록공중합체를 포함하는 음이온 이온전도체, 이의 제조방법 및 이의 용도
CN107955138A (zh) * 2017-11-29 2018-04-24 黄河科技学院 一种基于Bodipy-咔唑结构的水溶性荧光聚合物、其合成方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230626B2 (en) 2016-08-04 2022-01-25 Simon Fraser University Crosslinking of hydroxide stable, polybenzimidazoliums and polyimidazoliums membranes and ionomers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170051743A (ko) * 2015-10-30 2017-05-12 한국화학연구원 폴리페닐렌계 친수성 주쇄 구조를 갖는 음이온 전도성 블록공중합체를 포함하는 음이온 이온전도체, 이의 제조방법 및 이의 용도
CN107955138A (zh) * 2017-11-29 2018-04-24 黄河科技学院 一种基于Bodipy-咔唑结构的水溶性荧光聚合物、其合成方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAI AO NAN, ZHOU KE, ZHUO YI ZHI, ZHANG QIU GEN, ZHU AI MEI, YE MEI LING, LIU QING LIN: "Anion exchange membranes based on carbazole-containing polyolefin for direct methanol fuel cells", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 497, 1 January 2016 (2016-01-01), NL, pages 99 - 107, XP055840387, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2015.08.069 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11980879B2 (en) 2021-09-14 2024-05-14 Uop Llc Anion exchange polymers and membranes for electrolysis
WO2023219897A1 (en) * 2022-05-10 2023-11-16 Uop Llc Anion exchange polymers and membranes for electrolysis

Also Published As

Publication number Publication date
KR102284854B1 (ko) 2021-07-30
US20230105570A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2021172706A1 (ko) 카바졸계 음이온 교환 소재, 그의 제조방법 및 용도
US8906526B2 (en) Electrolyte composition, solid electrolyte membrane, solid polymer fuel cell and manufacturing method for solid electrolyte membrane
US7816482B1 (en) Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
JP2003503510A (ja) 電気化学的用途での使用に好適な新規なイオン伝導性材料およびそれに関連する方法
WO2018048134A1 (ko) 연료전지용 막-전극 계면 접착층, 이를 이용한 막-전극 접합체 및 연료전지
US20230038279A1 (en) Novel polyfluorene-based ionomer, anion exchange membrane, method for preparing the polyfluorene-based ionomer and method for fabricating the anion exchange membrane
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
KR20220088308A (ko) 신규 폴리플루오렌계 가교 공중합체 및 그 제조방법, 이를 이용한 알칼리 연료전지용 음이온교환막
WO2012134095A2 (ko) 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지
WO2018199545A1 (ko) 폴리페닐렌계 음이온 전도체, 이의 제조방법 및 용도
WO2024014848A1 (ko) 신규한 고내구성 가교 폴리(아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 그 제조방법
WO2023106657A1 (ko) 폴리카바졸계 양이온교환형 이온전도체 및 이의 제조방법
KR102602007B1 (ko) 연료전지 전해질용 폴리(이사틴-페닐렌)계 고분자, 이를 포함하는 연료전지용 고분자 전해질 및 연료전지
WO2017159889A1 (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
WO2023234725A1 (ko) 신규한 가지부 함유 폴리(아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 그 제조방법
WO2010076911A1 (ko) 퍼플루오로싸이클로부탄기를 포함하는 후술폰화된 공중합체, 이의 제조방법 및 이의 용도
WO2023140628A1 (ko) 신규 폴리(스피로비스인덴-아릴 피페리디늄) 공중합체 이오노머, 음이온교환막 및 이의 제조방법
CN117757120A (zh) 一种含超长柔性烷基侧链结构的阴离子交换膜材料及其制备方法和应用
KR100956652B1 (ko) 가교 고분자 전해질막, 가교 고분자 전해질막의 제조방법및 그 전해질막을 포함하는 연료전지
WO2022131665A1 (ko) 신규 폴리플루오렌계 가교 공중합체 및 그 제조방법, 이를 이용한 알칼리 연료전지용 음이온교환막
EP2212372B1 (en) Ionically conductive polymer for use in electrochemical devices
CN116615488A (zh) 新型基于聚芴的交联共聚物及制备其的方法和使用其的碱性燃料电池用阴离子交换膜
WO2023128326A1 (ko) 연료전지 분리막 제조용 과불화술폰산 이오노머 코팅 조성물 및 이의 제조방법
KR102608992B1 (ko) 측쇄형 관능기를 갖는 강직한 주쇄형 음이온 전도성 고분자 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922033

Country of ref document: EP

Kind code of ref document: A1