WO2024019307A1 - 음이온 교환막 및 이의 제조방법 - Google Patents

음이온 교환막 및 이의 제조방법 Download PDF

Info

Publication number
WO2024019307A1
WO2024019307A1 PCT/KR2023/007175 KR2023007175W WO2024019307A1 WO 2024019307 A1 WO2024019307 A1 WO 2024019307A1 KR 2023007175 W KR2023007175 W KR 2023007175W WO 2024019307 A1 WO2024019307 A1 WO 2024019307A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion exchange
exchange membrane
porous polymer
membrane
polymer support
Prior art date
Application number
PCT/KR2023/007175
Other languages
English (en)
French (fr)
Inventor
추정주
차봉준
김지환
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Publication of WO2024019307A1 publication Critical patent/WO2024019307A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/428Membrane capacitive deionization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/445Ion-selective electrodialysis with bipolar membranes; Water splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes

Definitions

  • An ion exchange membrane refers to a synthetic resin membrane that selects cations and anions and allows only one side of the ions to pass through.
  • an anion exchange membrane is a synthetic resin membrane that has a positively charged functional group and selectively transmits anions.
  • This anion exchange membrane can be applied to water treatment systems such as electrodialysis, bipolar membrane electrodialysis, capacitive desalination, and electric deionization, or to systems such as fuel cells, water electrolysis, reverse electrodialysis, and redox flow batteries.
  • Systems using an anion exchange membrane can apply acid or alkaline raw water to the process, and acid or alkali may be generated during process operation of the raw water.
  • a perfluorine-based anion exchange membrane can be used as an anion exchange membrane, but due to its high price, a hydrocarbon-based anion exchange membrane is used in actual systems.
  • hydrocarbon-based anion exchange membranes have limitations in application processes and conditions due to chemical resistance issues.
  • anion exchange membranes have a certain amount of support fraction within the membrane, so there is a limit to increasing the ion exchange capacity to improve membrane properties.
  • One aspect is to provide an anion exchange membrane with low sheet resistance, high ion exchange capacity, and excellent chemical resistance in the presence of high concentrations of acid and alkali.
  • Another aspect is to provide a method for manufacturing the anion exchange membrane.
  • a porous polymer support consisting of a membrane structure
  • the anion exchange polymer is located on the surface and inside the pores of the porous polymer support,
  • the anion exchange group of the anion exchange polymer is uniformly distributed on the surface and inside the pores of the porous polymer support,
  • anion exchange membrane wherein the anion exchange polymer is a cross-linked product of a composition containing a cross-linkable monomer represented by the following formula (1):
  • X - is F - , Cl - , Br - , or I - .
  • the membrane structure may have a structure in which pores are regularly arranged or a three-dimensional network structure.
  • the porosity of the membrane structure may be 30% to 80%.
  • the membrane structure includes polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, polybenzimidazole, polyarylene sulfide, polyetheretherketone, polyethersulfone, polysulfone, polystyrene, polyaryleneethersulfone, and polyether. It may contain one or more types of polymers selected from ketones.
  • the thickness of the porous polymer support may be 10 ⁇ m to 110 ⁇ m.
  • the average thickness of the anion exchange membrane may be 10 ⁇ m to 200 ⁇ m.
  • the ion exchange capacity of the anion exchange membrane may be 1.5 meq/g or more.
  • the sheet resistance of the anion exchange membrane may be 10 ⁇ cm2 or less.
  • the anion exchange membrane can be used in electrodialysis, bipolar membrane electrodialysis, electrodeionization, capacitive deionization, and water electrolysis.
  • composition for forming an anion exchange polymer comprising a crosslinkable monomer represented by the following formula (1), a photoinitiator, and a solvent;
  • a method for producing an anion exchange membrane comprising: peeling the polyester-based film from a porous polymer support on which the anion exchange polymer is formed on the surface and inside the pores to produce an anion exchange membrane:
  • X - is F - , Cl - , Br - , or I - .
  • the content of the crosslinkable monomer represented by Formula 1 may be 30% by weight to 70% by weight based on 100% by weight of the total composition for forming the anion exchange polymer.
  • the step of preparing a porous polymer support having a hydrophilic surface by immersing the porous polymer support in a surfactant solution and drying may be further included.
  • the light irradiation may be performed using UVC as ultraviolet rays at a light quantity of 2000 mJ/cm2 to 10,000 mJ/cm2.
  • An anion exchange membrane is located on the surface and inside the pores of a porous polymer support made of a membrane structure using an anion exchange polymer, which is a cross-linking product of a composition containing a cross-linkable monomer represented by the above-described formula (1), and is comprised of an anion exchange polymer of the anion exchange polymer.
  • the anion exchanger is a membrane uniformly distributed on the surface and inside the pores of the porous polymer support.
  • the anion exchange membrane can have high ion exchange capacity and low sheet resistance by increasing the content of anion exchange polymer in the anion exchange membrane.
  • the anion exchange membrane has excellent chemical resistance and can be used under high concentration acid and alkali conditions.
  • Figure 1 is a conceptual diagram of a general anion exchange membrane.
  • Figure 2 is a schematic diagram of an anion exchange membrane according to one embodiment.
  • Figure 3 is a scanning electron microscope (SEM) photograph of the structure of the porous polymer support used in the anion exchange membrane prepared in Example 1.
  • Figure 4 is a schematic flowchart of a method for manufacturing an anion exchange membrane according to one embodiment.
  • the term “or” means “and/or.”
  • the expression “at least one type” or “one or more” in front of components does not mean that the entire list of components can be supplemented and that individual components of the above description can be supplemented.
  • the component When referred to herein as a component being disposed “on” or “on” another component, the component may be disposed directly on the other component or may have components intervening between the components. It could exist.
  • an element is referred to as being disposed “directly on” or “directly on” another element, intervening elements may not be present.
  • ⁇ -based resin means “ ⁇ resin”, “ ⁇ polymer”, “ ⁇ -based polymer”, and “ ⁇ copolymer”. It is a broad concept that includes both “polymer”, or/and “ ⁇ resin, polymer, polymer, or derivative of a copolymer.’ As used herein, the term “polymer or copolymer crosslinked with these resins” means “polymer or copolymer crosslinked with the foregoing resins.”
  • Figure 1 is a conceptual diagram of a general anion exchange membrane.
  • the anion exchange membrane 10 has an anion exchange polymer main chain 2 having a cationic functional group 1 disposed on a support 5.
  • the anion exchange membrane 10 selectively transmits the counteranion 3 when the counteranion 3 and the cation 4 pass through from left to right.
  • the anion exchange membrane 10 requires high transmission selectivity, low electrical resistance, excellent mechanical strength, and high chemical stability.
  • Materials for the anion exchange membrane 10 include a perfluorine-based anion exchange membrane and a hydrocarbon-based anion exchange membrane.
  • the hydrocarbon-based anion exchange membrane has excellent price competitiveness, but has weak chemical resistance and has limitations in application processes and conditions.
  • hydrocarbon-based anion exchange membranes have a certain amount of support fraction, so there is a limit to the increase in ion exchange capacity to improve membrane performance.
  • An anion exchange membrane includes a porous polymer support made of a membrane structure; and an anion exchange polymer; wherein the anion exchange polymer is located on the surface of the porous polymer support and the inside of the pores, and the anion exchange group of the anion exchange polymer is uniformly distributed on the surface of the porous polymer support and the inside of the pores.
  • the anion exchange polymer may be a cross-linked product of a composition containing a cross-linkable monomer represented by the following formula (1):
  • X - is F - , Cl - , Br - , or I - .
  • An anion exchange membrane may have a high ion exchange capacity and low sheet resistance by increasing the content of anion exchange polymer in the anion exchange membrane.
  • the anion exchange membrane has excellent chemical resistance and can be used under high concentration acid and alkali conditions.
  • Figure 2 is a schematic diagram of an anion exchange membrane according to one embodiment.
  • an anion exchange polymer 31 having a cationic functional group is located on the surface of the porous polymer support 20 and inside the pores 21.
  • the anion exchange polymer 31 having a cationic functional group is uniformly distributed on the surface of the porous polymer support 20 and inside the pores 21, so that a homogeneous anion exchange membrane 40 can be obtained.
  • This anion exchange membrane 40 structure can have low sheet resistance and high ionic conductivity. Additionally, the porous polymer support 20 can improve mechanical durability and have high dimensional stability.
  • the anion exchange polymer may be a cross-linked product of a composition containing a cross-linkable monomer represented by Formula 1 above.
  • the crosslinkable monomer represented by Formula 1 is a monomer in which two vinylbenzyl chlorides are crosslinked to a bi-functional cyclic diamine containing pendant chains to which a quaternary ammonium cation group is attached. .
  • the crosslinkable monomer represented by Formula 1 forms a rigid cage structure, so that ion exchange capacity can be improved while maintaining chemical stability even under high concentration acid or alkaline conditions. Therefore, an anion exchange membrane containing such an anion exchange polymer can have excellent concentration and desalination performance.
  • Crosslinking product means that it includes all initial reaction products, intermediate reaction products, and final reaction products in addition to the cured product of the composition containing the crosslinkable monomer represented by Formula 1 above.
  • the membrane structure may have a structure in which pores are regularly arranged or a three-dimensional network structure.
  • the structure of this membrane structure can be confirmed by FIG. 3, which will be described later.
  • the membrane structure is made by mixing a high molecular material and a low molecular weight wax and extruding it into a film at high temperature, then extracting the wax using a solvent to form a microporous structure, or uniaxially or biaxially stretching without using wax.
  • a pore structure can be formed through a heat treatment process.
  • the membrane structure is not limited thereto, and the membrane structure can be formed by any manufacturing method available in the art.
  • the porosity of the membrane structure may be 30% to 80%.
  • the porosity of the membrane structure may be 35% to 70%, 40% to 65%, 45% to 60%, or 45% to 55%. If the pore size or/and porosity of the membrane structure is less than 30%, it is difficult to improve the physical durability and mechanical strength of the anion exchange membrane desired as a porous polymer support. If the pore size or/and porosity of the membrane structure exceeds 80%, the proportion of the porous polymer support in the anion exchange membrane may be excessive, resulting in increased sheet resistance and decreased ion exchange capacity.
  • the membrane structure includes polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, polybenzimidazole, polyarylene sulfide, polyetheretherketone, polyethersulfone, polysulfone, polystyrene, polyaryleneethersulfone, and polyether. It may contain one or more types of polymers selected from ketones.
  • the membrane structure may be polyethylene or polypropylene.
  • the membrane structure may be polypropylene.
  • the thickness of the porous polymer support may be 10 ⁇ m to 110 ⁇ m.
  • the thickness of the porous polymer support may be 20 ⁇ m to 110 ⁇ m, 40 ⁇ m to 110 ⁇ m, or 60 ⁇ m to 110 ⁇ m.
  • sheet resistance can be reduced and ion exchange capacity can be increased.
  • the average thickness of the anion exchange membrane may be 10 ⁇ m to 200 ⁇ m.
  • the average thickness of the anion exchange membrane may be 12 ⁇ m to 150 ⁇ m. If the average thickness of the anion exchange membrane is less than 10 ⁇ m, the physical durability and handleability of the anion exchange membrane are reduced, so there is a risk of membrane damage when installing the module or during operation after applying the system, and system operation performance may be reduced due to the penetration of unnecessary ions. You can. If the average thickness of the anion exchange membrane exceeds 200 ⁇ m, the sheet resistance increases, which increases the power consumption required for operation when applied to a system, etc., and system operation performance may deteriorate.
  • the ion exchange capacity of the anion exchange membrane may be 1.5 meq/g or more.
  • the ion exchange capacity of the anion exchange membrane is 1.6 meq/g or more, 1.7 meq/g or more, 1.8 meq/g or more, 1.9 meq/g or more, 2.0 meq/g or more, 2.1 meq/g or more, 2.2 meq/ g or more, 2.3 meq/g or more, or 2.4 meq/g or more.
  • the sheet resistance of the anion exchange membrane may be 10 ⁇ cm2 or less.
  • the sheet resistance of the anion exchange membrane is 9.9 ⁇ cm2 or less, 9.8 ⁇ cm2 or less, 9.7 ⁇ cm2 or less, 9.6 ⁇ cm2 or less, 9.0 ⁇ cm2 or less, 8.5 ⁇ cm2 or less, 8.0 ⁇ cm2 or less, 7.8 ⁇ cm2 or less, 7.6 ⁇ cm2 or less, 7.2 ⁇ cm2 or less, 6.5 ⁇ cm2 or less, 6.0 ⁇ cm2 or less, 5.0 ⁇ cm2 or less, 4.0 ⁇ cm2 or less, or 3.0 ⁇ cm2 or less. You can.
  • the anion exchange membrane can be used in electrodialysis, bipolar membrane electrodialysis, electrodeionization, capacitive deionization, and water electrolysis.
  • the anion exchange membrane can have excellent concentration desalination performance.
  • a method of manufacturing an anion exchange membrane includes providing a porous polymer support made of a membrane structure; Preparing a composition for forming an anion exchange polymer comprising a crosslinkable monomer represented by the following formula (1), a photoinitiator, and a solvent; Impregnating the porous polymer support with the composition for forming an anion exchange polymer and filling the surface and pores of the porous polymer support with the composition; Pressing a polyester-based film on at least one side of a porous polymer support filled with the composition to produce a laminate in which the polyester-based film and the porous polymer support are laminated; Irradiating light to the laminate and crosslinking the composition to form an anion exchange polymer, which is a crosslinking product of the composition, on the surface of the porous polymer support and inside the pores; And manufacturing an anion exchange membrane by peeling the polyester-based film from the porous polymer support on which the anion exchange polymer is formed on the surface and inside the pores. It may include:
  • X - is F - , Cl - , Br - , or I - .
  • the method of manufacturing the anion exchange membrane can provide an anion exchange membrane with low sheet resistance, high ion exchange capacity, and excellent chemical resistance in the presence of high concentrations of acid and alkali.
  • Figure 4 is a schematic flowchart of a method for manufacturing an anion exchange membrane according to one embodiment.
  • a porous polymer support made of a membrane structure is provided (step S1).
  • the porosity of the membrane structure may be 30% to 80%.
  • the porosity of the membrane structure may be 35% to 70%, 40% to 65%, 45% to 60%, or 45% to 55%. If the pore size or/and porosity of the membrane structure is less than 30%, it is difficult to improve the physical durability and mechanical strength of the anion exchange membrane desired as a porous polymer support. If the pore size or/and porosity of the membrane structure exceeds 80%, the proportion of the porous polymer support in the anion exchange membrane may be excessive, resulting in increased sheet resistance and reduced ion exchange capacity.
  • the membrane structure includes polyethylene, polypropylene, polyethylene terephthalate, polyvinyl alcohol, polybenzimidazole, polyarylene sulfide, polyetheretherketone, polyethersulfone, polysulfone, polystyrene, polyaryleneethersulfone, and polyether. It may contain one or more types of polymers selected from ketones.
  • the membrane structure may be polyethylene or polypropylene.
  • the membrane structure may be polypropylene.
  • the thickness of the porous polymer support may be 10 ⁇ m to 110 ⁇ m.
  • the thickness of the porous polymer support may be 20 ⁇ m to 110 ⁇ m, 40 ⁇ m to 110 ⁇ m, or 60 ⁇ m to 110 ⁇ m.
  • sheet resistance can be reduced and ion exchange capacity can be increased.
  • the membrane structure has hydrophobic properties, it may not secure sufficient wettability with the anion exchange polymer, and therefore, the desired membrane performance may not be achieved.
  • the method further includes preparing a porous polymer support having a hydrophilic surface by immersing the porous polymer support in a surfactant solution and drying it. can do.
  • the surfactant can be used without limitation as long as it can be made hydrophilic in the art.
  • dodecylbenzenesulfonic acid DBSA
  • alkylbenzenesulfonic acid ABS
  • linear alkylbenzenesulfonic acid linear alkylbenzenesulfonic acid
  • LAS alphasulfonic acid
  • AS alphaolefinsulfonic acid
  • AOS alcoholpolyoxyethyleneether
  • AES alcoholpolyoxyethyleneethersulfonic acid
  • the surfactant may be dodecylbenzenesulfonic acid.
  • the hydrophilic part of the surfactant replaces the surface of the porous polymer support, thereby making it hydrophilic.
  • the degree of hydrophilization of the porous polymer support is sufficient or if the pores of the porous polymer support are large enough to be filled with the composition for forming an anion exchange polymer, it may be omitted.
  • the surfactant solution may include 0.001% to 6% by weight of surfactant and the remaining amount of solvent.
  • the surfactant solution may include 0.01% to 4% by weight and the balance of solvent, or may include 0.05% to 3% by weight and the balance of solvent. If the surfactant is included in an amount of less than 0.001% by weight in the surfactant solution, the surface of the porous polymer support may not become hydrophilic and the composition for forming an anion exchange polymer may not fill the pores of the porous polymer support. If the surfactant is included in more than 6% by weight in the surfactant solution, the surfactant may be eluted or the filling amount of the composition for forming an anion exchange polymer may be reduced.
  • the immersion may be performed for 0.1 minutes to 10 minutes, for example, 0.5 minutes to 5 minutes. If the immersion time is less than 0.1 minute, the surface of the porous polymer support may not be sufficiently hydrophilized and the composition for forming an anion exchange polymer may not fill the pores of the porous polymer support. If the soaking time exceeds 10 minutes, production speed may decrease and production costs may increase.
  • the drying can be performed at a temperature of 40°C to 90°C for 1 minute to 20 minutes. For example, the drying may be performed at a temperature of 40° C. to 80° C. for 1 minute to 10 minutes.
  • a composition for forming an anion exchange polymer including a crosslinkable monomer represented by Formula 1, a photoinitiator, and a solvent (step S2).
  • the crosslinkable monomer represented by Formula 1 is a monomer in which two vinylbenzyl chlorides are crosslinked to a bi-functional cyclic diamine containing pendant chains to which a quaternary ammonium cation group is attached. .
  • the crosslinkable monomer represented by Formula 1 forms a rigid cage structure, so that ion exchange capacity can be improved while maintaining chemical stability even under high concentration acid or alkaline conditions. Therefore, an anion exchange membrane containing such an anion exchange polymer can have excellent concentration and desalination performance.
  • Crosslinking product means that it includes all initial reaction products, intermediate reaction products, and final reaction products in addition to the cured product of the composition containing the crosslinkable monomer represented by Formula 1 above.
  • the content of the crosslinkable monomer represented by Formula 1 may be 30% by weight to 70% by weight based on 100% by weight of the total composition for forming the anion exchange polymer.
  • the photoinitiator may be 0.01% by weight to 2% by weight or 0.1% by weight to 1% by weight based on 100% by weight of the composition for forming an anion exchange polymer.
  • the photoinitiator may be used without limitation as long as it is a photoinitiator available in the art, but for example, it may be 2-hydroxy-2-methylpropiophenone.
  • the solvent may be used without limitation as long as it is available in the art. For example, it may be a water-soluble solvent such as water, methanol, or ethanol, or it may be distilled water. The solvent may be included in the remaining amount excluding the crosslinking monomer and photoinitiator represented by Formula 1 in the composition for forming an anion exchange polymer.
  • the composition for forming an anion exchange polymer is impregnated with the porous polymer support to fill the surface and pores of the porous polymer support with the composition (step S3).
  • the impregnation can be performed for 0.1 minutes to 10 minutes, for example, 0.5 minutes to 5 minutes. If the impregnation is performed for less than 0.1 minutes, the composition for forming an anion exchange polymer may not sufficiently fill the pores of the porous polymer support, and the performance of the anion exchange membrane may deteriorate or leak may occur. If the impregnation is performed for more than 10 minutes, production speed may be reduced and production costs may increase.
  • the composition for forming an anion exchange polymer can be filled into the pores of the porous polymer support, and the composition for forming an anion exchange polymer can cover the outer surface of the porous polymer support.
  • a polyester-based film is pressed on at least one side of the porous polymer support filled with the composition to prepare a laminate in which the polyester-based film and the porous polymer support are laminated (step S4).
  • the polyester-based film can be pressed to the upper or/and lower surface of the porous polymer support through roll calendering.
  • the polyester-based film may be, for example, a polyethylene terephthalate film.
  • the thickness of the polyester film may be 10 ⁇ m to 150 ⁇ m, for example, 20 ⁇ m to 120 ⁇ m or 30 ⁇ m to 100 ⁇ m. If the thickness of the polyester film is less than 10 ⁇ m, lamination defects such as tearing of the film may occur when laminated with a support filled with an anion exchange polymer.
  • the cross-linking reaction may not sufficiently occur because the thickness of the polyester-based film is too thick and light is not sufficiently irradiated to the porous polymer support during the cross-linking reaction described later.
  • One side of the polyester film in contact with the porous polymer support may be untreated or may be subjected to release treatment. By using such a film, it is possible to prevent the anion exchange polymer from being removed from the surface of the support by hindering its bonding with the porous polymer support having a hydrophilic surface.
  • the compression may be performed at a temperature of 10°C to 35°C, for example, 15°C to 30°C and a pressure of about 0 bar to 5 bar. The pressure can be appropriately adjusted considering the thickness of the porous polymer support and the thickness of the polyester film.
  • step S5 light is irradiated to the laminate and the composition is crosslinked to form an anion exchange polymer, which is a crosslinking product of the composition, on the surface of the porous polymer support and inside the pores.
  • the light may be ultraviolet, for example UVA, UVB, UVC or/and UVV.
  • the light irradiation may be performed using UVC as an ultraviolet ray with a light quantity of 2000 mJ/cm2 to 10000 mJ/cm2, for example, may be performed with a light quantity of 2000 mJ/cm2 to 8000 mJ/cm2. .
  • the crosslinking reaction of the composition for forming an anion exchange polymer may not proceed smoothly, and if the irradiated ultraviolet ray is a light quantity and irradiation time exceeding the above range, the energy is too strong and The porous polymer support and polyester-based film may be melted or carbonized.
  • the polyester-based film is peeled from the porous polymer support on which the anion exchange polymer is formed on the surface and inside the pores to prepare an anion exchange membrane (step S6).
  • the peeling may be accomplished by pulling the polyester-based film attached to the porous polymer support in the opposite direction using a detachment roll.
  • a 60 ⁇ m thick polypropylene porous polymer support (porosity: 55%) was prepared.
  • the composition for forming an anion exchange polymer was impregnated with the polypropylene porous polymer support, and the surface and pores of the porous polymer support were filled with the composition.
  • the porous polymer support filled with the composition is put into a pressing roll, and a polyester film with a thickness of 50 ⁇ m is pressed on the upper and lower surfaces of the porous polymer support at room temperature to produce a laminate in which the polyester film and the porous polymer support are laminated.
  • Manufactured The laminate was irradiated with UVC at a light intensity of 3000 mJ/cm2 to form an anion exchange polymer, which is a crosslinking product of the composition, on the surface of the porous polymer support and inside the pores.
  • An anion exchange membrane was manufactured by peeling the polyester film from the porous polymer support on which the anion exchange polymer was formed on the surface and inside the pores.
  • X - is Cl - .
  • An anion exchange membrane was prepared in the same manner as in Example 1, except that a polypropylene porous polymer support with a thickness of 80 ⁇ m (porosity: 45%) was used.
  • An anion exchange membrane was prepared in the same manner as in Example 1, except that a 110 ⁇ m thick polypropylene porous polymer support (porosity: 48%) was used.
  • An anion exchange membrane was prepared in the same manner as in Example 1, except that a 120 ⁇ m thick polypropylene porous polymer support (porosity: 28%) was used.
  • An anion exchange membrane was prepared in the same manner as in Example 1, except that a cellulose acetate nonwoven fabric-type support with a thickness of 60 ⁇ m (porosity: 75%) was used.
  • An anion exchange membrane was prepared in the same manner as in Example 1, except that a polyethylene/polypropylene mesh-type support (porosity: 84%) with a thickness of 20 ⁇ m was used.
  • An anion exchange membrane was prepared in the same manner as in Example 1, except that a polyethylene porous polymer support with a thickness of 8 ⁇ m (porosity: 44%) was used.
  • An anion exchange membrane was prepared in the same manner as in Example 1, except that 0.6% by weight of a photoinitiator (manufactured by Ciba) and the remaining amount of distilled water were mixed to form a composition for forming an anion exchange polymer of 100% by weight.
  • the porous polymer support of the anion exchange membrane prepared in Example 1 has a three-dimensional network structure.
  • Samples were prepared by cutting each anion exchange membrane into a size of 5 cm x 5 cm. The sample was immersed in 0.5 M NaCl aqueous solution for 24 hours. The sample was placed between electrodes for measuring sheet resistance, and the line resistance (R 1 ) of the anion exchange membrane and the resistance (R 2 ) of the 0.5 M NaCl aqueous solution were measured using an LCR meter (E4908A, Agilent). Sheet resistance (Rm) was obtained by substituting the measured resistance values (R 1 , R 2 ) into Equation 1 below. The results are shown in Table 1.
  • Rm( ⁇ cm2) (R 1 - R 2 ) x S
  • Rm is the sheet resistance of the anion exchange membrane
  • R 1 is the linear resistance of the anion exchange membrane
  • R 2 is the resistance of 0.5 M NaCl aqueous solution
  • S is the area of the electrode.
  • Samples were prepared by cutting each anion exchange membrane into a size of 5 cm x 5 cm. The sample was washed with distilled water and excess moisture was removed with a tissue. After filling the vial with 70 ml of 1M NaCl solution, the sample from which the moisture was removed was placed in the 1M NaCl solution and immersed for more than 12 hours to perform primary pretreatment. Then, the sample that had completed the first pretreatment was washed several times with distilled water and excess moisture was removed with a tissue. After filling 70 ml of 0.5M Na 2 CO 3 solution in a vial, the sample from which water was removed was placed in 0.5 M Na 2 CO 3 solution and immersed for more than 12 hours to perform secondary pretreatment.
  • IEC (meq/g) (Titration reagent volume (ml) x 0.01)/Weight of dried anion exchange membrane (g)
  • Example 1 polypropylene 55 60 3.0 2.4
  • Example 2 polypropylene 45 80 7.6 1.8
  • Example 3 polypropylene 48 110 9.6 1.8 Comparative Example 1 polypropylene 28 120 19.8 1.0 Comparative Example 2 Cellulose Acetate 75 60 2.4 1.9 Comparative Example 3 Polyethylene/polypropylene 84 20 0.6 2.7 Comparative Example 4 polyethylene 44 8 0.3 2.8 Comparative Example 5 polypropylene 55 60 4.5 1.0
  • the porous polymer support of the anion exchange membrane prepared in Examples 1 to 3 is a polypropylene membrane with a porosity of 48% to 55% and a thickness of 60 ⁇ m to 110 ⁇ m.
  • the porous polymer support of the anion exchange membrane prepared in Comparative Example 1 was a polypropylene membrane with a porosity of 28% and a thickness of 120 ⁇ m.
  • the anion exchange membrane prepared in Examples 1 to 3 had a sheet resistance reduced to less than 9.6 ⁇ cm2 and an ion exchange capacity (IEC) improved to more than 1.8 meq/g compared to the anion exchange membrane prepared in Comparative Example 1.
  • IEC ion exchange capacity
  • the porous polymer support of the anion exchange membrane prepared in Comparative Example 2 is a cellulose acetate nonwoven-type support with a thickness of 60 ⁇ m and a porosity of 75%.
  • the anion exchange membrane prepared in Comparative Example 2 was concentrated by applying it to an electrodialysis system using a 15 wt% NaCl aqueous solution as raw water, but concentration was not possible.
  • the porous polymer support of the anion exchange membrane prepared in Comparative Example 3 is a polyethylene/polypropylene porous polymer support with a thickness of 20 ⁇ m and a porosity of 84%.
  • the anion exchange membrane prepared in Comparative Example 3 was concentrated by applying it to an electrodialysis system using 15 wt% NaCl aqueous solution as raw water, but concentration was not possible.
  • the porous polymer support of the anion exchange membrane prepared in Comparative Example 4 is a polyethylene porous polymer support with a thickness of 8 ⁇ m and a porosity of 44%.
  • the anion exchange membrane prepared in Comparative Example 4 was so thin that it was impossible to assemble the module.
  • Table 2 shows the anion exchange membrane prepared in Example 1
  • Table 3 shows the results of immersing the anion exchange membrane prepared in Comparative Example 5 in a 1M aqueous solution of NaOH and a 0.5M aqueous solution of H 2 SO 4 , respectively, and measuring the sheet resistance according to the immersion time.
  • the anion exchange membrane prepared in Example 1 was immersed in a 1M aqueous solution of NaOH and a 0.5M aqueous solution of H 2 SO 4 , and the changes in sheet resistance after 40 days were about 6.7% and 3%, respectively.
  • the anion exchange membrane prepared in Comparative Example 5 was immersed in a 1M aqueous solution of NaOH and a 0.5M aqueous solution of H 2 SO 4 , and the changes in sheet resistance after 40 days were about 41% and 11%, respectively.
  • the anion exchange membrane prepared in Example 1 showed a small change in sheet resistance after 40 days after being immersed in a 1M aqueous solution of NaOH and a 0.5M aqueous solution of H 2 SO 4 , respectively, confirming that it has excellent chemical resistance. there is.
  • the anion exchange membranes prepared in Examples 1 to 3 can be used in electrodialysis, bipolar membrane electrodialysis, electrodeionization, capacitive deionization, or water electrolysis systems. It can be seen that it is suitable for use in water electrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

음이온 교환막 및 이의 제조방법이 개시된다. 상기 음이온 교환막은 멤브레인 구조체로 이루어진 다공성 고분자 지지체; 및 음이온 교환 폴리머;를 포함하고, 상기 음이온 교환 폴리머는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 위치하고, 상기 음이온 교환 폴리머의 음이온 교환기는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 균일하게 분포되어 있고, 상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 가교결합 생성물일 수 있다 식 중에서, X-는 명세서에 개시된 바와 같다.

Description

음이온 교환막 및 이의 제조방법
음이온 교환막 및 이의 제조방법에 관한 것이다.
이온 교환막은 양이온과 음이온을 선택하여 한쪽 이온만을 투과시키는 합성수지막을 말한다. 이 중, 음이온 교환막은 양전하를 띄는 관능기를 가지고 있어 음이온을 선택적으로 투과시키는 합성수지막이다. 이러한 음이온 교환막은 전기투석, 바이폴라막 전기투석, 축전식 탈염, 전기 탈이온 등의 수처리 시스템에 적용되거나 또는 연료전지, 수전해, 역전기투석, 산화환원 흐름전지 등의 시스템에 적용될 수 있다. 음이온 교환막이 적용되는 시스템은 산 또는 알칼리 원수를 공정에 적용할 수 있으며, 원수의 공정 운전 중 산 또는 알칼리가 발생할 수 있다. 여기에 음이온 교환막으로서 과불소계 음이온 교환막이 사용될 수 있으나 비싼 가격으로 실제 시스템에서는 탄화수소계 음이온 교환막을 적용하고 있다. 그러나 탄화수소계 음이온 교환막은 내화학성 문제로 적용 공정 및 조건에 한계가 있다. 또한 음이온 교환막은 막 내에 지지체 분율이 일정부분 존재하므로 막 물성을 향상시키기 위해 이온교환용량을 증가시키는 데 한계가 있다.
일 측면은 면저항이 낮고 이온교환용량이 높으며 고농도 산과 알칼리 존재 하에 내화학성이 우수한 음이온 교환막을 제공하는 것이다.
다른 측면은 상기 음이온 교환막의 제조방법을 제공하는 것이다.
일 측면에 따라,
멤브레인 구조체로 이루어진 다공성 고분자 지지체; 및
음이온 교환 폴리머;를 포함하고,
상기 음이온 교환 폴리머는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 위치하고,
상기 음이온 교환 폴리머의 음이온 교환기는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 균일하게 분포되어 있고,
상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 가교결합 생성물인, 음이온 교환막이 제공된다:
[화학식 1]
Figure PCTKR2023007175-appb-img-000001
식 중에서,
X-는 F-, Cl-, Br-, 또는 I-이다.
상기 멤브레인 구조체는 기공이 규칙적으로 배열된 구조이거나 또는 3차원 그물망 구조일 수 있다.
상기 멤브레인 구조체의 공극률은 30 % 내지 80 %일 수 있다.
상기 멤브레인 구조체는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리비닐알콜, 폴리벤즈이미다졸, 폴리아릴렌술파이드, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리술폰, 폴리스티렌, 폴리아릴렌에테르술폰, 및 폴리에테르케톤으로부터 선택된 1종 이상의 고분자를 포함할 수 있다.
상기 다공성 고분자 지지체의 두께는 10 ㎛ 내지 110 ㎛일 수 있다.
상기 음이온 교환막의 평균 두께는 10 ㎛ 내지 200 ㎛일 수 있다.
상기 음이온 교환막의 이온교환용량은 1.5 meq/g 이상일 수 있다.
상기 음이온 교환막의 면저항은 10 Ω·㎠ 이하일 수 있다.
상기 음이온 교환막은 전기투석(Electrodialysis), 바이폴라막 전기투석(Bipolar membrane electrodialysis), 전기탈이온(Electrodeionization), 축전식 탈염(Capacitive deionization), 수전해 시스템(water electrolysis)에 사용될 수 있다.
다른 일 측면에 따라,
멤브레인 구조체로 이루어진 다공성 고분자 지지체를 제공하는 단계;
하기 화학식 1로 표시되는 가교성 모노머, 광 개시제, 및 용매를 포함하는 음이온 교환 폴리머 형성용 조성물을 제조하는 단계;
상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시키는 단계;
상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 다공성 고분자 지지체가 합지된 적층체를 제조하는 단계;
상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성하는 단계; 및
상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하는 단계;를 포함하는, 음이온 교환막의 제조방법이 제공된다:
[화학식 1]
Figure PCTKR2023007175-appb-img-000002
식 중에서,
X-는 F-, Cl-, Br-, 또는 I-이다.
상기 화학식 1로 표시되는 가교성 모노머의 함량은 상기 음이온 교환 폴리머 형성용 조성물 전체 100 중량%를 기준으로 하여 30 중량% 내지 70 중량%일 수 있다.
상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시키기 전에, 상기 다공성 고분자 지지체를 계면활성제 용액에 침지 및 건조하여 친수화된 표면을 갖는 다공성 고분자 지지체를 제조하는 단계를 더 포함할 수 있다.
상기 광 조사는 자외선으로 UVC를 사용하여 2000 mJ/㎠ 내지 10,000 mJ/㎠ 광량으로 조사하는 것일 수 있다.
일 측면에 따른 음이온 교환막은 상술한 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 가교결합 생성물인 음이온 교환 폴리머를 멤브레인 구조체로 이루어진 다공성 고분자 지지체의 표면과 기공의 내부에 위치하고 상기 음이온 교환 폴리머의 음이온 교환기는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 균일하게 분포되어 있는 막이다.
상기 음이온 교환막은 음이온 교환막 내의 음이온 교환 폴리머의 함량을 높여 높은 이온교환용량과 낮은 면저항을 가질 수 있다. 또한 상기 음이온 교환막은 내화학성이 우수하여 고농도의 산과 알칼리 조건 하에 사용할 수 있다.
도 1은 일반적인 음이온 교환막의 개념도이다.
도 2는 일 구현예에 따른 음이온 교환막의 개략적인 모식도이다.
도 3은 실시예 1에 의해 제조된 음이온 교환막에 사용된 다공성 고분자 지지체의 구조에 대한 주사전자현미경(SEM) 사진이다.
도 4는 일 구현예에 따른 음이온 교환막의 제조방법에 대한 개략적인 순서도이다.
이하, 본 발명의 실시예와 도면을 참조하여 음이온 교환막 및 이의 제조방법에 관해 상세히 설명한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.
달리 정의하지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술분야의 숙련자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 상충되는 경우, 정의를 포함하는 본 명세서가 우선할 것이다. 본 명세서에서 설명되는 것과 유사하거나 동등한 방법 및 재료가 본 발명의 실시 또는 시험에 사용될 수 있지만, 적합한 방법 및 재료가 본 명세서에 기재된다. 본 명세서에서 "포함"이라는 용어는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 본 명세서에서 "이들 조합"이라는 용어는 기재된 구성요소들 하나 이상과의 혼합 또는 조합을 의미한다. 본 명세서에서 "및/또는"이라는 용어는 관련 기재된 하나 이상의 항목들의 임의의 조합 및 모든 조합을 포함하는 것을 의미한다. 본 명세서에서 "또는"이라는 용어는 "및/또는"을 의미한다. 본 명세서에서 구성요소들의 앞에 "적어도 1종", 또는 "하나 이상"이라는 표현은 전체 구성요소들의 목록을 보완할 수 있고 상기 기재의 개별 구성요소들을 보완할 수 있는 것을 의미하지 않는다. 본 명세서에서 일 구성요소가 다른 구성요소의 "상에" 또는 "위에" 배치되어 있다고 언급되는 경우, 일 구성요소는 다른 구성요소 위에 직접 배치될 수 있거나 상기 구성요소들 사이에 개재된 구성요소들이 존재할 수 있을 수 있다. 반면에, 일 구성요소가 다른 구성요소 "상에 직접" 또는 "위에 직접" 배치되어 있다고 언급되는 경우, 개재된 구성요소들이 존재하지 않을 수 있다. 본 명세서에서 "~계 수지", "~ 계 중합체", "~계 폴리머", 또는/및 "~ 계 공중합체"는 "~ 수지", "~ 중합체", "~계 폴리머", "~ 공중합체", 또는/및 "~ 수지, 중합체, 폴리머, 또는 공중합체의 유도체"를 모두 포함하는 광의의 개념이다. 본 명세서에서 "이들 수지로 가교된 중합체 또는 공중합체"라는 용어는 "전술한 수지로 가교된 중합체 또는 공중합체"를 의미한다.
도 1은 일반적인 음이온 교환막의 개념도이다.
도 1을 참조하면, 음이온 교환막(10)은 지지체(5) 상에 양이온 관능기(1)를 갖는 음이온 교환 폴리머 주쇄(2)가 배치되어 있다. 음이온 교환막(10)은 좌측에서 우측으로 반대음이온(3)과 공양이온(4)이 투과할 때 반대음이온(3)을 선택적으로 투과한다.
일반적으로 음이온 교환막(10)에는 높은 투과 선택성, 낮은 전기저항, 우수한 기계적 강도, 높은 화학적 안정성 등이 요구된다. 음이온 교환막(10)의 재료로는 과불소계 음이온 교환막과 탄화수소계 음이온 교환막이 있다. 이 중에서, 탄화수소계 음이온 교환막은 가격 경쟁력에서 우수하나 내화학성이 약하여 적용 공정과 조건에 한계가 있다. 또한 탄화수소계 음이온 교환막은 지지체 분율이 일정부분 존재하여 막 성능을 높이기 위한 이온교환용량의 증가에 한계가 있다.
이러한 점에 착안하여 본 발명의 발명자들은 하기와 같은 음이온 교환막 및 이의 제조방법을 제안하고자 한다.
일 구현예에 따른 음이온 교환막은 멤브레인 구조체로 이루어진 다공성 고분자 지지체; 및 음이온 교환 폴리머;를 포함하고, 상기 음이온 교환 폴리머는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 위치하고, 상기 음이온 교환 폴리머의 음이온 교환기는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 균일하게 분포되어 있고, 상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 가교결합 생성물일 수 있다:
[화학식 1]
Figure PCTKR2023007175-appb-img-000003
식 중에서,
X-는 F-, Cl-, Br-, 또는 I-이다.
일 구현예에 따른 음이온 교환막은 음이온 교환막 내의 음이온 교환 폴리머의 함량을 높여 높은 이온교환용량과 낮은 면저항을 가질 수 있다. 또한 상기 음이온 교환막은 내화학성이 우수하여 고농도의 산과 알칼리 조건 하에 사용할 수 있다.
도 2는 일 구현예에 따른 음이온 교환막의 개략적인 모식도이다.
도 2를 참조하면, 일 구현예에 따른 음이온 교환막(40)은 다공성 고분자 지지체(20)의 표면 및 기공(21)의 내부에 양이온 관능기를 갖는 음이온 교환 폴리머(31)가 위치한다. 양이온 관능기를 갖는 음이온 교환 폴리머(31)는 다공성 고분자 지지체(20)의 표면 및 기공(21)의 내부에 균일하게 분포되어 있어 균질한 음이온 교환막(40)을 얻을 수 있다. 이러한 음이온 교환막(40) 구조는 낮은 면저항과 높은 이온전도도를 가질 수 있다. 또한 다공성 고분자 지지체(20)는 기계적 내구성을 향상시킬 수 있으며, 높은 치수안정성을 가질 수 있다.
음이온 교환 폴리머는 상기 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 가교결합 생성물일 수 있다. 상기 화학식 1로 표시되는 가교성 모노머는 4급 암모늄 양이온기가 부착된 펜던트 사슬(pendant chains)을 포함하는 이원 기능성 사이클릭 다이아민(bi-functional cyclic diamine)에 2개의 비닐벤질 클로라이드가 가교된 모노머이다. 상기 화학식 1로 표시되는 가교성 모노머는 단단한(rigid) 케이지 구조를 형성하여 고농도의 산 또는 알칼리 조건 하에서도 화학적 안정성을 가지면서 이온교환용량이 향상될 수 있다. 따라서 이러한 음이온 교환 폴리머를 포함하는 음이온 교환막은 우수한 농축탈염성능을 가질 수 있다. "가교결합 생성물"이라 함은 상기 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 경화물 이외에 초기 반응 생성물, 중간 반응 생성물, 및 최종 반응 생성물 등을 모두 포함하는 것을 의미한다.
상기 멤브레인 구조체는 기공이 규칙적으로 배열된 구조이거나 또는 3차원 그물망 구조일 수 있다. 이러한 멤브레인 구조체의 구조는 후술하는 도 3에 의해 확인할 수 있다. 예를 들어, 상기 멤브레인 구조체는 고분자 재료와 저분자량 왁스를 혼합하여 고온에서 필름으로 압출한 뒤, 용매를 사용해 왁스를 추출하여 미세다공 구조를 형성하거나 또는 왁스를 사용하지 않고 1축 또는 2축 연신 및 열처리 공정으로 기공 구조를 형성할 수 있다. 그러나, 이에 제한되지 않고 당해 기술분야에서 사용가능한 모든 제조방법으로 멤브레인 구조체를 형성할 수 있다.
상기 멤브레인 구조체의 공극률은 30 % 내지 80 %일 수 있다. 예를 들어, 상기 멤브레인 구조체의 공극률은 35 % 내지 70 %일 수 있거나 40 % 내지 65 %일 수 있거나 45 % 내지 60 %일 수 있거나 45 % 내지 55 %일 수 있다. 상기 멤브레인 구조체의 기공 크기 또는/및 공극률이 30 % 미만이라면, 다공성 고분자 지지체로서 얻고자 하는 음이온 교환막의 물리적 내구성 및 기계적 강도 향상을 갖기 어렵다. 상기 멤브레인 구조체의 기공 크기 또는/및 공극률이 80 %를 초과한다면, 음이온 교환막 내 다공성 고분자 지지체가 차지하는 분율이 과다해져 면저항이 증가하고 이온교환용량이 감소할 수 있다.
상기 멤브레인 구조체는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리비닐알콜, 폴리벤즈이미다졸, 폴리아릴렌술파이드, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리술폰, 폴리스티렌, 폴리아릴렌에테르술폰, 및 폴리에테르케톤으로부터 선택된 1종 이상의 고분자를 포함할 수 있다. 예를 들어, 상기 멤브레인 구조체는 폴리에틸렌 또는 폴리프로필렌일 수 있다. 예를 들어, 상기 멤브레인 구조체는 폴리프로필렌일 수 있다.
상기 다공성 고분자 지지체의 두께는 10 ㎛ 내지 110 ㎛일 수 있다. 예를 들어, 상기 다공성 고분자 지지체의 두께는 20 ㎛ 내지 110 ㎛일 수 있거나 40 ㎛ 내지 110 ㎛일 수 있거나 60 ㎛ 내지 110 ㎛일 수 있다. 상기 다공성 고분자 지지체의 두께 범위 내에서 면저항이 감소되며 이온교환용량이 증가할 수 있다.
상기 음이온 교환막의 평균 두께는 10 ㎛ 내지 200 ㎛일 수 있다. 예를 들어, 상기 음이온 교환막의 평균 두께는 12 ㎛ 내지 150 ㎛일 수 있다. 상기 음이온 교환막의 평균 두께가 10 ㎛ 미만이라면, 음이온 교환막의 물리적 내구성과 취급성이 저하되어 모듈 체결시 또는 시스템 적용 후 운전 중 막 손상의 우려가 있으며 불필요한 이온의 투과로 인해 시스템 운전 성능이 저하될 수 있다. 상기 음이온 교환막의 평균 두께가 200 ㎛를 초과한다면, 면저항이 높아져 시스템 등에 적용시 운전에 필요한 전력소모가 커지게 되며 시스템 운전 성능이 저하될 수 있다.
상기 음이온 교환막의 이온교환용량은 1.5 meq/g 이상일 수 있다. 예를 들어, 음이온 교환막의 이온교환용량은 1.6 meq/g 이상, 1.7 meq/g 이상, 1.8 meq/g 이상, 1.9 meq/g 이상, 2.0 meq/g 이상, 2.1 meq/g 이상, 2.2 meq/g 이상, 2.3 meq/g 이상, 또는 2.4 meq/g 이상일 수 있다.
상기 음이온 교환막의 면저항은 10 Ω·㎠ 이하일 수 있다. 예를 들어, 상기 음이온 교환막의 면저항은 9.9 Ω·㎠ 이하, 9.8 Ω·㎠ 이하, 9.7 Ω·㎠ 이하, 9.6 Ω·㎠ 이하, 9.0 Ω·㎠ 이하, 8.5 Ω·㎠ 이하, 8.0 Ω·㎠ 이하, 7.8 Ω·㎠ 이하, 7.6 Ω·㎠ 이하, 7.2 Ω·㎠ 이하, 6.5 Ω·㎠ 이하, 6.0 Ω·㎠ 이하, 5.0 Ω·㎠ 이하, 4.0 Ω·㎠ 이하, 또는 3.0 Ω·㎠ 이하일 수 있다.
상기 음이온 교환막은 전기투석(Electrodialysis), 바이폴라막 전기투석(Bipolar membrane electrodialysis), 전기탈이온(Electrodeionization), 축전식 탈염(Capacitive deionization), 수전해 시스템(water electrolysis)에 사용될 수 있다. 상기 음이온 교환막은 우수한 농축탈염성능을 가질 수 있다.
다른 일 구현예에 따른 음이온 교환막의 제조방법은 멤브레인 구조체로 이루어진 다공성 고분자 지지체를 제공하는 단계; 하기 화학식 1로 표시되는 가교성 모노머, 광 개시제, 및 용매를 포함하는 음이온 교환 폴리머 형성용 조성물을 제조하는 단계; 상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시키는 단계; 상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 다공성 고분자 지지체가 합지된 적층체를 제조하는 단계; 상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성하는 단계; 및 상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하는 단계;를 포함할 수 있다:
[화학식 1]
Figure PCTKR2023007175-appb-img-000004
식 중에서,
X-는 F-, Cl-, Br-, 또는 I-이다.
상기 음이온 교환막의 제조방법은 면저항이 낮고 이온교환용량이 높으며 고농도 산과 알칼리 존재 하에 내화학성이 우수한 음이온 교환막을 제공할 수 있다.
도 4는 일 구현예에 따른 음이온 교환막의 제조방법에 대한 개략적인 순서도이다.
도 4를 참조하면, 먼저, 멤브레인 구조체로 이루어진 다공성 고분자 지지체를 제공한다(S1 단계).
상기 멤브레인 구조체의 공극률은 30 % 내지 80 %일 수 있다. 예를 들어, 상기 멤브레인 구조체의 공극률은 35 % 내지 70 %일 수 있거나 40 % 내지 65 %일 수 있거나 45 % 내지 60 %일 수 있거나 45 % 내지 55 %일 수 있다. 상기 멤브레인 구조체의 기공 크기 또는/및 공극률이 30 % 미만이라면, 다공성 고분자 지지체로서 얻고자 하는 음이온 교환막의 물리적 내구성 및 기계적 강도 향상을 갖기 어렵다. 상기 멤브레인 구조체의 기공 크기 또는/및 공극률이 80 %를 초과한다면, 음이온 교환막 내 다공성 고분자 지지체가 차지하는 분율이 과다해져 면저항이 증가하고 이온교환용량이 감소할 수 있다.
상기 멤브레인 구조체는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리비닐알콜, 폴리벤즈이미다졸, 폴리아릴렌술파이드, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리술폰, 폴리스티렌, 폴리아릴렌에테르술폰, 및 폴리에테르케톤으로부터 선택된 1종 이상의 고분자를 포함할 수 있다. 예를 들어, 상기 멤브레인 구조체는 폴리에틸렌 또는 폴리프로필렌일 수 있다. 예를 들어, 상기 멤브레인 구조체는 폴리프로필렌일 수 있다.
상기 다공성 고분자 지지체의 두께는 10 ㎛ 내지 110 ㎛일 수 있다. 예를 들어, 상기 다공성 고분자 지지체의 두께는 20 ㎛ 내지 110 ㎛일 수 있거나 40 ㎛ 내지 110 ㎛일 수 있거나 60 ㎛ 내지 110 ㎛일 수 있다. 상기 다공성 고분자 지지체의 두께 범위 내에서 면저항이 감소되며 이온교환용량이 증가할 수 있다.
상기 멤브레인 구조체는 소수성 특성을 가지기에 음이온 교환 폴리머과의 충분한 젖음성(wettability)를 확보하지 못할 수 있고 이로 인해 원하는 막 성능을 달성하지 못할 수 있다.
이를 보완하기 위해 상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시키기 전에, 상기 다공성 고분자 지지체를 계면활성제 용액에 침지 및 건조하여 친수화된 표면을 갖는 다공성 고분자 지지체를 제조하는 단계를 더 포함할 수 있다. 상기 계면활성제는 당해 기술분야에서 친수화시킬 수 있는 것이라면 제한없이 사용할 수 있으나, 예를 들어 도데실벤젠술폰산(dodecylbenzenesulfonic acid, DBSA), 알킬벤젠술폰산 (alkylbenzenesulfonic acid, ABS), 리니어알킬벤젠술폰산(linearalklybenzenesulfonic acid, LAS), 알파술폰산(alphasulfonic acid, AS), 알파올레핀술폰산(alphaolefinsulfonic acid, AOS), 알콜폴리옥시에틸렌에테르(alcoholpolyoxyethyleneether, AE), 및 알콜폴리옥시에틸렌에테르술폰산(alcoholpolyoxyethyleneethersulfonic acid, AES)로부터 선택되는 1종 이상의 재료를 사용할 수 있다. 예를 들어, 상기 계면활성제는 도데실벤젠술폰산을 사용할 수 있다. 상기 계면활성제는 소수부가 소수성인 상기 다공성 고분자 지지체 표면과 소수-소수 상호작용(hydrophobichydrophobic interaction)에 의해 결합되면 계면활성제의 친수부가 다공성 고분자 지지체의 표면을 대신하게 되어 친수화가 이루어질 수 있다. 이때, 계면활성제에 의하여 다공성 고분자 지지체의 겉 표면 뿐만아니라 내부의 기공 표면 전체가 친수화될 수 있다. 그러나 다공성 고분자 지지체의 친수화 정도가 충분한 경우 또는 다공성 고분자 지지체의 기공이 충분히 커 음이온 교환 폴리머 형성용 조성물이 충진될 수 있는 경우에는 생략할 수도 있다.
상기 계면활성제 용액은 계면활성제 0.001 중량% 내지 6 중량% 및 잔량의 용매를 포함할 수 있다. 예를 들어, 상기 계면활성제 용액은 0.01 중량% 내지 4 중량% 및 잔량의 용매를 포함할 수 있거나 또는 0.05 중량% 내지 3 중량% 및 잔량의 용매를 포함할 수 있다. 상기 계면활성제를 상기 계면활성제 용액 중에서 0.001 중량% 미만으로 포함한다면, 다공성 고분자 지지체의 표면이 친수화되지 않아 음이온 교환 폴리머 형성용 조성물이 다공성 고분자 지지체의 기공에 충진되지 않을 수 있다. 상기 계면활성제를 상기 계면활성제 용액 중에서 6 중량% 초과로 포함한다면, 계면활성제가 용출되거나 또는 음이온 교환 폴리머 형성용 조성물의 충진량이 저하될 수 있다.
상기 침지는 0.1 분 내지 10 분 동안, 예를 들어 0.5 분 내지 5분 동안 수행할 수 있다. 침지시간이 0.1 분 미만이라면, 다공성 고분자 지지체 표면이 충분하게 친수화되지 않아 음이온 교환 폴리머 형성용 조성물이 다공성 고분자 지지체의 기공에 충진되지 않을 수 있다. 침지시간이 10 분 초과라면, 생산속도 감소 및 생산비용이 증가할 수 있다. 상기 건조는 40 ℃ 내지 90 ℃의 온도에서 1분 내지 20분간 수행할 수 있다. 예를 들어, 상기 건조는 40 ℃ 내지 80 ℃의 온도에서 1분 내지 10분간 수행할 수 있다.
다음으로, 상기 화학식 1로 표시되는 가교성 모노머, 광 개시제, 및 용매를 포함하는 음이온 교환 폴리머 형성용 조성물을 제조한다(S2 단계).
상기 화학식 1로 표시되는 가교성 모노머는 4급 암모늄 양이온기가 부착된 펜던트 사슬(pendant chains)을 포함하는 이원 기능성 사이클릭 다이아민(bi-functional cyclic diamine)에 2개의 비닐벤질 클로라이드가 가교된 모노머이다. 상기 화학식 1로 표시되는 가교성 모노머는 단단한(rigid) 케이지 구조를 형성하여 고농도의 산 또는 알칼리 조건 하에서도 화학적 안정성을 가지면서 이온교환용량이 향상될 수 있다. 따라서 이러한 음이온 교환 폴리머를 포함하는 음이온 교환막은 우수한 농축탈염성능을 가질 수 있다. "가교결합 생성물"이라 함은 상기 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 경화물 이외에 초기 반응 생성물, 중간 반응 생성물, 및 최종 반응 생성물 등을 모두 포함하는 것을 의미한다. 상기 화학식 1로 표시되는 가교성 모노머의 함량은 상기 음이온 교환 폴리머 형성용 조성물 전체 100 중량%를 기준으로 하여 30 중량% 내지 70 중량%일 수 있다.
광 개시제는 음이온 교환 폴리머 형성용 조성물 전체 100 중량%를 기준으로 하여 0.01 중량% 내지 2 중량%일 수 있거나 0.1 중량% 내지 1 중량%일 수 있다. 상기 광 개시제는 당해 기술분야에서 사용가능한 광 개시제라면 제한없이 사용할 수 있으나, 예를 들어 2-히드록시-2-메틸프로피오페논(2-hydroxy-2-methylpropiophenone)일 수 있다. 상기 용매는 당해 기술분야에서 사용가능한 용매라면 제한없이 사용할 수 있으나, 예를 들어 물, 메탄올 또는 에탄올 들의 수용성 용매일 수 있으며, 증류수일 수 있다. 상기 용매는 음이온 교환 폴리머 형성용 조성물 중에서 상기 화학식 1로 표시되는 가교성 모노머 및 광 개시제를 제외한 잔량으로 포함될 수 있다.
다음으로, 상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시킨다(S3 단계). 상기 함침은 0.1 분 내지 10 분간 수행할 수 있고, 예를 들어 0.5 분 내지 5 분간 수행할 수 있다. 상기 함침을 0.1 분 미만으로 수행한다면, 음이온 교환 폴리머 형성용 조성물이 상기 다공성 고분자 지지체의 기공 내부에 충분히 충진되지 않아 음이온 교환막의 성능이 저하하거나 누출(leak)이 발생할 수 있다. 상기 함침을 10 분 초과로 수행한다면, 생산속도가 감소되고 생산비용이 증가할 수 있다. 상기 함침을 통해 음이온 교환 폴리머 형성용 조성물이 다공성 고분자 지지체의 기공에 채워져 충진될 수 있고, 음이온 교환 폴리머 형성용 조성물이 다공성 고분자 지지체의 외부 표면을 감쌀 수 있다.
다음으로, 상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 다공성 고분자 지지체가 합지된 적층체를 제조한다(S4 단계).
폴리에스테르계 필름은 상기 다공성 고분자 지지체의 상면 또는/및 하면에 롤 캘린더링을 통해 압착시킬 수 있다. 상기 폴리에스테르계 필름은 예를 들어 폴리에틸렌테레프탈레이트 필름일 수 있다. 상기 폴리에스테르계 필름의 두께는 10 ㎛ 내지 150 ㎛일 수 있으며, 예를 들어 20 ㎛ 내지 120 ㎛ 또는 30 ㎛ 내지 100 ㎛일 수 있다. 상기 폴리에스테르계 필름의 두께가 10 ㎛ 미만이라면, 음이온교환 폴리머가 충진된 지지체와 합지 시 필름이 우는 등과 같은 합지 불량이 발생할 수 있다. 상기 폴리에스테르계 필름의 두께가 150 ㎛ 초과라면, 후술하는 가교 반응시 폴리에스테르계 필름의 두께가 너무 두꺼워 광이 상기 다공성 고분자 지지체에 충분히 조사되지 않아 가교 반응이 충분히 일어나지 않을 수 있다. 상기 폴리에스테르계 필름은 상기 다공성 고분자 지지체와 접촉하는 일 면이 무처리이거나 이형처리가 된 것일 수 있다. 이러한 필름을 사용함으로써 친수화된 표면을 갖는 다공성 고분자 지지체와의 결합을 방해하여 지지체 표면에 음이온 교환 폴리머가 제거되지 않도록 할 수 있다. 상기 압착은 10 ℃ 내지 35 ℃의 온도, 예를 들어 15 ℃ 내지 30 ℃의 온도에서 약 0 bar 내지 5 bar의 압력으로 수행할 수 있다. 상기 압력은 다공성 고분자 지지체의 두께와 폴리에스테르계 필름의 두께를 고려하여 적절하게 조절될 수 있다.
다음으로, 상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성한다(S5 단계).
상기 광은 자외선일 수 있으며, 예를 들어 UVA, UVB, UVC 또는/및 UVV를 이용할 수 있다. 예를 들어, 상기 광 조사는 자외선으로 UVC를 사용하여 2000 mJ/㎠ 내지 10000 mJ/㎠ 의 광량으로 수행할 수 있고, 예를 들어 2000 mJ/㎠ 내지 8000 mJ/㎠ 의 광량으로 수행할 수 있다. 조사되는 자외선이 상기 범위 미만의 광량 및 조사시간이라면, 음이온 교환 폴리머 형성용 조성물의 가교 반응이 원활히 진행되지 않을 수 있으며, 조사되는 자외선이 상기 범위 초과의 광량 및 조사시간이라면, 에너지가 너무 강하여 상기 다공성 고분자 지지체 및 폴리에스테르계 필름이 용융되거나 탄화될 수 있다.
마지막으로, 상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조한다(S6 단계). 상기 박리는 상기 다공성 고분자 지지체에 부착된 폴리에스테르계 필름을 탈착롤을 이용하여 반대방향으로 당겨 이루어질 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
[실시예]
실시예 1: 음이온 교환막의 제조
두께 60 ㎛의 폴리프로필렌 다공성 고분자 지지체(공극률: 55%)를 준비하였다.
이와 별도로, 메탄올에 용해한 1,4-디아자바이시클로[2,2,2]옥탄 용액에, 메탄올에 용해한 4-비닐벤질 클로라이드 용액을 비닐벤질 클로라이드와 1,4-디아자바이시클로[2,2,2]옥탄의 몰비가 2:1이 되도록 첨가하고, 불활성 분위기 하에 상온에서 교반하여 혼합물을 제조하였다. 상기 혼합물을 여과하고 메탄올로 세척한 후, 상온에서 진공 하에 건조하여 하기 화학식 1로 표시되는 가교성 모노머를 수득하였다.
상기 화학식 1로 표시되는 가교성 모노머 66 중량%, 2-히드록시-2-메틸프로피오페논(Ciba사 제조) 광 개시제 0.6 중량%, 및 잔량의 증류수를 혼합하여 전체 100 중량%의 음이온 교환 폴리머 형성용 조성물을 제조하였다.
상기 음이온 교환 폴리머 형성용 조성물에 상기 폴리프로필렌 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시켰다. 상기 조성물이 충진된 다공성 고분자 지지체를 압착롤에 투입하고 상온에서 상기 다공성 고분자 지지체의 상면과 하면에 두께 50 ㎛의 폴리에스테르 필름을 압착시켜 상기 폴리에스테르 필름과 상기 다공성 고분자 지지체가 합지된 적층체를 제조하였다. 상기 적층체에 자외선으로 UVC를 이용하여 3000 mJ/㎠의 광량으로 조사하여 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성하였다. 상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하였다.
[화학식 1]
Figure PCTKR2023007175-appb-img-000005
식 중에서, X-는 Cl-이다.
실시예 2: 음이온 교환막의 제조
두께 80 ㎛의 폴리프로필렌 다공성 고분자 지지체(공극률: 45%)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음이온 교환막을 제조하였다.
실시예 3: 음이온 교환막의 제조
두께 110 ㎛의 폴리프로필렌 다공성 고분자 지지체(공극률: 48%)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음이온 교환막을 제조하였다.
비교예 1: 음이온 교환막의 제조
두께 120 ㎛의 폴리프로필렌 다공성 고분자 지지체(공극률: 28%)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음이온 교환막을 제조하였다.
비교예 2: 음이온 교환막의 제조
두께 60 ㎛의 셀룰로오스아세테이트 부직포-타입 지지체(공극률: 75%)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음이온 교환막을 제조하였다.
비교예 3: 음이온 교환막의 제조
두께 20 ㎛의 폴리에틸렌/폴리프로필렌 메쉬-타입 지지체(공극률: 84%)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음이온 교환막을 제조하였다.
비교예 4: 음이온 교환막의 제조
두께 8 ㎛의 폴리에틸렌 다공성 고분자 지지체(공극률: 44 %)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음이온 교환막을 제조하였다.
비교예 5: 음이온 교환막의 제조
(3-아크릴아미도프로필)트리메틸암모늄 클로라이드(TCI사 제조) 42 중량%, N,N'-메틸렌비스아크릴아미드(Merck사 제조) 14 중량%, 2-히드록시-2-메틸프로피오페논(Ciba사 제조) 광 개시제 0.6 중량%, 및 잔량의 증류수를 혼합하여 전체 100 중량%의 음이온 교환 폴리머 형성용 조성물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음이온 교환막을 제조하였다.
분석예 1: 주사전자현미경(SEM) 사진
실시예 1에 의해 제조된 음이온 교환막의 다공성 고분자 지지체의 구조를 주사전자현미경(SEM )을 이용하여 x30K 배율로 관찰하였다. 주사전자현미경은 Hitachi사, S-5500을 이용하였다. 그 결과를 도 3에 나타내었다.
도 3을 참조하면, 실시예 1에 의해 제조된 음이온 교환막의 다공성 고분자 지지체는 3차원 그물망 구조임을 확인할 수 있다.
평가예 1: 물성 평가
실시예 1~3 및 비교예 1~5에 의해 제조된 각각의 음이온 교환막의 물성을 하기와 같이 평가하였다. 그 결과를 하기 표 1에 나타내었다.
(1) 면저항(Ω·㎠)
각각의 음이온 교환막을 5 cm X 5 cm 크기로 잘라 샘플을 준비하였다. 상기 샘플을 0.5 M NaCl 수용액에 24 시간 침지시켰다. 상기 샘플을 면저항 측정용 전극 사이에 위치시키고 LCR meter (E4908A, Agilent사)를 이용하여 음이온 교환막의 선저항(R1), 0.5 M NaCl 수용액의 저항(R2)을 측정하였다. 측정한 저항값(R1, R2)을 하기 식 1에 대입하여 면저항(Rm)을 구하였다. 그 결과를 표 1에 나타내었다.
[식 1]
Rm(Ω·㎠) = (R1 - R2) x S
식 중에서,
Rm은 음이온 교환막의 면저항이고,
R1은 음이온 교환막의 선저항이고,
R2는 0.5 M NaCl 수용액의 저항이고,
S는 전극의 면적이다.
(2) 이온교환용량(Ion Exchange Capacity; IEC, meq/g)
각각의 음이온 교환막을 5 cm X 5 cm 크기로 잘라 샘플을 준비하였다. 상기 샘플을 증류수로 세정한 후 티슈로 여분의 물기를 제거하였다. 1M NaCl 용액 70 ml를 바이알에 채운 후 상기 물기가 제거된 샘플을 1M NaCl 용액에 넣어 12시간 이상 침지하여 1차 전처리를 하였다. 그리고나서, 1차 전처리를 마친 샘플을 증류수로 수회 세척하고 티슈로 여분의 물기를 제거하였다. 0.5M Na2CO3 용액 70 ml를 바이알에 채운 후 상기 물기가 제거된 샘플을 0.5M Na2CO3 용액에 넣어 12시간 이상 침지하여 2차 전처리를 하였다. 그리고나서, 2차 전처리를 마친 샘플은 바이알에서 꺼내고, 남은 용액을 0.01M AgNO3 용액으로 적정(titration)하고 적정시 투입된 AgNO3 용액의 부피를 기록하였다. 상기 샘플을 증류수로 수회 세척한 후 80 ℃ 열풍오븐에서 15분간 건조시켰다. 건조가 완료된 후 건조된 음이온 교환막의 무게를 측정하였다. 측정한 건조된 음이온 교환막의 무게를 하기 식 2에 대입하여 이온교환용량(IEC)을 구하였다. 그 결과를 표 1에 나타내었다.
[식 2]
IEC(meq/g) = (적정시약부피(ml) x 0.01)/건조된 음이온 교환막의 무게(g)
(3) 내화학성
실시예 1 및 비교예 5에서 제조된 음이온 교환막을 5 cm X 5 cm 크기로 잘라 샘플을 준비하였다. 상기 샘플을 NaOH 1M 수용액과 H2SO4 0.5M 수용액 각각에 침지한 후 침지시간(日) 별 각각의 면저항을 상기 (1) 면저항(Ω·㎠)과 동일한 방법으로 구하였다. 그 결과를 표 2 및 표 3에 나타내었다.
지지체
재료
지지체
공극률
(%)
지지체
두께
(㎛)
면저항
(Ω·㎠)
IEC
(meq/g)
실시예 1 폴리프로필렌 55 60 3.0 2.4
실시예 2 폴리프로필렌 45 80 7.6 1.8
실시예 3 폴리프로필렌 48 110 9.6 1.8
비교예 1 폴리프로필렌 28 120 19.8 1.0
비교예 2 셀룰로오스아세테이트 75 60 2.4 1.9
비교예 3 폴리에틸렌/폴리프로필렌 84 20 0.6 2.7
비교예 4 폴리에틸렌 44 8 0.3 2.8
비교예 5 폴리프로필렌 55 60 4.5 1.0
표 1을 참조하면, 실시예 1~3에 의해 제조된 음이온 교환막의 다공성 고분자 지지체는 공극률이 48 % 내지 55 %이고 두께가 60 ㎛ 내지 110 ㎛인 폴리프로필렌 멤브레인이다. 비교예 1에 의해 제조된 음이온 교환막의 다공성 고분자 지지체는 공극률이 28%이고 두께가 120 ㎛인 폴리프로필렌 멤브레인이다. 실시예 1~3에 의해 제조된 음이온 교환막은 비교예 1에 의해 제조된 음이온 교환막과 비교하여 면저항이 9.6 Ω·㎠ 이하로 감소하였고 이온교환용량(IEC)은 1.8 meq/g 이상으로 향상되었다.
또한 비교예 2에 의해 제조된 음이온 교환막의 다공성 고분자 지지체는 두께 60 ㎛, 공극률: 75%의 셀룰로오스아세테이트 부직포-타입 지지체이다. 비교예 2에 의해 제조된 음이온 교환막은 15wt% NaCl 수용액을 원수로 사용하여 전기투석 시스템에 적용하여 농축을 실시했으나, 농축이 불가능하였다.
비교예 3에 의해 제조된 음이온 교환막의 다공성 고분자 지지체는 두께 20 ㎛, 공극률 84%의 폴리에틸렌/폴리프로필렌 다공성 고분자 지지체이다. 비교예 3에 의해 제조된 음이온 교환막은 15wt% NaCl 수용액을 원수로 사용하여 전기투석 시스템에 적용하여 농축을 실시했으나, 농축이 불가능하였다.
비교예 4에 의해 제조된 음이온 교환막의 다공성 고분자 지지체는 두께 8 ㎛, 공극률 44%의 폴리에틸렌 다공성 고분자 지지체이다. 비교예 4에 의해 제조된 음이온교환막은 두께가 너무 얇아 모듈 체결이 불가능하였다.
침지시간(日) 0 13 28 40
NaOH 1M 수용액 3.0 3.1 3.1 3.2
H2SO4 0.5M 수용액 2.9 2.9 2.8 2.8
침지시간(日) 0 13 28 40
NaOH 1M 수용액 4.4 2.8 2.7 2.6
H2SO4 0.5M 수용액 4.5 4.1 4.0 4.0
표 2는 실시예 1에서 제조된 음이온 교환막을, 표 3은 비교예 5에서 제조된 음이온 교환막을 NaOH 1M 수용액과 H2SO4 0.5M 수용액 각각에 침지하고 침지시간에 따른 면저항을 측정한 결과이다. 표 2를 참조하면, 실시예 1에서 제조된 음이온 교환막은 NaOH 1M 수용액과 H2SO4 0.5M 수용액 각각에 침지하고 40일 후의 면저항 변화가 각각 약 6.7%, 3%이었다. 표 3을 참조하면, 비교예 5에서 제조된 음이온 교환막은 NaOH 1M 수용액과 H2SO4 0.5M 수용액 각각에 침지하고 40일 후의 면저항 변화가 각각 약 41%, 11%이었다.
따라서 실시예 1에서 제조된 음이온 교환막은 비교예 5에서 제조된 음이온 교환막과 비교하여 NaOH 1M 수용액과 H2SO4 0.5M 수용액 각각에 침지하고 40일 후의 면저항 변화가 적어 내화학성이 우수함을 확인할 수 있다.
이로부터, 실시예 1~3에 의해 제조된 음이온 교환막은 전기투석(Electrodialysis), 바이폴라막 전기투석(Bipolar membrane electrodialysis), 전기탈이온(Electrodeionization), 축전식 탈염(Capacitive deionization), 또는 수전해 시스템(water electrolysis)에 사용되기에 적합함을 알 수 있다.

Claims (16)

  1. 멤브레인 구조체로 이루어진 다공성 고분자 지지체; 및
    음이온 교환 폴리머;를 포함하고,
    상기 음이온 교환 폴리머는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 위치하고,
    상기 음이온 교환 폴리머의 음이온 교환기는 상기 다공성 고분자 지지체의 표면과 기공의 내부에 균일하게 분포되어 있고,
    상기 음이온 교환 폴리머는 하기 화학식 1로 표시되는 가교성 모노머를 포함하는 조성물의 가교결합 생성물인, 음이온 교환막:
    [화학식 1]
    Figure PCTKR2023007175-appb-img-000006
    식 중에서,
    X-는 F-, Cl-, Br-, 또는 I-이다.
  2. 제1항에 있어서,
    상기 멤브레인 구조체는 기공이 규칙적으로 배열된 구조이거나 또는 3차원 그물망 구조인, 음이온 교환막.
  3. 제1항에 있어서,
    상기 멤브레인 구조체의 공극률이 30 % 내지 80 %인, 음이온 교환막.
  4. 제1항에 있어서,
    상기 멤브레인 구조체가 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리비닐알콜, 폴리벤즈이미다졸, 폴리아릴렌술파이드, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리술폰, 폴리스티렌, 폴리아릴렌에테르술폰, 및 폴리에테르케톤으로부터 선택된 1종 이상의 고분자를 포함하는, 음이온 교환막.
  5. 제1항에 있어서,
    상기 다공성 고분자 지지체의 두께가 10 ㎛ 내지 110 ㎛인, 음이온 교환막.
  6. 제1항에 있어서,
    상기 음이온 교환막의 평균 두께가 10 ㎛ 내지 200 ㎛인, 음이온 교환막.
  7. 제1항에 있어서,
    상기 음이온 교환막의 이온교환용량이 1.5 meq/g 이상인, 음이온 교환막.
  8. 제1항에 있어서,
    상기 음이온 교환막의 면저항이 10 Ω·㎠ 이하인, 음이온 교환막.
  9. 제1항에 있어서,
    상기 음이온 교환막이 전기투석(Electrodialysis), 바이폴라막 전기투석(Bipolar membrane electrodialysis), 전기탈이온(Electrodeionization), 축전식 탈염(Capacitive deionization), 또는 수전해 시스템(water electrolysis)에 사용되는, 음이온 교환막.
  10. 멤브레인 구조체로 이루어진 다공성 고분자 지지체를 제공하는 단계;
    하기 화학식 1로 표시되는 가교성 모노머, 광 개시제, 및 용매를 포함하는 음이온 교환 폴리머 형성용 조성물을 제조하는 단계;
    상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물을 충진시키는 단계;
    상기 조성물이 충진된 다공성 고분자 지지체의 적어도 일면에 폴리에스테르계 필름을 압착시켜 폴리에스테르계 필름과 상기 다공성 고분자 지지체가 합지된 적층체를 제조하는 단계;
    상기 적층체에 광을 조사하고 상기 조성물을 가교 반응시켜 상기 다공성 고분자 지지체의 표면과 기공의 내부에 상기 조성물의 가교결합 생성물인 음이온 교환 폴리머를 형성하는 단계; 및
    상기 표면과 기공의 내부에 상기 음이온 교환 폴리머가 형성된 다공성 고분자 지지체로부터 상기 폴리에스테르계 필름을 박리하여 음이온 교환막을 제조하는 단계;를 포함하는, 음이온 교환막의 제조방법:
    [화학식 1]
    Figure PCTKR2023007175-appb-img-000007
    식 중에서,
    X-는 F-, Cl-, Br-, 또는 I-이다.
  11. 제10항에 있어서,
    상기 화학식 1로 표시되는 가교성 모노머의 함량이 상기 음이온 교환 폴리머 형성용 조성물 전체 100 중량%를 기준으로 하여 30 중량% 내지 70 중량%인, 음이온 교환막의 제조방법.
  12. 제10항에 있어서,
    상기 멤브레인 구조체의 공극률이 30 % 내지 80 %인, 음이온 교환막의 제조방법.
  13. 제10항에 있어서,
    상기 멤브레인 구조체가 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리비닐알콜, 폴리벤즈이미다졸, 폴리아릴렌술파이드, 폴리에테르에테르케톤, 폴리에테르술폰, 폴리술폰, 폴리스티렌, 폴리아릴렌에테르술폰, 및 폴리에테르케톤으로부터 선택된 1종 이상의 고분자를 포함하는, 음이온 교환막의 제조방법.
  14. 제10항에 있어서,
    상기 다공성 고분자 지지체의 두께가 10 ㎛ 내지 110 ㎛인, 음이온 교환막의 제조방법.
  15. 제10항에 있어서,
    상기 음이온 교환 폴리머 형성용 조성물에 상기 다공성 고분자 지지체를 함침시키기 전에, 상기 다공성 고분자 지지체를 계면활성제 용액에 침지 및 건조하여 친수화된 표면을 갖는 다공성 고분자 지지체를 제조하는 단계를 더 포함하는, 음이온 교환막의 제조방법.
  16. 제10항에 있어서,
    상기 광 조사는 자외선으로 UVC를 사용하여 2000 mJ/㎠ 내지 10000 mJ/㎠ 광량으로 조사하는 것인, 음이온 교환막의 제조방법.
PCT/KR2023/007175 2022-07-18 2023-05-25 음이온 교환막 및 이의 제조방법 WO2024019307A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0088463 2022-07-18
KR1020220088463A KR20240011301A (ko) 2022-07-18 2022-07-18 음이온 교환막 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2024019307A1 true WO2024019307A1 (ko) 2024-01-25

Family

ID=89618102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007175 WO2024019307A1 (ko) 2022-07-18 2023-05-25 음이온 교환막 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20240011301A (ko)
WO (1) WO2024019307A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080086489A (ko) * 2005-12-15 2008-09-25 토넨 케미칼 코퍼레이션 친수성 복합 미세 다공막 및 그 제조 방법
JP2009170350A (ja) * 2008-01-18 2009-07-30 Tokuyama Corp 陽イオン交換膜およびその製造方法
WO2015058137A2 (en) * 2013-10-18 2015-04-23 Virginia Tech Intellectual Properties, Inc. Dabco-containing copolymers
JP6227791B2 (ja) * 2014-08-14 2017-11-08 富士フイルム株式会社 イオン交換膜及びその製造方法、並びに、モジュール及び装置
JP6313454B2 (ja) * 2014-08-19 2018-04-18 富士フイルム株式会社 高分子膜形成用組成物及びその製造方法、高分子膜、分離膜モジュール、並びに、イオン交換装置
KR20190126562A (ko) * 2018-05-02 2019-11-12 도레이첨단소재 주식회사 표면 이온 교환 고분자 전해질이 제거된 세공충진 이온 교환 고분자 전해질 복합막 및 이의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080086489A (ko) * 2005-12-15 2008-09-25 토넨 케미칼 코퍼레이션 친수성 복합 미세 다공막 및 그 제조 방법
JP2009170350A (ja) * 2008-01-18 2009-07-30 Tokuyama Corp 陽イオン交換膜およびその製造方法
WO2015058137A2 (en) * 2013-10-18 2015-04-23 Virginia Tech Intellectual Properties, Inc. Dabco-containing copolymers
JP6227791B2 (ja) * 2014-08-14 2017-11-08 富士フイルム株式会社 イオン交換膜及びその製造方法、並びに、モジュール及び装置
JP6313454B2 (ja) * 2014-08-19 2018-04-18 富士フイルム株式会社 高分子膜形成用組成物及びその製造方法、高分子膜、分離膜モジュール、並びに、イオン交換装置
KR20190126562A (ko) * 2018-05-02 2019-11-12 도레이첨단소재 주식회사 표면 이온 교환 고분자 전해질이 제거된 세공충진 이온 교환 고분자 전해질 복합막 및 이의 제조방법

Also Published As

Publication number Publication date
KR20240011301A (ko) 2024-01-26

Similar Documents

Publication Publication Date Title
EP1678245B1 (en) Microporous pvdf films and method of manufacturing
WO2019212210A1 (ko) 표면 이온 교환 고분자 전해질이 제거된 세공충진 이온 교환 고분자 전해질 복합막 및 이의 제조방법
DE102010035357B4 (de) Verfahren zur Herstellung einer Ionenaustauschmembran mit lamellarer Morphologie
KR100526649B1 (ko) 중합체 전해질 막의 제조방법 및 당해 방법으로 제조한 중합체 전해질 막
US5157058A (en) Microporous waterproof and moisture vapor permeable structures, processes of manufacture and useful articles thereof
WO2013147520A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2011025259A2 (ko) 연료전지용 고분자 전해질막 및 그 제조방법
WO2014104785A1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2019039820A2 (ko) 다공성 복합 분리막 및 이의 제조방법
WO2022245080A1 (ko) 알칼라인 수전해용 박막 복합체 분리막의 제조 방법
EP2576880A2 (en) Polyimide porous web, method for manufacturing the same, and electrolyte membrane comprising the same
WO2014178620A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
WO2024019307A1 (ko) 음이온 교환막 및 이의 제조방법
WO2023210898A1 (ko) 음이온 교환막
WO2015060698A1 (ko) 분리막에 점착성 바인더를 도포하는 방법
WO2016080642A1 (ko) 바이폴라 이온교환시트 및 그 제조방법
WO2021034068A1 (ko) 1가 음이온 선택성 이온 교환막
WO2016117915A1 (ko) 고분자 전해질 막 및 그 제조방법
WO2015130061A1 (ko) 다공성 지지체, 이의 제조방법 및 이를 포함하는 강화막
WO2024085383A1 (ko) 음이온 교환막 및 그 제조방법
WO2021133045A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
KR20170004413A (ko) 연료전지용 막-전극 복합체 및 그 제조방법
KR20190033171A (ko) 미세다공막의 제조방법
WO2023229390A1 (ko) 극한 산·염기 안정성을 갖는 수처리용 박막 복합체 분리막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843164

Country of ref document: EP

Kind code of ref document: A1