WO2024080220A1 - 全気候対応電気自動車統合熱管理システム - Google Patents

全気候対応電気自動車統合熱管理システム Download PDF

Info

Publication number
WO2024080220A1
WO2024080220A1 PCT/JP2023/036415 JP2023036415W WO2024080220A1 WO 2024080220 A1 WO2024080220 A1 WO 2024080220A1 JP 2023036415 W JP2023036415 W JP 2023036415W WO 2024080220 A1 WO2024080220 A1 WO 2024080220A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coolant
refrigerant
low
heating
Prior art date
Application number
PCT/JP2023/036415
Other languages
English (en)
French (fr)
Inventor
山本祐司
Original Assignee
山本祐司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山本祐司 filed Critical 山本祐司
Publication of WO2024080220A1 publication Critical patent/WO2024080220A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like

Definitions

  • the present invention relates to a thermal management system for electric vehicles, hybrid vehicles, etc., and to an integrated thermal management system that is compatible with all climates, including extremely hot and cold regions, and is made up of an air conditioning system, a cooling system for powertrain-related equipment such as drive motors and electronic and electrical equipment, and a battery thermal management system.
  • the invention has elements in the technical fields of optimization of the heating source and heating means, an integrated system configuration that allows compatibility with all climates, a new hot gas bypass heating system, or an optimized configuration for incorporating a heat pump system with a compressor intake volumetric efficiency improvement means compatible with low outside temperatures.
  • EVs electric vehicles
  • ICEVs internal combustion engine vehicles
  • ACS interior air conditioning system
  • PCS powertrain cooling system
  • BTMS battery thermal management system
  • a liquid cooling medium that is heated as a result of cooling the engine which is usually a mixture of water, ethylene glycol, and a small amount of additives (hereinafter referred to as coolant), is introduced into a heat exchanger called a heater core in the vehicle cabin to serve as a heating heat source for heating the air inside the vehicle cabin.
  • a heating heat source such as an electric heater such as a PTC (Positive Temperature Coefficient) or a combustion heater to use it as auxiliary heating until the specified temperature inside the vehicle cabin is reached.
  • the heat source for heating the vehicle cabin may not be able to obtain an amount of heat equivalent to the heat recovered from the engine of an ICEV from the PCS.
  • the first generation of recent EVs used electric heaters to heat the air inside the vehicle cabin.
  • electric heaters for vehicle cabin heating could not theoretically convert more electrical energy into heating energy than it consumed, so there was a drawback that the heating coefficient of performance (hereafter referred to as COP) was less than 1.
  • COP heating coefficient of performance
  • HVAC unit air conditioning unit
  • heaters are used to varying degrees except for the standby cooling, strongest cooling, and ventilation modes.
  • temperature control is usually performed using a cold/hot air mixing control type (hereafter referred to as an air mix type) in which the air in the vehicle cabin cooled to a certain appropriate temperature by the evaporator and the air heated by passing through the heater core downstream of the evaporator are controlled to a specified temperature by adjusting the air mixing device.
  • air cooling and heating functions are used simultaneously for various purposes, such as preventing window fogging for safety, preventing unpleasant odors for comfort, dehumidifying and heating, air mix type temperature control, and humidity control.
  • the heater reheats the air after it has been dehumidified or cooled. Therefore, when an electric heater is used as a heater even in regions other than cold regions, the reduction in driving range due to power consumption cannot be ignored, and this has been an issue to be improved not only in cold regions but also in regions with all climatic conditions.
  • a system hereafter referred to as a heat pump system
  • EVs which is a method widely used in general residential air conditioners, and which uses a normal vapor compression refrigeration cycle to absorb heat from the inside of the vehicle and release it to the outside air for cooling, and a system that absorbs heat from the outside air by switching the refrigerant circuit to supply heating to the inside of the vehicle.
  • a heat pump system a system that absorbs heat from the outside air by switching the refrigerant circuit to supply heating to the inside of the vehicle.
  • the high-temperature coolant loop of an EV's PCS may be used as part of a heating heat source from the perspective of effective use of recovered heat, but although it is high temperature, the temperature of the cooling coolant is lower than in the case of an ICEV, and its flow rate and energy level are also lower.
  • the reason for this is, as explained in the ACS description, that the powertrain of an EV has a higher direct energy efficiency than that of an ICEV, resulting in a lower level of exhaust heat, and as a result, the temperature and energy level are insufficient on their own as a heating source in cold regions, etc. Therefore, in cold regions, it is necessary to combine it with an auxiliary heat source, but the challenge is how to do this and how to minimize energy consumption and increased costs.
  • FCVs fuel cell vehicles
  • EVs require three types of thermal management: ACS, PCS, and BTMS, and many attempts have been proposed to integrate and control and optimize them. Some are actually being used.
  • definitive technologies and combination methods have not been found that minimize energy consumption and cost increases for each issue, and the current background in this field is that there is no integrated system of three types of thermal management that can be considered a de facto standard technology for all operating modes in all climates, taking into account ongoing new technologies and adaptation to FCVs.
  • an "electric vehicle thermal management system suitable for regions with high temperatures” has been invented, and is considered to be a system specialized and optimized for regions with high temperatures.
  • an electric vehicle thermal management system suitable for regions with low temperatures is considered to require an additional auxiliary heat source, and in order to make the system optimal for all weather applications, it is necessary to take measures such as adding an electric coolant heater or changing the system configuration to accommodate regions with low temperatures without compromising the characteristics suitable for high temperatures.
  • Patent Document 1 As problem 1 , in Patent Document 1, it is an essential requirement to control the heater core outlet coolant temperature to the chiller outlet temperature level. Therefore, it is necessary to control the coolant flow rate supplied to the heater core, which is the optimum system for small heating capacity in hot climate regions. On the other hand, in order to solve the problem of compatibility with all climates, it is necessary to improve the maximum heating capacity corresponding to cold regions and extremely cold regions. In other words, it is necessary to reconfigure the system so that the coolant flow rate can be increased according to the heating load demand, and the refrigerant flow rate of the compressor that generates the heat source can be increased accordingly. Another problem is to set a means to avoid adding an electric coolant heater for pre-heating the battery, which is not necessary in hot climate regions.
  • Patent Document 2 proposes a "vehicle temperature control device and in-vehicle thermal system," and describes the effective use of energy through a heat pump system and heat storage technology as a means of efficiently applying heating, which is a weak point of EV ACS.
  • a heat pump system requires a refrigerant circuit switching system that can simultaneously use the evaporator for cooling and the interior condenser for heating, but this technology does not propose this system.
  • the heating capacity is common in normal heat pump systems, and since a small evaporator is used in contrast to the outdoor heat exchanger that can be set to a large capacity, it is easy to understand that the system has a small evaporation capacity and a low refrigerant flow rate compared to the compressor capacity.
  • this technology uses an indirect refrigerant cooling method with a water-cooled condenser and radiator for air conditioning and battery cooling, but compared to a direct refrigerant cooling method using an air-cooled condenser, the temperature difference between the refrigerant and the outside air that is being heat exchanged is divided by the intermediate coolant, and the temperature difference between the water-cooled condenser and the radiator becomes smaller, so the heat exchanger becomes larger, heavier, and more expensive. This has a significant impact on the radiator, especially in high-temperature areas where the outside air temperature is high.
  • Patent Document 4 a "thermal management system for vehicles” is invented, and it describes the use of exhaust heat recovery from the battery and on-board electronic and electrical equipment as a heat source on the heat absorption side of the heat pump system, as well as a heat pump system that absorbs heat from an outdoor heat exchanger at low outside temperatures using gas injection compressor technology.
  • Patent Document 3 it does not disclose an effective means of preheating the battery when the vehicle is parked and there are no heat-generating devices. Ultimately, it is thought that an electric heater will be necessary. Also, while the settings for the special heat exchanger are described in detail, it is unclear how the system is optimized for all operating modes in all climates.
  • the second problem is to obtain an optimal means for preheating a battery without using an electric heater, taking into consideration energy efficiency, cost, weight, control, and the like.
  • the third objective is to obtain an optimal heating means that recovers heat from the PCS in consideration of energy efficiency, cost, weight, control, etc., and that does not lose efficiency in low-temperature climate regions, is simple, and does not use electric heaters.
  • Means for solving problem 1 As shown in the list in Fig. 7, in Fig. 7 showing a system configuration incorporating the technology of Patent Document 1, in the low-temperature coolant loop (102) defined in Fig. 9, a high-temperature coolant bypass section is formed between the coolant heater (11) and the heater core (35), and the flow rate of the high-temperature coolant bypass section is controlled to return the temperature level of the low-temperature coolant loop (102) to the chiller (17) outlet at the outlet of the heater core (35). Therefore, it is predicted that the coolant flow rate passing through the heater core will be at most about 1/2 or less, and at least about 1/10 or less, of the maximum flow rate of the low-temperature side electric pump (50) of the low-temperature coolant loop (102).
  • the coolant supplied to the heater core (35) is supplied only from the high-temperature coolant loop (101), not from a part of the low-temperature coolant loop (102).
  • the coolant flow rate for heating can be respected even if the ACS requirements exceed the PCS, and its maximum value is the maximum capacity of the high-temperature side electric pump (30).
  • this value is assumed to be, for example, about twice or more the maximum capacity of the low-temperature side electric pump (50), and since there is no need for the aforementioned flow rate restriction, a substantially much larger coolant flow rate can be supplied, making it possible to accommodate cold regions or extremely cold regions.
  • EVTTMS all-weather electric vehicle integrated thermal management system
  • the heat source for preheating the battery is the high-temperature, high-pressure refrigerant at the outlet of the electric compressor (10) that is supplied to the coolant heater (11).
  • the relatively high-temperature, high-pressure refrigerant passes through the expansion valve of the refrigerant control valve with expansion valve (12), becomes a low-temperature, low-pressure refrigerant, is compressed by the electric compressor (10), and becomes a high-temperature, high-pressure refrigerant again, repeating the vapor compression refrigeration cycle.
  • This cycle is called hot gas bypass heating, etc., and usually keeps the outlet of the coolant heater (11) in a gas-phase refrigerant state, avoiding failures due to liquid compression of the electric compressor (10).
  • NHGBH new hot gas bypass heating
  • the refrigerant state at the outlet of the coolant heater (11) and the inlet of the refrigerant control valve with expansion valve (12) from a high-temperature, high-pressure gas phase refrigerant state to a gas-liquid mixed state that further increases the amount of heating heat, and the purpose is to increase the enthalpy difference between the inlet and outlet, and the control to make the outlet refrigerant state of the electric compressor (10) side having the expansion valve of the refrigerant control valve with expansion valve (12) and the inlet refrigerant state of the electric compressor (10) to a low-temperature, low-pressure gas phase is realized by a dedicated setting of the orifice in the expansion valve.
  • Figures 40 to 42 show the structural cross section and flow direction control state of an example of a three-way valve of the refrigerant control valve with expansion valve (12), as well as an example of the orifice structure.
  • the orifice diameter is assumed to be about 1 mm to 6 mm
  • the orifice length is assumed to be set to about 1 mm to 10 mm, but in the case of a large diameter, a long capillary tube may be set.
  • a variable orifice structure may be adopted.
  • the common orifice definition is described in claim 7.
  • this technology can heat the coolant more than the power consumption of the electric compressor (10), making it much cheaper and more efficient than electric heaters, and achieving the same level of efficiency as a heat pump system at a low cost, while not having the weaknesses of heat pump systems that are affected by the outside air temperature in the outdoor heat exchanger, such as reduced efficiency due to a drop in refrigerant pressure when absorbing heat as the outside air temperature drops.
  • Claim 8 defines a thermal management controller that includes an NHGBH control method.
  • Figures 67 and 68 show the concept and principle of NHGBH for R134a refrigerant. This new technology can be used in a similar way with other refrigerants depending on their characteristics.
  • the inventions of claims 2 and 3 show that battery preheating is possible, as shown in the representative operating states in Figures 29 and 39.
  • the heat source is the high-temperature, high-pressure refrigerant at the outlet of the electric compressor (10) that is supplied to the coolant heater (11).
  • the relatively high-temperature, high-pressure refrigerant passes through the HP mode expansion valve (20), becomes a low-temperature, low-pressure mist-like liquid refrigerant, absorbs heat from the outside air in the outdoor heat exchanger (13a) or the outdoor evaporator (13b), evaporates, is sucked in at the inlet of the electric compressor (10), and repeats the vapor compression refrigeration cycle.
  • a coolant heater (11) is used for preheating the battery as part of the low-temperature coolant loop (102) required for the BTMS.
  • the high-temperature coolant loop (101) cannot be used for the BTMS because its temperature level is too high, so a dedicated electric coolant heater or the like is usually required, but this invention solves this problem with the system configuration shown in Figures 29 and 39.
  • the invention described in claim 5 solves problem 2 by setting the high-temperature coolant control valve (34) and the low-temperature coolant control valve (52) without setting up additional equipment such as an electric coolant heater, and without the restriction of using the evaporator of the HVAC unit as a heat absorption heat source.
  • the EVTTMS of the present invention has a means of solving problem 2.
  • Means for solving problem 3 In the system configuration of the invention described in claims 1, 2, and 3, heat recovery from the PCS is supported in ACS modes [3] [5] [6] [7] [8] shown in Figures 10, 20, and 30.
  • the high-temperature coolant control valve (34) allows the coolant flow rate and coolant flow direction to be controlled according to each mode as needed.
  • the invention described in claim 5 makes it possible to obtain a heat source for ACS heating by a coolant heater (11) using the high-temperature, high-pressure refrigerant heat source at the outlet of the electric compressor (10).
  • the EVTTMS of the present invention has a means of solving problem 3.
  • Means for solving problem 4 The system configuration of the invention described in claims 1, 2, and 3 defines an entire system that integrates and optimizes the three types of thermal management: ACS, PCS, and BTMS, and its usefulness for all operating modes in all climates is explained in detail in the description of the embodiments of the present invention described below.
  • the EVTTMS of the present invention has a means of solving problem 4.
  • Means for solving problem 5 As shown in the present invention, if the all-solid-state battery technology does not require the low-temperature coolant loop (102) required for the BTMS of the battery pack shown in all the embodiments of the present invention, the BTMS can continue to function as an integrated EVTTMS of the ACS and PCS by deleting that part.
  • the battery pack When applied to FCVs, the battery pack can be interpreted as the cooled part of the FCV, and if pre-heating is not required, the coolant heater (11) and the low-temperature coolant loop (102) can be separated and the system will function as an integrated EVTTMS.
  • the EVTTMS of the present invention has a means of solving problem 5.
  • the object of the present invention is to provide solutions to problems and demonstrate effectiveness in three types of integrated thermal management systems: ACS, which combines an interior air cooling system using refrigerant vapor compression refrigeration technology and an interior air heating system using coolant for EVs, and can operate both cooling and heating without using an electric heater; PCS, a cooling system that uses a relatively high-temperature coolant; and BTMS, a cooling/heating system that uses a relatively low-temperature coolant.
  • ACS which combines an interior air cooling system using refrigerant vapor compression refrigeration technology and an interior air heating system using coolant for EVs, and can operate both cooling and heating without using an electric heater
  • PCS a cooling system that uses a relatively high-temperature coolant
  • BTMS a cooling/heating system that uses a relatively low-temperature coolant.
  • Effect 1 All recovered heat from the PCS can be used as a heating heat source for the ACS.
  • the recovered heat from the electric compressor used for cooling purposes in both the ACS and BTMS can also be used as a heater heat source. All recovered heat is captured, providing an EVTTMS that achieves maximum energy efficiency.
  • the high-temperature coolant loop (101) and the low-temperature coolant (102) of the PCS and BTMS can be controlled separately, but the coolant heater (11), which is a heat exchanger that transfers heat from the outlet of the electric compressor (10) to the coolant, is provided as an EVTTMS that allows common control for both loops. As a result, weight, cost, and efficiency are optimized.
  • the NHGBH allows the electric compressor (10) to create a heater heat source that is more efficient than an electric heater, and enables control to make it a heater heat source with little effect from the low temperature outside air, thereby avoiding the setting and use of an electric heater and providing a low-cost, highly efficient EVTTMS.
  • Effect 4 While maintaining the above effects 1 and 2, we provide an EVTTMS that can be combined with a heat pump system heating system that maintains the basic EVTTMS configuration and is not easily affected by low temperature outside air. We are able to provide a flexible option that contributes to high efficiency, especially in areas where the heating period is long under conditions where the efficiency of the heat pump system is particularly high.
  • a low-cost EVTTMS is provided that has a low refrigerant pressure drop with a smaller weight and cost in the refrigerant circuit or refrigerant loop (100) and minimizes bypass circuits and control valves, resulting in a high basic COP.
  • Effect 6 Regardless of whether or not the heat pump system is set, an EVTTMS with accurate temperature control that uses cooling and heating simultaneously in the ACS and a dehumidifying heating mode is provided without using an electric heater.
  • Effect 7 We provide an EVTTMS that can be used in all regions, from extreme heat to extreme cold, and that can achieve cost optimization for each region through easy option settings.
  • Effect 8 It is compatible with all ACS, PCS, and BTMS modes, including pre-cooling and pre-heating for air conditioning, and pre-cooling and pre-heating for batteries, and provides EVTTMS, including maintenance through temperature management of the battery while parked.
  • the air-cooled heat exchanger used in the condenser mode of the condenser (13) and the outdoor heat exchanger (13a) which finally cool, condense and supercool the refrigerant is a means for directly cooling the refrigerant with air, rather than a means for indirectly releasing heat to the outside air using a water-cooled condenser and an additional air-cooled radiator as shown in Patent Document 3.
  • This has the effect of making it possible to make the temperature difference between the outside air and the refrigerant larger even in extremely hot regions, thereby obtaining higher cooling efficiency.
  • FIG. 1 is a block diagram of one EVTTMS embodiment A-1 of the system 200 of the present invention.
  • FIG. 2 is a block diagram of one EVTTMS embodiment A-2 of the system 200 of the present invention.
  • FIG. 1 is a block diagram of one EVTTMS embodiment A-3 of the system 200 of the present invention.
  • FIG. 2 is a block diagram of one EVTTMS embodiment B-1 of the system 200 of the present invention.
  • FIG. 1 is a block diagram of one EVTTMS embodiment B-2 of the system 200 of the present invention.
  • FIG. 1 is a block diagram of one EVTTMS embodiment B-3 of the system 200 of the present invention.
  • FIG. 10 This is an operating state diagram of the system in the pre-cooling mode [P]-[c]-[1] of the embodiments A-1 and A-2 of the present invention. This is a diagram showing the operating state of the system in the strongest cooling mode [D]-[c]-[2] of the embodiments A-1 and A-2 of the present invention. This is a system operation state diagram for modes [D]-[c]-[3] temperature control cooling and [D]-[c]-[5] dehumidification heating in embodiments A-1 and A-2 of the present invention. This is an operating state diagram of the system in mode [D]-[c]-[4] Ventilation-Off in embodiments A-1 and A-2 of the present invention.
  • FIG. 10 this is a list of device operation statuses for realizing each mode in the cases of the embodiments B-1 and B-2.
  • FIG. 13 is a diagram showing an all-mode compatible state in which the NHGBH of Examples A-1, 2, and 3 are partially used in an example of a refrigerant control valve with expansion valve (12)-3-way valve.
  • FIG. 1 This is a diagram showing the all-mode compatible state in which the NHGBH of Examples A-1, 2, and 3 is used 100% in an example of a refrigerant control valve with expansion valve (12)-3-way valve.
  • This figure shows the mode correspondence states of [P]-[pc]-[0], [P]-[c]-[1], [D]-[c]-[2], [D]-[c]-[3], [D]-[c]-[4], [D]-[c]-[5], and [D]-[c]-[6] in an example of a refrigerant control valve A (12a)-4-way valve in accordance with embodiments B-1 and B-2.
  • FIG. 13 is a diagram showing the [D]-[c]-[7] mode corresponding states of the embodiments B-1 and B-2 in an example of a refrigerant control valve A (12a)-4-way valve.
  • This figure shows the [P]-[c]-[8] and [P]-[ph]-[0] mode corresponding states of Examples B-1 and B-2 in an example of a refrigerant control valve A (12a)-4-way valve.
  • FIG. 13 is a diagram showing the [D]-[c]-[7] mode corresponding states of embodiment B-3 in an example of a refrigerant control valve A (12a)-3-way valve.
  • FIG. 13 is a diagram showing the mode correspondence states of [P]-[pc]-[0], [P]-[c]-[1], [D]-[c]-[2], [D]-[c]-[3], [D]-[c]-[4], [D]-[c]-[5], and [D]-[c]-[6] in an example of a refrigerant control valve B (12b)-4-way valve in accordance with embodiments B-1 and B-2.
  • FIG. 13 is a diagram showing the mode correspondence states of [P]-[pc]-[0], [P]-[c]-[1], [D]-[c]-[2], [D]-[c]-[3], [D]-[c]-[4], [D]-[c]-[5], and [D]-[c]-[6] in an example of a refrigerant control valve B (12b)-4-way valve in accordance with embodiments B-1 and B-2.
  • FIG. 13 is a diagram showing the [D]-[c]-[7] mode corresponding states of the refrigerant control valve B (12b)-4-way valve in accordance with the embodiments B-1 and B-2.
  • This is a diagram showing the [P]-[c]-[8] and [P]-[ph]-[0] mode corresponding states of embodiments B-1 and B-2 in an example of a refrigerant control valve B (12b)-4-way valve.
  • FIG. 1 shows an example of a high temperature coolant control valve (34) - a 4-way valve, with the corresponding states of the [P]-[pc]-[0], [P]-[c]-[1], and [P]-[ph]-[0] modes for all embodiments.
  • FIG. 1 shows an example of a high temperature coolant control valve (34) - a 4-way valve, with the corresponding states of the [P]-[pc]-[0], [P]-[c]-[1], and [
  • FIG. 13 is a diagram showing the [D]-[c]-[2] and [D]-[c]-[4] mode corresponding states of all embodiments of an example of a high-temperature coolant control valve (34)-4-way valve.
  • FIG. 13 shows an example of a high temperature coolant control valve (34)-4-way valve in a state corresponding to modes [D]-[c]-[3], [D]-[c]-[5], [D]-[c]-[6], [D]-[c]-[7], and [D]-[c]-[8] of all embodiments, when the coolant heater (11) is not used.
  • FIG. 13 shows an example of a high temperature coolant control valve (34)-4-way valve in a state corresponding to modes [D]-[c]-[3], [D]-[c]-[5], [D]-[c]-[6], [D]-[c]-[7], and [D]-[c]-[8] of all embodiment
  • FIG. 13 shows an example of a high temperature coolant control valve (34) - a 4-way valve, when the coolant heater (11) is used in the modes [D]-[c]-[3], [D]-[c]-[5], [D]-[c]-[6], [D]-[c]-[7], and [P]-[c]-[8] of all embodiments.
  • the high temperature coolant control valve (34) is an example of a 6-way valve and shows the [P]-[pc]-[0], [P]-[c]-[1], and [P]-[ph]-[0] mode corresponding states for all embodiments.
  • FIG. 13 is a diagram showing the [D]-[c]-[2] and [D]-[c]-[4] mode corresponding states of all embodiments of an example of a high-temperature coolant control valve (34)-6-way valve.
  • FIG. 13 is a diagram showing an example of a high temperature coolant control valve (34)-6-way valve in the case where the coolant heater (11) is not used in the modes [D]-[c]-[3], [D]-[c]-[5], [D]-[c]-[6], and [D]-[c]-[7] of all the embodiments.
  • FIG. 13 is a diagram showing the [D]-[c]-[2] and [D]-[c]-[4] mode corresponding states of all embodiments of an example of a high-temperature coolant control valve (34)-6-way valve.
  • FIG. 13 is a diagram showing an example of a high temperature coolant control valve (34)-6-way valve in the case where the coolant heater (1
  • FIG. 13 shows an example of a high temperature coolant control valve (34) - a 6-way valve, and illustrates the use of a coolant heater (11) in modes [D]-[c]-[3], [D]-[c]-[5], [D]-[c]-[6], and [D]-[c]-[7] of all embodiments.
  • FIG. 13 is a diagram showing the [P]-[c]-[8] mode corresponding states of all embodiments of an example of a high temperature coolant control valve (34)-6-way valve.
  • FIG. 13 is a diagram showing an example of a low temperature coolant control valve (52)-6-way valve, and corresponds to all modes except [P]-[ph]-[0] battery pre-heating, in which the low temperature radiator is not used.
  • FIG. 13 shows an example of a low temperature coolant control valve (52)-6-way valve, and illustrates all modes using the low temperature radiator except for [P]-[ph]-[0] battery preheat for all embodiments.
  • FIG. 13 is a diagram showing an example of a low temperature coolant control valve (52)-6-way valve in the [P]-[ph]-[0] battery pre-heating mode corresponding state for all embodiments.
  • FIG. 13 shows an example of a low-temperature coolant control valve (52)--a 4-way valve, and illustrates all modes except [P]-[ph]-[0] battery preheating, in which the low-temperature radiator is not used.
  • FIG. 13 shows an example of a low temperature coolant control valve (52)-4-way valve, and illustrates all modes using the low temperature radiator except for [P]-[ph]-[0] battery preheat for all embodiments.
  • FIG. 13 is a diagram showing an example of the low temperature coolant control valve (52)--a four-way valve in the [P]-[ph]-[0] battery pre-heating mode corresponding state for all embodiments.
  • FIG. 1 illustrates typical refrigerant pressure-enthalpy conditions for a NHGBH system.
  • FIG. 1 illustrates a typical working principle of the NHGBH system.
  • Figures 1 to 6 show the overall configuration of an all-weather electric vehicle thermal management system (200), EVTTMS, which integrates and optimizes three types of thermal management, ACS, PCS, and BTMS, according to embodiments A-1, A-2, A-3, B-1, B-2, and B-3 of the present invention, respectively.
  • Figure 9 shows the names of the main components used in Figures 1 to 7, their symbols, their functions, and the minimum number of components used per system. It also defines the groups of equipment that make up the refrigerant loop (100), high-temperature coolant loop (101), and low-temperature coolant loop (102).
  • the components of each loop are connected with pipes, hoses, etc., and are shown with solid lines for refrigerant and rough dashed lines for coolant.
  • the refrigerant loop (100) represents the entire refrigerant circuit consisting of all the equipment through which the refrigerant flows as part of the ACS and BTMS.
  • the refrigerant discharged from the electric compressor (10) driven by the electric energy supplied from the battery passes through the coolant heater (11) and then uses the condenser (13) shown in Figures 1, 2, 3, and 6 or the outdoor heat exchanger (13a) shown in Figures 4 and 5 in condenser mode to cool, condense, and supercool the refrigerant to a liquid state, and then supplies it to the evaporator expansion valve (14) and evaporator (15) in the HVAC unit.
  • the refrigerant loop (100) is also part of the BTMS, and supplies cooled and condensed liquid refrigerant to the chiller expansion valve (16) and chiller (17), which cool the coolant for the battery cooling, in parallel with the evaporator (15) for heat absorption.
  • the chiller (17) and evaporator (15) can also be operated independently as needed.
  • the refrigerant loop (100) has the function of controlling the flow rate of the refrigerant according to the load state of each operating mode. Specifically, this is achieved by obtaining a signal from the refrigerant temperature and pressure sensor B (19) and controlling the opening of the expansion valve to appropriately maintain the required refrigerant heating degree at the inlet of the electric compressor (10).
  • the valve opening may be controlled by an automatic adjustment function using the built-in heat sensing function of each expansion valve to maintain the refrigerant heating degree at the outlet of each expansion valve at a specified characteristic state.
  • the rotation speed of the electric compressor (10) is controlled to appropriately adjust the pressure fluctuations at the inlet and outlet of the electric compressor (10) that accompany the fluctuations in the refrigerant flow rate due to these controls.
  • the rotation speed of the electric compressor (10) reaches its maximum according to the above control when the total cooling load on the battery side and the inside of the vehicle interior reaches the maximum allowable value of the system.
  • the air volume of the cooling fan (72) also reaches its maximum. If the system is loaded beyond the design upper limit, or if the system is overloaded due to some malfunction, the thermal management controller (73) takes emergency measures to prioritize cooling on the battery side and sacrifice indoor cooling. In more detail, when the cooling load of the system approaches its maximum value, the outlet pressure of the electric compressor (10), which will have already reached its maximum allowable rotation speed, rises.
  • the signal of the refrigerant temperature pressure sensor A (18) is obtained and the air volume of the cooling fan (72) is increased to maintain the maximum limit values of the refrigerant pressure and refrigerant temperature set in the system.
  • the air volume reaches its maximum or has already reached its maximum battery cooling takes priority, and the air volume of the evaporator in the HVAC unit is quickly and forcibly reduced to reduce the load on the cooling inside the vehicle cabin, and the thermal management controller (73) performs comprehensive control of the ACS and BTMS to ensure the battery cooling function, which is important for safety, is within the overall cooling load range.
  • the high-temperature coolant loop (101) is a part of the ACS and PCS and represents the entire refrigerant circuit consisting of all the devices through which high-temperature coolant flows. It is always in operation when the vehicle is in driving mode, and mainly cools the electronic and electrical devices (32) and the drive motor (33) as necessary. It controls the coolant flow rate of the high-temperature electric pump (50) and the air volume of the cooling fan (72) based on the coolant temperature detected by the coolant temperature sensor 1 (37) so that each device is in the appropriate temperature range.
  • cooling fan (72) is shared with devices that use the refrigerant that constitutes the CRFM, such as the condenser (13), the exterior heat exchanger (13a), and the exterior evaporator (13b), it is necessary to consider the control of the refrigerant pressure and temperature, but the high-temperature allowable temperature control of the coolant takes priority.
  • coolant is supplied to the heater core (35) in the HVAC unit as necessary, and the heat recovered by the electronic and electrical equipment (32) and the drive motor (33) and absorbed in the coolant is used by the heater core (35) to heat the interior air. This reduces the load on the high-temperature radiator (31), resulting in energy savings at the same time.
  • the coolant flow rate of the high-temperature side electric pump (50) can be increased more than required by the PCS to increase the heating heat source, but if a further increase in the heat source is required, the coolant can be further heated in the coolant heater (11) using the high-temperature refrigerant at the outlet of the electric compressor (10) before it is supplied to the heater core (35). This is controlled by the heat management controller (73) through the high-temperature coolant control valve (34). At this time, the coolant heater (11) also contributes to reducing the load on the downstream condenser (13) and the outdoor heat exchanger (13a) used in the cooling condensation mode, and also contributes to reducing the power consumption of the electric compressor (10).
  • a high-temperature coolant control valve (34) is provided to enable control of the high-temperature coolant loop (101).
  • it is a four-way valve.
  • the flow direction control for this is shown together with the structural cross section in Figures 52 to 55.
  • a six-way valve is also possible, and the structural cross section of the valve and the flow direction control state in that case are shown in Figures 56 to 60. It is shown that the control valve can handle all combinations of the PCS, BTMS, and ACS modes shown in Figures 10, 20, and 30.
  • the circuit connection position relationship diagram for the six-way valve shown in the upper left of each diagram of the six-way valve example is defined by changing the coolant circuit connection position relationship around the control valve shown in all embodiments, and in addition to the overall system function that can be controlled by the four-way valve for each mode, a circuit that bypasses the powertrain and CRFM is set at the outlet of the electric pump (30). This makes it possible to handle cases where it is necessary to prevent heat loss in the powertrain equipment and high-temperature radiator (31) in the case of a four-way valve in the standby heating mode.
  • the relatively low-load evaporative refrigerant flow rate required by the chiller (17) alone while the battery is being cooled may not satisfy the condensing refrigerant flow rate required by the coolant heater (11) required for high-load heating.
  • the NHGBH system or heat pump system described in the method for solving problem 2 above is applied to increase the evaporative refrigerant flow rate according to the need for high-load heating, and the heat management controller (73) efficiently controls it.
  • the low-temperature coolant loop (102) is a part of the BTMS and represents the entire coolant circuit composed of all the equipment through which the low-temperature coolant flows.
  • the chiller (17) works in conjunction with the above-mentioned coolant loop (100) to detect the coolant temperature at the inlet of the battery heat exchanger (51) with the coolant temperature sensor 2 (54) and control the rotation speed of the low-temperature side electric pump (50) so that the temperature of the battery cell is within a specified range, thereby controlling the specified coolant temperature and battery cell temperature.
  • the rotation speed of the electric compressor (10) is controlled to appropriately set the capacity of the chiller (17), but the thermal management controller (73) performs comprehensive optimal control to minimize the rotation speed of the electric compressor (10), which consumes more power than the low-temperature side electric pump (50).
  • the cooled coolant is then used to cool the battery in the battery heat exchanger (51).
  • the temperature of the battery cells needs to be kept as uniform as possible between approximately 15°C and 35°C, or between approximately 10°C and 40°C, depending on the type and manufacturer.
  • the temperature at the outlet of the battery heat exchanger (51) is also detected by the coolant temperature sensor 3 (55), and the rotation speed of the low-temperature side electric pump (50) and the electric compressor (10) are comprehensively optimally controlled to keep the temperature difference between the inlet and outlet within a specified range, for example about 3 degrees.
  • the high-temperature coolant loop (101) and the low-temperature coolant loop (102) are separate circuits and require separate thermal management, and this is also applied in this embodiment.
  • pre-cooling of the battery is performed by controlling the rotation speed of the low-temperature side electric pump (50) and the flow rate and flow direction of the low-temperature coolant control valve (52).
  • the low-temperature side electric pump (50) can be stopped, and when the cooling load is high, the chiller expansion valve (16) and chiller (17) are operated, and when the cooling load is low or the outside air temperature is sufficiently low, the flow path set by the low-temperature coolant control valve (52) allows the coolant to be supplied to the low-temperature radiator (57) before it enters the chiller (17) from the outlet of the battery heat exchanger (51), thereby cooling the outside air.
  • the chiller (17) may be turned off and the coolant may simply pass through, thereby avoiding unnecessary energy consumption by the electric compressor (10).
  • the heat management controller (73) takes the outside air temperature, etc. into account and appropriately controls the flow direction with the low-temperature coolant control valve (52).
  • the low-temperature coolant control valve (52) is a six-way valve in this embodiment.
  • the flow direction control for this is shown together with the structural cross section in Figures 61 to 63.
  • a four-way valve is also possible, and the structural cross section and flow direction control of the valve in that case are shown in Figures 64 to 66. It is shown that the control valve can handle all combinations of the PCS, BTMS, and ACS modes shown in Figures 10, 20, and 30.
  • the circuit connection position relationship diagram for the six-way valve shown in the upper left of each figure of the six-way valve example is defined by changing the coolant circuit connection position relationship around the control valve shown in all embodiments, and corresponds to the case where the control valve can be simplified if possible while maintaining the overall system function for each mode equivalent to that of the four-way valve.
  • the high-temperature coolant control valve (34) and the low-temperature coolant control valve (52) can be handled by two of the same type of existing standard four-way valves, making it possible to reduce costs.
  • the coolant heater (11) is a single device that is configured as a system that can adequately handle both the high-temperature coolant loop (101) and the low-temperature coolant loop (102), which require different temperature level management.
  • the coolant heater (11) fulfills both the heating functions of room heating and battery pre-heating. This is novel and contributes to reducing electrical energy consumption, reducing costs, simplifying the system, and reducing weight, and is considered to be an element of a highly creative invention that goes beyond ordinary design choices. For details, see the explanations for each operating mode below.
  • These embodiments are applicable to vehicle interior heating and battery pre-heating in cold or extremely cold regions without using electric heaters such as PTC heaters that have a COP of less than 1, which indicates the ratio of output heating energy to input electric energy. They can contribute to reducing electric energy consumption, reducing costs, simplifying the system, and reducing weight. If necessary, they can easily accommodate additional equipment settings to the basic system, such as independently locating a high-efficiency far-infrared heater on the interior side and combining it with an electric coolant heater. They can be effective if there is an effect of reducing the basic system capacity by lowering the design conditions for the maximum load of the EVTTMS during initial heating in cold regions.
  • the TMS module shown in the figures of these embodiments represents a functional module for realizing the functions of the EVTTMS.
  • the devices that make up the system are usually installed separately, or multiple devices are pre-assembled and installed inside the vehicle.
  • buses, off-road vehicles, etc. if necessary and advantageous, they can be bundled together into a single package and connected to other related devices as a TMS module with piping, hoses, etc. to form the EVTTMS.
  • the battery pack shown in Figures 1 to 7 represents all the physical elements that make up the battery, such as the battery heat exchanger (51) that can cool or heat the battery cells, wiring, coolant inlet/outlet mating connectors, and storage container.
  • HVAC unit and powertrain shown in Figures 1 to 7, as well as the battery pack, are subject to thermal management by the ACS, PCS, and BTMS, respectively, and are components of the EVTTMS.
  • the CRFM shown in Figures 1 to 7 is a physical assembly of a condenser, a radiator, and a fan module that is usually placed in the front of the vehicle.
  • a single fan module cools the condenser (13), the exterior heat exchanger (13a), or the exterior evaporator (13b), the high-temperature radiator (31), and the low-temperature radiator (57) together with outside air, and the temperature and pressure of the refrigerant or coolant are controlled by a cooling fan (72). It is also possible to cool each heat exchanger or heat exchanger group individually using multiple cooling fans (72).
  • the high-temperature radiator (31) and the low-temperature radiator (57) may be set as a physically integrated radiator in the heat exchange part as long as the respective coolant circuits are separated.
  • the CRFM is functionally linked to the TMS module and is a module that constitutes the EVTTMS.
  • the high-temperature reserve tank (36) and the low-temperature reserve tank (53) shown in Figures 1 to 7 should be configured at the highest position in each coolant loop. Therefore, in this embodiment, the coolant connection position from the coolant piping is tentatively set as a general example in which a specific coolant loop layout is not set.
  • the reserve tank depending on the control position of the high-temperature coolant control valve (34) and the low-temperature coolant control valve (52), it may be necessary to connect the circuit in part, the equipment, piping, and hose that are blocked, to the reserve tank with a capillary tube or the like to prevent malfunction due to thermal expansion and contraction of the internal coolant.
  • a phase change material can be set in the reserve tank as a heat storage material.
  • the reserve tank can be integrated.
  • connection state of each major device is shown with lines.
  • the meaning of these lines is defined by the legends and symbols shown in each figure, and the arrows indicate the flow direction of the refrigerant or coolant. They usually represent a set of parts that connect the refrigerant and coolant devices, such as metal piping, flexible hoses, fasteners, fixing brackets, and connectors.
  • the definition of each major device is shown by a symbol and a legend. The same is true for the system operation state diagrams in Figures 11 to 19, Figures 21 to 29, and Figures 31 to 39.
  • a so-called internal heat exchanger can be easily incorporated to exchange heat between the low-temperature, low-pressure refrigerant at the compressor inlet and the high-temperature, high-pressure refrigerant before the expansion valve, thereby increasing the degree of subcooling before the expansion valve and improving system capacity.
  • Example A-1 of the Present Invention ⁇ br/>From here, we will explain the specific parts of Example A-1.
  • Figure 1 shows the overall configuration of the EVTTMS.
  • the system can be used in all climate regions with the same number of main components as the minimum number of components, 29. Therefore, by eliminating unnecessary equipment, bypass valves, and connecting pipes, hoses, connectors, etc., it is possible to minimize the pressure loss of the refrigerant and coolant, resulting in an invention with a superior basic COP.
  • this embodiment includes the contents of Patent Document 3, and an electric coolant heater is added to provide a battery preheating function equivalent to that of the embodiment of the present invention, and compared to the minimum number of 36 components in the system (in the maximum case, the total number of refrigerant control valves is a maximum of 6 compared to the minimum number of 4, resulting in a total of 38 components), it can be used in all climatic regions with 29 components. Therefore, by eliminating unnecessary equipment, bypass valves, and connecting pipes, hoses, connectors, etc., it is possible to minimize pressure loss in the refrigerant and coolant, resulting in an invention with a superior basic COP. Furthermore, this invention also solves all of the problems listed above.
  • NHGBH which was shown as a means for solving problem 2 above, is applied, and the use of electric heaters with a COP of less than 1, such as PTC heaters, can be avoided.
  • the EVTTMS of this embodiment shows the operating status of the main equipment in a list corresponding to all combinations of the operating modes of the ACS, PCS, and BTMS that are actually required.
  • On and Off are shown as typical operating states, but even if compressors, pumps, etc. are On, they do not need to operate depending on the thermal load, and may be temporarily suspended under the control of the thermal management controller (73), but this is configured to cause no problems. Even if cooling fans, chillers, etc. are Off, they can be turned On in exceptional cases, and are also configured to cause no problems.
  • the system operating status corresponding to each mode shown in Figure 10 is described in detail using the respective configuration diagrams.
  • FIG 11 illustrates the system operating status in mode [P]-[pc]-[0], battery pre-cooling, and shows that this embodiment can be realized.
  • the high-temperature side electric pump (30) is stopped, and coolant is not supplied to the high-temperature radiator (31), electronic and electrical equipment (32), drive motor (33), heater core (35), and coolant heater (11), and the entire high-temperature coolant loop (101) is not in operation.
  • refrigerant is not supplied to the expansion valve (orifice) of the refrigerant control valve with expansion valve (12), and the refrigerant is supplied to the chiller (17) via the condenser (13), thereby making it possible to perform battery pre-cooling.
  • Figure 12 illustrates the system operating status in mode [P]-[c]-[1], pre-cooling, and shows that this embodiment is feasible.
  • the high-temperature side electric pump (30) is stopped, and coolant is not supplied to the high-temperature radiator (31), electronic and electrical equipment (32), drive motor (33), heater core (35), and coolant heater (11), and the entire high-temperature coolant loop (101) is not in operation.
  • refrigerant is not supplied to the expansion valve side of the refrigerant control valve with expansion valve (12), and the refrigerant is supplied to the evaporator (15) via the condenser (13), thereby enabling indoor cooling.
  • all BTMS functions other than battery pre-heating can be operated, such as stopping the BTMS by stopping the low-temperature side electric pump (50), circulating the coolant without load, passively cooling the coolant with outside air using the low-temperature radiator (57) or actively cooling the coolant using the chiller (17), or both simultaneously, independently, depending on the required cooling load.
  • Figure 13 shows the system operating status in mode [D]-[c]-[2], maximum cooling, and illustrates that this embodiment is feasible.
  • the heater core (35) and the expansion valve (orifice) of the refrigerant control valve with expansion valve (12) as shown in Figure 40 are in a non-operating state, and all heating means such as the heating of the vehicle interior including the NHGBH and the heating of the battery are stopped, and all energy is used for cooling the vehicle interior and cooling the battery.
  • Figure 14 illustrates the system operating status of mode [D]-[c]-[3], temperature control cooling, and mode [D]-[c]-[5], dehumidification heating, and shows that this embodiment is feasible.
  • the expansion valve (orifice) of the refrigerant control valve with expansion valve (12) is in a non-operating state and the heating means of the NHGBH is stopped, but all other devices are in an operable state.
  • the interior of the vehicle can be air-conditioned with an air mix type HVAC unit, and after cooling and dehumidifying with the evaporator (15), some of the heated air passing through the heater core (35) is mixed with air that has only passed through the evaporator (15), making it possible to adjust the temperature to the level desired by the driver or passengers.
  • the evaporator (15) and heater core (35) can be used simultaneously. The necessity for this is explained in detail below.
  • the surface temperature control or outlet air temperature control of the evaporator (15) is performed independently of the control of the temperature inside the vehicle cabin.
  • the HVAC unit discharge air temperature by simply controlling the refrigerant evaporation pressure and temperature in the normal evaporator (15), and air reheating by the heater core (35) arranged downstream of the evaporator (15) is required. Even if the problem of unpleasant odors is ignored, if there is no heating function after dehumidification of the air, the possibility of a safety problem of window fogging and the discomfort of high humidity cannot be ignored.
  • the surface temperature or outlet air temperature of the evaporator (15) is controlled by an appropriate algorithm to keep the load caused by air reheating to a minimum.
  • the load on the heating function is lower than in the heating mode, etc., so the standard setting is to avoid the NHGBH, which is highly efficient but still consumes energy, and to use only the exhaust heat recovery heat source from the powertrain equipment of the high-temperature coolant loop (101) and the electric compressor (10).
  • various BTMS functions can be operated. Especially when the heating load is low as in this mode, in most cases the amount of heat recovered by the PCS is sufficient, so there is no need to recover heat from the chiller (17) for cooling the battery. Rather, cooling the outside air with the low-temperature radiator (57) without using the power of the electric compressor (10) contributes to energy savings. Since this mode is used relatively frequently, the annual energy saving effect is large even at low loads.
  • Figure 14 explains the system that enables this optimal energy control, and this creative means is not self-evident from the prior art.
  • Figure 15 illustrates the system operating status in mode [D]-[c]-[4], ventilation-Off, and shows that this embodiment is feasible. Specifically, compared to Figure 13, the heating and cooling functions of the HVAC unit are stopped, and only the ventilation function is active. Other functions are maintained, resulting in the desired configuration.
  • Figure 16 shows the system operation status of mode [D]-[c]-[6], temperature control heating, and illustrates the feasibility of this embodiment.
  • the evaporator expansion valve (14) in the HVAC unit in the vehicle cabin has a valve closing function that puts the evaporator (15) out of operation and stops the cooling function
  • the heater core (35) has a heating function that operates with all the functions of the high-temperature coolant loop (101) in the description common to the above-mentioned embodiments.
  • the temperature inside the vehicle cabin can be adjusted by mixing a portion of the recirculated air or outside air with the air that has passed through the heater core (35).
  • the expansion valve (orifice) of the refrigerant control valve with expansion valve (12) is in an inoperative state, and heating of the vehicle interior and battery heating using the NHGBH are stopped.
  • Figure 17 shows the system operating status of mode [D]-[c]-[7], maximum heating, and shows that this embodiment can be realized.
  • the evaporator expansion valve (14) in the HVAC unit in the vehicle cabin has a valve closing function that puts the evaporator (15) in a non-operating state and stops the cooling function, and the heater core (35) can operate the heating function with all the functions of the high-temperature coolant loop (101) in the description common to the above-mentioned embodiments.
  • the coolant that has passed through the powertrain equipment and the coolant heater (11) and has been heated is supplied to the heater core (35), and the outside air or the room air is heated to the maximum to perform heating in the vehicle cabin.
  • the expansion valve (orifice) of the refrigerant control valve with expansion valve (12) is in an operating state, and the NHGBH is used to bypass and increase the refrigerant flow rate from the evaporation side refrigerant flow rate in the chiller (17) for cooling the battery, thereby increasing the total refrigerant flow rate passing through the coolant heater (11).
  • the NHGBH provides the strongest heating possible by using the electric compressor (10) to its maximum discharge capacity.
  • FIG 18 illustrates the system operation status of mode [P]-[c]-[8], pre-heating, and shows that in this embodiment, pre-heating of the vehicle interior after pre-heating of the battery is realized while the EV is parked. Specifically, this mode is started after the battery is heated to a specified temperature, and it is assumed that all CRFM functions are stopped except for the HVAC unit, powertrain, and the outside air natural convection cooling function of the low-temperature radiator (57), and the vehicle interior heating is functioning with the NHGBH system as described below.
  • the expansion valve (orifice) of the refrigerant control valve with expansion valve (12) is in operation, and the refrigerant flow rate is increased to increase the heat source from the electric compressor (10), and the coolant is heated by the coolant heater (11).
  • the entire high-temperature coolant loop (101) is operated to supply high-temperature coolant to the heater core (35).
  • powertrain cooling is not required, but the coolant passes through, so the cooling fan (72) is set to not operate as standard to prevent the coolant from being excessively cooled by the high-temperature radiator (31).
  • the low-temperature coolant control valve (52) of the low-temperature coolant loop (102) is disconnected from the coolant heater (11), so battery heating is stopped. If battery cooling becomes necessary before the end of pre-heating, the standard setting is natural convection cooling with the cooling fan (72) not in operation, using low-temperature outside air in the low-temperature radiator (57) without operating the chiller (17). If forced convection cooling using the cooling fan (72) becomes necessary, it is possible to avoid operating the cooling fan (72) by partially opening the condenser (13) side of the expansion valve-equipped refrigerant control valve (12) as shown in Figure 41 and operating the chiller (17). In either case, there is no need to stop heating.
  • FIG 19 illustrates the system operating status of mode [P]-[ph]-[0], battery pre-heating, and illustrates that pre-heating of the battery before pre-heating is started can be realized in this embodiment.
  • the battery temperature is first heated using an external power source for charging. It is considered that the vehicle battery may be used as a power source under limited discharge conditions. In either case, it is assumed that the functions of the HVAC unit, power train, CRFM, and high-temperature coolant loop (101) are all stopped. Only the low-temperature coolant loop (102) and the NHGBH function are operating, except for the components of the circuit that passes through the low-temperature radiator (57).
  • the low-temperature coolant control valve (52) of the low-temperature coolant loop (102) is connected to the coolant heater (11), so it is shown that the battery can be heated at a relatively low temperature and appropriate coolant temperature through the low-temperature coolant loop (102).
  • FIG. 2 shows the overall configuration of the EVTTMS.
  • Far-infrared heating has the function of directly heating the surface of seat covers, clothes, or the human body when far-infrared rays are emitted from the generating element, and is suitable for direct heating of limited parts of a small space because it is not affected by the air between the seat covers, clothes, or human bodies.
  • the power consumption is also significantly lower than other heaters that consume electric energy, so it is advantageous to combine it with overall heating by air convection. Therefore, it is possible to reduce the normal design capacity setting of the ACS heating mode that matches the maximum heating load in cold weather. It is also considered effective to set an appropriate heating capacity as the standard setting for embodiment A-1 and set embodiment A-2 as an optional setting for extremely cold regions. All the contents described for embodiment A-1 are similarly applied except for the description of the specific parts.
  • FIG. 3 shows the overall configuration of the EVTTMS.
  • a coolant electric heater (38) can be easily added to embodiment A-1 or A-2 depending on the vehicle's option settings or in some extremely cold regions.
  • a combustion heater may be installed as an additional market option, but this is also shown as an example of the possibility of easily adding an additional option to replace it.
  • FIG. 4 shows the overall configuration of the EVTTMS.
  • this embodiment includes the contents of Patent Document 3, and in order to provide a battery preheating function equivalent to that of the embodiment of the present invention, the system has a minimum number of components of 36 (in the maximum case, the total number of refrigerant control valves is a maximum of 6 compared to the minimum number of 4, so the number of components is 38), but with 32 components (even with B-2, which adds a far-infrared heater, the maximum number is 35) it can be used in all climate regions.
  • the flow path is switched as shown in the refrigerant control valve A (12a) shown in Figures 43 to 45 and the refrigerant control valve B (12b) shown in Figures 49 to 51, the refrigerant is condensed in the coolant heater (11), expanded in the HP mode expansion valve (20), the outdoor heat exchanger (13a) is used in evaporator mode, and the refrigerant is evaporated using the heat retained by the outdoor air and returned to the inlet of the electric compressor (10) as a low-temperature, low-pressure gas-phase refrigerant.
  • the coolant heated by the coolant heater (11) is used as a heating heat source for the heater core (35).
  • a compressor suction volumetric efficiency improvement means is added in which, in heat pump mode, after the high-pressure refrigerant at the outlet of the coolant heater (11) passes through refrigerant control valve A (12a), refrigerant control valve B (12b) sets up a small refrigerant bypass circuit (see Figure 50) at the connection seal between the high-pressure side refrigerant control valve A (12a) and the low-pressure side accumulator (21), thereby appropriately increasing the pressure of the low-pressure refrigerant at the inlet of the accumulator (21).
  • Example A-1 All of the above-described contents for Example A-1 are similarly applied, except that the heat pump system is applied as a means.
  • the EVTTMS of this embodiment shows a list of the operation status of the main equipment corresponding to all combinations of the ACS, PCS, and BTMS operation modes that are actually required.
  • the meaning of On and Off here is the same as that explained for Figure 10 in the above-mentioned embodiment A-1.
  • the system operation status corresponding to each mode shown in Figure 20 is explained in detail using each configuration diagram.
  • Figure 21 illustrates the system operating status in mode [P]-[pc]-[0], battery pre-cooling, and shows that this embodiment is feasible.
  • the high-temperature side electric pump (30) is stopped, and coolant is not supplied to the high-temperature side of the radiator (31), the electronic and electrical equipment (32), the drive motor (33), the heater core (35), and the coolant heater (11), and the entire high-temperature coolant loop (101) is not in operation.
  • refrigerant is not supplied to the HP mode expansion valve (20) by control of the refrigerant control valve A (12a), and the refrigerant is supplied to the chiller (17) via the outdoor heat exchanger (13a), thereby enabling battery pre-cooling.
  • Figure 22 illustrates the system operating status in mode [P]-[c]-[1], pre-cooling, and shows that this embodiment is feasible.
  • the high-temperature side electric pump (30) is stopped, and coolant is not supplied to the high-temperature radiator (31), electronic and electrical equipment (32), drive motor (33), heater core (35), and coolant heater (11), and the entire high-temperature coolant loop (101) is not in operation.
  • refrigerant is not supplied to the HP mode expansion valve (20) by control of refrigerant control valve A (12a), and the refrigerant is supplied to the evaporator (15) via the outdoor heat exchanger (13a), thereby enabling indoor cooling.
  • Figure 23 shows the system operating status in mode [D]-[c]-[2], maximum cooling, and illustrates the feasibility of this embodiment.
  • the high-temperature coolant control valve (34) prevents high-temperature coolant from being supplied to the heater core (35), which is not in operation.
  • the refrigerant control valve A (12a) controls the refrigerant to be supplied directly to the exterior heat exchanger (13a), which functions as a condenser, and all energy is used for the intended purpose of cooling the passenger compartment and cooling the battery.
  • all BTMS functions other than battery pre-heating can be operated, such as stopping the BTMS by stopping the low-temperature side electric pump (50), circulating the coolant without load, passively cooling the coolant with outside air using the low-temperature radiator (57) or actively cooling the coolant using the chiller (17), or both simultaneously, independently, depending on the required cooling load.
  • Figure 24 illustrates the system operation status of mode [D]-[c]-[3], temperature control cooling, and mode [D]-[c]-[5], dehumidification heating, and shows that this embodiment is feasible.
  • the HP mode expansion valve (20) is in a non-operating state due to control of refrigerant control valve A (12a), and all devices are in an operable state except for the heat pump system heating means being stopped.
  • the rest of the explanation from the first paragraph onwards related to NHGBH is the same as in Figure 14.
  • Figure 25 illustrates the system operating status in mode [D]-[c]-[4], ventilation-Off, and shows that this embodiment is feasible. Specifically, in comparison with Figure 24, the heating and cooling functions of the HVAC unit are stopped, and only the ventilation function is active. Other functions are maintained, resulting in the desired configuration.
  • Figure 26 shows the system operation status of mode [D]-[c]-[6], temperature control heating, and illustrates the feasibility of this embodiment.
  • the evaporator expansion valve (14) in the HVAC unit in the vehicle cabin has a valve closing function that puts the evaporator (15) out of operation and stops the cooling function
  • the heater core (35) has a heating function that operates with all the functions of the high-temperature coolant loop (101) in the description common to the above-mentioned embodiments.
  • the temperature inside the vehicle cabin can be adjusted by mixing a portion of the recirculated air inside the vehicle or the outside air with the air that has passed through the heater core (35).
  • Refrigerant control valve A (12a) is controlled so that refrigerant is not supplied to the HP mode expansion valve (20), the heat pump system is not in operation, and heating of the vehicle interior and battery by the heat pump system is stopped. Interior heating is performed using only heat recovery from the powertrain and heat recovery from the outlet refrigerant of the electric compressor (10).
  • Figure 27 shows the system operating status of mode [D]-[c]-[7], maximum heating, and illustrates that this embodiment is feasible.
  • the evaporator expansion valve (14) in the HVAC unit in the vehicle cabin has a valve closing function that puts the evaporator (15) in a non-operating state and stops the cooling function, and the heating function of the heater core (35) can be operated with all the functions of the high-temperature coolant loop (101) in the description common to the above-mentioned embodiments.
  • the coolant that has passed through the powertrain equipment and the coolant heater (11) is supplied to the heater core (35), and the outside air or the room air is heated to the maximum to heat the vehicle cabin.
  • Refrigerant is supplied to the HP mode expansion valve (20) by the control of the refrigerant control valve A (12a), the heat pump system described at the beginning of this embodiment is in operation, and the heating of the vehicle interior is started.
  • the compressor intake volumetric efficiency improvement means described at the beginning of this embodiment is applied.
  • Figure 28 illustrates the system operation status of mode [P]-[c]-[8], pre-heating, and shows that in this embodiment, pre-heating of the vehicle interior after pre-heating of the battery can be realized while the EV is parked. Specifically, this mode is started after the battery is heated to a specified temperature, and the vehicle interior heating is functioning under the assumption that all CRFM functions are stopped except for the HVAC unit, the powertrain, and the outside air natural convection cooling function of the low-temperature radiator (57).
  • the HP mode expansion valve (20) is in operation under the control of the refrigerant control valve A (12a), and the vehicle interior heating is started using the heat pump system and compressor intake volumetric efficiency improvement means described at the beginning of this embodiment.
  • the outdoor heat exchanger (13a) operating with the evaporator function absorbs heat from the outside air using natural air convection.
  • the entire high-temperature coolant loop (101) is operated to supply high-temperature coolant to the heater core (35).
  • powertrain cooling is not required, but the coolant passes through, so the cooling fan (72) is set to not operate as a standard so as not to cool the coolant excessively in the high-temperature radiator (31).
  • the low-temperature coolant control valve (52) of the low-temperature coolant loop (102) is disconnected from the coolant heater (11), so battery heating is stopped. If battery cooling becomes necessary before the end of pre-heating, the standard setting is natural convection cooling with the cooling fan (72) turned off and using low-temperature outside air in the low-temperature radiator (57) without operating the chiller (17). If forced convection cooling with the cooling fan (72) becomes necessary, it is possible to provide a bypass circuit and control valve for the high-temperature coolant described above.
  • Figure 29 illustrates the system operating status of mode [P]-[ph]-[0], battery pre-heating, and illustrates that pre-heating of the battery before pre-heating is started can be realized in this embodiment.
  • the battery temperature is first heated using an external power source for charging. It is considered that the vehicle battery may be used under limited discharge conditions as a power source. In either case, it is assumed that the functions of the HVAC unit, power train, CRFM, and high-temperature coolant loop (101) are all stopped. Only the low-temperature coolant loop (102) and the heat pump system function are operating, except for the components of the circuit passing through the low-temperature radiator (57).
  • the low-temperature coolant control valve (52) of the low-temperature coolant loop (102) is connected to the coolant heater (11), so it is shown that the battery can be heated at an appropriate temperature through the low-temperature coolant loop (102).
  • FIG. 5 shows the overall configuration of the EVTTMS.
  • this embodiment of the present invention in contrast to embodiment B-1, it is illustrated that indoor far-infrared heating can be easily added in some extremely cold regions or depending on the vehicle's option settings. This may allow for a reduction in the normal design capacity setting of the ACS heating mode that matches the maximum heating load in cold weather.
  • far-infrared heating refer to the explanation of embodiment A-2 of the present invention. All the contents and features described for embodiment B-1 are similarly applied, except for the explanation of the specific parts of embodiment B-2.
  • FIG. 6 shows the overall configuration of the EVTTMS.
  • an example in which the configuration of the heat pump system is different from that of embodiments B-1 and B-2 is shown.
  • the contents of Patent Document 3 are included, and an electric coolant heater is added to provide a battery preheating function equivalent to that of the embodiment of the present invention, and the system can be adapted to all climatic regions with 34 components, compared to the minimum number of 36 components (in the maximum case, the total number of refrigerant control valves is a maximum of 6 compared to the minimum number of 4, so the number of components is 38).
  • the heat pump system shown in the latter half of the explanation of the means for solving problem 2 is applied as a means.
  • the refrigerant control valve A (12a) shown in FIG. 46 to FIG. 48 can switch the flow path, and the refrigerant is condensed in the coolant heater (11), expanded in the HP mode expansion valve (20), introduced into the outdoor evaporator (13b), evaporated using the heat retained in the outside air, and returned to the inlet of the electric compressor (10) as a low-temperature, low-pressure gas-phase refrigerant.
  • the coolant heated by the coolant heater (11) is used as a heating heat source for the heater core (35).
  • a compressor suction volumetric efficiency improvement means is added, which appropriately increases the pressure of the low-pressure refrigerant at the inlet of the electric compressor (10) by setting up a small refrigerant bypass circuit (see Figure 47) from the refrigerant control valve A (12a) to the electric compressor (10) in heat pump mode.
  • the EVTTMS of this embodiment shows a list of the operation status of the main equipment corresponding to all combinations of the ACS, PCS, and BTMS operation modes that are actually required.
  • the meaning of On and Off here is the same as that explained for Figure 10 in the above-mentioned embodiment A-1.
  • the system operation status corresponding to each mode shown in Figure 30 is explained in detail using each configuration diagram.
  • Figure 31 illustrates the system operating status in mode [P]-[pc]-[0], battery pre-cooling, and shows that this embodiment is feasible.
  • the high-temperature side electric pump (30) is stopped, and coolant is not supplied to the high-temperature side of the radiator (31), the electronic and electrical equipment (32), the drive motor (33), the heater core (35), and the coolant heater (11), and the entire high-temperature coolant loop (101) is not in operation.
  • refrigerant is not supplied to the HP mode expansion valve (20) by control of the refrigerant control valve A (12a), and the refrigerant is supplied to the chiller (17) via the condenser (13), thereby enabling battery pre-cooling.
  • Figure 32 illustrates the system operating status in mode [P]-[c]-[1], pre-cooling, and shows that this embodiment is feasible.
  • the high-temperature side electric pump (30) is stopped, and coolant is not supplied to the high-temperature radiator (31), electronic and electrical equipment (32), drive motor (33), heater core (35), and coolant heater (11), and the entire high-temperature coolant loop (101) is not in operation.
  • refrigerant is not supplied to the HP mode expansion valve (20) by control of refrigerant control valve A (12a), and the refrigerant is supplied to the evaporator (15) via the condenser (13), thereby enabling indoor cooling.
  • all BTMS functions other than battery pre-heating can be operated, such as stopping the BTMS by stopping the low-temperature side electric pump (50), circulating the coolant without load, passively cooling the coolant with outside air using the low-temperature radiator (57) or actively cooling the coolant using the chiller (17), or both simultaneously, independently, depending on the required cooling load.
  • Figure 33 shows the system operating status in mode [D]-[c]-[2], maximum cooling, and illustrates that this embodiment is feasible.
  • the high-temperature coolant control valve (34) prevents high-temperature coolant from being supplied to the heater core (35), which is not in operation.
  • the refrigerant control valve A (12a) controls the refrigerant to be supplied directly to the condenser (13), and all energy is used for the intended purpose of cooling the passenger compartment and cooling the battery.
  • Figure 34 illustrates the system operation status of mode [D]-[c]-[3], temperature control cooling, and mode [D]-[c]-[5], dehumidification heating, and shows that this embodiment is feasible.
  • the HP mode expansion valve (20) is in a non-operating state due to control of refrigerant control valve A (12a), and all devices are in an operable state except for the heat pump system heating means being stopped.
  • the rest of the explanation from the first paragraph onwards related to NHGBH is the same as in Figure 14.
  • Figure 35 illustrates the system operating status in mode [D]-[c]-[4], ventilation-Off, and shows that this embodiment is feasible. Specifically, in comparison with Figure 34, the heating and cooling functions of the HVAC unit are stopped, and only the ventilation function is in effect. All other functions are maintained, resulting in the desired configuration.
  • Figure 36 shows the system operation status of mode [D]-[c]-[6], temperature control heating, and illustrates that this embodiment is feasible.
  • the evaporator expansion valve (14) in the HVAC unit in the vehicle cabin has a valve closing function that puts the evaporator (15) out of operation and stops the cooling function
  • the heater core (35) has a heating function that operates with all the functions of the high-temperature coolant loop (101) in the description common to the above-mentioned embodiments.
  • the temperature inside the vehicle cabin can be adjusted by mixing a portion of the recirculated air inside the vehicle or the outside air with the air that has passed through the heater core (35).
  • Refrigerant control valve A (12a) is controlled so that refrigerant is not supplied to the HP mode expansion valve (20), the heat pump system is not in operation, and heating of the vehicle interior and battery by the heat pump system is stopped. Interior heating is performed using only heat recovery from the powertrain and heat recovery from the outlet refrigerant of the electric compressor (10).
  • Figure 37 shows the system operating status of mode [D]-[c]-[7], maximum heating, and shows that this embodiment is feasible.
  • the evaporator expansion valve (14) in the HVAC unit in the vehicle cabin has a valve closing function that puts the evaporator (15) in a non-operating state and stops the cooling function, and the heating function of the heater core (35) can be operated with all the functions of the high-temperature coolant loop (101) in the description common to the above-mentioned embodiments.
  • the coolant that has passed through the powertrain equipment and the coolant heater (11) is supplied to the heater core (35), and the outside air or the room air is heated to the maximum to heat the vehicle cabin.
  • Refrigerant is supplied to the HP mode expansion valve (20) by the control of the refrigerant control valve A (12a), the heat pump system is in operation, and the vehicle interior is heated.
  • a bypass connection part of the refrigerant control valve A (12a) to the inlet of the electric compressor (10) is set (see FIG. 47) to cause a small leakage of high-pressure side refrigerant into the low-pressure side circuit, and the pressure at the inlet of the electric compressor (10) is appropriately increased, thereby improving the suction volumetric efficiency.
  • Figure 38 illustrates the system operation status of mode [P]-[c]-[8], pre-heating, and shows that in this embodiment, pre-heating of the vehicle interior after pre-heating of the battery can be realized while the EV is parked. Specifically, this mode is started after the battery is heated to a specified temperature, and it is shown that the vehicle interior heating is functioning under the assumption that all CRFM functions are stopped except for the HVAC unit, the powertrain, and the outside air natural convection cooling function of the low-temperature radiator (57).
  • the HP mode expansion valve (20) is in operation under the control of the refrigerant control valve A (12a), and the heat pump system is in operation to heat the passenger compartment.
  • the exterior evaporator (13b) operating in the evaporator function absorbs heat from the outside air by utilizing natural air convection.
  • the entire high-temperature coolant loop (101) is in operation to supply high-temperature coolant to the heater core (35).
  • powertrain cooling is not required, but the coolant passes through, so the cooling fan (72) is set to inactive as a standard to prevent the coolant from being excessively cooled by the high-temperature radiator (31).
  • the low-temperature coolant control valve (52) of the low-temperature coolant loop (102) is disconnected from the coolant heater (11), so battery heating is stopped. If battery cooling becomes necessary before the end of pre-heating, the standard setting is natural convection cooling with the cooling fan (72) turned off and using low-temperature outside air in the low-temperature radiator (57) without operating the chiller (17). If forced convection cooling with the cooling fan (72) becomes necessary, it is possible to provide a bypass circuit and control valve for the high-temperature coolant described above.
  • Figure 39 illustrates the system operating status of mode [P]-[ph]-[0], battery pre-heating, and illustrates that pre-heating of the battery before pre-heating is started can be realized in this embodiment.
  • the battery temperature is first heated using an external power source for charging. It is considered that the vehicle battery may be used under limited discharge conditions as a power source. In either case, it is assumed that the functions of the HVAC unit, power train, CRFM, and high-temperature coolant loop (101) are all stopped. Only the low-temperature coolant loop (102) and the heat pump system function are operating, except for the components of the circuit passing through the low-temperature radiator (57).
  • the low-temperature coolant control valve (52) of the low-temperature coolant loop (102) is connected to the coolant heater (11), so it is shown that the battery can be heated at an appropriate temperature through the low-temperature coolant loop (102).
  • the present invention can be used in all-weather electric vehicle integrated thermal management systems for electric vehicles, including hybrid vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、全気候地域で使用される、バッテリを備えた少なくとも1つの空調システムと、パワートレイン冷却システムと、バッテリ熱管理システムとを備える電気自動車統合熱管理システム。冷媒ループ、高温クーラントループ、低温クーラントループの3ループを用いて、全熱管理モードに対応し、排熱回収と省エネルギ技術を最適最大限に用いている。高温・低温クーラントループ共用のクーラント加熱器を用いた高効率クーラント加熱手段を利用できるので電気ヒータを必要としない。

Description

全気候対応電気自動車統合熱管理システム
本発明は、電気自動車やハイブリッド車等の熱管理システムであり、酷暑や酷寒地域を含む全気候に対応する、空調システム、駆動モーターや電子電気機器等パワートレイン関連機器の冷却システム、及びバッテリ熱管理システムの統合熱管理システムに関するものである。特にその中の加熱源と加熱手段の最適化、全気候への対応を可能にする統合システム構成、新ホットガスバイパス加熱システム、または低外気温対応のコンプレッサ吸入体積効率向上手段を有するヒートポンプシステムの組込みを最適化した構成の技術分野に発明の要素を有する。
今日、全世界のあらゆる地域で、酷暑気候から酷寒気候の地域まで、高いエネルギ密度をもち熱管理が必要な車載バッテリを主にまたは唯一のエネルギ源とする電気自動車(以下EVと称する)が広く量産車として適用開始されている。内燃機関自動車(以下ICEVと称する)同様に運転者と乗客・乗員の快適さのためにEVにも普遍的要件をもつ車室内空調システム(以下ACSと称する)が必要である。また、EVでは、ICEVのエンジン熱管理システムに代わって、駆動モーター、インバータ、充電器、コンバータ等、その他必要に応じて含まれる電子電気機器の冷却が必要とされ、いわゆるパワートレイン冷却システム(以下PCSと称する)をやはり設ける必要がある。さらに、EVにおいては、高いエネルギ密度を持つバッテリには特にバッテリの寿命と効率を適切に保つため、バッテリ熱管理システム(以下BTMSと称する)を設ける必要がある。これらの3つの熱管理システムは、熱的に関連しており共通の構成機器を通して物理的・機能的に結合することができる。回収熱を他のシステムに利用することが可能である場合もあり一部実現されているが、全気候の全稼働モードに対応する排熱回収を含めた最適化された統合熱管理システムが実現されていない。すなわち、今日の最新のEVでは、ACS、PCS、BTMSの3つの熱管理システムを全天候の全稼働モードに対し電気エネルギの消費効率を向上させ、最小の構成機器の設定・配置によるコスト、重量及び制御等を最小・最適化する観点で最適統合することが求められている。
当技術分野で知られているこれらのシステムをEVに適用するに際しICEVに対し以下に示す様にACS、PCS、及びBTMSそれぞれに課題がある。
ACSの課題:ICEVでは運転開始後の定常運転時はエンジンの冷却の結果として加熱される液状冷却媒体、通常、水とエチレングリコールと少量の添加剤の混合液体であることが多い冷却媒体(以下クーラントと称する)を車室内のヒータコアと呼ばれる熱交換器に導入し、車室内空気を加熱する暖房熱源としている。また、寒冷或いは酷寒地域では、PTC(Positive Temperature Coefficient)等の電気ヒーターや燃焼ヒーター等の暖房熱源を追加して所定の車室内温度に達するまでの補助暖房に使用する例が一般的である。
これに対しEVでは、定常運転時に車室内温度が低い場合に車室内暖房熱源は、ICEVのエンジン回収熱に相当する熱量がPCSからは得られない場合がある。
この課題を解決するために、最近のEVでは第一世代として、車室内空気を加熱するために電気ヒーターが用いられた。しかし、当時の電気ヒーターによる車室内暖房は理論的に消費する電気エネルギ以上に暖房エネルギに変換できないので、暖房の成績係数(以下COPと称する)が1未満になる欠点があった。このため、外気温度が低い寒冷地域では電気ヒーターによる電気エネルギの消耗が激しく、EVのバッテリへの充電一回当たり航続距離が条件によっては半減してしまうようなケースが顕在化し問題となっていた。
また、寒冷地域以外でも以下に述べる電気ヒーターの課題があった。乗用車などでは一般住宅用エアコン等に対し運転時の安全性を考慮した比較的緻密な空調を実現しているICEVのACSでは、車室内の空気の加熱、冷却、換気、空気流の吐出口や吐出量の制御、及び外気導入と内気循環の配分制御等、室内空気全般の管理を実施している空調装置(以下HVACユニットと称する)を用いている。このHVACユニットでは、予備冷房、最強冷房、換気のモード以外は、程度の差こそあれヒーターが使われている。温度調整冷房や除湿暖房モード等では、車室内空気をエバポレータで一定の適切な温度まで冷却した空気と、エバポレータ後流のヒータコアを通過し加熱された空気を空気混合装置の調整で指定の温度に制御する冷暖空気混合制御タイプ(以下エアミックスタイプと称する)の温度制御を通常おこなっている。安全上の窓の防曇、快適性上の異臭の予防、除湿暖房、エアミックスタイプの温度調節、湿度の制御等様々な目的のため空気の冷却と加熱の両方の機能が同時に使用されている。すなわち、除湿後、または冷却後の空気の再加熱がヒーターでなされている。そのため、寒冷地以外でもヒーターに電気ヒーターを用いると電力消費による航続距離低下は無視できず、寒冷地だけではなく全気候条件の地域でも改善課題となっていた。
第二世代では、前述の航続距離の問題を軽減するために、一般住宅用エアコン等で広く使われている手段、通常の蒸気圧縮式冷凍サイクルを用い室内から熱吸収し、外気に放出する冷房と、冷媒回路の切り替えにより外気から熱吸収し、室内に暖房を供給するシステム(以下ヒートポンプシステムと称する)がEVに導入された。しかし、一般住宅用エアコンのような単純な冷暖房の切り替えは自動車ではできなかった。理由は、昼間の冷房から夜間の暖房への切り替えがあった場合等、熱交換器表面に残っている除湿された水分の再蒸発や高湿度温風による窓曇りの安全上の問題であった。また、前述の冷房と暖房を同時に使う空気再加熱モードでは、単純な回路切り替えが適用できず暖房機能を結局補助暖房用電気ヒーターで補う必要があった。また、酷寒地域ではヒートポンプシステムの効率が低下し必要な暖房熱源を確保できないため、やはり、ICEVと同様の補助暖房用電気ヒーターの適用が必要であった。
そのため様々な技術改良が後述の特許文献1から4の例のように行われており長所短所が評価されている。しかし後述の課題1から5にまとめて示すようにそれぞれ短所がありどの技術例も実質上の全天候・全稼働モード対応の最適化には至っていないのが現状である。
PCSの課題 : ICEVでのエンジン冷却と同様に、EVでのパワートレインである駆動モーター、インバータ、その他電子電気機器等関連機器の冷却がそれらの機能と耐久性を維持するため適切に行われなければならない。ICEV同様、クーラントループを設けラジエータを介して回収熱を大気に放出する方式が基本になっている。また、外気温度が摂氏55度程度の高い温度を設計条件としなければいけない酷暑地域もあり、EVのパワートレインの制御される実体温度や冷却用のクーラント温度はそれ以下に制御することができない。したがって、この高温クーラントループはPCS構成機器が適応可能な範囲で比較的高温系となり次に述べるBTMSの低温クーラントループとは別ループ、別制御になっている。これを気温が高い地域や季節に対応して一体化するには、高温クーラントを高温ラジエータで予備冷却した後に低温クーラントループのチラーでエネルギを消費しつつ冷却してBTMSの目的の低温クーラント状態にした上でバッテリーパックに供給する必要があるが、省エネルギとは逆行する手段となってしまう。従って、低温クーラントループと高温クーラントループの全気候の全稼働モードに対する最適組合せが課題となっている。
また、EVのPCSの高温クーラントループは回収熱有効利用の観点では暖房熱源の一部として使用されている場合もあるが、高温とはいえICEVに場合に比較して冷却クーラントの温度は低く、その流量もエネルギレベルも低い。理由はACSの記述に示したように、ICEVよりEVのパワートレインの方が、直接的エネルギ効率が高いため排熱レベルが低く、結果として寒冷地域等の暖房の熱源としては単独では十分ではない温度とエネルギレベルとなっている。従って、寒冷地域等では補助熱源と組合せる必要があるが、その組合せ方と消費エネルギとコスト増を最小にする手段が課題となっている。
BTMSの課題 : バッテリの熱管理は、低エネルギ密度の当時はあまり考慮されていなかった。しかし、充電一回当たりの走行距離増の要請に伴って、バッテリのエネルギ密度が向上し、バッテリーパック内への低温空気送風によるバッテリ冷却が実施された。さらなるバッテリの進化によって、リチウムイオン電池の例では、その寿命と効率を適切に保つためにバッテリーパック内のバッテリーセル温度を一例として約摂氏15度から約摂氏35度程度等の比較的低い範囲に、均一に、熱管理することが求められている。
また、駐車中に寒冷な外気温度までバッテリーセル温度が低下してしまった場合にそのままEVを始動しバッテリを使い始めると、電極へのリチウムの析出等によるバッテリ寿命や機能低下が起こるため、バッテリーセル管理温度上限を超えさせないような比較的低温クーラントを用いた予備加熱が必要である。現在有効な手段としては電気クーラントヒータの低温クーラントループへの追加があるが、消費エネルギとコスト増が課題である。
前述のバッテリ熱管理の目標を達成するために、バッテリーセルを、熱容量が気体より格段に大きく、より均等に、低温度差で大容量の温度制御をすることが期待される液体を用いて熱管理することが現在の主流になってきた。液体は通常水系のクーラントが用いられるが、最近は、バッテリーセルと液体媒体の直接接触表面積拡大によるより均一で早い熱伝達を意図して、非電気伝導性の特性をもつ特殊な液体媒体をバッテリーパック内に直接流入させる手段も開発されている。該当液体の低い熱伝導率を考慮してもバッテリーパック内のバッテリーセルとの熱伝達改善には有効であるが、半面、その液体媒体の熱伝導率が水系クーラントに比較して大幅に低いので外気に最終的に放熱するラジエータが大型になってしまう欠点がある。いずれにしても液体でのBTMSの進化が直近の傾向であるので液体媒体を用いた最適バッテリの予備加熱手段が課題である。
また、全固体バッテリが開発中であり、バッテリの熱管理が不要あるいは低レベルでも許容されることが期待されているのでバッテリの回収熱利用や液体を用いたバッテリの熱管理に重点を置きすぎると将来全固体バッテリが実用化された時のシステム変更が大きくなりすぎる課題が将来あり得る。
他方、燃料電池車(以下FCVと称する)ではより大きな冷却排熱の回収が期待されるのでBTMSの柔軟性に考慮が必要となっている。
このように、EVでは、ACS、PCS、BTMSの3種の熱管理が必要であり、それを統合制御し最適化する試みも多数提案されている。また、実際に使用されている場合もある。しかしながら、前述のように、それぞれの課題に対して消費エネルギとコスト増を最小限に抑える決定的技術と組合せ手段が見いだせていなく、進行中の新技術やFCVへの適応も考慮した、全気候の全稼働モードに対する実質的標準技術といえる3種熱管理の統合システムは見当たらないのが現状の当該分野の背景である。
特許第6952199号 特開2012-232730 US20190070924A1 特許第7073863号
特許文献1の従来技術によると、「高温な気候の地域に適した電気自動車熱管理システム」が発明されており、高温な気候の地域に特化・最適化されたシステムと考えられる。しかし、低温な気候の地域に適した電気自動車熱管理システムには追加の補助熱源が必要とされると考えられ、全天候に最適に適用するシステムとするためには高温な気候に適した特性を損なうことなく低温な気候の地域に対応するため電気クーラントヒータ追加やシステム構成の変更の手段をとる必要がある。
課題1として、特許文献1ではヒータコア出口クーラント温度をチラー出口温度レベルに制御することが必須な要件となっている。そのためヒータコアに供給するクーラント流量制御を行う必要がありこれが高温な気候の地域の小規模な暖房容量に最適なシステムになっていた。これに対し、全気候対応の課題を解決するためには寒冷地や酷寒地域に対応する最大暖房能力を向上させる必要がある。即ち、クーラント流量を暖房要求負荷に合せて増加できるシステムとし、熱源を発生させるコンプレッサの冷媒流量を相応に増加できるようにシステム構成を設定しなおす必要がある。また、高温な気候の地域には必要のないバッテリの予備加熱に対して電気クーラントヒータの追加を避ける手段を設定することも課題となっている。
特許文献2の従来技術によると、「車両用温度調節装置、および車載用熱システム」が提案されており、EVのACSの弱点である暖房の効率的適用手段としてヒートポンプシステムと蓄熱技術によるエネルギの有効活用が述べられている。しかし、バッテリの予備加熱などBTMSへの適応やPCSからの熱回収による低負荷時の省エネルギ暖房機能の導入など統合的な高効率電気自動車熱管理システムが提案されていない。また、全天候に最適に適用するシステムとするためには低温な気候の地域に効率よく適応するための手段が必要である。ACSのヒートポンプシステムでは、冷房用エバポレータと暖房用室内コンデンサを同時に使える冷媒回路切り替えシステムが必要であるがこの技術では提案されていない。
また、それが実現されたとしても酷寒地域での効率低下改善に寄与するシステムが複雑になりすぎて、冷媒側の回路切り替えバルブ数が大幅に増えるため冷媒圧力損失増による冷房側の効率低下がある。また、PCSからの回収熱をACSに使用するためには主暖房用室内コンデンサに加えて回収熱利用暖房用にヒータコアも室内コンデンサと気流に対して直列に配置する必要がある。また、BTMSでのバッテリ予備加熱には電気クーラントヒータ等追加で必要となる。改善後でも統合が複雑でコスト高な技術となっている。
特許文献3の従来技術によると、「OPTIMAL SOURCE ELECTRIC VVEHICLE HEAT PUMP WITH EXTREAME TEMPERATURE HEATING CAPABILITY AND EFFICIENT THERMAL PRECONDITIONING」が発明されており、EVのACSの弱点である暖房の効率的適用手段として室内コンデンサによるエネルギの有効活用が示されている。低外気温で、バッテリの発熱負荷に連動したチラーの蒸発負荷がないか小さいときにはHVACユニットのエバポレータをヒートポンプシステムの吸熱側に用いるシステムになっている。しかし、加熱容量は通常のヒートポンプシステムによく見られ、大型な設定が可能な室外熱交換器に対して小型のエバポレータを使用することから蒸発側の容量が小さく冷媒流量がコンプレッサの容量に対し低いレベルで成立つシステムであることが容易に理解できる。暖房容量を増加させるためにはHVACユニット内に設定されている2つの低圧電源電気ヒーターを使用する必要がある。結局車室内暖房用電気ヒーターの使用が避けられない技術となっている。また、バッテリの予備加熱には電気クーラントヒータの追加が必要となっている。更に、この技術では冷房とバッテリ冷却のために、水冷コンデンサとラジエータによる間接冷媒冷却方式が用いられているが、空冷コンデンサによる直接冷媒冷却方式に比べて熱交換する冷媒と外気の温度差がクーラントの中間介在で二分され水冷コンデンサとラジエータそれぞれの温度差が小さくなってしまうので熱交換器がその分大きく、重く、高価になる。特に外気温の高い高温地域でラジエータに重大な影響がある。
特許文献4の従来技術によると、「車両用熱管理システム」が発明されており、バッテリや車載電子電気機器からの排熱回収をヒートポンプシステムの吸熱側熱源として利用することやガスインジェクションコンプレッサ技術による低外気温時の室外熱交換器から吸熱するヒートポンプシステム等が説明されているが特許文献3と同様に車両が駐車状態で発熱する機器がない状態でのバッテリの予備加熱に有効な手段が示されていない。結局電気ヒーターの設定が必要と考えられる。また、特殊熱交換器の設定が詳しく述べられているが全気候の全稼働モードに対するシステムの最適化が不明である。
前記の特許文献2、3、4の検証内容から、以下の解決すべき課題がある。
課題2として、エネルギ効率、コスト、重量及び制御等を考慮した、電気ヒーターを使用しないバッテリの予備加熱の最適手段を得ること。
課題3としてPCSからの熱回収をエネルギ効率、コスト、重量及び制御等を考慮し、かつ低温な気候の地域で効率が低下しない、簡素で、電気ヒーターを使用しない暖房最適手段を得ること。
課題4として、背景技術で詳細に説明したそれぞれACS、PCS、BTMSの3種の熱管理を統合制御し最適化するシステム全体を定義する必要がある。それには高価な特殊なシステムであったり、危険な冷媒を用いていたり、炭酸ガス冷媒やその他高圧力系の冷媒のように暖房には都合がよくても冷房の効率を犠牲にし、高い冷媒圧力に起因する機器のコスト高を招いていたり、複雑すぎる制御の信頼性に疑問が残ったり、複雑すぎるクーラントや冷媒の回路の増加にともなう多数あるいは複雑な制御バルブによるコストの大幅増とシステム効率低下等々を避けなければならない。つまり全気候の全稼働モードに対する全体統合による、安全、簡素、省エネルギ、省コストが全体的な課題である。
課題5として、できれば全固体バッテリ、FCVにも適応しやすいシステムとしておくことが一般的に望ましい。
課題1を解決する手段:図7に一覧を示しているように、特許文献1の技術を取り入れたシステム構成を示した図7では、図9に定義されている低温クーラントループ(102)の内、クーラント加熱器(11)とヒータコア(35)の間が高温クーラントバイパス部になっておりヒータコア(35)出口で低温クーラントループ(102)のチラー(17)出口温度レベルに戻すよう制御するため高温クーラントバイパス部の流量を制御しているシステムとなっている。従って、ヒータコアを通過するクーラント流量は、低温クーラントループ(102)の低温側電動ポンプ(50)の最大流量の多くてもおよそ1/2以下、少ないとおよそ1/10以下となることが予測される。
これに対し、請求項1、2、3に記載の発明のシステム構成では、ヒータコア(35)に供給するクーラントは低温クーラントループ(102)の一部ではなく高温クーラントループ(101)からのみ供給される。暖房用のクーラント流量はACSの要求がPCSを超える場合でも尊重できて、その最大値は高温側電動ポンプ(30)の最大容量となる。通常その値は、低温側電動ポンプ(50)の最大容量に対し、例えば2倍前後或いはそれ以上のレベルと想定され、前述の流量の制限も必要ないので、実質的にはるかに大きいクーラント流量を供給できるので、寒冷地域や酷寒地域に対応可能となっている。
従って、当発明の全天候対応電気自動車統合熱管理システム(以下EVTTMSと称す)は課題1を解決する手段を有している。
課題2を解決する手段:図10、図19,図20、図29,図30、及び図39に示されるように、請求項1、2、3に記載の発明は全て、電気ヒーターや余分な機器構成を追加することなく、ACSとPCSの構成機器の有効利用により、BTMSのバッテリ予備加熱モード[ph]に対応している。詳細は下記に示す。
請求項1の発明では、図19に代表的稼働状態を示すように、バッテリ予備加熱のための熱源は、クーラント加熱器(11)に供給される電動コンプレッサ(10)出口の高温高圧の冷媒である。クーラント加熱後の比較的高温高圧の冷媒は、膨張弁付冷媒制御弁(12)の膨張弁を通過後、低温低圧の冷媒となり電動コンプレッサ(10)により圧縮され再度高温高圧の冷媒となり、蒸気圧縮式冷凍サイクルを繰り返す。このサイクルは、ホットガスバイパス加熱等と呼ばれ、通常クーラント加熱器(11)出口を気相冷媒状態に保ち、電動コンプレッサ(10)の液圧縮による故障を避ける。
請求項1の発明にも適用し得る、請求項5に記載の独立発明要素の新ホットガスバイパス加熱(以下NHGBHと称する)システムでは、クーラント加熱器(11)出口、及び膨張弁付冷媒制御弁(12)入口の冷媒状態を高温高圧の気相冷媒状態から更に加熱熱量を増加させる気液混合状態に制御することを可能とし、出入口のエンタルピ差を大きくとることを目的とする、かつ膨張弁付冷媒制御弁(12)の膨張弁を有する電動コンプレッサ(10)側の出口冷媒状態及び電動コンプレッサ(10)の入口冷媒状態を低温低圧の気相にする制御を膨張弁内オリフィスの専用設定により実現した。図40から図42に前記の膨張弁付冷媒制御弁(12)の3方弁の例の構造断面と流路方向制御状態、及びオリフィスの構造例を示す。乗用車からバスクラスの電気自動車熱管理システムを想定した例では、例えばオリフィス径は、1mmから6mm程度が想定され、オリフィス長さは1mmから10mm程度での設定が想定されるが、大口径の場合は長いキャピラリチューブを設定してもよい。また、負荷変動が大きい場合は可変オリフィス構造を採用してもよい。請求項7には前記共通のオリフィス定義が記載されている。
この技術では結果として電動コンプレッサ(10)の消費動力よりクーラント加熱量が大きくできるので、電気ヒーターよりはるかに安価で高効率となり、ヒートポンプシステムと同等レベルの効率を安価に得られ、かつ外気温度の低下による吸熱時の冷媒圧力低下による効率低下等、室外熱交換器で外気温の影響を受けるヒートポンプシステムの弱点を持たない。これを克服するための炭酸ガス等高圧系冷媒の使用によるコスト高とシステムの複雑化等前述の欠点を避けることができる。請求項8にはNHGBH制御方法を含む熱管理コントローラの定義が記載されている。
図67と図68にR134a冷媒の場合のNHGBHの概念と原理を示す。この新たな技術は他の冷媒でもその特性に応じて同様の使い方ができる。
一方、請求項2と3の発明では、図29と図39に代表的稼働状態を示すように、バッテリ予備加熱が可能であることを示している。この時、熱源は、クーラント加熱器(11)に供給される電動コンプレッサ(10)出口の高温高圧の冷媒である。クーラント加熱後の比較的高温高圧の冷媒は、HPモード用膨張弁(20)を通過後、低温低圧のミスト状液冷媒となり室外熱交換器(13a)あるいは室外エバポレータ(13b)で外気より熱吸収蒸発し、電動コンプレッサ(10)入口で吸入され、蒸気圧縮式冷凍サイクルを繰り返す。バッテリの予備加熱にも適用できるヒートポンプシステムを構成している。適用する地域の外気温により最適な冷媒を選ぶことも可能である。
前記全ての課題2の解決策において、クーラント加熱器(11)がBTMSに必要な低温クーラントループ(102)の一部としてバッテリ予備加熱に用いられている。BTMSには高温クーラントループ(101)は温度レベルが高すぎて使えないので、通常専用の電気クーラントヒータ等が必要になるが、本発明では図29、及び図39に示すシステム構成によりこの課題を解決している。
すなわち、請求項5に記載の発明、高温クーラント制御弁(34)及び低温クーラント制御弁(52)の設定により電気クーラントヒータ等追加の機器等を設定することなしに、また、HVACユニットのエバポレータを吸熱熱源として使用する制限もなく、課題2の解決方法となっている。
高温クーラント制御弁(34)の構造と作動は、図52から図60に詳細が示されており、必要な制御が可能であることが明らかにされている。
低温クーラント制御弁(52)の構造と作動は、図61から図66に詳細が示されており、必要な制御が可能であることが明らかにされている。
従って、当発明のEVTTMSは課題2を解決する手段を有している。
課題3を解決する手段:請求項1、2、3に記載の発明のシステム構成では、図10、図20、及び図30に示されるACSモード[3][5][6][7][8]でPCSからの熱回収に対応している。
後述の本発明実施例で稼働状態を図14、図16、図17、図18、図24、図26、図27、図28、図34、図36、図37、図38を用いてそれぞれ詳述しており、熱回収が可能でかつその熱量が使用できる場合の稼働状態において、パワートレインの電子電気機器類(32)及び駆動モータ(33)からの回収熱をヒータコア(35)に供給できる構成になっていることを説明している。
また高温クーラント制御弁(34)により必要に応じた各モードに対応したクーラント流量とクーラント流れ方向制御が可能となっている。
パワートレインが非稼働の条件では、回収熱がないので請求項5に記載の発明により電動コンプレッサ(10)出口の高温高圧の冷媒熱源を用いたクーラント加熱器(11)によるACS暖房用熱源を得ることができる。
従って、当発明のEVTTMSは課題3を解決する手段を有している。
課題4を解決する手段:請求項1、2、3に記載の発明のシステム構成では、ACS、PCS、BTMSの3種の熱管理を統合制御し最適化するシステム全体が定義されており、後述の本発明実施例の説明で全気候の全稼働モードに対する有用性が詳細に説明されている。
従って、当発明のEVTTMSは課題4を解決する手段を有している。
課題5を解決する手段:本発明に示すように、全固体電池技術がもし本発明の全実施例に示しているバッテリーパックのBTMSに必要な低温クーラントループ(102)を必要としない場合があれば、その部分を削除することで引き続きACSとPCSの統合EVTTMSとして機能する。
FCVへの適用はバッテリーパックをFCVの被冷却部と読み替えて、予備加熱が必要なければクーラント加熱器(11)と低温クーラントループ(102)を切り離せば統合EVTTMSとして機能する。
従って、当発明のEVTTMSは課題5を解決する手段を有している。
本発明の目的は、EVの、冷媒蒸気圧縮冷凍技術利用の車室内空気冷房方式とクーラント利用車室内空気暖房方式を併せ持ち、かつ冷暖房同時に、電気ヒーターを使用することなく、稼働できるACS、比較的高温クーラントを利用する冷却方式のPCS、比較的低温クーラントを利用する冷却・加熱方式のBTMSの3種の統合熱管理システムEVTTMSで課題に対する解決法を示し、効果を発揮することにある。現在公知の類似システムに対し、前述のごとくその課題と解決法を示してきた。その中で、新規性及び創造性に関する点を明らかにし本発明、EVTTMSの効果を示してきた。前述の効果を下記にまとめ列挙する。
効果1:PCSの回収熱をすべてACSの暖房熱源に利用できること。ACSとBTMSの両方に冷却目的で用いられる電動コンプレッサの回収熱もヒーター熱源に利用できること。全ての回収熱が取り込まれ、最大のエネルギ効率を達成するEVTTMSが提供されている。
効果2:PCSとBTMSのそれぞれ高温クーラントループ(101)と低温クーラント(102)を別に制御できることであるが、電動コンプレッサ(10)出口の熱をクーラントに伝達する熱交換器であるクーラント加熱器(11)は両ループに共通とする制御を可能とするEVTTMSが提供されている。結果、重量、コスト、効率の最適化が得られている。
効果3:電動コンプレッサ(10)がACSとBTMSのいずれかまたは両方に冷却目的で用いられていないときでも、NHGBHにより、電気ヒーターよりも高効率のヒーター熱源を電動コンプレッサ(10)で創出し、低温外気にほとんど影響されることなくヒーター熱源にするための制御を可能にする、電気ヒーターの設定と使用を避けて、低コストで高効率なEVTTMSを提供している。
効果4:前記の効果1と2を保持したうえで、基本的EVTTMSの構成を保ち低温外気に影響を受けにいヒートポンプシステム暖房を組合せることができるEVTTMSを提供している。ヒートポンプシステムの効率が特に高い条件での暖房期間が長い地域で特に高効率化に寄与するフレキシブルな選択肢が提供できている。
効果5:重量およびコストがより小さい冷媒回路または冷媒ループ(100)でバイパス回路や制御弁を最小にした冷媒圧力降下がより少ない基本的COPの高い低コストEVTTMSを提供している。
効果6:ヒートポンプシステムの設定有り無しに関わらずACSで冷房と暖房を同時に使う正確な温度制御および除湿暖房モードを有するEVTTMSを、電気ヒーターを用いることなく提供している。
効果7:酷暑から酷寒のすべての地域で使用でき、かつ、容易な選択肢設定による地域ごとのコスト最適化を達成できるEVTTMSを提供している。
効果8:空調の予備冷房や予備暖房、バッテリの予備冷却や予備加熱を含む、ACS、PCS、BTMS全てのモードに対応でき、バッテリの駐車中の温度管理による保全も含めたEVTTMSを提供している。
効果9:冷媒を冷却、凝縮、過冷却を最終的に実施するコンデンサ(13)や室外熱交換器(13a)の凝縮器モードで使用する空冷熱交換器は、特許文献3に示されるような水冷コンデンサと追加の空冷ラジエータで間接的に外気放熱する手段ではなく直接冷媒を空冷する手段であるのは、酷暑地域でも外気と冷媒の温度差をより大きく取れ、より高い冷却効率を得る効果がある。
なお、この欄及び特許請求の範囲で記載した各機器や手段の括弧内の符号は、図9の符号、後述の符号の説明及びその他図中に記載の具体的機器や手段の符号と対応している。
本発明の前述のおよびさらなる目的、特徴、および利点は、数値や代表的要素を表すために使用される添付の図面を参照した例示的な実施例の以下の説明から明らかになるであろう。ただし、添付の図面は本発明の典型的な実施例のみを示しており、したがって、本発明は他の等しく効果的な実施例を認めることができるため、その範囲を限定するものと見なされるべきではないことに留意されたい。
本発明システム200の1つのEVTTMS実施例A-1の構成図である。 本発明システム200の1つのEVTTMS実施例A-2の構成図である。 本発明システム200の1つのEVTTMS実施例A-3の構成図である。 本発明システム200の1つのEVTTMS実施例B-1の構成図である。 本発明システム200の1つのEVTTMS実施例B-2の構成図である。 本発明システム200の1つのEVTTMS実施例B-3の構成図である。 先行技術、特許第952199号「高温な気候の地域に適した電気自動車熱管理システム」の請求範囲を含む本発明と最も近い先行技術例である。 図1から図7に示す本発明の実施例と先行技術例の適用気候地域の一覧まとめである。 図1から図7に用いられている主要機器の番号と名称、機能の一覧まとめである。 全気候に対応するACS、PCS、BTMS全モードの組み合わせを網羅した本実施例A-1とA-2の場合の各モードを実現するための機器稼働状況一覧である。 本発明実施例A-1とA-2のモード[P]-[pc]-[0]バッテリ予備冷却でのシステムの稼働状態図である。以下、モード記号は図10参照のこと。 本発明実施例A-1とA-2のモード[P]-[c]-[1]予備冷房でのシステムの稼働状態図である。 本発明実施例A-1とA-2のモード[D]-[c]-[2]最強冷房でのシステムの稼働状態図である。 本発明実施例A-1とA-2のモード[D]-[c]-[3]温度調節冷房、及び[D]-[c]-[5]除湿暖房でのシステムの稼働状態図である。 本発明実施例A-1とA-2のモード[D]-[c]-[4]換気-Offでのシステムの稼働状態図である。 本発明実施例A-1とA-2のモード[D]-[c]-[6]温度調節暖房でのシステムの稼働状態図である。 本発明実施例A-1とA-2のモード[D]-[c]-[7]最強暖房でのシステムの稼働状態図である。 本発明実施例A-1とA-2のモード[P]-[c]-[8]予備暖房でのシステムの稼働状態図である。 本発明実施例A-1とA-2のモード[P]-[ph]-[0]バッテリ予備加熱でのシステムの稼働状態図である。 図10同様に、実施例B-1,B-2の場合の各モードを実現するための機器稼働状況一覧である。 本発明実施例B-1とB-2のモード[P]-[pc]-[0]バッテリ予備冷却でのシステムの稼働状態図である。以下、モード記号は図20参照のこと。 本発明実施例B-1とB-2のモード[P]-[c]-[1]予備冷房でのシステムの稼働状態図である。 本発明実施例B-1とB-2のモード[D]-[c]-[2]最強冷房でのシステムの稼働状態図である。 本発明実施例B-1とB-2のモード[D]-[c]-[3]温度調節冷房、及び[D]-[c]-[5]除湿暖房でのシステムの稼働状態図である。 本発明実施例B-1とB-2のモード[D]-[c]-[4]換気-Offでのシステムの稼働状態図である。 本発明実施例B-1とB-2のモード[D]-[c]-[6]温度調節暖房でのシステムの稼働状態図である。 本発明実施例B-1とB-2のモード[D]-[c]-[7]最強暖房でのシステムの稼働状態図である。 本発明実施例B-1とB-2のモード[P]-[c]-[8]予備暖房でのシステムの稼働状態図である。 本発明実施例B-1とB-2のモード[P]-[ph]-[0]バッテリ予備加熱でのシステムの稼働状態図である。 図10及び図20同様に、実施例B-3の場合の各モードを実現するための機器稼働状況一覧である。 本発明実施例B-3のモード[P]-[pc]-[0]バッテリ予備冷却でのシステムの稼働状態図である。以下、モード記号は図30参照のこと。 本発明実施例B-3のモード[P]-[c]-[1]予備冷房でのシステムの稼働状態図である。 本発明実施例B-3のモード[D]-[c]-[2]最強冷房でのシステムの稼働状態図である。 本発明実施例B-3のモード[D]-[c]-[3]温度調節冷房、及び[D]-[c]-[5]除湿暖房でのシステムの稼働状態図である。 本発明実施例B-3のモード[D]-[c]-[4]換気-Offでのシステムの稼働状態図である。 本発明実施例B-3のモード[D]-[c]-[6]温度調節暖房でのシステムの稼働状態図である。 本発明実施例B-3のモード[D]-[c]-[7]最強暖房でのシステムの稼働状態図である。 本発明実施例B-3のモード[P]-[c]-[8]予備暖房でのシステムの稼働状態図である。 本発明実施例B-3のモード[P]-[ph]-[0]バッテリ予備加熱でのシステムの稼働状態図である。 膨張弁付冷媒制御弁(12)-3方弁の例で実施例A-1、2、3のNHGBHを使用しない全モード対応状態を示す図である。 膨張弁付冷媒制御弁(12)-3方弁の例で実施例A-1、2、3のNHGBHを部分的に使用する全モード対応状態を示す図である。 膨張弁付冷媒制御弁(12)-3方弁の例で実施例A-1、2、3のNHGBHを100%使用する全モード対応状態を示す図である。 冷媒制御弁A(12a)-4方弁の例で実施例B-1、2の[P]-[pc]-[0]、[P]-[c]-[1]、[D]-[c]-[2]、[D]-[c]-[3]、[D]-[c]-[4]、[D]-[c]-[5]、[D]-[c]-[6]モード対応状態を示す図である。 冷媒制御弁A(12a)-4方弁の例で実施例B-1、2の[D]-[c]-[7]モード対応状態を示す図である。 冷媒制御弁A(12a)-4方弁の例で実施例B-1、2の[P]-[c]-[8]、[P]-[ph]-[0]モード対応状態を示す図である。 冷媒制御弁A(12a)-3方弁の例で実施例B-3の[P]-[pc]-[0]、[P]-[c]-[1]、[D]-[c]-[2]、[D]-[c]-[3]、[D]-[c]-[4]、[D]-[c]-[5]、[D]-[c]-[6]モード対応状態を示す図である。 冷媒制御弁A(12a)-3方弁の例で実施例B-3の[D]-[c]-[7]モード対応状態を示す図である。 冷媒制御弁A(12a)-3方弁の例で実施例B-3の[P]-[c]-[8]、[P]-[ph]-[0]モード対応状態を示す図である。 冷媒制御弁B(12b)-4方弁の例で実施例B-1、2の[P]-[pc]-[0]、[P]-[c]-[1]、[D]-[c]-[2]、[D]-[c]-[3]、[D]-[c]-[4]、[D]-[c]-[5]、[D]-[c]-[6]モード対応状態を示す図である。 冷媒制御弁B(12b)-4方弁の例で実施例B-1、2の[D]-[c]-[7]モード対応状態を示す図である。 冷媒制御弁B(12b)-4方弁の例で実施例B-1、2の[P]-[c]-[8]、[P]-[ph]-[0]モード対応状態を示す図である。 高温クーラント制御弁(34)-4方弁の一例で全実施例の[P]-[pc]-[0]、[P]-[c]-[1]、[P]-[ph]-[0]モード対応状態を示す図である。 高温クーラント制御弁(34)-4方弁の一例で全実施例の[D]-[c]-[2]、[D]-[c]-[4]モード対応状態を示す図である。 高温クーラント制御弁(34)-4方弁の一例で全実施例の[D]-[c]-[3]、[D]-[c]-[5]、[D]-[c]-[6]、[D]-[c]-[7]、[D]-[c]-[8]モード対応状態でクーラント加熱器(11)を使用しない場合を示す図である。 高温クーラント制御弁(34)-4方弁の一例で全実施例の[D]-[c]-[3]、[D]-[c]-[5]、[D]-[c]-[6]、[D]-[c]-[7]、[P]-[c]-[8]モード対応状態でクーラント加熱器(11)を使用する場合を示す図である。 高温クーラント制御弁(34)-6方弁の一例で全実施例の[P]-[pc]-[0]、[P]-[c]-[1]、[P]-[ph]-[0]モード対応状態を示している。 高温クーラント制御弁(34)-6方弁の一例で全実施例の[D]-[c]-[2]、[D]-[c]-[4]モード対応状態を示す図である。 高温クーラント制御弁(34)-6方弁の一例で全実施例の[D]-[c]-[3]、[D]-[c]-[5]、[D]-[c]-[6]、[D]-[c]-[7]モード対応状態でクーラント加熱器(11)を使用しない場合を示す図である。 高温クーラント制御弁(34)-6方弁の一例で全実施例の[D]-[c]-[3]、[D]-[c]-[5]、[D]-[c]-[6]、[D]-[c]-[7]モード対応状態でクーラント加熱器(11)を使用する場合を示す図である。 高温クーラント制御弁(34)-6方弁の一例で全実施例の[P]-[c]-[8]モード対応状態を示す図である。 低温クーラント制御弁(52)-6方弁の一例で全実施例の[P]-[ph]-[0]バッテリ予備加熱を除く低温ラジエータを使用しない全モード対応状態を示す図である。 低温クーラント制御弁(52)-6方弁の一例で全実施例の[P]-[ph]-[0]バッテリ予備加熱を除く低温ラジエータを使用する全モード対応状態を示す図である。 低温クーラント制御弁(52)-6方弁の一例で全実施例の[P]-[ph]-[0]バッテリ予備加熱モード対応状態を示す図である。 低温クーラント制御弁(52)-4方弁の一例で全実施例の[P]-[ph]-[0]バッテリ予備加熱を除く低温ラジエータを使用しない全モード対応状態を示す図である。 低温クーラント制御弁(52)-4方弁の一例で全実施例の[P]-[ph]-[0]バッテリ予備加熱を除く低温ラジエータを使用する全モード対応状態を示す図である。 低温クーラント制御弁(52)-4方弁の一例で全実施例の[P]-[ph]-[0]バッテリ予備加熱モード対応状態を示す図である。 NHGBHシステムの代表的な冷媒圧力‐エンタルピ状態を示す図である。 NHGBHシステムの代表的な作動原理を示す図である。
以下は、添付の図面を参照して、本発明の実施形態としての様々な実施例の詳細な説明を提示する。しかしながら、本発明は、本開示を当業者に、より明確に説明するためにのみ提供されるこれらの実施例に限定されない。添付の図面において、参考数値などは、構成要素などを示すために使用される。
本明細書は、いくつかの場所での「1つの」、「1つの」、「異なる」または「いくつかの」実施例を指す場合がある。これは、そのような各参照が同じ実施例への参照であること、またはその特徴が単一の実施例にのみ適用されることを必ずしも意味しない。異なる実施例の単一の特徴を組み合わせて、他の実施例を提供することもできる。
本明細書で使用する場合、単数形は、特に明記しない限り、複数形も含むものとする。本明細書で使用される場合、「含む」、「備える」、「含む」、および/または「備える」という用語は、述べられた特徴、整数、ステップ、操作、要素、および/または構成要素の存在を指定することがさらに理解されよう。 ただし、1つまたは複数の他の機能、整数、ステップ、操作、要素、機器、および/またはそれらのグループの存在または追加を排除するものではない。要素が別の要素に「取り付けられている」、「接続されている」、「結合されている」または「取り付けられている」と呼ばれる場合、他の要素に直接取り付けまたは接続または結合することができる。また、仲介する要素が存在することもある。本明細書で使用される場合、「および/または」という用語は、関連するリストされた項目の1つまたは複数のありとあらゆる組み合わせおよび配置を含む。
これらの図は、一部の要素と機能要素のみを示す簡略化された構造を示しており、すべて論理ユニットであり、その実装は示されているものと異なる場合がある。
本発明は特定の実施例を参照して説明されているが、この説明は、限定的な意味で解釈されることを意味するものではない。開示された実施例の様々な修正、ならびに本発明の代替実施例は、本発明の説明を参照すると当業者には明らかになるであろう。したがって、そのような修正は、定義された本発明の精神または範囲から逸脱することなく行うことができると考えられる。
本発明実施例全てに共通の説明
図1から図6は、それぞれ本発明の実施例A‐1、A‐2、A‐3、B‐1、B‐2、B‐3による、ACS、PCS、BTMSの3種の熱管理を統合制御し最適化する全気候対応電気自動車熱管理システム(200)、EVTTMSの全体構成図を示す。まず、全ての実施例に共通の,或いは全体の説明を下記に示し、その後それぞれの個別実施例の固有部分の説明を示す。図7は、最も近い比較の対象として該当先行技術を取入れた例を示している。
図9に、図1から図7で使用されている主要構成機器名称、その符号、その機能、及びシステム当たりの最小使用数量が示されている。また、冷媒ループ(100)、高温クーラントループ(101)、及び低温クーラントループ(102)を構成する機器のグループを定義している。図1から図7の中にはそれぞれのループの構成機器が配管・ホース等で連結されている状態が冷媒は実線、クーラントは粗い破線で示されている。
冷媒ループ(100)は、ACSとBTMSの一部で冷媒が流れる全ての機器で構成されている冷媒の回路全体を表す。ACSの車室内冷房を目的とする場合、バッテリから供給される電気エネルギで駆動される電動コンプレッサ(10)から吐出される冷媒は、クーラント加熱器(11)を通過したのち、図1、図2、図3、図6に示されるコンデンサ(13)や、図4と図5に示される室外熱交換器(13a)を凝縮器モードで使用し、冷媒を冷却・凝縮・過冷却し液状にしたのちHVACユニットの中のエバポレータ膨張弁(14)とエバポレータ(15)に供給される。
また、冷媒ループ(100)は、BTMSの一部でもあり、バッテリ冷却用のクーラントを冷却するチラー膨張弁(16)とチラー(17)にエバポレータ(15)と並行して冷却凝縮された液状冷媒を吸熱のために供給する。チラー(17)とエバポレータ(15)は、それぞれ必要に応じて独立して作動させることもできる。
冷媒ループ(100)は各稼働モードの負荷状態に応じて、冷媒の流量制御を実現する機能を持つ。具体的には冷媒温度圧力センサB(19)の信号を得て、電動コンプレッサ(10)入口の必要な冷媒加熱度を適切に保つよう、膨張弁の開度制御が行われることにより実現される。また、各膨張弁の組込まれた感熱機能により自動調整機能で各膨張弁出口の冷媒加熱度をそれぞれ指定の特性状態に保つよう弁の開度制御する設定としてもよい。これらの制御による冷媒流量変動に伴う電動コンプレッサ(10)出入口の圧力変動を適切に調整するために電動コンプレッサ(10)の回転数を制御する。
チラー(17)とエバポレータ(15)に同時に冷媒が供給される場合は、バッテリ側と車室内側の合計の冷却負荷がシステムの最大許容値に達すると前記の制御に従って電動コンプレッサ(10)の回転数が最大に達する。また同時に冷却ファン(72)風量も最大に達する。設計上の上限であるその状態を超える負荷がもしシステムにかかった場合、或いはシステム上のなんらかの不具合による過負荷の場合は、バッテリ側の冷却が優先され室内冷房を犠牲にする緊急避難措置が、熱管理コントローラ(73)で実施される。さらに詳述すると、システムの冷却負荷が最大値に近づいた場合、許容最高回転数に既に達しているであろう電動コンプレッサ(10)の出口圧力が上昇する。この時、冷媒温度圧力センサA(18)の信号を得て、システムで設定されている冷媒圧力と冷媒温度の最高制限値を守るために冷却ファン(72)の風量が増加される。風量が最大に達した場合或いは既に最大に達していた場合は、バッテリ冷却が優先され、車室内冷房負荷を犠牲にして下げるためHVACユニット内エバポレータの風量を速やかに強制的に落として、総合冷却負荷範囲になり安全上重要なバッテリ冷却機能を確保するよう熱管理コントローラ(73)でACSとBTMSの総合的制御がなされる。
高温クーラントループ(101)は、ACSとPCSの一部で高温クーラントが流れる全ての機器で構成されている冷媒の回路全体を表す。車両が運転モードにある時は常に作動し、主に電子電気機器類(32)と駆動モータ(33)の冷却を必要に応じて実施し、それぞれの機器が適正な温度範囲になるようクーラント温度センサ1(37)で検出したクーラント温度をもとに高温側電動ポンプ(50)のクーラント流量と冷却ファン(72)の風量を制御する。なお、冷却ファン(72)はコンデンサ(13)、室外熱交換器(13a)、室外エバポレータ(13b)等CRFMを構成する冷媒を使用する機器と共用の場合は、冷媒圧力と温度の制御も考慮する必要があるが、クーラントの高温側許容温度制御が優先される。
また、車室内暖房が必要な場合は、HVACユニット内のヒータコア(35)に、必要に応じてクーラントを供給し、電子電気機器類(32)や駆動モータ(33)でクーラントに吸収した回収熱をヒータコア(35)で室内空気暖房に供する。このことにより高温ラジエータ(31)の負荷を低減できるので省エネルギ効果も同時に得られる。
この回収熱だけでは不足な場合は、PCSで必要とされる以上に高温側電動ポンプ(50)のクーラント流量を増加させ暖房熱源を増加させることもできるが、それ以上の熱源増加が必要な場合は、クーラントがヒータコア(35)に供される前にクーラント加熱器(11)で電動コンプレッサ(10)出口の高温冷媒を用いて更に加熱することが可能である。高温クーラント制御弁(34)を通じて熱管理コントローラ(73)で制御する。この時、クーラント加熱器(11)は、後流のコンデンサ(13)や冷却凝縮モードで使用する室外熱交換器(13a)の負荷低減にも同時に寄与し、電動コンプレッサ(10)の消費動力低減にも寄与する。
前記の高温クーラントループ(101)の制御を可能とするため高温クーラント制御弁(34)が設定されている。本実施例では4方弁となっている。これに対する前記の流路方向制御は、図52から図55に構造断面とあわせて示されている。6方弁でも対応可能で、その場合の弁の構造断面と流路方向制御状態は、図56から図60に示されている。当該制御弁は、図10、図20及び図30に示されているPCS、BTMS、ACSの全モードの組合せに対応できることが図示されている。6方弁の例のそれぞれの図の左上に示す6方弁の回路接続位置関係図は、全ての実施例に図示されている当該制御弁周辺のクーラント回路接続位置関係を変更し定義したもので、各モードに対する4方弁で制御できるシステム全体の機能に加えて、電動ポンプ(30)出口にパワートレインとCRFMをバイバスさせる回路を設定している。このことにより予備暖房モードで、4方弁対応の場合のパワートレイン機器と高温ラジエータ(31)での放熱損失を防ぐ必要があった場合に対応できる仕様となっている。
寒冷地での発進前の駐車状態での車両の予備暖房や運転中の最強暖房等、高負荷な暖房が要求される場合で、バッテリ冷却を実施している時のチラー(17)だけの比較的低負荷の蒸発側冷媒流量要求量では高負荷暖房に必要なクーラント加熱器(11)の凝縮側冷媒流量要求を満たさない場合が想定される。この時は、前述の課題2の解決する方法で説明したNHGBHシステムかヒートポンプシステムを適用して蒸発側冷媒流量を高負荷な暖房の必要に合わせて増加させ効率的に熱管理コントローラ(73)で制御する。
低温クーラントループ(102)は、BTMSの一部で低温クーラントが流れる全ての機器で構成されている冷媒の回路全体を表す。冷却の場合は、それが高負荷な場合、チラー(17)が前述の冷媒ループ(100)と連動してバッテリ熱交換器(51)入口のクーラント温度を、クーラント温度センサ2(54)で検知しバッテリーセルの温度を所定の範囲にするよう低温側電動ポンプ(50)の回転数を制御して所定のクーラント温度とバッテリーセル温度に制御する。連動する冷媒ループ(100)では、電動コンプレッサ(10)の回転数を制御しチラー(17)の能力を適切に設定するが低温側電動ポンプ(50)に比べて消費動力の大きい電動コンプレッサ(10)の回転数をなるべく最小にするよう熱管理コントローラ(73)で総合的最適制御対応する。
そこで冷却されたクーラントは、バッテリ熱交換器内(51)でバッテリ冷却を行う。バッテリーセルの温度はリチウムイオン電池の場合は種類やメーカーにもよるが概略摂氏15度から摂氏35度の間に、或いは概略摂氏10度から摂氏40度の間にできるだけ均一に管理することが必要とされている。
その均一性をより確かにするためにバッテリ熱交換器(51)出口の温度もクーラント温度センサ3(55)で検知し出入口の温度差を例えば3度程度の所定の範囲に収めるよう低温側電動ポンプ(50)と電動コンプレッサ(10)の回転数を総合的最適制御する。
その他の種類のバッテリでも駆動モータ(33)等パワートレインの機器にたいして比較的低温に保つことが、バッテリの寿命と効率を適正に保つ為に必要とされている。故に、高温クーラントループ(101)と低温クーラントループ(102)は別回路で別の熱管理が必要とされており、本実施例でもそのことを適用している。
低温クーラントループ(102)がバッテリの予備冷却の目的で稼働している場合は、低温側電動ポンプ(50)の回転数制御と低温クーラント制御弁(52)の流量・流れ方向制御によってバッテリの予備冷却を実行する。予備冷却が必要のない場合は低温側電動ポンプ(50)を停止させればよく、冷却負荷が高いときはチラー膨張弁(16)とチラー(17)を稼働させ、冷却負荷が低いか、外気温が十分に低いときは低温クーラント制御弁(52)による流路設定により、バッテリ熱交換器(51)出口からチラー(17)にクーラントが入る前に低温ラジエータ(57)にクーラントを供給し外気冷却することができる。この場合、チラー(17)を非稼働としクーラントが通過するだけとなる場合もあり、電動コンプレッサ(10)の余分なエネルギ消費を避けることができる。反対に外気温が低温クーラントループ(102)の設定温度より高い場合は、外気でクーラントを加熱する逆効果となるので、熱管理コントローラ(73)で外気温等を考慮して低温クーラント制御弁(52)で流路方向を適切に制御する。
低温クーラント制御弁(52)は、本実施例では6方弁となっている。これに対する前記の流路方向制御は、図61から図63に構造断面とあわせて示されている。4方弁でも対応可能で、その場合の弁の構造断面と流路方向制御は、図64から図66に示されている。当該制御弁は、図10、図20及び図30に示されているPCS、BTMS、ACSの全モードの組合せに対応できることが図示されている。6方弁の例のそれぞれの図の左上に示す6方弁の回路接続位置関係図は、全ての実施例に図示されている当該制御弁周辺のクーラント回路接続位置関係を変更し定義したもので、各モードに対するシステム全体の機能を4方弁の場合と同等に保って、接続が可能であれば制御弁の簡素化ができる場合に対応している。
特に、回路の接続状態が許せば、高温クーラント制御弁(34)と低温クーラント制御弁(52)を一種類の既存の標準4方弁2個でも対応できる場合が考えられ、コスト低減が可能である。1つの特殊なクーラント8方弁や更にリザーブタンク、ポンプ等組み合わせた大型機器が提案されている既存技術も見られるが、これに対し、パッケージングの自由度、効率的スペース割り当て、標準的既存制御弁の適用等この構成には利点が多い。
どの実施例でもクーラント加熱器(11)が1つの機器で高温クーラントループ(101)と低温クーラントループ(102)の異なる温度レベル管理が必要な両方のループに必要十分に対応できるシステム構成となっている。課題1の解決方法で詳述したように追加の電気ヒーター等設定不要で、室内暖房とバッテリ予備加熱の両方の加熱機能を1つの機器で満たしている。このことは新規性があり、電気エネルギ消費抑制、コスト低減、システムの簡素化、及び重量低減等に寄与し、通常の設計の選択を超える創造性の高い発明の要素となっていると考えられる。詳細は、後述の稼働モード毎の説明を参照のこと。
これらの実施例は、PTCヒーター等、入力電気エネルギに対し出力加熱エネルギの割合を示すCOPが1未満となるような電気ヒーターを使用することなしに車室暖房とバッテリ予備加熱を寒冷地域や酷寒地域でも適用可能である。電気エネルギ消費抑制、コスト低減、システムの簡素化、及び重量低減等に寄与することができる。また、必要であれば、遠赤外線方式の高効率ヒーターを室内側に独立して配置し、電気クーラントヒータを組み合わせる等、基本システムへの追加機器設定にも容易に対応できる。寒冷地の初期暖房でのEVTTMSの最大負荷の設計条件を下げることによる基本システム容量を低減させる効果がある場合には、有効になりえる。
これらの実施例の図中で示されているTMSモジュールは、EVTTMSの機能を実現するための、機能的モジュールを表している。乗用車等では通常システムを構成する各機器は、別々か、或いは複数機器が事前組み立てされて車両内に設置される。バスやオフロード車等では、必要と利点がある場合は1つのパッケージとしてまとめ、TMSモジュールとしてその他の関連機器と配管・ホース等で結合しEVTTMSを構成することも可能である。
図1から図7で示されているバッテリーパックは、バッテリーセルを冷却または加熱できるバッテリ熱交換器(51)、配線、クーラント出入口接合コネクタ、及び収納容器等バッテリを構成する物理的要素全てを表している。
図1から図7で示されているHVACユニットとパワートレインは、バッテリーパックと同様にそれぞれACS、PCS、BTMSの熱管理対象でありEVTTMSの構成要素である。
図1から図7で示されているCRFMは通常車両前方に配置されるコンデンサ、ラジエータ、及びファンモジュールの物理的集合体であり、1つのファンモジュールでコンデンサ(13)、室外熱交換器(13a)、或いは室外エバポレータ(13b)と、高温ラジエータ(31)及び低温ラジエータ(57)をまとめて外気冷却し、冷媒やクーラントの温度や圧力を冷却ファン(72)で制御する。複数の冷却ファン(72)でそれぞれの熱交換器や熱交換器群を個別に冷却することも可能である。ここで高温ラジエータ(31)と低温ラジエータ(57)は図9の機能の説明にも記述されているように、それぞれのクーラント回路が分離されていれば熱交換部分が物理的に一体のラジエータに設定されてもよい。このようにCRFMはTMSモジュールと機能的に連動し、EVTTMSを構成するモジュールである。
図1から図7で示されている高温リザーブタンク(36)と低温リザーブタンク(53)はそれぞれのクーラントループ内の最も高い位置に構成されるべきである。したがって本実施例では、具体的なクーラントループのレイアウトが設定されていない一般例としてクーラント配管からのクーラント接続位置は仮の設定になっている。また、高温クーラント制御弁(34)や低温クーラント制御弁(52)の制御位置によっては閉塞する部分的な回路内機器や配管・ホースが内部クーラントの熱膨張・収縮による不具合を受けないようその部分がリザーブタンクにキャピラリチューブ等で連通しておく必要がある場合も考えられる。相変化材料が、蓄熱剤としてリザーブタンクに設定されることも可能である。また、高温側と低温側のクーラントの温度差が比較的小さい場合にはリザーブタンクを統合することも可能である。これらの点は、それぞれの車両へのシステムレイアウトや要件によって異なるのでこれらの例では詳しく表現されていない。
図1から図7では、それぞれの主要機器の接続状態が線で示されている。これらの線は、実線、破線、及び2点鎖線でそれぞれの図中に示す凡例や表示により意味が定義されており、矢印は冷媒やクーラントの流れ方向を示している。通常金属配管やフレキシブルなホース類、締結部品、固定ブラケット、及びコネクタ等冷媒とクーラントのそれぞれの機器を結合する部品一式を代表している。各主要機器は符号と凡例によりその定義が示されている。図11から図19、図21から図29、図31から図39のシステムの稼働状態図でも同様である。
全ての本実施例では、冷媒の種類によって構成を変える必要はなく、R134a、R1234yf、R1234ze、R744等実用化されているどの冷媒にも対応できる。R744の場合は、コンデンサはガスクーラと交換する必要があり、さらに、冷媒の特性上ガスクーラ出口とコンプレッサ入口の冷媒を熱交換させる熱交換器の設定が実質的に不可欠になるが、その他基本構成自体に変わりはない。
また、全ての本実施例では、コンプレッサ入口の低温低圧の冷媒と膨張弁前の高温高圧の冷媒を熱交換させて、膨張弁前の過冷却度を増加しシステム能力を向上させるいわゆる内部熱交換器も、容易に組み込むことができるが、発明の要旨を分かりやすく示すためあえて図中には示されていないが前記のようにR744冷媒の場合は実質的に不可欠となる。
本発明実施例A‐1の説明
ここからは、実施例A‐1の固有部分の説明を実施する。図1にEVTTMS全体構成を示す。本実施例では、図9に示すように、先行技術例として比較した高温な地域に適した特許文献1の内容を含むシステムでの最小の構成機器数29に対し同じ数の主要構成機器で全気候地域に対応できている。従って、余分な機器やバイパスバルブ、及び接続配管・ホース・コネクタ等を省いていることにより、冷媒とクーラントの圧力損失も最小化が可能となり基礎的なCOPがより優れた発明となっている。
また本実施例では、図9に示すように、特許文献3の内容を含み、本発明実施例と同等のバッテリ予備加熱機能を与えるため電気クーラントヒータを加えたシステムでの最小の構成機器数36(最大の場合では冷媒制御弁合計総数が最小数の4にたいして最大6になるので構成機器数は38となる)に対し29の構成機器で全気候地域に対応できている。従って、余分な機器やバイパスバルブ,及び接続配管・ホース・コネクタ等を省いていることにより、冷媒とクーラントの圧力損失も最小化が可能となり基礎的なCOPがより優れた発明となっている。さらに、前述に列挙した課題も全て解消した発明となっている。
さらに本実施例では、前述の課題2を解決する手段で示したNHGBHが適用されており。PTCヒーター等COP1未満の電気ヒーターを使用することが避けられる。
図10では本実施例のEVTTMSが、実際に必要なACS、PCS、BTMS全ての作動モードの組み合わせに対応して主要機器の稼働状況を一覧にして示している。この中でOnとOffで代表的稼働状態を示しているが、コンプレッサやポンプ等はOnであっても熱負荷によっては稼働する必要がなく熱管理コントローラ(73)の制御によって一時停止する場合もありうるがそれによる支障はない構成になっている。冷却ファンやチラー等はOffであってもOnにすべき例外的場合では対応することができるが、やはり支障はない構成になっている。以下に図10に示されるそれぞれのモードに対応するシステム稼働状況をそれぞれの構成図を用いて詳述する。
図11は、モード[P]-[pc]-[0]、バッテリ予備冷却のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には高温側電動ポンプ(30)が停止され高温ラジエータ(31)、電子電気機器類(32)、駆動モーター(33)、ヒータコア(35)、及びクーラント加熱器(11)にクーラントが供給されず、高温クーラントループ(101)全体が非稼働となる。また、図40に示すように膨張弁付冷媒制御弁(12)の膨張弁(オリフィス)に冷媒が供給されず、冷媒は、コンデンサ(13)経由でチラー(17)に供給されることによりバッテリ予備冷却が実施可能である。
図12は、モード[P]-[c]-[1]、予備冷房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には高温側電動ポンプ(30)が停止され高温ラジエータ(31)、電子電気機器類(32)、駆動モーター(33)、ヒータコア(35)、及びクーラント加熱器(11)にクーラントが供給されず、高温クーラントループ(101)全体が非稼働となる。また、膨張弁付冷媒制御弁(12)の膨張弁側に冷媒が供給されず、冷媒は、コンデンサ(13)経由でエバポレータ(15)に供給されることにより室内冷房が実施可能である。
また、低温クーラントループ(102)全体が稼働状態なので、バッテリ冷却は必要な冷却負荷に応じて低温側電動ポンプ(50)の停止によるBTMSの停止、無負荷クーラント循環、低温ラジエータ(57)を用いた外気での受動的クーラント冷却とチラー(17)を用いた能動的クーラント冷却のどちらか、または両方同時を独立して実施すること等、バッテリ予備加熱以外のすべてのBTMS機能の稼働が可能となっている。
図13は、モード[D]-[c]-[2]、最強冷房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、ヒータコア(35)と図40に示すように膨張弁付冷媒制御弁(12)の膨張弁(オリフィス)が非稼働状態になっておりNHGBHを含む車室内暖房とバッテリ加熱等すべての加熱手段が停止されており全エネルギが車室内冷房とバッテリ冷却に使用される形態になっている。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図14は、モード[D]-[c]-[3]、温度調節冷房とモード[D]-[c]-[5]、除湿暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、図40に示すように膨張弁付冷媒制御弁(12)の膨張弁(オリフィス)が非稼働状態になっておりNHGBHの加熱手段が停止されている以外、全ての機器が稼働可能状態になっている。特に、車室内の冷房と暖房機能が同時に使用できて、暖房はすべて排熱回収によってまかなう構成が実施可能であることが明白に示されている。
車室内は、HVACユニットのエアミックスタイプの空調が可能で、エバポレータ(15)で冷房除湿後、ヒータコア(35)を通過する一部の加熱された空気をエバポレータ(15)だけを通過した空気と混合させることにより、車の運転者や乗客が望む温度に調節することが可能である。すなわち、エバポレータ(15)とヒータコア(35)の使用が同時に可能となっている。このことの必要性を以下に詳述する。
このモードでは、事前のエバポレータ(15)での空気冷却時にエバポレータ表面温度が空気露点より高すぎる場合、エバポレータ(15)表面が乾く場合があり、表面に吸着されていた低級脂肪酸等の脱着による異臭が発生してしまう。逆に、エバポレータ(15)表面を常に乾いていない状態を確保しようとすると、車室内への吐出空気温度が不必要に低くなりすぎる場合がある。そのような問題を避けるためエバポレータ(15)の表面温度制御或いは出口空気温度制御が車室内温度の制御とは独立して行われる。従って、通常エバポレータ(15)内の冷媒蒸発圧力と温度の制御だけではHVACユニット吐出空気温度の制御は困難で、エバポレータ(15)後流に配置されたヒータコア(35)での空気再加熱が必要になる。異臭の問題を無視したとしても、空気の除湿後の加熱機能がない場合、窓曇りの安全不具合の可能性や高湿度の不快感が無視できない。ただし、空気再加熱による負荷は最小にとどめられるようエバポレータ(15)の表面温度或いは出口空気温度が適正なアルゴリズムで制御される。
このモードは、暖房モード等に比較し暖房機能の負荷が低いため、高効率とはいえやはりエネルギ消費を伴うNHGBHを避けて、高温クーラントループ(101)のパワートレイン機器や電動コンプレッサ(10)からの排熱回収熱源だけを用いる設定を標準としている。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。特にこのモードのように暖房が低負荷な場合は、ほとんどの場合PCSでの熱回収量で十分なのでバッテリ冷却用のチラー(17)での熱回収は不要。むしろ電動コンプレッサ(10)の動力を使わずに、低温ラジエータ(57)で外気冷却することが省エネルギに貢献する。このモードの使用頻度は比較的高いので低負荷でも年間省エネルギ効果は大きい。図14はこのエネルギ最適制御を可能とするシステムを説明しており、この創造的手段は従来技術からは自明ではない。
図15は、モード[D]-[c]-[4]、換気-Offのシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、図13に対して、HVACユニットの冷暖房機能が停止されており、換気機能だけになっている。その他の機能は保たれており、目的の形態になっている。
図16は、モード[D]-[c]-[6]、温度調節暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、車室内のHVACユニット内のエバポレータ膨張弁(14)付属の閉弁機能で、エバポレータ(15)を非稼働状態として冷房機能が停止され、ヒータコア(35)の暖房機能が前述の実施例共通の説明の中の高温クーラントループ(101)の部分の全ての機能で稼働している。内気循環空気あるいは外気の一部をヒータコア(35)通過後の空気と混合して車室内温度調節することができる。
図40に示すように膨張弁付冷媒制御弁(12)の膨張弁(オリフィス)が非稼働状態になっておりNHGBHを用いた車室内暖房とバッテリ加熱が停止されている。但し、図41に示すように当該制御弁の膨張弁側の回路を一部開きコンデンサ(13)と並行してNHGBHシステムも部分的に稼働させることが可能である。このことによりバッテリ冷却用のチラー(17)での蒸発側冷媒量では不足な場合、暖房用冷媒をクーラント加熱器(11)に増量供給し暖房機能を補強することが可能である。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図17は、モード[D]-[c]-[7]、最強暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、車室内のHVACユニット内のエバポレータ膨張弁(14)付属の閉弁機能で、エバポレータ(15)を非稼働状態とし冷房機能が停止され、ヒータコア(35)の暖房機能が前述の実施例共通の説明の中の高温クーラントループ(101)の部分の全ての機能で稼働できる。但し、標準的にはパワートレインの機器とクーラント加熱器(11)を通過し加熱されたクーラントをヒータコア(35)に供給し、外気或いは室内気を最大に加熱して車室内暖房を実施する。さらに、図42に示すように膨張弁付冷媒制御弁(12)の膨張弁(オリフィス)が稼働状態になっており、NHGBHを用いてバッテリ冷却用のチラー(17)での蒸発側冷媒流量からさらに冷媒流量をバイパス増加させてクーラント加熱器(11)を通過する冷媒全体流量を増加させる。このことにより最大暖房負荷に対応している。外気温にかかわらず電動コンプレッサ(10)の吐出容量を最大まで使用したNHGBHによる最強暖房が可能となっている。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図18は、モード[P]-[c]-[8]、予備暖房のシステム稼働状況を図示しており、EVが駐車状態でバッテリ予備加熱後の車室内予備暖房を実施することが本実施例で実現可能であることを図示している。具体的には、バッテリが指定温度まで加熱された後にこのモードが開始されて、HVACユニット、パワートレイン、低温ラジエータ(57)の外気自然対流冷却機能以外のCRFMの機能がすべて停止されていることが仮定される状態で、後述のように車室暖房がNHGBHシステムで機能していることが示されている。
このモードでは、図42に示すように膨張弁付冷媒制御弁(12)の膨張弁(オリフィス)が稼働状態になっており、電動コンプレッサ(10)からの熱源を増加させるため冷媒流量を増加させクーラント加熱器(11)によりクーラントを加熱している。ヒータコア(35)へ高温クーラントを供給するために高温クーラントループ(101)全体を稼働させている。この時パワートレイン冷却は不要であるがクーラントは通過するので高温ラジエータ(31)で過度にクーラントを冷却してしまわないように冷却ファン(72)は標準的には非稼働の設定になっている。さらに、パワートレインを通過するクーラントの温度低下を抑制したい場合があれば、高温側電動ポンプ(30)の出口とパワートレイン機器出口を接続する高温クーラントのバイパス回路を設けることが可能である。追加の制御弁なしでこのことに対応した高温クーラント制御弁(34)の6方弁の仕様と各モードに対する制御状態を図56から図60に示す。
低温クーラントループ(102)の低温クーラント制御弁(52)は、クーラント加熱器(11)との結合を切り離しているのでバッテリ加熱は停止されており、バッテリ冷却が予備暖房終了前に必要になった場合は、チラー(17)を稼働させない低温ラジエータ(57)での低温外気を利用した冷却ファン(72)非稼働の空気自然対流冷却が標準的に設定されている。もしも冷却ファン(72)による強制対流冷却が必要になった場合には冷却ファン(72)の稼働を避けて図41に示すように膨張弁付冷媒制御弁(12)のコンデンサ(13)側を一部開けてチラー(17)を稼働させて対応することが可能である。いずれの場合も暖房は停止する必要はない。
図19は、モード[P]-[ph]-[0]、バッテリ予備加熱のシステム稼働状況を図示しており、予備暖房が開始される前のバッテリの予備加熱が本実施例で実現可能であることを図示している。具体的には、バッテリが使用可能温度以下になっていることが想定されているので、まずバッテリ温度を充電用外部電源を用いて加熱する。車載バッテリを電源として制限された放電条件下で用いる場合もありうると考えられる。いずれの場合も、HVACユニット、パワートレイン、CRFM、高温側クーラントループ(101)の機能がすべて停止されていることが仮定される。低温ラジエータ(57)を通過する回路の構成機器以外の低温クーラントループ(102)とNHGBH機能だけが稼働している。低温クーラントループ(102)の低温クーラント制御弁(52)は、クーラント加熱器(11)と結合しているので低温クーラントループ(102)を通じて比較的低温で適切なクーラント温度によるバッテリ加熱が可能になっていることが示されている。
クーラント加熱器(11)が低温クーラントループ(102)のクーラント加熱に用いられるのはこのモードだけである。この目的で電気クーラントヒータを設定する必要がないシステム構成になっている。
本発明実施例A‐2の説明
ここからは、実施例A‐1に対して実施例A‐2の固有部分の説明を実施する。図2にEVTTMS全体構成図を示している。この発明実施例では、実施例A-1に対し、酷寒地域の一部や車両のオプション設定によっては室内遠赤外線暖房が容易に追加できることを例示している。遠赤外線暖房は、遠赤外線が発生エレメントから放射されると直接シートカバー、衣服、或いは人体等の表面を加熱する機能があり、介在する空気の影響を受けないため、狭い空間の限られた部分の直接暖房に適しており、消費電力も他の電気エネルギを消費するヒーターに対して格段に低いので空気対流による全体暖房と組合わせる利点がある。従って、寒冷時の最大暖房負荷に合せたACS暖房モードの通常の設計容量設定に対してそれの低減を図れる可能性がある。実施例A‐1を標準設定として相応の暖房容量を設定しておいて、実施例A-2を酷寒地域用のオプション設定とすることも効果的と考えられる。前記固有部分の説明以外は実施例A-1に対して説明した全ての内容が同様に適用される。
本発明実施例A‐3の説明
ここからは、実施例A‐1とA‐2に対して実施例A‐3の固有部分の説明を実施する。図3にEVTTMS全体構成図を示している。この発明実施例では、実施例A-1、或いはA-2に対し、酷寒地域の一部や車両のオプション設定によってはクーラント電気ヒーター(38)が容易に追加できることを例示している。酷寒地域の中でも極地に近いロシア、北欧や北米の一部では、市場追加オプションとして燃焼ヒーターが取り付けられたりすることがあるがそれに代わる追加オプションを容易に加えることの可能性の一例としても示している。遠赤外線暖房と同時適用でも、遠赤外線暖房が既存車両に何らかの理由で設定できない場合に、代替として単独で追加適用するなど、多様で特殊な用途にフレキシブルに対応できることを示している。このことにより寒冷時の最大暖房負荷に合せたACS暖房モードの通常の設計容量設定に対してそれの低減を図れる可能性がある。前記固有部分の説明以外は実施例A-1、A-2に対して説明した全ての内容が同様に適用される。
本発明実施例B‐1の説明
ここからは、実施例B‐1の固有部分の説明を実施する。図4にEVTTMS全体構成図を示している。本実施例では、図9に示すように、特許文献3の内容を含み、本発明実施例と同等のバッテリ予備加熱機能を与えるため電気クーラントヒータを加えたシステムでの最小の構成機器数36(最大の場合では冷媒制御弁合計総数が最小数の4にたいして最大6になるので構成機器数は38となる)に対し32の構成機器(遠赤外線ヒーターを追加したB-2でも最大35となる)で全気候地域に対応できている。従って、余分な機器やバイパスバルブ,及び接続配管・ホース・コネクタ等を省いていることにより、冷媒とクーラントの圧力損失も最小化が可能となり基礎的なCOPが先行技術に対してより優れている。さらに、前述に列挙した課題も全て解消した発明となっている。
本実施例では、前述の課題2を解決する手段で示したPTCヒーター等COP1未満の電気ヒーターを使用することが避けられるNHGBHシステムに代わり、同じく課題2を解決する手段の説明の後半で示した外気利用のヒートポンプシステムが適用できることを示している。具体的には、図43から図45に示される冷媒制御弁A(12a)と図49から図51に示される冷媒制御弁B(12b)に示されるように流路を切り替ええて、クーラント加熱器(11)で冷媒を凝縮させ、HPモード用膨張弁(20)でそれを膨張させ、室外熱交換器(13a)を蒸発器モードで使用し、それを外気の保有熱量を利用して蒸発させて低温低圧の気相冷媒として電動コンプレッサ(10)入口に還流させる。結果としてクーラント加熱器(11)で加熱されたクーラントがヒータコア(35)の暖房用熱源として用いられる。
さらに、低温外気時のコンプレッサ入口圧力低下によるヒートポンプシステム効率低下対策としてヒートポンプモード時にクーラント加熱器(11)出口の高圧冷媒が冷媒制御弁A(12a)を通過したのち、冷媒制御弁B(12b)で高圧側の冷媒制御弁A(12a)と低圧側のアキュームレータ(21)の接続シール部に微小冷媒バイパス回路(図50参照)を設定してアキュームレータ(21)入口の低圧冷媒の圧力を適切に上昇させるコンプレッサ吸入体積効率向上手段が付加されている。
前記のヒートポンプシステムが手段として適用されていること以外のことは、実施例A-1に対して前記に説明した全ての内容が同様に適用される。
図20では本実施例のEVTTMSが、実際に必要なACS、PCS、BTMS全ての作動モードの組み合わせに対応して主要機器の稼働状況を一覧にして示している。この中でOnとOffの意味は前述の実施例A-1の図10に対する説明と同様である。以下に図20に示されるそれぞれのモードに対応するシステム稼働状況をそれぞれの構成図を用いて詳述する。
図21は、モード[P]-[pc]-[0]、バッテリ予備冷却のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には高温側電動ポンプ(30)が停止されラジエータ(31)の高温側、電子電気機器類(32)、駆動モーター(33)、ヒータコア(35)、及びクーラント加熱器(11)にクーラントが供給されず、高温クーラントループ(101)全体が非稼働となる。また、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給されず、冷媒は、室外熱交換器(13a)経由でチラー(17)に供給されることによりバッテリ予備冷却が実施可能である。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図22は、モード[P]-[c]-[1]、予備冷房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には高温側電動ポンプ(30)が停止され高温ラジエータ(31)、電子電気機器類(32)、駆動モーター(33)、ヒータコア(35)、及びクーラント加熱器(11)にクーラントが供給されず、高温クーラントループ(101)全体が非稼働となる。また、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給されず、冷媒は、室外熱交換器(13a)経由でエバポレータ(15)に供給されることにより室内冷房が実施可能である。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図23は、モード[D]-[c]-[2]、最強冷房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、高温クーラント制御弁(34)により高温クーラントはヒータコア(35)に供給されることなく非稼働となっており。また、冷媒制御弁A(12a)の制御により冷媒は室外熱交換器(13a)に直接供給されコンデンサ機能を果たし、全エネルギが車室内冷房とバッテリ冷却に使用される目的の形態になっている。
また、低温クーラントループ(102)全体が稼働状態なので、バッテリ冷却は必要な冷却負荷に応じて低温側電動ポンプ(50)の停止によるBTMSの停止、無負荷クーラント循環、低温ラジエータ(57)を用いた外気での受動的クーラント冷却とチラー(17)を用いた能動的クーラント冷却のどちらか、または両方同時を独立して実施すること等、バッテリ予備加熱以外のすべてのBTMS機能の稼働が可能となっている。
図24は、モード[D]-[c]-[3]、温度調節冷房とモード[D]-[c]-[5]、除湿暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)が非稼働状態になっておりヒートポンプシステム加熱手段が停止されている以外、全ての機器が稼働可能状態になっている。特に、車室内の冷房と暖房機能が同時に使用できて、暖房はすべて排熱回収によってまかなう構成が実施可能であることが明白に示されている。その他のNHGBH関連の最初の段落以降の説明は図14と同様である。
図25は、モード[D]-[c]-[4]、換気-Offのシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、図24に対して、HVACユニットの冷暖房機能が停止されており。換気機能だけになっている。その他の機能は保たれており、目的の形態になっている。
図26は、モード[D]-[c]-[6]、温度調節暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、車室内のHVACユニット内のエバポレータ膨張弁(14)付属の閉弁機能で、エバポレータ(15)を非稼働状態とし冷房機能が停止され、ヒータコア(35)の暖房機能が前述の実施例共通の説明の中の高温クーラントループ(101)の部分の全ての機能で稼働している。内気循環空気あるいは外気の一部をヒータコア(35)通過後の空気と混合して車室内温度調節することができる。
冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給されずヒートポンプシステムが非稼働状態になっており、ヒートポンプシステムでの車室内暖房とバッテリ加熱が停止されている、パワートレインの熱回収と電動コンプレッサ(10)出口冷媒の熱回収のみを利用した室内暖房を実施している。
但し、バッテリ冷却の負荷が小さくパワートレインの発熱も小さく、電動コンプレッサ(10)出口冷媒の暖房用熱源だけでは不足の場合は、バッテリ冷却を低温ラジエータ(57)だけでまかなえる低温外気の状況を利用して、ヒートポンプシステムに切り替ええて暖房能力を増加することが可能である。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図27は、モード[D]-[c]-[7]、最強暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、車室内のHVACユニット内のエバポレータ膨張弁(14)付属の閉弁機能で、エバポレータ(15)を非稼働状態とし冷房機能が停止され、ヒータコア(35)の暖房機能が前述の実施例共通の説明の中の高温クーラントループ(101)の部分の全ての機能で稼働できる。但し、標準的にはパワートレインの機器とクーラント加熱器(11)を通過し加熱されたクーラントをヒータコア(35)に供給し、外気或いは室内気を最大に加熱して車室内暖房を実施している。
冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給され本実施例冒頭で説明したヒートポンプシステムが稼働状態になっており車室内暖房が開始されている状態を示している。また、低温外気でヒートポンプシステム効率が低下する条件では、本実施例冒頭で説明したコンプレッサ吸入体積効率向上手段が適用される。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図28は、モード[P]-[c]-[8]、予備暖房のシステム稼働状況を図示しており、EVが駐車状態でバッテリ予備加熱後の車室内予備暖房を実施することが本実施例で実現可能であることを図示している。具体的には、バッテリが指定温度まで加熱された後にこのモードが開始されて、HVACユニット、パワートレイン、低温ラジエータ(57)の外気自然対流冷却機能以外のCRFMの機能がすべて停止されていることが仮定される状態で、車室暖房が機能していることが示されている。
このモードでは、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)が稼働状態になっており本実施例冒頭で説明したヒートポンプシステムとコンプレッサ吸入体積効率向上手段が適用された車室暖房が開始されている状態を示している。この時エバポレータ機能で稼働している室外熱交換器(13a)は空気自然対流を利用し外気から吸熱している。ヒータコア(35)へ高温クーラントを供給するために高温クーラントループ(101)全体を稼働させている。この時パワートレイン冷却は不要であるがクーラントは通過するので高温ラジエータ(31)で過度にクーラントを冷却してしまわないように冷却ファン(72)は標準的には非稼働の設定になっている。さらに、図18の説明と同様にパワートレインを通過するクーラントの温度低下を抑制したい場合があれば、高温側電動ポンプ(30)の出口とパワートレイン機器出口を接続する高温クーラントのバイパス回路を設けることが可能である。追加の制御弁なしでこのことに対応した高温クーラント制御弁(34)の6方弁の仕様と各モードに対する制御状態を図56から図60に示す。
低温クーラントループ(102)の低温クーラント制御弁(52)は、クーラント加熱器(11)との結合を切り離しているのでバッテリ加熱は停止されており、バッテリ冷却が予備暖房終了前に必要になった場合は、チラー(17)を稼働させない低温ラジエータ(57)での低温外気を利用した冷却ファン(72)非稼働の自然対流冷却が標準的に設定されている。もしも冷却ファン(72)による強制対流冷却が必要になった場合には、前述の高温クーラントのバイバス回路と制御弁を設けることが可能である。
図29は、モード[P]-[ph]-[0]、バッテリ予備加熱のシステム稼働状況を図示しており、予備暖房が開始される前のバッテリの予備加熱が本実施例で実現可能であることを図示している。具体的には、バッテリが使用可能温度以下になっていることが想定されているので、まずバッテリ温度を、充電用外部電源を用いて加熱する。車載バッテリを電源として制限された放電条件下で用いる場合もありうると考えられる。いずれの場合も、HVACユニット、パワートレイン、CRFM、高温側クーラントループ(101)の機能がすべて停止されていることが仮定される。低温ラジエータ(57)を通過する回路の構成機器以外の低温クーラントループ(102)とヒートポンプシステム機能だけが稼働している。低温クーラントループ(102)の低温クーラント制御弁(52)は、クーラント加熱器(11)と結合しているので低温クーラントループ(102)を通じて適切な温度によるバッテリ加熱が可能になっていることが示されている。
クーラント加熱器(11)が低温クーラントループ(102)のクーラント加熱に用いられるのはこのモードだけである。この目的で電気クーラントヒータを設定する必要がないシステム構成になっている。
本発明実施例B‐2の説明
ここからは、実施例B‐2の固有部分の説明を実施する。図5にEVTTMS全体構成図を示している。この発明実施例では、実施例B-1に対し、酷寒地域の一部や車両のオプション設定によっては室内遠赤外線暖房が容易に追加できることを例示している。このことにより寒冷時の最大暖房負荷に合せたACS暖房モードの通常の設計容量設定に対してそれの低減を図れる可能性がある。遠赤外線暖房に関する説明は本発明実施例A-2の説明を参照のこと。実施例B-2の前記固有部分の説明以外は実施例B-1に対して説明した全ての内容と特徴が同様に適用される。
本発明実施例B‐3の説明
ここからは、実施例B‐3の固有部分の説明を実施する。図6にEVTTMS全体構成図を示している。本実施例では、実施例B-1、B-2に対して、ヒートポンプシステムの構成が異なる例を示している。本実施例では、図9に示すように、特許文献3の内容を含み、本発明実施例と同等のバッテリ予備加熱機能を与えるため電気クーラントヒータを加えたシステムでの最小の構成機器数36(最大の場合では冷媒制御弁合計総数が最小数の4にたいして最大6になるので構成機器数は38となる)に対し34の構成機器で全気候地域に対応できている。従って、余分な機器やバイパスバルブ,及び接続配管・ホース・コネクタ等を省いていることにより、冷媒とクーラントの圧力損失も最小化が可能となり基礎的なCOPが先行技術に対してより優れている。さらに、前述に列挙した課題も全て解消した発明となっている。
また、本実施例では、前述の課題2を解決する手段で示したPTCヒーター等COP1未満の電気ヒーターを使用することが避けられるNHGBHに代わり、同じく課題2を解決する手段の説明の後半で示したヒートポンプシステムが手段として適用されていることを示している。具体的には、図6の場合では、図46から図48に示される冷媒制御弁A(12a)のみが流路を切り替ええて、クーラント加熱器(11)で冷媒を凝縮させ、HPモード用膨張弁(20)でそれを膨張させ、室外エバポレータ(13b)に導入し、外気の保有熱量を利用して蒸発させて低温低圧の気相冷媒として電動コンプレッサ(10)入口に還流させる。結果としてクーラント加熱器(11)で加熱されたクーラントがヒータコア(35)の暖房用熱源として用いられる。
さらに、低温外気時のコンプレッサ入口圧力低下によるヒートポンプシステム効率低下対策としてヒートポンプモード時にクーラント加熱器(11)出口の高圧冷媒が冷媒制御弁A(12a)から電動コンプレッサ(10)に対し微小冷媒バイパス回路(図47参照)を設定して電動コンプレッサ(10)入口の低圧冷媒の圧力を適切に上昇させるコンプレッサ吸入体積効率向上手段が付加されている。
前記のヒートポンプシステムが手段として適用されていること以外のことは、実施例A-1、A-2に対して前記に説明した全ての内容が同様に適用される。
図30では本実施例のEVTTMSが、実際に必要なACS、PCS、BTMS全ての作動モードの組み合わせに対応して主要機器の稼働状況を一覧にして示している。この中でOnとOffの意味は前述の実施例A-1の図10に対する説明と同様である。以下に図30に示されるそれぞれのモードに対応するシステム稼働状況をそれぞれの構成図を用いて詳述する。
図31は、モード[P]-[pc]-[0]、バッテリ予備冷却のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には高温側電動ポンプ(30)が停止されラジエータ(31)の高温側、電子電気機器類(32)、駆動モーター(33)、ヒータコア(35)、及びクーラント加熱器(11)にクーラントが供給されず、高温クーラントループ(101)全体が非稼働となる。また、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給されず、冷媒は、コンデンサ(13)経由でチラー(17)に供給されることによりバッテリ予備冷却が実施可能である。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図32は、モード[P]-[c]-[1]、予備冷房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には高温側電動ポンプ(30)が停止され高温ラジエータ(31)、電子電気機器類(32)、駆動モーター(33)、ヒータコア(35)、及びクーラント加熱器(11)にクーラントが供給されず、高温クーラントループ(101)全体が非稼働となる。また、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給されず、冷媒は、コンデンサ(13)経由でエバポレータ(15)に供給されることにより室内冷房が実施可能である。
また、低温クーラントループ(102)全体が稼働状態なので、バッテリ冷却は必要な冷却負荷に応じて低温側電動ポンプ(50)の停止によるBTMSの停止、無負荷クーラント循環、低温ラジエータ(57)を用いた外気での受動的クーラント冷却とチラー(17)を用いた能動的クーラント冷却のどちらか、または両方同時を独立して実施すること等、バッテリ予備加熱以外のすべてのBTMS機能の稼働が可能となっている。
図33は、モード[D]-[c]-[2]、最強冷房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、高温クーラント制御弁(34)により高温クーラントはヒータコア(35)に供給されることなく非稼働となっており。また、冷媒制御弁A(12a)の制御により冷媒はコンデンサ(13)に直接供給され、全エネルギが車室内冷房とバッテリ冷却に使用される目的の形態になっている。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図34は、モード[D]-[c]-[3]、温度調節冷房とモード[D]-[c]-[5]、除湿暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)が非稼働状態になっておりヒートポンプシステム加熱手段が停止されている以外、全ての機器が稼働可能状態になっている。特に、車室内の冷房と暖房機能が同時に使用できて、暖房はすべて排熱回収によってまかなう構成が実施可能であることが明白に示されている。その他のNHGBH関連の最初の段落以降の説明は図14と同様である。
図35は、モード[D]-[c]-[4]、換気-Offのシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、図34に対して、HVACユニットの冷暖房機能が停止されており。換気機能だけになっている。その他の機能は保たれており、目的の形態になっている。
図36は、モード[D]-[c]-[6]、温度調節暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、車室内のHVACユニット内のエバポレータ膨張弁(14)付属の閉弁機能で、エバポレータ(15)を非稼働状態とし冷房機能が停止され、ヒータコア(35)の暖房機能が前述の実施例共通の説明の中の高温クーラントループ(101)の部分の全ての機能で稼働している。内気循環空気あるいは外気の一部をヒータコア(35)通過後の空気と混合して車室内温度調節することができる。
冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給されずヒートポンプシステムが非稼働状態になっており、ヒートポンプシステムでの車室内暖房とバッテリ加熱が停止されている、パワートレインの熱回収と電動コンプレッサ(10)出口冷媒の熱回収のみを利用した室内暖房を実施している。
但し、バッテリ冷却の負荷が小さくパワートレインの発熱も小さく、電動コンプレッサ(10)出口冷媒の暖房用熱源だけでは不足の場合は、バッテリ冷却を低温ラジエータ(57)だけでまかなえる低温外気の状況を利用して、ヒートポンプシステムに切り替ええて暖房能力を増加することが可能である。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図37は、モード[D]-[c]-[7]、最強暖房のシステム稼働状況を図示しており、本実施例が実現可能であることを図示している。具体的には、車室内のHVACユニット内のエバポレータ膨張弁(14)付属の閉弁機能で、エバポレータ(15)を非稼働状態とし冷房機能が停止され、ヒータコア(35)の暖房機能が前述の実施例共通の説明の中の高温クーラントループ(101)の部分の全ての機能で稼働できる。但し、標準的にはパワートレインの機器とクーラント加熱器(11)を通過し加熱されたクーラントをヒータコア(35)に供給し、外気或いは室内気を最大に加熱して車室内暖房を実施している。
冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)に冷媒が供給されヒートポンプシステムが稼働状態になっており車室内暖房が実施される。また、低温外気でヒートポンプシステム効率が低下する条件では、冷媒制御弁A(12a)の電動コンプレッサ(10)入口へのバイパス接続部設定(図47参照)により低圧側回路に高圧側冷媒の微小洩れを発生させ、電動コンプレッサ(10)入口の圧力を適切に上昇させ吸入体積効率を向上させる制御を実施している。
また、段落0105に示すように、様々なBTMS機能の稼働が可能となっている。
図38は、モード[P]-[c]-[8]、予備暖房のシステム稼働状況を図示しており、EVが駐車状態でバッテリ予備加熱後の車室内予備暖房を実施することが本実施例で実現可能であることを図示している。具体的には、バッテリが指定温度まで加熱された後にこのモードが開始されて、HVACユニット、パワートレイン、低温ラジエータ(57)の外気自然対流冷却機能以外のCRFMの機能がすべて停止されていることが仮定される状態で、車室暖房が機能していることが示されている。
このモードでは、冷媒制御弁A(12a)の制御によりHPモード用膨張弁(20)が稼働状態になっておりヒートポンプシステムでの車室暖房が開始されている状態を示している。この時エバポレータ機能で稼働している室外エバポレータ(13b)は空気自然対流を利用し外気から吸熱している。ヒータコア(35)へ高温クーラントを供給するために高温クーラントループ(101)全体を稼働させている。この時パワートレイン冷却は不要であるがクーラントは通過するので高温ラジエータ(31)で過度にクーラントを冷却してしまわないように冷却ファン(72)は標準的には非稼働の設定になっている。さらに、図18の説明と同様にパワートレインを通過するクーラントの温度低下を抑制したい場合があれば、高温側電動ポンプ(30)の出口とパワートレイン機器出口を接続する高温クーラントのバイパス回路を設けることが可能である。追加の制御弁なしでこのことに対応した高温クーラント制御弁(34)の6方弁の仕様と各モードに対する制御状態を図56から図60に示す。
低温クーラントループ(102)の低温クーラント制御弁(52)は、クーラント加熱器(11)との結合を切り離しているのでバッテリ加熱は停止されており、バッテリ冷却が予備暖房終了前に必要になった場合は、チラー(17)を稼働させない低温ラジエータ(57)での低温外気を利用した冷却ファン(72)非稼働の自然対流冷却が標準的に設定されている。もしも冷却ファン(72)による強制対流冷却が必要になった場合には、前述の高温クーラントのバイバス回路と制御弁を設けることが可能である。
図39は、モード[P]-[ph]-[0]、バッテリ予備加熱のシステム稼働状況を図示しており、予備暖房が開始される前のバッテリの予備加熱が本実施例で実現可能であることを図示している。具体的には、バッテリが使用可能温度以下になっていることが想定されているので、まずバッテリ温度を、充電用外部電源を用いて加熱する。車載バッテリを電源として制限された放電条件下で用いる場合もありうると考えられる。いずれの場合も、HVACユニット、パワートレイン、CRFM、高温側クーラントループ(101)の機能がすべて停止されていることが仮定される。低温ラジエータ(57)を通過する回路の構成機器以外の低温クーラントループ(102)とヒートポンプシステム機能だけが稼働している。低温クーラントループ(102)の低温クーラント制御弁(52)は、クーラント加熱器(11)と結合しているので低温クーラントループ(102)を通じて適切な温度によるバッテリ加熱が可能になっていることが示されている。
クーラント加熱器(11)が低温クーラントループ(102)のクーラント加熱に用いられるのはこのモードだけである。この目的で電気ヒーターを設定する必要がないシステム構成になっている。
前記の詳細説明により、共通の説明とあわせて、全ての図示モードの形態が示されている。
本発明は、ハイブリッド車を含む電気自動車の全気候対応電気自動車統合熱管理システムに利用できる。
10     電動コンプレッサ
11     クーラント加熱器
12     膨張弁付冷媒制御弁
12a  冷媒制御弁A
12b   冷媒制御弁B
13     コンデンサ
13a   室外熱交換器
13b   室外エバポレータ
14     エバポレータ膨張弁
15     エバポレータ
16     チラー膨張弁
17     チラー
18     冷媒温度圧力センサA
19     冷媒温度圧力センサB
20     HPモード用膨張弁
21     アキュームレータ
30     高温側電動ポンプ
31     高温ラジエータ
32     電子電気機器類
33     駆動モーター
34     高温クーラント制御弁
35     ヒータコア
36     高温リザーブタンク
37     クーラント温度センサ1
38     クーラント電気ヒーター
50  低温側電動ポンプ
51     バッテリ熱交換器
52     低温クーラント制御弁
53     低温リザーブタンク
54     クーラント温度センサ2
55     クーラント温度センサ3
56     クーラント温度センサ4
57     低温ラジエータ
70     ブロワーユニット
71     アクチュエータ類
72     冷却ファン
73     熱管理コントローラ
91     シートヒータ
92     運転席ヒーター
93     その他座席ヒーター
100   冷媒ループ
101   高温クーラントループ
102   低温クーラントループ
200   全天候対応電気自動車統合熱管理システム

Claims (13)

  1. バッテリを有する、少なくとも1つの空調システム、駆動モーター、インバータ、その他電子電気機器等を冷却するパワートレイン冷却システム、及びバッテリ熱管理システムを備える全気候対応電気自動車統合熱管理システム(200)であって、
    冷媒の温度及び圧力を上昇させることによって冷媒蒸気を圧縮するように構成された少なくとも1つの電動コンプレッサ(10)、高温高圧の前記冷媒を冷却する際に熱交換するクーラントを加熱するクーラント加熱器(11)、冷媒を外気で冷却凝縮するように構成されたコンデンサ(13)、エバポレータ膨張弁(14)、エバポレータ(15)、チラー膨張弁(16)、チラー(17)、膨張弁付冷媒制御弁(12)または同機能を備える高温高圧冷媒の制御弁とその冷媒後流に設置された電動コンプレッサ(10)の入口に通じる気相冷媒膨張装置の組合せを含む冷媒ループ(100)と、
    高温側電動ポンプ(30)、高温ラジエータ(31)、電子電気機器類(32)、駆動モーター(33)、高温クーラント制御弁(34)、ヒータコア(35)、前記クーラント加熱器(11)を含む高温クーラントループ(101)と、
    低温側電動ポンプ(50)、バッテリ熱交換器(51)、低温クーラント制御弁(52)、高温ラジエータ(31)と一体化されていてもよいがクーラント流路が区別されている低温ラジエータ(57)、クーラント加熱器(11)を含む低温クーラントループ(102)と、
    を備え、
    電子電気機器類(32)、駆動モータ(33)等パワートレインの発熱する機器類とクーラント加熱器(11)を通じた電動コンプレッサ(10)からの排熱回収による暖房熱源を利用する機能を有し、
    前記クーラント加熱器(11)は、高温クーラントループ(101)と低温クーラントループ(102)の両方のクーラントの共通の入口と出口を有し、その前後に設定された、高温側電動ポンプの流域を全て制御する高温クーラント制御弁(34)と低温側電動ポンプの流域を全て制御する低温クーラント制御弁(52)によるクーラント切り替え制御により個別に両方のクーラントを加熱できるように構成し、クーラントループ毎の加熱手段の設定を必要としない、全気候対応電気自動車統合熱管理システム。
  2. バッテリを有する、少なくとも1つの空調システム、駆動モーター、インバータ、その他電子電気機器等を冷却するパワートレイン冷却システム、及びバッテリ熱管理システムを備える全気候対応電気自動車統合熱管理システム(200)であって、
    冷媒の温度及び圧力を上昇させることによって冷媒蒸気を圧縮するように構成された少なくとも1つの電動コンプレッサ(10)、高温高圧の前記冷媒を冷却する際に熱交換するクーラントを加熱するクーラント加熱器(11)、冷媒制御弁A(12a)、冷媒制御弁A(12a)がHPモード用膨張弁(20)に連通していない場合冷媒を外気で冷却凝縮するように構成され冷媒制御弁A(12a)がHPモード用膨張弁(20)に連通している場合冷媒が外気から吸熱蒸発するように構成されたた室外熱交換器(13a)、エバポレータ膨張弁(14)、エバポレータ(15)、チラー膨張弁(16)、チラー(17)、入口冷媒の状態と同じ状態が必要な出口を選択切り替えできる出口冷媒制御弁B(12b)を含む冷媒ループ(100)と、
    高温側電動ポンプ(30)、高温ラジエータ(31)、電子電気機器類(32)、駆動モーター(33)、高温クーラント制御弁(34)、ヒータコア(35)、前記クーラント加熱器(11)を含む高温クーラントループ(101)と、
    低温側電動ポンプ(50)、バッテリ熱交換器(51)、低温クーラント制御弁(52)、高温ラジエータ(31)と一体化されていてもよいがクーラント流路が区別されている低温ラジエータ(57)を含む低温クーラントループ(102)と、
    を備え、
    電子電気機器類(32)、駆動モータ(33)等パワートレインの発熱する機器類とクーラント加熱器(11)を通じた電動コンプレッサ(10)からの排熱回収による暖房熱源を利用する機能を有し、
    前記クーラント加熱器(11)は、高温クーラントループ(101)と低温クーラントループ(102)の両方のクーラントの共通の入口と出口を有し、その前後に設定された、高温側電動ポンプの流域を全て制御する高温クーラント制御弁(34)と低温側電動ポンプの流域を全て制御する低温クーラント制御弁(52)によるクーラント切り替え制御により個別に両方のクーラントを加熱できるように構成し、クーラントループ毎の加熱手段の設定を必要としない、全気候対応電気自動車統合熱管理システム。
  3. バッテリを有する、少なくとも1つの空調システム、駆動モーター、インバータ、その他電子電気機器等を冷却するパワートレイン冷却システム、及びバッテリ熱管理システムを備える全気候対応電気自動車統合熱管理システム(200)であって、
    冷媒の温度及び圧力を上昇させることによって冷媒蒸気を圧縮するように構成された少なくとも1つの電動コンプレッサ(10)、高温高圧の前記冷媒を冷却する際に熱交換するクーラントを加熱するクーラント加熱器(11)、冷媒制御弁A(12a)、冷媒制御弁A(12a)がHPモード用膨張弁(20)に連通していない場合冷媒を外気で冷却凝縮するように構成されたコンデンサ(13)、冷媒制御弁A(12a)がHPモード用膨張弁(20)に連通している場合冷媒が外気から吸熱蒸発するように構成されコンデンサ(13)と一体化されていてもよいが冷媒流路が区別されている室外エバポレータ(13b)、エバポレータ膨張弁(14)、エバポレータ(15)、チラー膨張弁(16)、チラー(17)を含む冷媒ループ(100)と、
    高温側電動ポンプ(30)、高温ラジエータ(31)、電子電気機器類(32)、駆動モーター(33)、高温クーラント制御弁(34)、ヒータコア(35)、前記クーラント加熱器(11)を含む高温クーラントループ(101)と、
    低温側電動ポンプ(50)、バッテリ熱交換器(51)、低温クーラント制御弁(52)、高温ラジエータ(31)と一体化されていてもよいがクーラント流路が区別されている低温ラジエータ(57)を含む低温クーラントループ(102)と、
    を備え、
    電子電気機器類(32)、駆動モータ(33)等パワートレインの発熱する機器類とクーラント加熱器(11)を通じた電動コンプレッサ(10)からの排熱回収による暖房熱源を利用する機能を有し、
    前記クーラント加熱器(11)は、高温クーラントループ(101)と低温クーラントループ(102)の両方のクーラントの共通の入口と出口を有し、その前後に設定された、高温側電動ポンプの流域を全て制御する高温クーラント制御弁(34)と低温側電動ポンプの流域を全て制御する低温クーラント制御弁(52)によるクーラント切り替え制御により個別に両方のクーラントを加熱できるように構成し、クーラントループ毎の加熱手段の設定を必要としない、全気候対応電気自動車統合熱管理システム。
  4. 高温クーラントループ(101)でクーラント加熱器(11)、高温側電動ポンプ(30)、高温ラジエータ(31)、駆動モータ(33)等パワートレイン機器、及びヒータコア(35)と接続している高温クーラント制御弁(34)が車室内暖房機能、パワートレイン機器の冷却機能、バッテリ予備加熱機能をその高温クーラント流路切り替え機能で選択制御し、かつ低温クーラントループ(102)でクーラント加熱器(11)、チラー(17)、バッテリ熱交換器(51)、及び低温ラジエータ(57)と接続している低温クーラント制御弁(52)が低温クーラントループ(102)にバッテリ外気冷却機能と予備加熱機能をその低温クーラント流路切り替え機能で選択制御し、車室内暖房機能、駆動モータ(33)等パワートレイン冷却機能、バッテリ冷却機能、バッテリ加熱機能全てを満たす高温と低温の2種類の温度管理範囲をもつ2つのクーラントループを制御できる、請求項1または2または3に記載の全気候対応電気自動車統合熱管理システム。
  5. 冷媒の温度及び圧力を上昇させることによって冷媒蒸気を圧縮するように構成された少なくとも1つのコンプレッサ、その出口の高温高圧の冷媒をクーラントで放熱する時にクーラントが加熱されるクーラント加熱器、及びクーラント加熱器出口の高圧の冷媒をオリフィス或いはそれを含む膨張装置で低温低圧の冷媒に転じ、コンプレッサ入口に戻す一つの閉じたサイクルを構成している自動車熱管理用の新ホットガスバイパス加熱システムであって、
    クーラント加熱器入口の冷媒が高温高圧の気相状態であるとき、クーラント加熱器の熱交換容量を適切に設定し、クーラント加熱器出口の冷媒が気液混合状態で、液相部分の冷媒割合がオリフィス通過時にほとんど圧縮されず気相冷媒に伴って高温高圧のまま移動できる範囲にとどめ、気相冷媒だけがオリフィス通過時に圧縮され、オリフィス出口で高温高圧の液相冷媒と低温低圧の気相冷媒が混合するようにオリフィス径と長さを設定し、オリフィス出口で混合後の冷媒が、コンプレッサ入口で低温低圧の気相状態にすることを可能する、冷媒の吸熱側熱交換器を不要とする高効率クーラント加熱システム。
  6. 請求項5に記載されている高効率クーラント加熱システムを含む、請求項1または2または3に記載の全気候対応電気自動車統合熱管理システム。
  7. オリフィス径或いはキャピラリチューブ内径が1mmから6mmである請求項5に記載の高効率クーラント加熱システム。
  8. 請求項5に記載されている高効率クーラント加熱システムを使用する場合に、コンプレッサ入口と出口の冷媒圧力・温度情報とコンプレッサ回転数の情報からクーラント加熱器出口の冷媒液相部分の割合を推定し、コンプレッサの入口冷媒状態が気相になる範囲にクーラントと冷媒流量を決定・制御できる機能を含む熱管理コントローラ。
  9. 請求項1または2または3に記載の全気候対応電気自動車統合熱管理システム、或いはバッテリ冷却と車室内冷暖房の両方の機能を有する類似の自動車熱管理システムにおいて、チラー(17)とエバポレータ(15)或いはクーラント加熱器(11)に同時に冷媒が供給される場合に、バッテリ側と車室内側の合計の熱負荷が電動コンプレッサ(10)回転数の最大許容値を超えた場合は、バッテリ冷却を優先するために、HVACユニットの風量を最小限に減じる制御機能を含む熱管理コントローラ。
  10. 請求項1または2または3に記載の全気候対応電気自動車統合熱管理システム、或いは車室内暖房機能を有する類似の自動車熱管理システムにおいて、クーラント加熱器(11)の後に設定された冷媒制御弁に対して電動コンプレッサ(10)の冷媒入口まえの低圧側回路に通じる高圧側冷媒の微小通路を設定して或いは微小洩れを発生させて、電動コンプレッサ(10)入口の圧力を上昇させ冷媒吸入体積効率を向上させる制御を可能とする冷媒制御弁。
  11. 請求項1または2または3に記載の全気候対応電気自動車統合熱管理システム、或いは車室内暖房機能を有する類似の自動車熱管理システムにおいて、クーラント加熱器(11)の後に設定された冷媒制御弁に対して電動コンプレッサ(10)の冷媒入口まえの低圧側回路に通じる高圧側冷媒の微小通路が設定されている或いは微小洩れを発生させることができる請求項10の冷媒制御弁或いは同等の機能を備える代替装置を用いて、電動コンプレッサ(10)入口の圧力を上昇させ冷媒吸入体積効率を向上させる制御を必要な場合に使用する機能を含む熱管理コントローラ。
  12. 請求項1または2または3に記載の全気候対応電気自動車統合熱管理システム、或いは車室内暖房機能とパワートレイン機器の冷却機能を有する類似のシステムにおいて、高温側電動ポンプ(30)の出口とパワートレイン機器出口を接続する高温クーラントのバイパス回路を備えるシステムで、パワートレイン機器の冷却を必要としない場合に、パワートレインを通過するクーラントの温度低下を抑制する前記バイパス回路を使用する制御を可能とする機能を組込んだ高温クーラント制御弁。
  13. 請求項1または2または3に記載の全気候対応電気自動車統合熱管理システム、或いは車室内暖房機能とパワートレイン機器の冷却機能を有する類似のシステムにおいて、高温側電動ポンプ(30)の出口とパワートレイン機器出口を接続する高温クーラントのバイパス回路を備えるシステムで、パワートレイン機器の冷却を必要としない場合に、パワートレインを通過するクーラントの温度低下を抑制する前記バイパス回路を使用する制御を可能とする機能を組込んだ熱管理コントローラ。
PCT/JP2023/036415 2022-10-15 2023-10-05 全気候対応電気自動車統合熱管理システム WO2024080220A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165924 2022-10-15
JP2022165924A JP2024058507A (ja) 2022-10-15 2022-10-15 全気候対応電気自動車統合熱管理システム

Publications (1)

Publication Number Publication Date
WO2024080220A1 true WO2024080220A1 (ja) 2024-04-18

Family

ID=90669167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036415 WO2024080220A1 (ja) 2022-10-15 2023-10-05 全気候対応電気自動車統合熱管理システム

Country Status (2)

Country Link
JP (1) JP2024058507A (ja)
WO (1) WO2024080220A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190565A (ja) * 1993-12-28 1995-07-28 Nippondenso Co Ltd 冷媒用膨張弁
JP2014043181A (ja) * 2012-08-28 2014-03-13 Denso Corp 車両用熱管理システム
WO2014148024A1 (ja) * 2013-03-19 2014-09-25 株式会社デンソー 車両用熱管理システム
JP2020192965A (ja) * 2019-05-30 2020-12-03 株式会社デンソー 熱交換システム
JP2021156567A (ja) * 2019-11-22 2021-10-07 株式会社デンソー 冷凍サイクル装置
WO2022201568A1 (ja) * 2021-03-23 2022-09-29 日本電産株式会社 車両用温調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190565A (ja) * 1993-12-28 1995-07-28 Nippondenso Co Ltd 冷媒用膨張弁
JP2014043181A (ja) * 2012-08-28 2014-03-13 Denso Corp 車両用熱管理システム
WO2014148024A1 (ja) * 2013-03-19 2014-09-25 株式会社デンソー 車両用熱管理システム
JP2020192965A (ja) * 2019-05-30 2020-12-03 株式会社デンソー 熱交換システム
JP2021156567A (ja) * 2019-11-22 2021-10-07 株式会社デンソー 冷凍サイクル装置
WO2022201568A1 (ja) * 2021-03-23 2022-09-29 日本電産株式会社 車両用温調装置

Also Published As

Publication number Publication date
JP2024058507A (ja) 2024-04-25

Similar Documents

Publication Publication Date Title
CN110549817B (zh) 热流管理设备以及用于运行热流管理设备的方法
CN110525169B (zh) 纯电动汽车用集成乘员舱热泵空调及三电热管理系统
JP5892774B2 (ja) 車両用ヒートポンプシステムの制御方法
JP5855618B2 (ja) 自動車の空調装置を作動させる方法
JP5868988B2 (ja) ドライブトレインおよび車両乗員室の熱調整デバイス
JP5860361B2 (ja) 電動車両用熱管理システム
JP5599654B2 (ja) 空調ループと熱媒流路とを含む熱管理システム
CN111746225B (zh) 电动汽车的热管理系统和具有它的电动汽车
JP5860360B2 (ja) 電動車両用熱管理システム
KR101283592B1 (ko) 차량용 히트펌프 시스템 및 그 제어방법
US20100293966A1 (en) Vehicle air conditioner
US20220097478A1 (en) Thermal management system
CN213007493U (zh) 电动汽车及其热管理系统
CN108973591B (zh) 电动汽车温度调控系统及其控制方法
CN113022261B (zh) 一种电动车用热管理系统
CN110293817B (zh) 一种电动车热泵空调系统及其除霜方法
JP2014037182A (ja) 電動車両用熱管理システム
JP2014037179A (ja) 電動車両用熱管理システム
KR20120042104A (ko) 전기 자동차용 공기 조화 시스템
CN114654961B (zh) 一种汽车热管理系统及新能源汽车
WO2024080220A1 (ja) 全気候対応電気自動車統合熱管理システム
WO2021192761A1 (ja) 車両用空気調和装置
US20120031128A1 (en) Heating And Cooling Circuit With Self Heat-Up Function For Air-Conditioning System Of Electric Vehicle
CN212579558U (zh) 一种电动车内温控调节系统
CN221090418U (zh) 间接式热泵热管理系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877225

Country of ref document: EP

Kind code of ref document: A1