WO2021192761A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2021192761A1
WO2021192761A1 PCT/JP2021/006339 JP2021006339W WO2021192761A1 WO 2021192761 A1 WO2021192761 A1 WO 2021192761A1 JP 2021006339 W JP2021006339 W JP 2021006339W WO 2021192761 A1 WO2021192761 A1 WO 2021192761A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
temperature control
heating
air
Prior art date
Application number
PCT/JP2021/006339
Other languages
English (en)
French (fr)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN202180020507.1A priority Critical patent/CN115335245A/zh
Publication of WO2021192761A1 publication Critical patent/WO2021192761A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to an air conditioner for vehicles.
  • the battery In electric vehicles and hybrid vehicles, the battery is charged by regeneration during driving, but the battery deteriorates when it is overcharged. Therefore, when the remaining capacity of the battery is high, power is consumed by using a resistance circuit, or as shown in Patent Document 1, an electric load is operated to consume power.
  • An object of the present invention is to consume the power of the battery by the existing components and suppress overcharging.
  • the vehicle air conditioner is a vehicle equipped with a battery that supplies power to an electric motor, and has a heating circuit that circulates a heating heat medium and heat for air conditioning to air-condition the interior of the vehicle.
  • a vehicle air conditioner including a refrigeration cycle circuit that circulates a medium, and the heating circuit is between a heater that heats the heating heat medium and an air conditioning heat medium of the refrigeration cycle circuit. It is equipped with a heat exchanger that exchanges heat and a radiator that is installed in parallel with the heat exchanger and exchanges heat with the outside air, and switches the circuit according to the remaining capacity of the battery that is regenerated and charged when the vehicle is running.
  • a circuit switching control unit is provided, and the circuit switching control unit operates a heater when the remaining capacity of the battery that is regenerated and charged while the vehicle is running is equal to or higher than a predetermined threshold value to generate a heated heat medium for heating. , Circulate to either the heat exchanger or the radiator according to the operation of the refrigeration cycle circuit.
  • the heater of the heating circuit when the remaining capacity of the battery is equal to or higher than a predetermined threshold value, the heater of the heating circuit is operated to consume the power of the battery. It is becoming common for heaters in heating circuits to be mounted on vehicles. Therefore, the existing components can consume the power of the battery and suppress the overcharging of the battery.
  • FIG. 1 is a diagram showing an air conditioner for a vehicle.
  • the vehicle is a vehicle such as an electric vehicle or a plug-in hybrid vehicle that can charge the battery 45 by charging from an external power source and drives an electric motor 46 by the electric power charged in the battery 45 to travel.
  • the vehicle air conditioner 11 is mounted on the vehicle and is driven by the electric power of the battery 45.
  • the vehicle air conditioner 11 includes a refrigeration cycle circuit 12 and an HVAC unit 13, and selectively performs each air conditioning operation of heating operation, dehumidifying heating operation, cooling operation, and dehumidifying and cooling operation by a heat pump using a heat medium for air conditioning. Execute and air-condition the passenger compartment.
  • the refrigeration cycle circuit 12 includes a compressor 21, a radiator 22, an outdoor expansion valve 23, an outdoor heat exchanger 24, an indoor expansion valve 25, a heat absorber 26, and an accumulator 27.
  • the compressor 21 compresses a low-pressure air-conditioning heat medium, which is a gas phase, to boost the pressure to a high-pressure air-conditioning heat medium that is easily liquefied.
  • a scroll compressor, a swash plate compressor, or the like The drive source of the compressor 21 is, for example, an electric motor.
  • the compressor 21 is a refueling type in which lubrication is performed by oil circulating together with the heat medium for air conditioning, and the oil concentration with respect to the heat medium for air conditioning is about several percent.
  • the radiator 22 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiating fins and the high-temperature and high-pressure air-conditioning heat medium (heat medium) passing through the tube. That is, the air-conditioning heat medium in the tube is condensed and liquefied by heat dissipation, thereby heating the air around the heat-dissipating fins.
  • the outdoor expansion valve 23 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. Is.
  • the outdoor heat exchanger 24 is provided inside the front grill of the vehicle body, and exchanges heat between the outside air passing around the heat radiation fins and the heat medium for air conditioning passing through the tube.
  • the outside air is mainly a running wind, but when a sufficient running wind cannot be obtained, the blower 28 is driven to blow the outside air to the heat radiating fins.
  • the outdoor heat exchanger 24 functions as an evaporator, that is, a heat absorber, and is used between the outside air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. Perform heat exchange. That is, the heat medium for air conditioning in the tube absorbs heat and evaporates and vaporizes.
  • the outdoor heat exchanger 24 functions as a condenser, that is, a radiator, and the outside air passing around the heat radiating fins and the high-temperature air-conditioning heat medium (heat medium) passing through the tube. Heat exchange between them. That is, heat is dissipated to the heat medium for air conditioning in the tube to form a condensed liquid.
  • the indoor expansion valve 25 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open.
  • the heat absorber 26 is provided in the HVAC unit 13 and exchanges heat between the air passing around the heat radiation fins and the low-temperature air-conditioning heat medium (refrigerant) passing through the tube. That is, the heat medium for air conditioning in the tube evaporates and vaporizes by absorbing heat, thereby cooling the air around the heat radiation fins and causing dew condensation on the surface of the heat radiation fins to dehumidify. Gas-liquid separation is performed between the accumulator 27 and the heat medium for air conditioning, and only the heat medium for air conditioning in the gas phase is supplied to the compressor 21.
  • the outlet of the compressor 21 communicates with the inlet of the radiator 22 via the pipe 31a.
  • the outlet of the radiator 22 communicates with the inlet of the outdoor heat exchanger 24 via the pipe 31b, and the pipe 31b is provided with the outdoor expansion valve 23.
  • the outlet of the outdoor heat exchanger 24 communicates with the inlet of the compressor 21 via the pipe 31c, and the pipe 31c has an on-off valve 32 from the side of the outdoor heat exchanger 24 toward the side of the radiator 22.
  • the check valve 33, and the accumulator 27 are provided in this order.
  • the on-off valve 32 opens or closes the pipe 31c.
  • the check valve 33 allows the passage from the on-off valve 32 side to the accumulator 27 side and blocks the passage in the reverse direction.
  • the pipe 31b there is a branch point 34 between the radiator 22 and the outdoor expansion valve 23, and this branch point 34 communicates with the inlet of the heat absorber 26 via the pipe 31d, and the pipe 31d has a branch point 34.
  • the on-off valve 35 and the indoor expansion valve 25 are provided in this order from the branch point 34 side to the heat absorber 26 side.
  • the on-off valve 35 opens or closes the pipe 31d.
  • the branch point 36 there is a branch point 36 between the outdoor heat exchanger 24 and the on-off valve 32, and in the pipe 31d, there is a branch point 37 between the on-off valve 35 and the indoor expansion valve 25.
  • the branch point 36 communicates with the branch point 37 via the pipe 31e, and the check valve 38 is provided in the pipe 31e.
  • the check valve 38 allows the passage from the side of the branch point 36 to the side of the branch point 37 and blocks the passage in the opposite direction.
  • the pipe 31c there is a branch point 39 between the on-off valve 32 and the check valve 33, and the outlet of the heat absorber 26 communicates with the branch point 39 via the pipe 31f.
  • the HVAC unit 13 (HVAC: Heating Ventilation and Air Conditioning) is arranged inside the dashboard, and is formed by a duct that introduces outside air and inside air from one end side and supplies air to the vehicle interior from the other end side. There is. Inside the HVAC unit 13, a blower fan 14, a heat absorber 26, a radiator 22, and an air mix damper 15 are provided. The blower fan 14 is provided on one end side of the HVAC unit 13, and when driven, sucks outside air or inside air and discharges it to the other end side. The heat absorber 26 is provided on the downstream side of the blower fan 14. All the air blown out from the blower fan 14 passes through the heat absorber 26. Inside the HVAC unit 13, on the downstream side of the heat absorber 26, a flow path 16 that passes through the radiator 22 and a flow path 17 that bypasses the radiator 22 are formed. The downstream side of the flow path 16 and the flow path 17 merge.
  • HVAC Heating Ventilation and Air Conditioning
  • the air mix damper 15 can rotate between a position where the flow path 16 is opened to close the flow path 17 and a position where the flow path 16 is closed and the flow path 17 is opened.
  • the air mix damper 15 is in a position where the flow path 16 is opened and the flow path 17 is closed, all the air that has passed through the heat absorber 26 passes through the radiator 22.
  • the air mix damper 15 is in a position where the flow path 16 is closed and the flow path 17 is opened, all the air that has passed through the heat absorber 26 bypasses the radiator 22.
  • the air mix damper 15 is in a position to open both the flow path 16 and the flow path 17, part of the air that has passed through the heat absorber 26 passes through the radiator 22 and the rest bypasses the radiator 22. , The air that has passed through the radiator 22 and the air that has bypassed the radiator 22 are mixed on the downstream side of the HVAC unit 13.
  • the vehicle air conditioner 11 includes a temperature control circuit 41, and controls the temperature of the battery 45 by circulating a heat medium for temperature control. Temperature control means adjusting or adjusting the temperature.
  • the heat medium for temperature control is, for example, water, but other fluids such as a refrigerant and coolant may be used.
  • the temperature control circuit 41 includes a main pump 42, a heater 43, a heater core 44, a battery 45, an electric motor 46, a heat exchanger 47, a radiator 48, and a sub pump 49.
  • the main pump 42 circulates the temperature control heat medium by sucking the temperature control heat medium of the temperature control circuit 41 from one side and discharging it to the other side.
  • the heater 43 is, for example, a water heater (ECH: Electric Coolant Heater) that heats a heat medium for temperature control.
  • EH Electric Coolant Heater
  • the heater core 44 is provided on the downstream side of the radiator 22 of the flow path 16 and exchanges heat between the air passing around the heat radiation fins and the heat medium for temperature control (heat medium) passing through the tube. Do it.
  • the heater core 44 heats the air around the heat radiation fins when the heated heat medium for temperature control is supplied.
  • the battery 45 is a storage battery that supplies electric power to the electric motor 46, and is, for example, a lithium ion battery.
  • the temperature of the battery 45 is controlled by flowing a heat medium for temperature control through the water jacket formed on the battery 45.
  • the battery 45 is one of, but is not limited to, a power device that requires temperature control. As a power device that requires temperature control, it may be applied to a power supply system, a charger, an inverter, a high voltage component, or the like.
  • the electric motor 46 is a motor for traveling a vehicle. When the heat medium for temperature control flows through the water jacket formed on the electric motor 46, heat is stored in the electric motor 46 or the electric motor 46 is cooled.
  • the heat exchanger 47 includes a heat medium flow path 47A for temperature control through which the heat medium for temperature control passes and a heat medium flow path 47B for air conditioning through which the heat medium for air conditioning passes, and partially air-conditions the refrigeration cycle circuit 12. Heat exchange is performed between the heat medium for temperature control and the heat medium for temperature control of the temperature control circuit 41.
  • the radiator 48 is arranged on the leeward side of the outdoor heat exchanger 24, exchanges heat between the heat medium for temperature control passing through the inside and the outside air passing through the surroundings, and dissipates heat to the heat medium for temperature control in the tube.
  • a blower 28 is provided on the windward side of the outdoor heat exchanger 24, and by driving the blower 28 even when the vehicle is stopped or traveling at a low speed, the outdoor heat exchanger 24 and Air is supplied to the radiator 48.
  • the sub-pump 49 circulates the temperature control heat medium by sucking the temperature control heat medium of the temperature control circuit 41 from one side and discharging it to the other side.
  • the outlet of the main pump 42 communicates with the inlet of the heater core 44 via the pipe 51a.
  • the outlet of the heater core 44 communicates with the inlet of the main pump 42 via the pipe 51b.
  • the pipe 51a is provided with a heater 43 and a three-way valve 52 in this order from the side of the main pump 42 toward the side of the heater core 44.
  • the pipe 51b is provided with a branch point 53 and a branch point 54 in this order from the side of the heater core 44 toward the side of the main pump 42.
  • the three-way valve 52 has an inlet communicating with the heater 43, one outlet communicating with the inlet of the heater core 44, and the other outlet communicating with the inlet of the temperature control heat medium flow path 47A in the heat exchanger 47 via the pipe 51c. doing.
  • the outlet of the temperature control heat medium flow path 47A in the heat exchanger 47 communicates with the branch point 54 via the pipe 51d.
  • the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the branch point 64, the electric motor 46, the three-way valve 65, and the branch point. 66 are provided in order.
  • the pipe 51d is provided with a three-way valve 68.
  • the three-way valve 61 has an inlet communicating with the three-way valve 52, one outlet communicating with the battery 45, and the other outlet communicating with the branch point 62 via the pipe 51e.
  • the three-way valve 63 has an inlet communicating with the branch point 62, one outlet communicating with the branch point 64, and the other outlet communicating with the branch point 53 via the pipe 51f.
  • a three-way valve 68 is provided in the pipe 51f.
  • the three-way valve 68 has an inlet communicating with the three-way valve 63, one outlet communicating with the branch point 53, and the other outlet communicating with the branch point 66 via a pipe 51 g.
  • the outlet of the sub pump 49 communicates with the branch point 64 via the pipe 51h.
  • the three-way valve 65 has an inlet communicating with the electric motor 46, one outlet communicating with the branch point 66, and the other outlet communicating with the inlet of the sub pump 49 via the pipe 51i.
  • the pipe 51i is provided with a radiator 48 and a branch point 69 in this order from the side of the three-way valve 65 toward the side of the sub pump 49.
  • one inlet communicates with the temperature control heat medium flow path 47A in the heat exchanger 47, the other inlet communicates with the branch point 69 via the pipe 51j, and the outlet communicates with the branch point 54. There is.
  • the refrigeration cycle circuit 12 includes an expansion valve 55 and a heat exchanger 47.
  • the expansion valve 55 atomizes a high-pressure air-conditioning heat medium in a liquid phase and blows it out to reduce the pressure to a low-pressure air-conditioning heat medium that is easily vaporized, and the opening degree can be adjusted from fully closed to fully open. be.
  • an additional circuit configuration of the refrigeration cycle circuit 12 will be described.
  • In the pipe 31d there is a branch point 56 between the branch point 37 and the indoor expansion valve 25, and in the pipe 31c, there is a branch point 57 between the check valve 33 and the accumulator 27.
  • the branch point 56 communicates with the inlet of the air-conditioning heat medium flow path 47B in the heat exchanger 47 via the pipe 31g, and the outlet of the air-conditioning heat medium flow path 47B in the heat exchanger 47 branches via the pipe 31h. It communicates with point 57.
  • the expansion valve 55 is provided in the pipe 31 g.
  • the controller 71 is, for example, a microcomputer, and selectively executes each air conditioning operation of heating operation, dehumidifying and heating operation, cooling operation, and dehumidifying and cooling operation in response to an operation request from the user to perform air conditioning in the vehicle interior.
  • the controller 71 drives and controls the compressor 21, the outdoor expansion valve 23, the on-off valve 32, the on-off valve 35, the indoor expansion valve 25, the expansion valve 55, the blower 28, the blower fan 14, and the air mix damper 15.
  • FIG. 2 is a diagram showing a heating operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22.
  • the introduced air is heated by the radiator 22, and warm air is supplied to the vehicle interior.
  • the outdoor heat exchanger 24 functions as an evaporator, the surroundings of the outdoor heat exchanger 24 are cooled, so that the moisture in the air sublimates and frost may occur on the heat radiation fins. .. Further, when frost grows and the ventilation passage of the heat radiation fin is blocked, the heat exchange efficiency of the outdoor heat exchanger 24 decreases. Therefore, when the occurrence of frost formation is detected from the temperature of the outdoor heat exchanger 24, the defrosting operation is performed. When performing the defrosting operation, except that the blower fan 14 is stopped and the flow path 16 is blocked by the air mix damper 15. It is the same as heating operation. As a result, the heat radiation for air conditioning is suppressed in the radiator 22, so that the heat medium is supplied to the outdoor heat exchanger 24 at a high temperature, and the frost is melted.
  • FIG. 3 is a diagram showing a dehumidifying and heating operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order.
  • a part of the heat medium for air conditioning that has passed through the radiator 22 is split from the branch point 34 and branched via the on-off valve 35, the branch point 37, the branch point 56, the indoor expansion valve 25, and the heat absorber 26. Join point 39.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature. Further, a part of the heat medium for air conditioning in the liquid phase is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22. As a result, after the introduced air is dehumidified by the heat absorber 26, it is heated by the radiator 22 and the dehumidified warm air is supplied to the vehicle interior.
  • FIG. 4 is a diagram showing a dehumidifying / cooling operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is indicated by a thick dotted line
  • the flow path through which the medium-pressure air-conditioning heat medium passes is indicated by a thick broken line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown. It is shown by a thick solid line, the open on-off valve is shown in white, and the closed on-off valve is shown in black.
  • the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is opened.
  • the compressor 21 is driven in the closed state.
  • the heat medium for air conditioning is the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the check valve 38, the branch point 37, the branch point 56, and the room. It circulates through the expansion valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order.
  • the heat medium for air conditioning of the gas phase is compressed by the compressor 21 to a high pressure, expanded by the outdoor expansion valve 23 to a medium pressure, and radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22.
  • the introduced air is dehumidified and cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 5 is a diagram showing a cooling operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the heat medium for air conditioning is the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the check valve 38, the branch point 37, the branch point 56, and the room. It circulates through the expansion valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 6 is a block diagram of an air conditioner for a vehicle.
  • the vehicle air conditioner 11 includes a controller 71, an SOC acquisition unit 72, and a temperature sensor 73.
  • the SOC acquisition unit 72 acquires a state of charge (SOC) corresponding to the remaining capacity of the battery 45.
  • SOC state of charge
  • the charge state of the battery 45 is acquired by measuring the charge / discharge current in the battery 45 and the cell voltage.
  • the temperature sensor 73 detects the temperature Tc of the heat medium for temperature control at the outlet side of the heat medium flow path 47A for temperature control of the heat exchanger 47. Each signal is input to the controller 71.
  • the controller 71 executes the discharge control process and drives and controls the refrigeration cycle circuit 12, the HVAC unit 13, and the temperature control circuit 41. That is, the controller 71 drives and controls the compressor 21, the outdoor expansion valve 23, the on-off valve 32, the on-off valve 35, the indoor expansion valve 25, the expansion valve 55, and the blower 28 of the refrigeration cycle circuit 12. Further, the controller 71 drives and controls the blower fan 14 and the air mix damper 15 of the HVAC unit 13. Further, the controller 71 drives and controls the main pump 42, the heater 43, the sub pump 49, the three-way valve 52, the three-way valve 61, the three-way valve 63, the three-way valve 65, the three-way valve 68, and the three-way valve 68 of the temperature control circuit 41.
  • FIG. 7 is a flowchart showing an example of the discharge control process.
  • the discharge control process is executed as a timer interrupt process at predetermined time intervals.
  • step S101 it is determined whether or not the remaining capacity of the battery 45 is equal to or greater than a predetermined threshold value th.
  • the threshold value th is a value slightly lower than that of full charge, and is, for example, about 90%.
  • the remaining capacity of the battery 45 is less than the threshold value th, it is determined that regenerative charging can still be performed, and the program returns to the predetermined main program as it is.
  • the remaining capacity of the battery 45 is equal to or greater than the threshold value th, it is determined that regenerative charging can no longer be performed, and the process proceeds to step S102.
  • step S102 the heater 43 is operated.
  • step S103 it is determined whether or not the heating operation is performed by the refrigeration cycle circuit 12.
  • the process proceeds to step S103.
  • the refrigeration cycle circuit 12 is not performing the heating operation, that is, is performing the cooling operation or is stopping the air conditioning operation, the process proceeds to step S106.
  • the heating operation and the dehumidifying heating operation are equivalent in terms of warming the passenger compartment, the heating operation and the dehumidifying operation are performed. It shall also include determining whether or not any of the heating operations is being performed.
  • step S104 it is determined whether or not the temperature Tc of the temperature control heat medium at the outlet side of the temperature control heat medium flow path 47A of the heat exchanger 47 is less than a predetermined threshold value T1.
  • the threshold T1 is, for example, about 40 to 50 ° C.
  • the temperature Tc of the heat medium for temperature control is less than the threshold value T1
  • it is determined that the heat exchanger 47 has sufficiently dissipated heat and the process proceeds to step S105.
  • the temperature Tc of the heat medium for temperature control is equal to or higher than the threshold value T1
  • it is determined that the heat exchanger 47 has not sufficiently dissipated heat and the process proceeds to step S106.
  • step S105 the heating operation is performed by the refrigeration cycle circuit 12, and the heat medium for temperature control heated by the heater 43 is dissipated by the heat medium flow path 47A for temperature control of the heat exchanger 47, and the program returns to a predetermined main program. .. Specifically, in the refrigeration cycle circuit 12, the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is opened, the indoor expansion valve 25 is closed, and the expansion valve 55 is slightly opened. In this state, the compressor 21 is driven. On the other hand, in the temperature control circuit 41, the main pump 42 is driven, the sub pump 49 is stopped, and the heat medium for temperature control is circulated while the heater 43 is operated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the piping 51e, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A, the three-way valve 67, and the branch point 54 in order.
  • step S106 regardless of the operation of the refrigeration cycle circuit 12, the heat medium for temperature control heated by the heater 43 is dissipated by the radiator 48, and the program returns to the predetermined main program.
  • the main pump 42 is driven, the sub pump 49 is stopped, and the temperature control heat medium is circulated.
  • the heat medium for temperature control is the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the piping 51e, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, the three-way valve 65, the radiator 48, and the branch.
  • Each three-way valve is controlled so as to circulate through the points 69, the three-way valve 67, and the branch point 54 in order.
  • FIG. 8 is a diagram showing heating operation + heater operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is closed, the indoor expansion valve 25 is closed, and the expansion valve 55 is closed.
  • the compressor 21 is driven.
  • the temperature control circuit 41 the heater 43 is operated, the main pump 42 is driven, the sub pump 49 is stopped, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the piping 51e, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47.
  • Each three-way valve is controlled so as to circulate through the medium flow path 47A, the three-way valve 67, and the branch point 54 in order.
  • the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order.
  • a part of the heat medium for air conditioning that has passed through the radiator 22 is split from the branch point 34, and the heat medium for air conditioning of the on-off valve 35, the branch point 37, the branch point 56, the expansion valve 55, and the heat exchanger 47. It joins the branch point 57 via the flow path 47B.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature.
  • a part of the liquid phase air-conditioning heat medium is expanded by the expansion valve 55 to a low pressure, and by absorbing heat in the air-conditioning heat medium flow path 47B of the heat exchanger 47, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control is the heat for temperature control of the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the piping 51e, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, and the heat exchanger 47. It circulates through the medium flow path 47A, the three-way valve 67, and the branch point 54 in order. In this circulation path, the temperature control heat medium becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by radiating heat through the temperature control heat medium flow path 47A of the heat exchanger 47.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22.
  • the introduced air is heated by the radiator 22, and warm air is supplied to the vehicle interior.
  • FIG. 9 is a diagram showing cooling operation + heater operation.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • an operation other than heating for example, a cooling operation is performed, power is consumed by the heater 43, and heat is dissipated by the radiator 48.
  • the outdoor expansion valve 23 is fully opened, the on-off valve 32 is closed, the on-off valve 35 is closed, the indoor expansion valve 25 is slightly opened, and the expansion valve 55 is closed.
  • the compressor 21 is driven.
  • the heater 43 is operated, the main pump 42 is driven, the sub pump 49 is stopped, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the piping 51e, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, the three-way valve 65, the radiator 48, and the branch.
  • Each three-way valve is controlled so as to circulate through the points 69, the three-way valve 67, and the branch point 54 in order.
  • the cooling operation is performed as an operation other than the heating operation, but the term other than the heating includes the fact that the air conditioning operation is stopped.
  • the heat medium for air conditioning is the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the check valve 38, the branch point 37, the branch point 56, and the room. It circulates through the expansion valve 25, the heat exchanger 26, the branch point 39, the check valve 33, the branch point 57, and the accumulator 27 in this order. In this circulation path, the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the outdoor heat exchanger 24 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the indoor expansion valve 25 to a low pressure, and by absorbing heat by the endothermic device 26, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control includes a main pump 42, a heater 43, a three-way valve 52, a three-way valve 61, a pipe 51e, a branch point 62, a three-way valve 63, a three-way valve 68, a branch point 66, a three-way valve 65, a radiator 48, and a branch. It circulates through the point 69, the three-way valve 67, and the branch point 54 in order.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the radiator 48.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 16 while adjusting the ratio of bypassing the radiator 22.
  • the introduced air is cooled by the heat absorber 26, and cool air is supplied to the vehicle interior.
  • FIG. 10 is a diagram showing heating operation + heater operation (radiator heat dissipation).
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is closed, the indoor expansion valve 25 is closed, and the expansion valve 55 is closed.
  • the compressor 21 is driven.
  • the temperature control circuit 41 the heater 43 is operated, the main pump 42 is driven, the sub pump 49 is stopped, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the piping 51e, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, the three-way valve 65, the radiator 48, and the branch.
  • Each three-way valve is controlled so as to circulate through the points 69, the three-way valve 67, and the branch point 54 in order.
  • the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control includes a main pump 42, a heater 43, a three-way valve 52, a three-way valve 61, a pipe 51e, a branch point 62, a three-way valve 63, a three-way valve 68, a branch point 66, a three-way valve 65, a radiator 48, and a branch. It circulates through the point 69, the three-way valve 67, and the branch point 54 in order. In this circulation path, the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the radiator 48.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22.
  • the introduced air is heated by the radiator 22, and warm air is supplied to the vehicle interior.
  • FIG. 11 is a diagram showing a battery heating operation.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the battery heating operation executed when the temperature of the battery 45 is lower than a predetermined threshold value will be described.
  • the description of the refrigeration cycle circuit 12 will be omitted on the assumption that the refrigeration cycle circuit 12 functions independently.
  • the heater 43 is operated, the main pump 42 is driven, the sub pump 49 is stopped, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control passes through the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 53, and the branch point 54 in this order. Control each three-way valve so that it circulates.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the battery 45.
  • the battery 45 is heated by the heat medium for temperature control.
  • FIG. 12 is a diagram showing a battery cooling operation.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the battery cooling operation executed when the temperature of the battery 45 is higher than a predetermined threshold value will be described.
  • the description of the refrigeration cycle circuit 12 will be omitted on the assumption that the refrigeration cycle circuit 12 functions independently.
  • the heater 43 is stopped, the main pump 42 is driven, the sub pump 49 is stopped, and the heat medium for temperature control is circulated.
  • the heat medium for temperature control is the main pump 42, the heater 43, the three-way valve 52, the three-way valve 61, the battery 45, the branch point 62, the three-way valve 63, the three-way valve 68, the branch point 66, the three-way valve 65, the radiator 48, and the branch.
  • Each three-way valve is controlled so as to circulate through the points 69, the three-way valve 67, and the branch point 54 in order.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the battery 45, and becomes low temperature by dissipating heat by the radiator 48.
  • the battery 45 is cooled by the heat medium for temperature control.
  • FIG. 13 is a diagram showing a heating auxiliary operation by the heater.
  • the flow path through which the low-pressure air-conditioning heat medium passes is shown by a thick dotted line
  • the flow path through which the high-pressure air-conditioning heat medium passes is shown by a thick solid line
  • the opened on-off valve is shown in white and closed.
  • the on-off valve is shown in black.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the heating auxiliary operation by the heater 43 will be described.
  • the outdoor expansion valve 23 is slightly opened, the on-off valve 32 is opened, the on-off valve 35 is closed, the indoor expansion valve 25 is closed, and the expansion valve 55 is closed.
  • the compressor 21 is driven.
  • the heater 43 is operated, the main pump 42 is driven, the sub pump 49 is stopped, and the heat medium for temperature control is circulated. Further, each three-way valve is controlled so that the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
  • the heat medium for air conditioning includes the compressor 21, the radiator 22, the branch point 34, the outdoor expansion valve 23, the outdoor heat exchanger 24, the branch point 36, the on-off valve 32, the branch point 39, the check valve 33, and the branch. It circulates through the point 57 and the accumulator 27 in order.
  • the heat medium for air conditioning in the gas phase is compressed by the compressor 21 to a high pressure, and is radiated by the radiator 22 to be condensed and liquefied to a low temperature.
  • the liquid phase air-conditioning heat medium is expanded by the outdoor expansion valve 23 to a low pressure, and by absorbing heat by the outdoor heat exchanger 24, it evaporates and vaporizes to a high temperature.
  • the heat medium for temperature control circulates through the main pump 42, the heater 43, the three-way valve 52, the heater core 44, the branch point 53, and the branch point 54 in this order.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the heater 43, and becomes low temperature by dissipating heat by the heater core 44.
  • the blower fan 14 is driven, and the air mix damper 15 closes the flow path 17 while adjusting the ratio of passing through the radiator 22.
  • the introduced air is heated by the radiator 22 and is heated by the heater core 44, and further warm air is supplied to the vehicle interior.
  • FIG. 14 is a diagram showing a motor cooling operation.
  • the flow path through which the heat medium for temperature control passes is indicated by a thick broken line.
  • the motor cooling operation executed when the temperature of the electric motor 46 is higher than a predetermined threshold value will be described.
  • the description of the refrigeration cycle circuit 12 will be omitted on the assumption that the refrigeration cycle circuit 12 functions independently.
  • the heater 43 is stopped, the main pump 42 is stopped, the sub pump 49 is driven, and the heat medium for temperature control is circulated.
  • each three-way valve is controlled so that the heat medium for temperature control circulates through the sub pump 49, the branch point 64, the electric motor 46, and the three-way valve 65, the radiator 48, and the branch point 69 in this order.
  • the heat medium for temperature control becomes high temperature by absorbing heat by the electric motor 46, and becomes low temperature by dissipating heat by the radiator 48.
  • the electric motor 46 is cooled by the heat medium for temperature control.
  • the temperature control circuit 41 corresponds to the "heating circuit”
  • the refrigeration cycle circuit 12 corresponds to the "refrigeration cycle circuit”
  • the heater 43 corresponds to the "heater”
  • the heat exchanger 47 corresponds to the "heat exchanger”.
  • the radiator 48 corresponds to the “radiator”.
  • the processing of steps S101 to S106 corresponds to the "circuit switching control unit”.
  • the battery 45 corresponds to a "power device” and a "battery”.
  • the heat medium for temperature control corresponds to the "heat medium for heating”.
  • the battery 45 is charged by regeneration during traveling, but the battery 45 deteriorates when it is overcharged. Therefore, when the battery 45 is fully charged, regeneration cannot be performed.
  • a discharging means such as a resistance circuit or an electric load, but there is room for improvement because new components are added.
  • the heater 43 of the temperature control circuit 41 that controls the temperature of the battery 45 is used. That is, when the remaining capacity of the battery 45 is equal to or greater than the threshold value th (the determination in step S101 is “Yes”), the heater 43 is operated (step S102). In this way, when the remaining capacity of the battery 45 is equal to or greater than the threshold value th, the heater 43 of the temperature control circuit 41 is operated to consume the electric power of the battery 45.
  • the heater 43 of the temperature control circuit 41 is generally mounted on an electric vehicle or a hybrid vehicle. Therefore, the power of the battery 45 can be consumed by the existing components, and overcharging of the battery 45 can be suppressed. Further, the heat medium for temperature control heated by the heater 43 is radiated by the heat exchanger 47 or the radiator 48. Since both the heat exchanger 47 and the radiator 48 are generally attached to the temperature control circuit 41, heat can be reliably dissipated by the existing components.
  • Step S105 when heating is performed by the refrigeration cycle circuit 12 (the determination in step S103 is “Yes”), the heat medium for temperature control heated by the heater 43 is dissipated by the heat medium flow path 47A for heat control of the heat exchanger 47.
  • Step S106 when the refrigeration cycle circuit 12 is stopped or the cooling operation is being performed (the determination in step S103 is “No”), the heat medium for temperature control heated by the heater 43 is dissipated by the radiator 48 (step S106). ). In this way, since the circulation path of the temperature control heat medium is switched according to the operation of the refrigeration cycle circuit 12, heat dissipation of the temperature control heat medium can be appropriately performed.
  • the temperature Tc of the heat medium for temperature control at the outlet side of the heat medium flow path 47A for temperature control of the heat exchanger 47 is a threshold value.
  • the heat medium for temperature control heated by the heater 43 is dissipated by the radiator 48 (step S106). If the temperature Tc of the heat medium for temperature control is high on the outlet side of the heat medium flow path 47A for temperature control of the heat exchanger 47, it means that heat cannot be sufficiently dissipated. In such a case, the temperature of the temperature control heat medium can be surely lowered by dissipating heat to the temperature control heat medium with the radiator 48.
  • the temperature control circuit 41 is a circuit that circulates a temperature control heat medium in order to assist the heating of the refrigeration cycle circuit 12. It is becoming common for such a temperature control circuit 41 to be mounted on an electric vehicle or a hybrid vehicle. Therefore, the power of the battery 45 can be consumed by the existing components, and overcharging of the battery 45 can be suppressed.
  • the temperature control circuit 41 is also a circuit that circulates a temperature control heat medium in order to heat the battery 45. It is becoming common for such a temperature control circuit 41 to be mounted on an electric vehicle or a hybrid vehicle. Therefore, the power of the battery 45 can be consumed by the existing components, and overcharging of the battery 45 can be suppressed.
  • ⁇ Modification example >>
  • the configuration for heating and cooling the battery 45 has been described, but the present invention is not limited to this. That is, in the present embodiment, since it is sufficient that the battery 45 can be heated at least, the configuration for cooling the battery 45 may be omitted.
  • the flow of the heat medium for temperature control is switched by a three-way valve, but the present invention is not limited to this.
  • a two-way valve that can be opened and closed may be provided in each of the flow paths, and the other may be closed when one is opened and the other may be opened when one is closed.
  • a bypass flow path that bypasses the outdoor expansion valve 23 may be provided so that the bypass flow path can be opened and closed.
  • the pressure loss can be reduced by closing the outdoor expansion valve 23 and opening the bypass flow path during cooling.
  • Branch point, 54 ... Branch point, 55 ... Expansion valve, 56 ... Branch point, 57 ... Branch point, 61 ... Three-way valve, 62 ... Branch point, 63 ... Three-way valve , 64 ... branch point, 65 ... three-way valve, 66 ... branch point, 67 ... three-way valve, 68 ... three-way valve, 69 ... branch point, 71 ... controller, 72 ... SOC acquisition unit, 73 ... temperature sensor

Abstract

【課題】既存の構成部品によってバッテリの電力を消費し、過充電を抑制する。温調用熱媒体を循環させる温調回路41と、空調用熱媒体を循環させる冷凍サイクル回路12と、を備える。温調回路41は、温調用熱媒体を加温するヒータ43と、空調用熱媒体との間で熱交換を行なう熱交換器47と、外気との間で熱交換を行なうラジエータ48と、を備える。そして、車両走行時に回生充電されるバッテリ45の残容量が閾値th以上であるときに、ヒータ43を作動させ、加温された温調用熱媒体を、冷凍サイクル回路12の運転に応じて熱交換器47及びラジエータ48の何れか一方に循環させる。

Description

車両用空気調和装置
 本発明は、車両用空気調和装置に関するものである。
 電気自動車やハイブリッド自動車では、走行時の回生によってバッテリの充電を行なうが、バッテリは過充電になると劣化する。そこで、バッテリの残容量が高いときには、抵抗回路を用いて電力を消費させるか、又は特許文献1に示されるように、電気負荷を作動させて電力を消費させる。
特開平6-105405号公報
 バッテリの過充電を防ぐために、抵抗回路や電気負荷等の放電手段を用いると、新たな構成部品を追加することになるため、改善の余地があった。
 本発明の課題は、既存の構成部品によってバッテリの電力を消費し、過充電を抑制することである。
 本発明の一態様に係る車両用空気調和装置は、電動モータに給電するバッテリを搭載した車両において、加温用熱媒体を循環させる加温回路と、車室内の空調を行うために空調用熱媒体を循環させる冷凍サイクル回路と、を備えた車両用空気調和装置であって、加温回路は、加温用熱媒体を加温するヒータと、冷凍サイクル回路の空調用熱媒体との間で熱交換を行なう熱交換器と、熱交換器と並列に設けられ、外気との間で熱交換を行なうラジエータと、を備え、車両走行時に回生充電されるバッテリの残容量に応じて回路を切り替える回路切替制御部を備え、回路切替制御部は、車両走行時に回生充電されるバッテリの残容量が予め定めた閾値以上であるときに、ヒータを作動させ、加温された加温用熱媒体を、冷凍サイクル回路の運転に応じて熱交換器及びラジエータの何れか一方に循環させる。
 本発明によれば、バッテリの残容量が予め定めた閾値以上であるときに、加温回路のヒータを作動させてバッテリの電力を消費させる。加温回路のヒータは、車両に搭載されることが一般的になりつつある。したがって、既存の構成部品によってバッテリの電力を消費させ、バッテリの過充電を抑制することができる。
車両用空気調和装置を示す図である。 暖房運転を示す図である。 除湿暖房運転を示す図である。 除湿冷房運転を示す図である。 冷房運転を示す図である。 車両用空気調和装置のブロック図である。 放電制御処理の一例を示すフローチャートである。 暖房運転+ヒータ作動を示す図である。 冷房運転+ヒータ作動を示す図である。 暖房運転+ヒータ作動(ラジエータ放熱)を示す図である。 バッテリ加温運転を示す図である。 バッテリ冷却運転を示す図である。 ヒータによる暖房補助運転を示す図である(ヒータコア)。 モータ冷却運転を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
《一実施形態》
 《構成》
 図1は、車両用空気調和装置を示す図である。
 車両は、電気自動車やプラグインハイブリッド自動車等、外部電源からの充電によってバッテリ45を充電可能で、且つバッテリ45に充電された電力によって電動モータ46を駆動し、走行する車両である。車両用空気調和装置11は、車両に搭載され、バッテリ45の電力で駆動される。車両用空気調和装置11は、冷凍サイクル回路12及びHVACユニット13を備え、空調用熱媒体を用いたヒートポンプにより、暖房運転、除湿暖房運転、冷房運転、除湿冷房運転の各空調運転を選択的に実行し、車室内の空調を行なう。
 先ず、冷凍サイクル回路12の基本的な構成要素について説明する。
 冷凍サイクル回路12は、圧縮機21と、放熱器22と、室外膨張弁23、室外熱交換器24と、室内膨張弁25と、吸熱器26と、アキュムレータ27と、を備える。
 圧縮機21は、気相である低圧の空調用熱媒体を圧縮することにより、液化しやすい高圧の空調用熱媒体に昇圧させるものであり、例えばスクロール圧縮機、斜板式圧縮機等である。圧縮機21の駆動源は、例えば電動モータである。圧縮機21は、空調用熱媒体と共に循環するオイルによって潤滑が行なわれる給油式であり、空調用熱媒体に対するオイル濃度は数%程度である。
 放熱器22は、HVACユニット13内に設けられており、放熱フィンの周囲を通過する空気とチューブ内を通過する高温高圧の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が放熱によって凝縮液化することにより、放熱フィンの周囲の空気を加温する。
 室外膨張弁23は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 室外熱交換器24は、車体におけるフロントグリルの内側に設けられており、放熱フィンの周囲を通過する外気とチューブ内を通過する空調用熱媒体との間で熱交換を行なう。外気とは主に走行風であるが、十分な走行風が得られないときは、送風機28が駆動されることで、放熱フィンに対して外気が送風される。暖房時や除湿暖房時には、室外熱交換器24を蒸発器、つまり吸熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に吸熱させ、蒸発気化させる。一方、除湿冷房時や冷房時には、室外熱交換器24を凝縮器、つまり放熱器として機能させ、放熱フィンの周囲を通過する外気とチューブ内を通過する高温の空調用熱媒体(熱媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体に放熱させ、凝縮液化させる。
 室内膨張弁25は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 吸熱器26は、HVACユニット13内に設けられており、放熱フィンの周囲を通過する空気とチューブ内を通過する低温の空調用熱媒体(冷媒)との間で熱交換を行なう。すなわち、チューブ内の空調用熱媒体が吸熱によって蒸発気化することにより、放熱フィンの周囲の空気を冷却すると共に、放熱フィンの表面に結露を生じさせて除湿を行なう。
 アキュムレータ27と、空調用熱媒体の気液分離を行ない、気相の空調用熱媒体だけを圧縮機21へと供給する。
 次に、冷凍サイクル回路12の基本的な回路構成について説明する。
 図中、空調用熱媒体の流路を実線で示している。圧縮機21の出口は、配管31aを介して放熱器22の入口に連通している。放熱器22の出口は、配管31bを介して室外熱交換器24の入口に連通しており、配管31bには、室外膨張弁23が設けられている。
 室外熱交換器24の出口は、配管31cを介して圧縮機21の入口に連通しており、配管31cには、室外熱交換器24の側から放熱器22の側に向かって、開閉弁32、逆止弁33、アキュムレータ27が、順に設けられている。開閉弁32は、配管31cを開放又は閉鎖する。逆止弁33は、開閉弁32の側からアキュムレータ27の側への通過を許容し、逆方向の通過を阻止する。
 配管31bのうち、放熱器22と室外膨張弁23との間には分岐点34があり、この分岐点34は、配管31dを介して吸熱器26の入口に連通しており、配管31dには、分岐点34の側から吸熱器26の側に向かって、開閉弁35、及び室内膨張弁25が、順に設けられている。開閉弁35は、配管31dを開放又は閉鎖する。
 配管31cのうち、室外熱交換器24と開閉弁32との間には分岐点36があり、また配管31dのうち、開閉弁35と室内膨張弁25との間には分岐点37がある。分岐点36は、配管31eを介して分岐点37に連通しており、配管31eには、逆止弁38が設けられている。逆止弁38は、分岐点36の側から分岐点37の側への通過を許容し、逆方向の通過を阻止する。
 配管31cのうち、開閉弁32と逆止弁33との間には分岐点39があり、吸熱器26の出口は、配管31fを介して分岐点39に連通している。
 次に、HVACユニット13の基本構成について説明する。
 HVACユニット13(HVAC:Heating Ventilation and Air Conditioning)は、ダッシュボードの内部に配置されており、一端側から外気や内気を導入し、他端側から車室内へ空気を供給するダクトによって形成されている。HVACユニット13の内部には、送風ファン14と、吸熱器26と、放熱器22と、エアミックスダンパ15と、が設けられている。送風ファン14は、HVACユニット13の一端側に設けられており、駆動されるときに、外気又は内気を吸引し、他端側へと吐出する。吸熱器26は、送風ファン14よりも下流側に設けられている。送風ファン14から吹き出された空気は、全て吸熱器26を通過する。HVACユニット13の内部で吸熱器26の下流側には、放熱器22を通過する流路16と、放熱器22を迂回する流路17と、が形成されている。流路16と流路17とは下流側が合流している。
 エアミックスダンパ15は、流路16を開放して流路17を閉鎖する位置と、流路16を閉鎖して流路17を開放する位置と、の間で回動可能である。エアミックスダンパ15が流路16を開放して流路17を閉鎖する位置にあるときには、吸熱器26を通過した空気は全て放熱器22を通過する。エアミックスダンパ15が流路16を閉鎖して流路17を開放する位置にあるときには、吸熱器26を通過した空気は全て放熱器22を迂回する。エアミックスダンパ15が流路16と流路17の双方を開放する位置にあるときには、吸熱器26を通過した空気のうち、一部が放熱器22を通過し、残りが放熱器22を迂回し、HVACユニット13の下流側にて、放熱器22を通過した空気と、放熱器22を迂回した空気とが混合される。
 次に、付加的な構成について説明する。
 車両用空気調和装置11は、温調回路41を備え、温調用熱媒体を循環させることでバッテリ45の温調を行なう。温調とは温度を調整又は調節することを意味する。温調用熱媒体は、例えば水であるが、冷媒やクーラント等、他の流体を用いてもよい。
 先ず、温調回路41の主な構成要素について説明する。
 温調回路41は、メインポンプ42と、ヒータ43と、ヒータコア44と、バッテリ45と、電動モータ46と、熱交換器47と、ラジエータ48と、サブポンプ49と、を備える。
 メインポンプ42は、温調回路41の温調用熱媒体を一方の側から吸引し、他方の側に吐出することで、温調用熱媒体を循環させる。
 ヒータ43は、温調用熱媒体を加温する例えば水加熱ヒータ(ECH:Electric Coolant Heater)である。
 ヒータコア44は、流路16の放熱器22よりも下流側に設けられており、放熱フィンの周囲を通過する空気とチューブ内を通過する温調用熱媒体(熱媒)との間で熱交換を行なう。ヒータコア44は、加温された温調用熱媒体が供給されるときに、放熱フィンの周囲の空気を加温する。
 バッテリ45は、電動モータ46に電力を供給する蓄電池であり、例えばリチウムイオンバッテリである。バッテリ45に形成されたウォータージャケットに温調用熱媒体が流れることで、バッテリ45の温調が行なわれる。バッテリ45は、温調を必要とする電力機器の一つであるが、これに限定されるものではない。温度管理が求められる電力機器として、他にも電源システム、充電器、インバータ、及び高電圧部品等に適用してもよい。
 電動モータ46は、車両走行用のモータである。電動モータ46に形成されたウォータージャケットに温調用熱媒体が流れることで、電動モータ46への蓄熱、又は電動モータ46の冷却が行なわれる。
 熱交換器47は、温調用熱媒体が通過する温調用熱媒体流路47Aと、空調用熱媒体が通過する空調用熱媒体流路47Bと、を備え、冷凍サイクル回路12の一部の空調用熱媒体と温調回路41の温調用熱媒体との間で熱交換を行なう。
 ラジエータ48は、室外熱交換器24の風下側に配置され、内部を通過する温調用熱媒体と周囲を通過する外気との間で熱交換を行ない、チューブ内の温調用熱媒体に放熱させる。室外熱交換器24の風上側には、送風機28が設けられており、車両が停止しているとき又は低速で走行しているときでも、送風機28を駆動させることで、室外熱交換器24及びラジエータ48に送風が供給される。
 サブポンプ49は、温調回路41の温調用熱媒体を一方の側から吸引し、他方の側に吐出することで、温調用熱媒体を循環させる。
 次に、温調回路41の回路構成について説明する。
 図中、温調用熱媒体の流路を破線で示している。メインポンプ42の出口は、配管51aを介してヒータコア44の入口に連通している。ヒータコア44の出口は、配管51bを介してメインポンプ42の入口に連通している。配管51aには、メインポンプ42の側からヒータコア44の側に向かって、ヒータ43、三方弁52が、順に設けられている。配管51bには、ヒータコア44の側からメインポンプ42の側に向かって、分岐点53、分岐点54が、順に設けられている。
 三方弁52は、入口がヒータ43に連通し、一方の出口がヒータコア44の入口に連通し、他方の出口が配管51cを介して熱交換器47における温調用熱媒体流路47Aの入口に連通している。熱交換器47における温調用熱媒体流路47Aの出口は、配管51dを介して分岐点54に連通している。配管51cには、三方弁52の側から熱交換器47の側に向かって、三方弁61、バッテリ45、分岐点62、三方弁63、分岐点64、電動モータ46、三方弁65、分岐点66が、順に設けられている。配管51dには、三方弁68が設けられている。
 三方弁61は、入口が三方弁52に連通し、一方の出口がバッテリ45に連通し、他方の出口が配管51eを介して分岐点62に連通している。三方弁63は、入口が分岐点62に連通し、一方の出口が分岐点64に連通し、他方の出口が配管51fを介して分岐点53に連通している。配管51fには、三方弁68が設けられている。三方弁68は、入口が三方弁63に連通し、一方の出口が分岐点53に連通し、他方の出口が配管51gを介して分岐点66に連通している。
 サブポンプ49の出口は、配管51hを介して分岐点64に連通している。三方弁65は、入口が電動モータ46に連通し、一方の出口が分岐点66に連通し、他方の出口が配管51iを介してサブポンプ49の入口に連通している。配管51iには、三方弁65の側からサブポンプ49の側に向かって、ラジエータ48、分岐点69が、順に設けられている。三方弁68は、一方の入口が熱交換器47における温調用熱媒体流路47Aに連通し、他方の入口が配管51jを介して分岐点69に連通し、出口が分岐点54に連通している。
 次に、冷凍サイクル回路12の付加的な構成要素について説明する。
 冷凍サイクル回路12は、膨張弁55と、熱交換器47と、を備える。
 膨張弁55は、液相で高圧の空調用熱媒体を霧状にして吹き出すことにより、気化しやすい低圧の空調用熱媒体に減圧するものであり、開度が全閉から全開まで調整可能である。
 次に、冷凍サイクル回路12の付加的な回路構成について説明する。
 配管31dのうち、分岐点37と室内膨張弁25との間には分岐点56があり、配管31cのうち、逆止弁33とアキュムレータ27との間には分岐点57がある。分岐点56は、配管31gを介して熱交換器47における空調用熱媒体流路47Bの入口に連通し、熱交換器47における空調用熱媒体流路47Bの出口は、配管31hを介して分岐点57に連通している。配管31gには、膨張弁55が設けられている。
 次に、車両用空気調和装置11の基本的な運転について説明する。
 コントローラ71は、例えばマイクロコンピュータであり、ユーザからの運転要求に応じて、暖房運転、除湿暖房運転、冷房運転、除湿冷房運転の各空調運転を選択的に実行し、車室内の空調を行なう。ここでは、基本的な運転について説明するため、冷凍サイクル回路12の動作、及びHVACユニット13の動作について説明する。すなわち、コントローラ71は、圧縮機21、室外膨張弁23、開閉弁32、開閉弁35、室内膨張弁25、膨張弁55、送風機28、送風ファン14、及びエアミックスダンパ15を駆動制御する。
 [暖房運転]
 図2は、暖房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を閉鎖し、室内膨張弁25を閉鎖し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が放熱器22で加温され、温かい空気が車室内に供給される。
 なお、暖房運転では、室外熱交換器24が蒸発器として機能するため、室外熱交換器24の周囲が冷却されることで空気中の水分が昇華し、放熱フィンに着霜が生じることがある。また、霜が成長し放熱フィンの通風路が塞がれると、室外熱交換器24の熱交換効率が低下する。そこで、室外熱交換器24の温度から着霜の発生を検出したときには、除霜運転を行なう。除霜運転を行なう場合、送風ファン14を停止し、エアミックスダンパ15で流路16を閉塞することを除いては。暖房運転と同じである。これにより、空調用熱媒体は、放熱器22での放熱が抑制されるので、高温のまま室外熱交換器24へと供給され、霜が融解される。
 [除湿暖房運転]
 図3は、除湿暖房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、除湿暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を開放し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。また、放熱器22を通過した空調用熱媒体の一部は、分岐点34から分流され、開閉弁35、分岐点37、分岐点56、室内膨張弁25、及び吸熱器26を経由して分岐点39に合流する。これらの循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。また、液相の空調用熱媒体の一部は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が吸熱器26で除湿された後に、放熱器22で加温され、除湿された温かい空気が車室内に供給される。
 [除湿冷房運転]
 図4は、除湿冷房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、中圧の空調用熱媒体が通過する流路を太い破線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、除湿冷房運転を行なう場合、室外膨張弁23を開き気味にし、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点56、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外膨張弁23で膨張され中圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で除湿冷却され、涼しい空気が車室内に供給される。
 [冷房運転]
 図5は、冷房運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。冷凍サイクル回路12によって、冷房運転を行なう場合、室外膨張弁23を全開にし、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点56、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
 次に、車両用空気調和装置11の主要な制御処理について説明する。
 図6は、車両用空気調和装置のブロック図である。
 車両用空気調和装置11は、コントローラ71と、SOC取得部72と、温度センサ73と、を備える。
 SOC取得部72は、バッテリ45の残容量に相当する充電状態(SOC:State Of Charge)を取得する。例えば、バッテリ45内の充放電電流、及びセル電圧を測定することで、バッテリ45の充電状態を取得する。温度センサ73は、熱交換器47の温調用熱媒体流路47A出口側における温調用熱媒体の温度Tcを検出する。各信号はコントローラ71に入力される。
 コントローラ71は、放電制御処理を実行し、冷凍サイクル回路12、HVACユニット13、及び温調回路41を駆動制御する。すなわち、コントローラ71は、冷凍サイクル回路12の圧縮機21、室外膨張弁23、開閉弁32、開閉弁35、室内膨張弁25、膨張弁55、及び送風機28を駆動制御する。また、コントローラ71は、HVACユニット13の送風ファン14、及びエアミックスダンパ15を駆動制御する。さらに、コントローラ71は、温調回路41のメインポンプ42、ヒータ43、サブポンプ49、三方弁52、三方弁61、三方弁63、三方弁65、三方弁68、及び三方弁68を駆動制御する。
 図7は、放電制御処理の一例を示すフローチャートである。
 放電制御処理は、所定時間毎のタイマ割込み処理として実行される。
 ステップS101では、バッテリ45の残容量が予め定めた閾値th以上であるか否かを判定する。閾値thは満充電よりも少し低い値であり、例えば90%程度である。ここで、バッテリ45の残容量が閾値th未満であるときには、まだ回生充電を行なえると判断して、そのまま所定のメインプログラムに復帰する。一方、バッテリ45の残容量が閾値th以上であるときには、もう回生充電を行なえないと判断してステップS102に移行する。
 ステップS102では、ヒータ43を作動させる。
 続くステップS103では、冷凍サイクル回路12で暖房運転を行なっているか否かを判定する。ここで、冷凍サイクル回路12が暖房運転を行なっているときにはステップS103に移行する。一方、冷凍サイクル回路12が暖房運転を行なっていない、つまり冷房運転を行なっている、又は空調運転を停止しているときにはステップS106に移行する。ここでは、説明を簡単にするために、単に暖房運転を行なっているか否かを判定しているが、車室内を暖めるという点で暖房運転と除湿暖房運転は同等であるため、暖房運転及び除湿暖房運転の何れかを行なっているか否かを判定することも含むものとする。
 ステップS104では、熱交換器47の温調用熱媒体流路47A出口側における温調用熱媒体の温度Tcが予め定めた閾値T1未満であるか否かを判定する。閾値T1は、例えば約40~50℃である。ここで、温調用熱媒体の温度Tcが閾値T1未満であるときには、熱交換器47で十分な放熱ができていると判断してステップS105に移行する。一方、温調用熱媒体の温度Tcが閾値T1以上であるときには、熱交換器47で十分な放熱ができていないと判断してステップS106に移行する。
 ステップS105では、冷凍サイクル回路12によって暖房運転を行ない、且つヒータ43で加温した温調用熱媒体を、熱交換器47の温調用熱媒体流路47Aで放熱させ、所定のメインプログラムに復帰する。具体的に、冷凍サイクル回路12では、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を開放し、室内膨張弁25を閉鎖し、膨張弁55を僅かに開放した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を作動させた状態で、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47の温調用熱媒体流路47A、三方弁67、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 ステップS106では、冷凍サイクル回路12の運転に関わらず、ヒータ43で加温した温調用熱媒体を、ラジエータ48で放熱させ、所定のメインプログラムに復帰する。具体的に、温調回路41では、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、三方弁65、ラジエータ48、分岐点69、三方弁67、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 次に、一実施形態の主要な運転モードについて説明する。
 [暖房運転+ヒータ作動]
 図8は、暖房運転+ヒータ作動を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、温調用熱媒体が通過する流路を太い破線で示す。
 ここでは、暖房運転を行ない、且つヒータ43を作動させる運転について説明する。冷凍サイクル回路12によって、暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を閉鎖し、室内膨張弁25を閉鎖し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47の温調用熱媒体流路47A、三方弁67、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。また、放熱器22を通過した空調用熱媒体の一部は、分岐点34から分流され、開閉弁35、分岐点37、分岐点56、膨張弁55、及び熱交換器47の空調用熱媒体流路47Bを経由して分岐点57に合流する。これらの循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。また、液相の空調用熱媒体の一部は、膨張弁55で膨張され低圧となり、熱交換器47の空調用熱媒体流路47Bで吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、熱交換器47の温調用熱媒体流路47A、三方弁67、及び分岐点54を順に経由して循環する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、熱交換器47の温調用熱媒体流路47Aで放熱することで低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が放熱器22で加温され、温かい空気が車室内に供給される。
 [冷房運転+ヒータ作動]
 図9は、冷房運転+ヒータ作動を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、温調用熱媒体が通過する流路を太い破線で示す。
 ここでは、暖房以外の運転として例えば冷房運転を行ない、ヒータ43で電力を消費し、且つラジエータ48で放熱するときの運転について説明する。冷凍サイクル回路12によって、冷房運転を行なう場合、室外膨張弁23を全開放し、開閉弁32を閉鎖し、開閉弁35を閉鎖し、室内膨張弁25を僅かに開放し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、三方弁65、ラジエータ48、分岐点69、三方弁67、及び分岐点54を順に経由して循環するように、各三方弁を制御する。ここでは、暖房以外の運転として冷房運転を行なうことを説明したが、暖房以外とは、空調運転を停止していることも含むものとする。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、逆止弁38、分岐点37、分岐点56、室内膨張弁25、吸熱器26、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、室外熱交換器24で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室内膨張弁25で膨張され低圧となり、吸熱器26で吸熱することで蒸発気化し、高温となる。
 また、温調用熱媒体は、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、三方弁65、ラジエータ48、分岐点69、三方弁67、及び分岐点54を順に経由して循環する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、ラジエータ48で放熱することで低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路16を閉じ気味にしつつ、放熱器22を迂回する割合を調整する。これにより、導入された空気が吸熱器26で冷却され、涼しい空気が車室内に供給される。
 [暖房運転+ヒータ作動(ラジエータ放熱)]
 図10は、暖房運転+ヒータ作動(ラジエータ放熱)を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、温調用熱媒体が通過する流路を太い破線で示す。
 ここでは、暖房運転を行ない、ヒータ43で電力を消費し、且つラジエータ48で放熱するときの運転について説明する。冷凍サイクル回路12によって、暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を閉鎖し、室内膨張弁25を閉鎖し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、三方弁65、ラジエータ48、分岐点69、三方弁67、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。この循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。
 また、温調用熱媒体は、メインポンプ42、ヒータ43、三方弁52、三方弁61、配管51e、分岐点62、三方弁63、三方弁68、分岐点66、三方弁65、ラジエータ48、分岐点69、三方弁67、及び分岐点54を順に経由して循環する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、ラジエータ48で放熱することで低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が放熱器22で加温され、温かい空気が車室内に供給される。
 次に、他の運転について補足説明する。
 [バッテリ加温運転]
 図11は、バッテリ加温運転を示す図である。
 図中、温調用熱媒体が通過する流路を太い破線で示す。ここでは、バッテリ45の温度が予め定めた閾値よりも低いときに実行されるバッテリ加温運転について説明する。冷凍サイクル回路12については、独立して機能しているものとして説明を省略する。温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点53、及び分岐点54を順に経由して循環するように、各三方弁を制御する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、バッテリ45で放熱することで低温となる。これにより、バッテリ45は、温調用熱媒体によって加温される。
 [バッテリ冷却運転]
 図12は、バッテリ冷却運転を示す図である。
 図中、温調用熱媒体が通過する流路を太い破線で示す。ここでは、バッテリ45の温度が予め定めた閾値よりも高いときに実行されるバッテリ冷却運転について説明する。冷凍サイクル回路12については、独立して機能しているものとして説明を省略する。温調回路41では、ヒータ43を停止し、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、三方弁61、バッテリ45、分岐点62、三方弁63、三方弁68、分岐点66、三方弁65、ラジエータ48、分岐点69、三方弁67、及び分岐点54を順に経由して循環するように、各三方弁を制御する。この循環経路において、温調用熱媒体は、バッテリ45で吸熱することで高温となり、ラジエータ48で放熱することで低温となる。これにより、バッテリ45は、温調用熱媒体によって冷却される。
 [ヒータによる暖房補助運転]
 図13は、ヒータによる暖房補助運転を示す図である。
 図中、低圧の空調用熱媒体が通過する流路を太い点線で示し、高圧の空調用熱媒体が通過する流路を太い実線で示し、開放された開閉弁を白抜きで示し、閉鎖された開閉弁を黒塗りで示している。また、温調用熱媒体が通過する流路を太い破線で示す。
 ここでは、ヒータ43による暖房補助運転について説明する。冷凍サイクル回路12によって、暖房運転を行なう場合、室外膨張弁23を僅かに開放し、開閉弁32を開放し、開閉弁35を閉鎖し、室内膨張弁25を閉鎖し、膨張弁55を閉鎖した状態で、圧縮機21を駆動する。一方、温調回路41では、ヒータ43を作動させ、メインポンプ42を駆動し、サブポンプ49を停止し、温調用熱媒体を循環させる。また、温調用熱媒体が、メインポンプ42、ヒータ43、三方弁52、ヒータコア44、分岐点53、及び分岐点54を順に経由して循環するように、各三方弁を制御する。
 これにより、空調用熱媒体は、圧縮機21、放熱器22、分岐点34、室外膨張弁23、室外熱交換器24、分岐点36、開閉弁32、分岐点39、逆止弁33、分岐点57、及びアキュムレータ27を順に経由して循環する。これらの循環経路において、気相の空調用熱媒体は、圧縮機21で圧縮され高圧となり、放熱器22で放熱することで凝縮液化し、低温になる。液相の空調用熱媒体は、室外膨張弁23で膨張され低圧となり、室外熱交換器24で吸熱することで蒸発気化し、高温になる。
 また、温調用熱媒体は、メインポンプ42、ヒータ43、三方弁52、ヒータコア44、分岐点53、及び分岐点54を順に経由して循環する。この循環経路において、温調用熱媒体は、ヒータ43で吸熱することで高温となり、ヒータコア44で放熱することで低温となる。
 一方、HVACユニット13では、送風ファン14を駆動すると共に、エアミックスダンパ15で流路17を閉じ気味にしつつ、放熱器22を通過する割合を調整する。これにより、導入された空気が放熱器22で加温されると共に、ヒータコア44で加温され、さらに温かい空気が車室内に供給される。
 [モータ冷却運転]
 図14は、モータ冷却運転を示す図である。
 図中、温調用熱媒体が通過する流路を太い破線で示す。ここでは、電動モータ46の温度が予め定めた閾値よりも高いときに実行されるモータ冷却運転について説明する。冷凍サイクル回路12については、独立して機能しているものとして説明を省略する。温調回路41では、ヒータ43を停止し、メインポンプ42を停止し、サブポンプ49を駆動し、温調用熱媒体を循環させる。また、温調用熱媒体が、サブポンプ49、分岐点64、電動モータ46、及び三方弁65、ラジエータ48、及び分岐点69を順に経由して循環するように、各三方弁を制御する。この循環経路において、温調用熱媒体は、電動モータ46で吸熱することで高温となり、ラジエータ48で放熱することで低温となる。これにより、電動モータ46は、温調用熱媒体によって冷却される。
 上記より、温調回路41が「加温回路」に対応し、冷凍サイクル回路12が「冷凍サイクル回路」に対応し、ヒータ43が「ヒータ」に対応し、熱交換器47が「熱交換器」に対応し、ラジエータ48が「ラジエータ」に対応する。ステップS101~S106の処理が「回路切替制御部」に対応する。バッテリ45が「電力機器」及び「バッテリ」に対応する。温調用熱媒体が「加温用熱媒体」に対応する。
 《作用》
 次に、一実施形態の主要な作用効果について説明する。
 走行時の回生によってバッテリ45の充電を行なうが、バッテリ45は過充電になると劣化するので、バッテリ45が満充電であるときには、回生を行なえなくなる。バッテリ45の過充電を防ぐために、抵抗回路や電気負荷等の放電手段を用いることが一般的であるが、新たな構成部品を追加することになるため、改善の余地があった。
 そこで、バッテリ45の温調を行なう温調回路41のヒータ43を利用する。すなわち、バッテリ45の残容量が閾値th以上であるときに(ステップS101の判定が“Yes”)、ヒータ43を作動させる(ステップS102)。このように、バッテリ45で残容量が閾値th以上であるときに、温調回路41のヒータ43を作動させてバッテリ45の電力を消費させる。温調回路41のヒータ43は、電気自動車やハイブリッド自動車に搭載されることが一般的になりつつある。したがって、既存の構成部品によってバッテリ45の電力を消費させ、バッテリ45の過充電を抑制することができる。また、ヒータ43で加温した温調用熱媒体は、熱交換器47で放熱させるか、又はラジエータ48で放熱させる。熱交換器47、及びラジエータ48についても、何れも温調回路41に対して、一般的に付随しているため、やはり既存の構成部品によって確実に放熱することができる。
 また、冷凍サイクル回路12で暖房を行なっているときには(ステップS103の判定が“Yes”)、ヒータ43で加温した温調用熱媒体を、熱交換器47の温調用熱媒体流路
47Aで放熱させる(ステップS105)。一方、冷凍サイクル回路12が停止している又は冷房運転を行なっているときには(ステップS103の判定が“No”)、ヒータ43で加温した温調用熱媒体を、ラジエータ48で放熱させる(ステップS106)。このように、冷凍サイクル回路12の運転に応じて、温調用熱媒体の循環経路を切り替えるため、温調用熱媒体の放熱を適切に行なうことができる。
 さらに、通常の暖房運転では、室外熱交換器24で吸熱することになるが、室外熱交換器24での吸熱量が多いほど着霜が生じやすい。しかしながら、ヒータ43を利用して暖房運転を補助すると、それだけ室外熱交換器24での吸熱量を低減することができる。したがって、室外熱交換器24の着霜を遅延させる効果がある。
 また、冷凍サイクル回路12で暖房運転を行なっているときでも(ステップS103の判定が“Yes”)、熱交換器47の温調用熱媒体流路47A出口側における温調用熱媒体の温度Tcが閾値T1以上であるときには(ステップS104の判定が“No”)、ヒータ43で加温した温調用熱媒体を、ラジエータ48で放熱させる(ステップS106)。熱交換器47の温調用熱媒体流路47A出口側で温調用熱媒体の温度Tcが高温であるなら、十分に放熱できていないことを意味する。このようなときは、温調用熱媒体にラジエータ48で放熱させることで、確実に温調用熱媒体の温度を低下させることができる。
 また、温調回路41は、冷凍サイクル回路12の暖房を補助するために、温調用熱媒体を循環させる回路である。このような温調回路41は、電気自動車やハイブリッド自動車に搭載されることが一般的になりつつある。したがって、既存の構成部品によってバッテリ45の電力を消費させ、バッテリ45の過充電を抑制することができる。
 また、温調回路41は、バッテリ45を加温するために、温調用熱媒体を循環させる回路でもある。このような温調回路41も、電気自動車やハイブリッド自動車に搭載されることが一般的になりつつある。したがって、既存の構成部品によってバッテリ45の電力を消費させ、バッテリ45の過充電を抑制することができる。
 《変形例》
 本実施形態では、バッテリ45を加温したり冷却したりする構成について説明したが、これに限定されるものではない。すなわち、本実施形態では、バッテリ45を少なくとも加温できればよいため、バッテリ45を冷却する構成については省略してもよい。
 本実施形態では、温調回路41において、温調用熱媒体の流れを三方弁で切り替えているが、これに限定されるものではない。例えば、三方弁を設ける代わりに、各流路の夫々に開閉可能な二方弁を設け、一方を開くときに他方を閉じ、一方を閉じるときに他方を開くようにしてもよい。
 本実施形態では、冷房時に室外膨張弁23を全開にする構成について説明したが、これに限定されるものではない。例えば、室外膨張弁23を迂回するバイパス流路を設け、このバイパス流路を開閉可能に構成してもよい。これにより、冷房時に室外膨張弁23を閉鎖し、バイパス流路を開放すれば、圧力損失を低減することができる。
 以上、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。
 11…車両用空気調和装置、12…冷凍サイクル回路、13…HVACユニット、14…送風ファン、15…エアミックスダンパ、16…流路、17…流路、21…圧縮機、22…放熱器、23…室外膨張弁、24…室外熱交換器、25…室内膨張弁、26…吸熱器、27…アキュムレータ、28…送風機、31a…配管、31b…配管、31c…配管、31d…配管、31e…配管、31f…配管、31g…配管、31h…配管、32…開閉弁、33…逆止弁、34…分岐点、35…開閉弁、36…分岐点、37…分岐点、38…逆止弁、39…分岐点、41…温調回路、42…メインポンプ、43…ヒータ、44…ヒータコア、45…バッテリ、46…電動モータ、47…熱交換器、47A…温調用熱媒体流路、47B…空調用熱媒体流路、48…ラジエータ、49…サブポンプ、51a…配管、51b…配管、51c…配管、51d…配管、51e…配管、51f…配管、51g…配管、51h…配管、51i…配管、51j…配管、52…三方弁、53…分岐点、54…分岐点、55…膨張弁、56…分岐点、57…分岐点、61…三方弁、62…分岐点、63…三方弁、64…分岐点、65…三方弁、66…分岐点、67…三方弁、68…三方弁、69…分岐点、71…コントローラ、72…SOC取得部、73…温度センサ

Claims (5)

  1.  電動モータに給電するバッテリを搭載した車両において、
     加温用熱媒体を循環させる加温回路と、
     車室内の空調を行うために空調用熱媒体を循環させる冷凍サイクル回路と、を備えた車両用空気調和装置であって、
     前記加温回路は、
     前記加温用熱媒体を加温するヒータと、
     前記冷凍サイクル回路の前記空調用熱媒体との間で熱交換を行なう熱交換器と、
     前記熱交換器と並列に設けられ、外気との間で熱交換を行なうラジエータと、を備え、
     車両走行時に回生充電される前記バッテリの残容量に応じて回路を切り替える回路切替制御部を備え、
     前記回路切替制御部は、
     車両走行時に回生充電される前記バッテリの残容量が予め定めた閾値以上であるときに、前記ヒータを作動させ、加温された前記加温用熱媒体を、前記冷凍サイクル回路の運転に応じて前記熱交換器及び前記ラジエータの何れか一方に循環させることを特徴とする車両用空気調和装置。
  2.  前記回路切替制御部は、
     前記冷凍サイクル回路で暖房を行なっているときには、加温された前記加温用熱媒体を前記熱交換器に循環させ、前記冷凍サイクル回路で冷房を行なっているときには、加温された前記加温用熱媒体を前記ラジエータに循環させることを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記回路切替制御部は、
     前記冷凍サイクル回路の運転が暖房であり、且つ前記熱交換器を通過した前記加温用熱媒体の温度が予め定めた閾値以上であるときには、加温された前記加温用熱媒体を前記ラジエータに循環させることを特徴とする請求項2に記載の車両用空気調和装置。
  4.  前記加温回路は、
     前記冷凍サイクル回路の暖房を補助するために、前記加温用熱媒体を循環させる回路であることを特徴とする請求項1~3の何れか一項に記載の車両用空気調和装置。
  5.  車両に搭載され、加温を必要とする電力機器を備え、
     前記加温回路は、
     前記電力機器を加温するために、前記加温用熱媒体を循環させる回路であることを特徴とする請求項1~4の何れか一項に記載の車両用空気調和装置。
PCT/JP2021/006339 2020-03-27 2021-02-19 車両用空気調和装置 WO2021192761A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180020507.1A CN115335245A (zh) 2020-03-27 2021-02-19 车辆用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-058006 2020-03-27
JP2020058006A JP7431637B2 (ja) 2020-03-27 2020-03-27 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2021192761A1 true WO2021192761A1 (ja) 2021-09-30

Family

ID=77891412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006339 WO2021192761A1 (ja) 2020-03-27 2021-02-19 車両用空気調和装置

Country Status (3)

Country Link
JP (1) JP7431637B2 (ja)
CN (1) CN115335245A (ja)
WO (1) WO2021192761A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023075845A (ja) * 2021-11-19 2023-05-31 サンデン株式会社 車両用空調装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162933A (ja) * 2014-02-26 2015-09-07 株式会社デンソー 電気自動車の回生制動制御装置
JP2015162947A (ja) * 2014-02-27 2015-09-07 ダイハツ工業株式会社 車両用制御装置
JP2019119291A (ja) * 2017-12-28 2019-07-22 本田技研工業株式会社 電動機搭載車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162933A (ja) * 2014-02-26 2015-09-07 株式会社デンソー 電気自動車の回生制動制御装置
JP2015162947A (ja) * 2014-02-27 2015-09-07 ダイハツ工業株式会社 車両用制御装置
JP2019119291A (ja) * 2017-12-28 2019-07-22 本田技研工業株式会社 電動機搭載車両

Also Published As

Publication number Publication date
CN115335245A (zh) 2022-11-11
JP7431637B2 (ja) 2024-02-15
JP2021154911A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7095848B2 (ja) 車両用空気調和装置
JP6997558B2 (ja) 車両用空気調和装置
JP6838527B2 (ja) 車両用空調装置
JP5860361B2 (ja) 電動車両用熱管理システム
WO2020031568A1 (ja) 車両用空気調和装置
WO2014027504A1 (ja) 電動車両用熱管理システム及びその制御方法
CN114144320B (zh) 车辆装设发热设备的温度调节装置及包括该装置的车用空调装置
CN111615464A (zh) 车用空调装置
JP7300264B2 (ja) 車両用空気調和装置
WO2021177057A1 (ja) 車両用空気調和装置
CN112867616A (zh) 车用空调装置
WO2021054041A1 (ja) 車両用空気調和装置
JP2014037182A (ja) 電動車両用熱管理システム
WO2021192762A1 (ja) 車両用空気調和装置
JP2013184596A (ja) 車両空調用、及び、自動車構成部品温度調整用冷凍サイクル装置
JP6997567B2 (ja) 車両用空気調和装置
WO2021192761A1 (ja) 車両用空気調和装置
WO2021187005A1 (ja) 車両用空気調和装置
CN113811727A (zh) 车辆用空气调节装置
CN114269574A (zh) 车辆的电池冷却装置及包括该装置的车用空调装置
WO2022064944A1 (ja) 車両用空調装置
JP7221767B2 (ja) 車両用空気調和装置
WO2021192760A1 (ja) 車両用空気調和装置
JP7372793B2 (ja) 車両用空気調和装置
WO2020246306A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776508

Country of ref document: EP

Kind code of ref document: A1