WO2020031568A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2020031568A1
WO2020031568A1 PCT/JP2019/026547 JP2019026547W WO2020031568A1 WO 2020031568 A1 WO2020031568 A1 WO 2020031568A1 JP 2019026547 W JP2019026547 W JP 2019026547W WO 2020031568 A1 WO2020031568 A1 WO 2020031568A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat medium
heat
battery
temperature
Prior art date
Application number
PCT/JP2019/026547
Other languages
English (en)
French (fr)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to US17/266,715 priority Critical patent/US11794548B2/en
Priority to DE112019004047.2T priority patent/DE112019004047T5/de
Priority to CN201980052614.5A priority patent/CN112585021A/zh
Publication of WO2020031568A1 publication Critical patent/WO2020031568A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3201Cooling devices using absorption or adsorption
    • B60H1/32011Cooling devices using absorption or adsorption using absorption, e.g. using Li-Br and water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/003Component temperature regulation using an air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3288Additional heat source

Definitions

  • the present invention relates to a heat pump type air conditioner for a vehicle.
  • JP 2014-213765 A Japanese Patent No. 5440426
  • the above-mentioned traveling motors and the like are also mounted on the vehicle. These traveling motors and the like are also driven to generate heat, so that a stable operation is performed. Requires cooling. Further, the traveling motor and the like can be driven even at a lower temperature than the battery.
  • the present invention has been made in order to solve the conventional technical problem, and has no problem in cooling a temperature control target other than a battery mounted on a vehicle and recovering waste heat from the temperature control target. It is an object of the present invention to provide a vehicle air conditioner that can be smoothly performed.
  • the vehicle air conditioner of the present invention is a compressor that compresses a refrigerant, a radiator for heating the air supplied to the vehicle interior by releasing the refrigerant, and an outdoor heat exchanger provided outside the vehicle interior, An air conditioner that heats the vehicle interior by radiating at least the refrigerant discharged from the compressor with a radiator, decompressing the radiated refrigerant, and absorbing heat with an outdoor heat exchanger.
  • the control device In the vehicle air conditioner according to the second aspect of the present invention, the control device according to the above aspect, wherein the temperature of the temperature control target or an index value indicating the temperature of the temperature control target has risen to a predetermined upper limit threshold or more. In this case, a heating / waste heat recovery mode is executed.
  • the device temperature adjusting device exchanges heat between the refrigerant and the heat medium with a circulation device for circulating the heat medium to the battery and the object to be temperature-controlled.
  • a flow path switching device for controlling the circulation of the heat medium to the battery and the temperature control target, and the control device depressurizes the refrigerant in the heating / waste heat recovery mode. After that, it flows into the refrigerant-heat medium heat exchanger, absorbs heat from the heat medium, controls the circulation device and the flow path switching device, and does not circulate the heat medium exiting the refrigerant-heat medium heat exchanger to the battery. It is characterized by being circulated to the temperature control target.
  • the device temperature adjusting device has a heating device for heating the battery, and the control device is heated by the refrigerant in the air conditioning operation for heating the vehicle interior. It is characterized by having a heating / battery heating / waste heat recovery mode for cooling the temperature control target and heating the battery by the heating device.
  • the control device when the battery temperature or an index value indicating the battery temperature falls below a predetermined lower limit threshold, the control device performs heating / battery heating. -It is characterized by executing the waste heat recovery mode.
  • a vehicle air conditioner is the vehicle air conditioner according to the fourth or fifth aspect, wherein the device temperature adjusting device includes a circulating device for circulating the heat medium to the battery, the temperature-controlled object, and the heating device;
  • a control device comprising: a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium; and a flow path switching device for controlling circulation of the heat medium to the battery, the object to be temperature-controlled, and the heating device.
  • the refrigerant flows into the refrigerant-heat medium heat exchanger to absorb heat from the heat medium, and controls the circulation device, the flow path switching device, and the heating device, and The heat medium that has exited the heat medium heat exchanger is not circulated to the battery, but is circulated to the temperature control target, and the heat medium is circulated between the heating device and the battery to heat the battery. .
  • An air conditioner for a vehicle is provided with a heat absorber for cooling the air supplied to the vehicle interior by absorbing heat of the refrigerant in the above invention, and the control device controls the refrigerant discharged from the compressor to the outside. After the heat is radiated by the heat exchanger and the radiated refrigerant is depressurized, the air-conditioning operation for cooling the vehicle interior by absorbing the heat by the heat absorber is executed, and the equipment temperature adjusting device is used in the air-conditioning operation for cooling the vehicle interior. It has a cooling / battery cooling / temperature control target cooling mode for controlling and cooling the battery and the temperature control target.
  • the control device may perform cooling / battery cooling.
  • -It is characterized in that the cooling mode to be heated is executed.
  • the device temperature adjusting device includes: a circulating device for circulating the heat medium to the battery and the temperature-controlled object; A refrigerant-heat medium heat exchanger for exchanging heat with the medium, an air-heat medium heat exchanger for exchanging heat between the outside air and the heat medium, and circulation of the heat medium to the battery and the temperature-controlled object.
  • the control device has a flow path switching device for controlling, and the control device depressurizes the refrigerant in the cooling / battery cooling / temperature control target cooling mode, then flows the refrigerant to the refrigerant-heat medium heat exchanger to absorb heat from the heat medium and ,
  • the vehicle air conditioner according to claim 10 is characterized in that, in the above invention, the air-heat medium heat exchanger is disposed downstream of the outdoor heat exchanger.
  • a compressor for compressing a refrigerant a radiator for radiating the refrigerant to heat air supplied to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and a control device are provided.
  • this control device at least, the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is decompressed, and then the air-conditioning operation of heating the vehicle interior by absorbing heat by the outdoor heat exchanger is executed.
  • a battery mounted on a vehicle using a refrigerant and a device temperature adjusting device capable of adjusting a temperature of a predetermined temperature control target other than the battery are provided.
  • the device temperature control device is controlled, and a heating / waste heat recovery mode for cooling the temperature-controlled object without cooling the battery with the refrigerant is provided.
  • the device recovers heat of the temperature control target mounted on the vehicle other than the battery into the refrigerant without cooling the battery, and cools the temperature control target. It will be possible to heat the cabin while heating.
  • the vehicle interior when heating the vehicle interior, the vehicle interior is efficiently heated by effectively utilizing the heat of the temperature control target other than the battery, and the temperature is controlled while suppressing frost on the outdoor heat exchanger. It becomes possible to cool the object to be adjusted. At this time, since the battery is not cooled, it is possible to avoid adverse effects on the battery in an environment that does not require cooling of the battery, particularly when the outside air temperature is low.
  • the control device controls the heating / waste heat.
  • the recovery mode it becomes possible to appropriately start the heating / waste heat recovery mode for cooling only the temperature-controlled object.
  • a circulating device for circulating the heat medium to the battery and the object to be temperature-controlled, and a refrigerant-heat medium heat exchange for exchanging heat between the refrigerant and the heat medium.
  • a flow path switching device for controlling the circulation of the heat medium to the battery and the temperature control target.
  • the control device depressurizes the refrigerant, and then heats the refrigerant-heat medium heat. Heat is passed from the heat medium to the heat exchanger, and the circulation device and the flow path switching device are controlled to circulate the heat medium exiting the refrigerant-heat medium heat exchanger to the temperature-controlled object without being circulated to the battery.
  • a heating device for heating the battery is provided in the device temperature adjusting device as in the invention of claim 4, and the control device cools the temperature-controlled object by the refrigerant in the air conditioning operation for heating the vehicle interior,
  • the control device cools the temperature-controlled object by the refrigerant in the air conditioning operation for heating the vehicle interior
  • the control device switches the heating / battery heating / waste heat recovery mode. If it is executed, the heating / waste heat recovery mode in which the battery is heated while recovering waste heat from the temperature control target can be appropriately started.
  • a circulating device for circulating the heat medium to the battery, the object to be temperature-controlled and the heating device, and a refrigerant-heat for exchanging heat between the refrigerant and the heat medium are provided in the device temperature control device.
  • a medium heat exchanger and a flow path switching device for controlling circulation of a heat medium to a battery, a temperature control target, and a heating device are provided. In the heating / battery heating / waste heat recovery mode, the control device controls the refrigerant.
  • the heat medium flows through the refrigerant-heat medium heat exchanger to absorb heat from the heat medium, controls the circulation device, the flow path switching device, and the heating device, and circulates the heat medium exiting the refrigerant-heat medium heat exchanger to the battery. Circulating the heating medium between the heating device and the battery and heating the battery, thereby cooling the temperature-controlling object and recovering the waste heat thereof. Heating operation smoothly So that it is able to.
  • a heat absorber for cooling the air supplied to the vehicle interior by absorbing heat of the refrigerant as in the invention of claim 7 is provided, and the control device causes the refrigerant discharged from the compressor to radiate heat in the outdoor heat exchanger. After the pressure of the radiated refrigerant is reduced, the air-conditioning operation for cooling the vehicle interior by absorbing heat by the heat absorber is executed, and the device temperature control device is controlled in the air-conditioning operation for cooling the vehicle interior, and the battery and the temperature are controlled. If a cooling / battery cooling / temperature control target cooling mode for cooling the control target is provided, the controller executes the cooling / battery cooling / temperature control target cooling mode in the air-conditioning operation for cooling the vehicle interior, thereby reducing the outside air temperature. In an environment where the temperature is high, both the battery and the object to be temperature-controlled can be cooled, and a decrease in performance can be avoided.
  • the control device when the control device increases the temperature of the battery or an index value indicating the temperature of the battery to be equal to or higher than a predetermined upper threshold, the control device may perform cooling / battery cooling / cooling to be temperature-controlled. By executing the mode, it is possible to appropriately avoid the disadvantage that the temperature of the battery is increased and the performance is reduced.
  • a circulating device for circulating the heat medium to the battery and the object to be temperature-controlled, and a refrigerant-heat medium heat exchange for exchanging heat between the refrigerant and the heat medium are provided in the apparatus temperature control device.
  • the control device depressurizes the refrigerant, flows the refrigerant into the refrigerant-heat medium heat exchanger, absorbs heat from the heat medium, controls the circulation device and the flow path switching device, and controls the refrigerant.
  • the heat medium that has exited the heat medium heat exchanger is circulated through the battery to cool the battery, and the heat medium is circulated between the temperature control target and the air-heat medium heat exchanger to cool the temperature control target. This allows the battery to cool while using The temperature control target non Terri will be able to smoothly cooled by the outside air.
  • the air-heat medium heat exchanger is arranged on the leeward side of the outdoor heat exchanger as in the tenth aspect of the invention, the heat radiating action of the outdoor heat exchanger in the cooling / battery cooling / temperature control target cooling mode. Of the air-heat medium heat exchanger can be avoided.
  • FIG. 1 is a configuration diagram of an embodiment of a vehicle air conditioner to which the present invention is applied (Embodiment 1).
  • FIG. 2 is a block diagram of an air conditioning controller as a control device of the vehicle air conditioner of FIG. 1. It is a figure explaining the heating operation by the air-conditioning controller of FIG. It is a figure explaining the dehumidifying heating operation by the air conditioning controller of FIG.
  • FIG. 3 is a diagram illustrating a dehumidifying cooling operation / cooling operation by the air conditioning controller of FIG. 2.
  • FIG. 3 is a diagram illustrating a heating / waste heat recovery mode by the air conditioning controller of FIG. 2.
  • FIG. 3 is a diagram illustrating a cooling / battery cooling / temperature-adjustment target cooling mode by the air-conditioning controller of FIG. 2. It is a block diagram of the air conditioner for vehicles of other Example to which this invention is applied (Example 2).
  • FIG. 9 is a diagram illustrating a heating / battery heating / waste heat recovery mode executed by the air conditioning controller in the vehicle air conditioner of FIG. 8.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment to which the present invention is applied.
  • the vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) without an engine (internal combustion engine).
  • the vehicle has a battery 55 (for example, a lithium battery).
  • the vehicle is driven and driven by supplying the charged electric power to a traveling motor (electric motor) 65.
  • the vehicle air conditioner 1 is also driven by being supplied with power from the battery 55.
  • the vehicle air conditioner 1 performs the heating operation by the heat pump operation using the refrigerant circuit R in the electric vehicle that cannot perform the heating by the engine waste heat, and further performs the dehumidifying heating operation, the dehumidifying cooling operation, and the cooling operation.
  • the air conditioning of the vehicle interior is performed by selectively executing the air conditioning operation.
  • the heating operation and the dehumidifying / heating operation are air conditioning operations for heating the vehicle interior in the present invention
  • the cooling operation and the dehumidifying cooling operation are air conditioning operations for cooling the interior of the vehicle in the present invention.
  • the present invention is effective not only for an electric vehicle as a vehicle but also for a so-called hybrid vehicle using an engine and an electric motor for traveling.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses a refrigerant.
  • an electric compressor (electric compressor) 2 that compresses a refrigerant.
  • the heat absorber 9 for absorbing heat from the refrigerant from inside and outside of the vehicle to cool the air supplied to the vehicle interior, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13 to form a refrigerant circuit R.
  • the outdoor expansion valve 6 and the indoor expansion valve 8 are capable of decompressing and expanding the refrigerant, and can be fully opened and fully closed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing the outside air through the outdoor heat exchanger 7, so that the outdoor blower 15 can stop the outdoor operation even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is configured such that outside air is passed through the heat exchanger 7.
  • the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via a check valve 18.
  • the check valve 18 has the refrigerant pipe 13B side directed forward, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
  • the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is a refrigerant pipe 13C that is located on the outlet side of the heat absorber 9 via an electromagnetic valve 21 that is opened during heating.
  • Is connected to the A check valve 20 is connected to a refrigerant pipe 13C downstream of the connection point of the refrigerant pipe 13D, a refrigerant pipe 13C downstream of the check valve 20 is connected to the accumulator 12, and the accumulator 12 is connected to the compressor 2 Is connected to the refrigerant suction side.
  • the check valve 20 has a forward direction on the accumulator 12 side.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into a refrigerant pipe 13J and a refrigerant pipe 13F just before the outdoor expansion valve 6 (upstream of the refrigerant), and one of the branched refrigerant pipes 13J is connected to the outdoor expansion valve 6F. Is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the The other branched refrigerant pipe 13F is connected to a refrigerant pipe 13B located downstream of the check valve 18 and upstream of the indoor expansion valve 8 via a solenoid valve 22 that is opened during dehumidification. Have been.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected. 18 bypasses the circuit.
  • the air flow passage 3 on the upstream side of the heat absorber 9 is formed with an outside air suction port and an inside air suction port (represented by a suction port 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation) as air inside the vehicle compartment and outside air (introduction of outside air) as air outside the vehicle compartment. Further, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided downstream of the suction switching damper 26 in the air.
  • reference numeral 23 denotes an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is formed of a PTC heater (electric heater) in the embodiment, and is provided in the air flow passage 3 on the downstream side of the radiator 4 with respect to the flow of air in the air flow passage 3. I have.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, it becomes a so-called heater core, which complements the heating of the vehicle interior.
  • the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 upstream of the radiator 4 in the air.
  • An air mix damper 28 is provided for adjusting the rate of air flow to the heater 4 and the auxiliary heater 23.
  • FOOT (foot), VENT (vent), and DEF (def) outlets are formed in the air flow passage 3 downstream of the radiator 4 in the air.
  • the outlet 29 is provided with an outlet switching damper 31 for switching and controlling the air blowing from each of the outlets.
  • the vehicle air conditioner 1 is provided with a device temperature adjusting device 61 for circulating a heat medium through the battery 55 and the running motor 65 to adjust the temperature of the battery 55 and the running motor 65.
  • the traveling motor 65 is a predetermined temperature-control target other than the battery 55 mounted on the vehicle.
  • the traveling motor 65 as an object to be temperature-controlled in the present invention is not limited to the electric motor itself, but includes an electric device such as an inverter circuit for driving the electric motor. Further, it goes without saying that a device mounted on a vehicle other than the traveling motor 65 and generating heat can be applied as a target to be temperature-controlled.
  • the device temperature adjusting device 61 of this embodiment includes a first circulating pump 62 and a second circulating pump 63 as circulating devices for circulating a heat medium through the battery 55 and the traveling motor 65, and a refrigerant-heat medium heat exchanger. 64, an air-heat medium heat exchanger 67, and a first three-way valve 81, a second three-way valve 82, and a third three-way valve 83 as a flow path switching device. They are connected by a medium pipe 68.
  • a heat medium pipe 68A is connected to the discharge side of the first circulation pump 62, and the heat medium pipe 68A is connected to the inlet of the first three-way valve 81.
  • One outlet of the first three-way valve 81 is connected to a heat medium pipe 68B, and the heat medium pipe 68B is connected to an inlet of the battery 55.
  • the outlet of the battery 55 is connected to the heat medium pipe 68C, and the heat medium pipe 68C is connected to the inlet of the second three-way valve 82.
  • the other outlet of the first three-way valve 81 is connected to a heat medium pipe 68D, and the heat medium pipe 68D is connected to a heat medium pipe 68C between the battery 55 and the second three-way valve 82.
  • the heat medium pipe 68 ⁇ / b> D takes a form of bypassing the battery 55.
  • One outlet of the second three-way valve 82 is connected to a heat medium pipe 68E, and the heat medium pipe 68E is connected to an inlet of a heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium pipe 68F is connected to the outlet of the heat medium flow path 64A, and the heat medium pipe 68F is connected to the suction side of the first circulation pump 62.
  • a heat medium pipe 68G is connected to the discharge side of the second circulation pump 63, and the heat medium pipe 68G is connected to the inlet of the traveling motor 65.
  • the other outlet of the second three-way valve 82 is connected to a heat medium pipe 68H, and the heat medium pipe 68H is connected to a heat medium pipe 68G between the second circulation pump 63 and the traveling motor 65.
  • the outlet of the traveling motor 65 is connected to a heat medium pipe 68J, and the heat medium pipe 68J is connected to an inlet of the third three-way valve 83.
  • One outlet of the third three-way valve 83 is connected to a heat medium pipe 68K, and the heat medium pipe 68K is connected to a heat medium pipe 68E between the second three-way valve 82 and the refrigerant-heat medium heat exchanger 64. ing.
  • the other outlet of the third three-way valve 83 is connected to a heat medium pipe 68L, and the heat medium pipe 68L is connected to an inlet of the air-heat medium heat exchanger 67.
  • a heat medium pipe 68M is connected to an outlet of the air-heat medium heat exchanger 67, and the heat medium pipe 68M is connected to a suction side of the second circulation pump 63.
  • the heat medium used in the device temperature controller 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • a jacket structure is provided around the battery 55 and the traveling motor 65 so that, for example, a heat medium can flow through the heat exchange relationship with the battery 55 and the traveling motor 65.
  • the air-heat medium heat exchanger 67 is disposed on the leeward side of the outdoor heat exchanger 7 with respect to the flow (wind path) of the outside air (air) passed through the outdoor blower 15.
  • the first three-way valve 81 communicates with the inlet and the other outlet
  • the second three-way valve 82 communicates with the inlet and the other outlet
  • the third three-way valve 83 switches between the state where the inlet communicates with the one outlet.
  • the heat medium discharged from the first circulating pump 62 is supplied with the heat medium pipe 64A, the first three-way valve 81, the heat medium pipe 68D, the heat medium pipe 68C, 2 Three-way valve 82, heat medium pipe 68H, heat medium pipe 68G, traveling motor 65, heat medium pipe 68J, third three-way valve 83, heat medium pipe 68K, heat medium pipe 68E, refrigerant-heat medium heat exchanger 64
  • the circulation is performed in the order of the heat medium flow path 64 ⁇ / b> A and the heat medium pipe 68 ⁇ / b> F and sucked into the first circulation pump 62. This is referred to as a first flow path control state.
  • the heat medium absorbed and cooled by the refrigerant in the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 as described later is circulated to the traveling motor 65, While exchanging heat with the motor 65 to recover waste heat from the traveling motor 65, the traveling motor 65 itself is cooled.
  • the traveling motor 65 since the heat medium is not circulated through the battery 55, the battery 55 is not cooled by the heat medium.
  • the first three-way valve 81 communicates with the inlet and one outlet
  • the second three-way valve 82 communicates with the inlet and one outlet
  • the third three-way valve 83 switches to communicate with the inlet and the other outlet.
  • the heat medium discharged from the second circulation pump 63 is a heat medium pipe 68G, a traveling motor 65, a heat medium pipe 68J, a third three-way valve 83, a heat medium pipe 68L, an air-heat medium heat exchanger 67, a heat medium
  • the circulation which flows in the order of the medium pipe 68M and is sucked into the second circulation pump 63 is performed. This is referred to as a second flow path control state.
  • the heat medium is circulated between the battery 55 and the refrigerant-heat medium heat exchanger 64. Therefore, as described later, the heat medium absorbed and cooled by the refrigerant in the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is circulated to the battery 55, and exchanges heat with the battery 55 to cool the battery 55. I do. Further, the heat medium is circulated between the traveling motor 65 and the air-heat medium heat exchanger 67. Therefore, the heat medium cooled (air-cooled) by the outside air in the air-heat medium heat exchanger 67 is circulated to the traveling motor 65 and exchanges heat with the traveling motor 65 to cool the traveling motor 65. Become.
  • an outlet of the refrigerant pipe 13F of the refrigerant circuit R that is, a refrigerant pipe 13B located on the refrigerant downstream side of the connection portion between the refrigerant pipe 13F and the refrigerant pipe 13B and located on the refrigerant upstream side of the indoor expansion valve 8 is branched.
  • One end of a branch pipe 72 as a circuit is connected.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 constituted by an electric valve.
  • the auxiliary expansion valve 73 is capable of decompressing and expanding the refrigerant flowing into a refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, which will be described later, and is also capable of being fully closed.
  • the other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B.
  • the other end is on the refrigerant downstream side of the check valve 20 and is connected to a refrigerant pipe 13C before the accumulator 12 (on the upstream side of the refrigerant).
  • the auxiliary expansion valve 73 and the like also constitute a part of the refrigerant circuit R and also constitute a part of the device temperature controller 61.
  • the refrigerant (a part or all of the refrigerant) flowing out of the refrigerant pipe 13F or the outdoor heat exchanger 7 flows into the branch pipe 27 and is decompressed by the auxiliary expansion valve 73.
  • -It flows into the refrigerant passage 64B of the heat medium heat exchanger 64 and evaporates there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and is then sucked into the compressor 2 via the accumulator 12.
  • reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the air conditioner 1 for a vehicle.
  • the air-conditioning controller 32 is connected via a vehicle communication bus 45 to a vehicle controller 35 (ECU) that controls the entire vehicle including drive control of the traveling motor 65 and charge / discharge control of the battery 55, and transmits and receives information. It has a configuration.
  • Each of the air conditioning controller 32 and the vehicle controller 35 (ECU) is configured by a microcomputer as an example of a computer having a processor.
  • the inputs of the air-conditioning controller 32 include an outside air temperature sensor 33 for detecting the outside air temperature (Tam) of the vehicle, an outside air humidity sensor 34 for detecting the outside air humidity, and a suction from the air inlet 25 into the air flow passage 3.
  • HVAC suction temperature sensor 36 for detecting the temperature of the air
  • inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the cabin
  • inside air humidity sensor 38 for detecting the humidity of the air in the cabin
  • An indoor CO 2 concentration sensor 39 for detecting carbon concentration
  • An outlet temperature sensor 41 for detecting the temperature of the air blown into the passenger compartment from the outlet 29, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge refrigerant temperature of the compressor 2
  • a suction temperature sensor 44 for detecting a suction refrigerant temperature of the compressor 2, a temperature of the radiator 4 (a temperature of the air passing through the radiator 4, or a temperature of the radiator 4 itself: heat radiation).
  • a radiator temperature sensor 46 for detecting the radiator temperature TCI) and a radiator for detecting the refrigerant pressure of the radiator 4 (pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: radiator pressure PCI).
  • a pressure sensor 47 a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9, or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 (Inside or out of the heat absorber 9
  • Heat sensor pressure sensor 49 for detecting the pressure of the subsequent refrigerant
  • a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior
  • a vehicle speed for detecting the moving speed (vehicle speed) of the vehicle.
  • the outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7).
  • the input of the air-conditioning controller 32 further includes the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium that has exited the battery 55, or the temperature of the heat medium that enters the battery 55: battery temperature Tb).
  • Each output of the traveling motor temperature sensor 78 which detects the temperature of the traveling motor 65 itself, the temperature of the heating medium exiting the traveling motor 65, or the temperature of the heating medium entering the traveling motor 65: the traveling motor temperature Tm). Is also connected.
  • the temperature of the heat medium exiting the battery 55 or the temperature of the heat medium entering the battery 55 becomes an index value indicating the temperature of the battery 55
  • the temperature of the heat medium exiting the travel motor 65 or the travel motor becomes an index value indicating the temperature of the traveling motor 65.
  • the output of the air conditioning controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31,
  • the first to third three-way valves 81 to 83 are connected.
  • the air-conditioning controller 32 controls these based on the outputs of the sensors, the settings input by the air-conditioning operation unit 53, and information from the vehicle controller 35.
  • the air-conditioning controller 32 switches and executes each of the air-conditioning operations of a heating operation, a dehumidifying / heating operation, a dehumidifying / cooling operation, and a cooling operation, and executes the battery 55 and the traveling motor 65 (temperature-controlled). The temperature of the target).
  • each air-conditioning operation of the refrigerant circuit R of the vehicle air conditioner 1 will be described.
  • FIG. 3 shows the flow of the refrigerant in the refrigerant circuit R in the heating operation (solid line arrow).
  • the air conditioning controller 32 opens the solenoid valve 21 (for heating), The indoor expansion valve 8 is fully closed. Further, the solenoid valve 22 (for dehumidification) is closed.
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws heat by traveling or from outside air passed through the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the solenoid valve 21, and enters the accumulator 12 via the check valve 20 of the refrigerant pipe 13C.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, thereby heating the vehicle interior.
  • the air-conditioning controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later. Is controlled, and the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • FIG. 4 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) in the dehumidifying and heating operation.
  • the air-conditioning controller 32 opens the electromagnetic valve 22 and opens the indoor expansion valve 8 in the state of the heating operation to decompress and expand the refrigerant.
  • the air conditioning controller 32 controls the opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value. As the moisture in the air blown out from the indoor blower 27 condenses on the heat absorber 9 and adheres, the air is cooled and dehumidified. The remaining refrigerant that has flowed into the refrigerant pipe 13 ⁇ / b> J is decompressed by the outdoor expansion valve 6, and then evaporates in the outdoor heat exchanger 7.
  • SH superheat
  • the refrigerant evaporated by the heat absorber 9 flows out to the refrigerant pipe 13C and merges with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeated circulation. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 5 shows the flow (solid arrows) of the refrigerant in the refrigerant circuit R in the dehumidifying cooling operation.
  • the air-conditioning controller 32 opens the indoor expansion valve 8 so that the refrigerant is decompressed and expanded, and closes the electromagnetic valves 21 and 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the rate at which the air blown out from the indoor blower 27 is blown to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled and condensed there by traveling or by the outside air passed by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air that has been cooled and dehumidified by the heat absorber 9 is reheated (reheating: has a lower heat dissipation capacity than during heating) in the process of passing through the radiator 4, thereby performing dehumidification and cooling in the vehicle interior. become.
  • the air conditioning controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO as its target value.
  • the radiator pressure PCI high pressure of the refrigerant circuit R
  • the target radiator pressure PCO radius pressure
  • Cooling operation air conditioning operation for cooling the passenger compartment
  • the flow of the refrigerant circuit R is the same as in the dehumidifying and cooling operation in FIG.
  • the air conditioning controller 32 fully opens the outdoor expansion valve 6 in the state of the dehumidifying cooling operation.
  • the air mix damper 28 is in a state of adjusting the rate at which air is passed through the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the ratio thereof is small (only for reheating at the time of cooling).
  • the refrigerant reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the refrigerant directly passes through the refrigerant pipe 13J via the outdoor expansion valve 6, flows into the outdoor heat exchanger 7, and travels there or is ventilated by the outdoor blower 15.
  • the air is cooled by the outside air and condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action, and the air is cooled.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, whereby the vehicle interior is cooled.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the air-conditioning controller 32 calculates the above-described target outlet temperature TAO from the following equation (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown from the outlet 29 into the vehicle interior.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the temperature set in the cabin set by the air-conditioning operation unit 53
  • Tin is the temperature of the cabin air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the sunshine sensor 51 detects the temperature.
  • This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the air conditioning controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO. After the start, each air-conditioning operation is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blow-out temperature TAO and the set conditions.
  • Heating / Waste Heat Recovery Mode executed by the air conditioning controller 32 in the above-described heating operation or dehumidifying heating operation will be described with reference to FIG. That is, the air conditioning controller 32 has a heating / waste heat recovery mode described below. In the following description, a case where the operation is performed during the heating operation will be described.
  • the traveling motor 65 generates heat when driven by traveling. If the temperature becomes abnormally high, malfunctions occur and the performance decreases, and in the worst case, there is a risk of failure.
  • the suitable temperature range (operating temperature range) of the traveling motor 65 is generally known, but in the present application, it is set to a range from -15 ° C to + 60 ° C. In this application, for example, -15 ° C., which is the lowest value of the appropriate temperature range of the traveling motor 65, is set as the lower limit threshold value TLm of the temperature of the traveling motor 65 (traveling motor temperature Tm), and + 60 ° C., which is the highest value, is set.
  • the upper threshold THm is set.
  • the temperature of the battery 55 changes depending on the outside air temperature, and also changes due to self-heating.
  • the outside air temperature is a high temperature environment or a very low temperature environment
  • the temperature of the battery 55 becomes extremely high or extremely low, and charging and discharging becomes difficult.
  • the appropriate temperature range (operating temperature range) of the battery 55 is also generally known, but is narrower than the appropriate temperature range of the traveling motor 65, and is set to a range of 0 ° C. or more and + 40 ° C. or less in this application.
  • 0 ° C. which is the lowest value in the appropriate temperature range of the battery 55, is set as the lower limit threshold TLb of the temperature of the battery 55 (battery temperature Tb), and + 40 ° C., which is the highest value, is set as the upper threshold THb.
  • the waste heat can be recovered when the temperature of the traveling motor 65 and the battery 55 becomes high, the waste heat can be contributed to the heating of the vehicle interior while cooling them in the heating operation or the dehumidifying heating operation.
  • the heating operation is particularly performed in a low outside temperature environment such as winter, the temperature of the battery 55 hardly rises. Therefore, the necessity of cooling is low, and the battery temperature Tb is reduced by cooling. There is a danger that the performance will be reduced due to too low, and the effect of waste heat recovery cannot be expected much.
  • the driving motor 65 is driven even in a low outside air temperature environment such as winter and becomes high in temperature, so that cooling is required to perform a stable operation, and the driving motor 65 is a battery as described above.
  • the suitable temperature range is wider on both the high-temperature side and the low-temperature side than 55, and driving can be performed at lower temperatures. Therefore, for example, when the traveling motor temperature Tm detected by the traveling motor temperature sensor 78 increases in the heating operation to the above-described upper threshold THm or more, the air-conditioning controller 32 executes a heating / waste heat recovery mode described below. .
  • FIG. 6 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium in the equipment temperature controller 61 (dashed arrow) in the heating / waste heat recovery mode.
  • the air conditioning controller 32 controls the opening of the solenoid valve 22 and the auxiliary expansion valve 73 to control the valve opening degree in the heating operation of the refrigerant circuit R shown in FIG. And Then, the controller controls the first to third three-way valves 81 to 83 of the device temperature controller 61 to set the flow of the heat medium in the heat medium pipe 68 to the first flow path control state described above, and to set the first circulation pump Drive 62.
  • part of the refrigerant that has flowed out of the radiator 4 is diverted upstream of the outdoor expansion valve 6 and reaches the upstream side of the indoor expansion valve 8 via the refrigerant pipe 13F.
  • the refrigerant enters the branch pipe 72, is decompressed by the auxiliary expansion valve 73, flows into the refrigerant passage 64 B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72, and evaporates. At this time, it exhibits an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 in order (indicated by solid arrows in FIG. 6).
  • the heat medium discharged from the first circulation pump 62 is a heat medium pipe 64A, a first three-way valve 81, a heat medium pipe 68D, a heat medium pipe 68C, a second three-way valve 82, a heat medium pipe 68H, and a heat medium pipe 68G.
  • the heat medium absorbed and cooled by the refrigerant in the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is circulated to the traveling motor 65, and exchanges heat with the traveling motor 65 to perform the traveling motor.
  • the waste heat is recovered from the motor 65 and the traveling motor 65 is cooled.
  • the battery 55 is not cooled by the heat medium (refrigerant).
  • the waste heat recovered from the traveling motor 65 is pumped up by the refrigerant in the refrigerant-heat medium heat exchanger 64 and contributes to the heating of the vehicle interior in the radiator 4.
  • the air-conditioning controller 32 ends the heating / waste heat recovery mode when, for example, the traveling motor temperature Tm detected by the traveling motor temperature sensor 78 falls below the lower limit threshold TLm. As a result, the temperature of the traveling motor 65 is maintained in the appropriate temperature range described above.
  • the air-conditioning controller 32 executes the same heating / waste heat recovery mode in the dehumidifying heating operation as in the above-described heating operation.
  • the auxiliary expansion valve 73 is opened in the state of FIG. A part of the refrigerant that has flowed into the refrigerant pipe 13B is diverted to the branch pipe 72, and thereafter, the heat is absorbed from the heat medium by the refrigerant-heat medium heat exchanger 64 as in the case of FIG. Will be done.
  • Cooling / Battery Cooling / Temperature Control Target Cooling Mode executed by the air conditioning controller 32 in the cooling operation or the dehumidifying cooling operation described above with reference to FIG. 7. explain. That is, the air-conditioning controller 32 has a cooling / battery cooling / temperature-controlled cooling mode described below.
  • the temperature of the battery 55 rises in summer or the like when the outside air temperature is high, and also rises due to self-heating.
  • the traveling motor 65 also generates heat when driven by traveling to increase the temperature, and in any case, the performance deteriorates. In the worst case, there is a risk of failure. Cooling is required.
  • the traveling motor 65 can be driven at a higher temperature than the battery 55 (the suitable temperature range is high). Therefore, when the battery temperature Tb detected by the battery temperature sensor 76 rises to the above-described upper threshold THb or more in the cooling operation or the dehumidifying cooling operation, the air-conditioning controller 32 performs the cooling / battery cooling / temperature-controlled cooling described below. Execute mode.
  • FIG. 7 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium in the equipment temperature adjusting device 61 (dashed arrow) in the cooling / battery cooling / temperature control target cooling mode.
  • the air conditioning controller 32 opens the auxiliary expansion valve 73 and controls the opening degree of the refrigerant circuit R in the cooling operation or the dehumidifying cooling operation shown in FIG. State. Then, the controller controls the first to third three-way valves 81 to 83 of the device temperature adjusting device 61 to set the flow of the heat medium in the heat medium pipe 68 to the above-described second flow path control state, and to perform the first and the third flow control.
  • the two circulation pumps 62 and 63 are operated.
  • the high-temperature refrigerant discharged from the compressor 2 flows into the outdoor heat exchanger 7 via the radiator 4, where it exchanges heat with the outside air and traveling wind blown by the outdoor blower 15 to radiate heat and condense. I do.
  • Part of the refrigerant condensed in the outdoor heat exchanger 7 reaches the indoor expansion valve 8, where the pressure is reduced, and then flows into the heat absorber 9 to evaporate. Since the air in the air flow passage 3 is cooled by the heat absorbing action at this time, the vehicle interior is cooled.
  • the heat medium discharged from the first circulation pump 62 is a heat medium pipe 64A, a first three-way valve 81, a heat medium pipe 68B, a battery 55, a heat medium pipe 68C, a second three-way valve 82, a heat medium pipe 68E, a refrigerant.
  • the heat medium heat exchanger 64 flows into the heat medium flow path 64A and the heat medium pipe 68F in this order, and is sucked into the first circulation pump 62.
  • the heat medium discharged from the second circulation pump 63 is a heat medium pipe 68G, a traveling motor 65, a heat medium pipe 68J, a third three-way valve 83, a heat medium pipe 68L, an air-heat medium heat exchanger 67, and a heat medium. Circulation that flows in the order of the medium pipe 68M and is sucked into the second circulation pump 63 is performed (indicated by a broken arrow in FIG. 7: a second flow path control state).
  • the heat medium absorbed and cooled by the refrigerant in the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is circulated to the battery 55, and exchanges heat with the battery 55 to cool the battery 55 strongly.
  • the heat medium cooled (air-cooled) by the outside air in the air-heat medium heat exchanger 67 is circulated to the traveling motor 65 and exchanges heat with the traveling motor 65 to cool the traveling motor 65.
  • the air-conditioning controller 32 ends the cooling / battery cooling / temperature control target cooling mode.
  • the temperature of the battery 55 is maintained in the appropriate temperature range described above, and the temperature of the traveling motor 65 is also maintained in the appropriate temperature range, though dependent.
  • the air-conditioning controller 32 controls the device temperature adjusting device 61 in the air-conditioning operation for heating the vehicle interior, and sets the heating / waste heat recovery mode for cooling the traveling motor 65 without cooling the battery 55 with the refrigerant. Therefore, the heat of the running motor 65 mounted on the vehicle other than the battery 55 is recovered to the refrigerant without cooling the battery 55 in the heating operation or the dehumidifying heating operation, and the vehicle is cooled while cooling the running motor 65. The room can be heated.
  • the vehicle interior when heating the vehicle interior, the vehicle interior is efficiently heated by effectively utilizing the heat of the traveling motor 65 other than the battery 55, and the frost on the outdoor heat exchanger 7 is suppressed.
  • the cooling of the traveling motor 65 can be performed. At this time, since the battery 55 is not cooled, it is possible to avoid adverse effects on the battery 55 in an environment that does not require cooling of the battery 55, particularly in winter when the outside air temperature is low.
  • the air conditioning controller 32 executes the heating / waste heat recovery mode.
  • the heating / waste heat recovery mode for cooling only the traveling motor 65 can be started appropriately.
  • the first and second circulating pumps 62 and 63 for circulating the heat medium through the battery 55 and the traveling motor 65, and the heat exchange between the refrigerant and the heat medium are performed by the device temperature adjusting device 61.
  • a refrigerant-heat medium heat exchanger 64 and first to third three-way valves 81 to 83 for controlling circulation of the heat medium to the battery 55 and the traveling motor 65 are provided.
  • the controller 32 After the controller 32 depressurizes the refrigerant, it flows into the refrigerant-heat medium heat exchanger 64 to absorb heat from the heat medium, and without circulating the heat medium exiting the refrigerant-heat medium heat exchanger 64 to the battery 55, Since the motor is circulated to the traveling motor 65, the operation of cooling the traveling motor 65 without cooling the battery 55 and recovering the waste heat to the refrigerant can be smoothly realized. To become.
  • the air conditioning controller 32 controls the device temperature adjusting device 61 to provide a cooling / battery cooling / temperature control target cooling mode in which the battery 55 and the traveling motor 65 are cooled. Therefore, in an environment where the outside air temperature is high, such as in summer, both the battery 55 and the traveling motor 65 are cooled, so that a decrease in performance can be avoided.
  • the air-conditioning controller 32 executes the cooling / battery cooling / temperature control target cooling mode. Therefore, it is possible to appropriately avoid the disadvantage that the temperature of the battery 55 increases and the performance decreases.
  • the equipment temperature adjusting device 61 is provided with an air-heat medium heat exchanger 67 for exchanging heat between the outside air and the heat medium, and in the cooling / battery cooling / temperature control target cooling mode, the air-conditioning controller 32.
  • the refrigerant flowed into the refrigerant-heat medium heat exchanger 64 to absorb heat from the heat medium, and operated the first and second circulation pumps 62 and 63 to exit the refrigerant-heat medium heat exchanger.
  • the heat medium is circulated through the battery 55 to cool the battery 55, and the heat medium is circulated between the traveling motor 65 and the air-heat medium heat exchanger 67 to cool the traveling motor 65.
  • the traveling motor 65 other than the battery can be cooled smoothly by the outside air.
  • the air-heat medium heat exchanger 67 is arranged on the leeward side of the outdoor heat exchanger 7, so that the heat radiation of the outdoor heat exchanger 7 in the cooling / battery cooling / temperature control target cooling mode.
  • the disadvantage that the air-heat medium heat exchanger 67 hinders the operation can also be avoided.
  • the configuration of this embodiment is different from that of the first embodiment (FIG. 1) only in the device temperature adjusting device 61, and the other configurations are the same.
  • a heating medium pipe 68N is connected to the outlet of the battery 55, and this heating medium pipe 68N is connected to the inlet of the fourth three-way valve 84, which is also a flow path switching device.
  • the heat medium piping 68 ⁇ / b> C described above is connected to one outlet of the fourth three-way valve 84.
  • the other outlet of the fourth three-way valve 84 is connected to a heat medium pipe 68R, which is connected to the suction side of a third circulation pump 87 which is also a circulation device.
  • a heat medium pipe 68S is connected to the discharge side of the third circulation pump 87, and the heat medium pipe 68S is connected to an inlet of a heat medium heater 66 as a heating device.
  • the outlet of the heat medium heater 66 is connected to a heat medium pipe 68T, and the heat medium pipe 68T is configured to be connected to a heat medium pipe 68B between the first three-way valve 81 and the battery 55. .
  • the heat medium heater 66 is formed of an electric heater such as a PTC heater, and the heat medium heater 66 and the fourth three-way valve 84 are also controlled by the air conditioning controller 32 (shown by broken lines in FIG. 2). .
  • the first three-way valve 81 communicates the inlet with the other outlet
  • the second three-way valve 82 communicates the inlet with the other outlet
  • the third three-way valve 83 Is switched to a state in which the inlet communicates with one of the outlets, and the first circulation pump 62 is operated, the heat medium discharged from the first circulation pump 62 becomes the heat medium pipe 64A, the first three-way valve 81, and the heat medium pipe 68D.
  • Heat medium pipe 68C Heat medium pipe 68C, second three-way valve 82, heat medium pipe 68H, heat medium pipe 68G, traveling motor 65, heat medium pipe 68J, third three-way valve 83, heat medium pipe 68K, heat medium pipe 68E, refrigerant
  • the heat medium heat exchanger 64 flows through the heat medium flow path 64A and the heat medium pipe 68F in this order, and is sucked into the first circulation pump 62.
  • the air-conditioning controller 32 performs the heating operation or the dehumidifying heating operation. If the traveling motor temperature Tm has risen to the upper threshold value THm or more, the same heating / waste heat recovery mode as described above is executed.
  • a first three-way valve 81 communicates the inlet with one outlet
  • a second three-way valve 82 communicates the inlet with one outlet
  • a third three-way valve 83 communicates the inlet with the other outlet
  • a fourth If the three-way valve 84 is switched to a state in which the inlet communicates with one of the outlets and the first circulation pump 62 and the second circulation pump 63 are operated, the heat medium discharged from the first circulation pump 62 is heated by the heat medium pipe 64A, 1 Three-way valve 81, heat medium pipe 68B, battery 55, heat medium pipe 68N, fourth three-way valve 84, heat medium pipe 68C, second three-way valve 82, heat medium pipe 68E, heat of refrigerant-heat medium heat exchanger 64 The medium flows in the order of the medium flow path 64A and the heat medium pipe 68F, and is sucked into the first circulation pump 62.
  • the heat medium discharged from the second circulation pump 63 is a heat medium pipe 68G, a traveling motor 65, a heat medium pipe 68J, a third three-way valve 83, a heat medium pipe 68L, an air-heat medium heat exchanger 67, a heat medium
  • the circulation which flows in the order of the medium pipe 68M and is sucked into the second circulation pump 63 is performed.
  • the heat medium absorbed and cooled by the refrigerant in the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is circulated to the battery 55,
  • the battery 55 is cooled by exchanging heat with the battery 55, and the heat medium cooled (air-cooled) by the outside air in the air-heat medium heat exchanger 67 is circulated to the traveling motor 65. It will be exchanged and the driving motor 65 will be cooled.
  • this state is also referred to as a second flow path control state in this embodiment.
  • the air conditioning controller 32 performs the same cooling / heating as described above. It is assumed that the battery cooling / temperature control target cooling mode is executed.
  • the first three-way valve 81 communicates the inlet with the other outlet
  • the second three-way valve 82 communicates the inlet with the other outlet
  • the third three-way valve 83 communicates the inlet with the one outlet.
  • the fourth three-way valve 84 is switched to a state in which the inlet and the other outlet communicate, and when the first circulation pump 62 and the third circulation pump 87 are operated, the first circulation pump 62
  • the discharged heat medium is heat medium pipe 64A, first three-way valve 81, heat medium pipe 68D, heat medium pipe 68C, second three-way valve 82, heat medium pipe 68H, heat medium pipe 68G, traveling motor 65, heat medium
  • the pipe 68J, the third three-way valve 83, the heat medium pipe 68K, the heat medium pipe 68E, the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, and the heat medium pipe 68F flow in this order and are sucked into the first circulation
  • the heat medium discharged from the pump 87 is a heat medium pipe 68S, a heat medium heater 66, a heat medium pipe 68T, a heat medium pipe 68B, a battery 55, a heat medium pipe 68N, a fourth three-way valve 84, and a heat medium pipe 68R.
  • the circulation that flows and is sucked into the third circulation pump 87 is performed. This is referred to as a third flow path control state.
  • the heat medium flows through the heat medium flow path 64 A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium absorbed and cooled by the refrigerant is circulated to the traveling motor 65, exchanges heat with the traveling motor 65 to recover waste heat from the traveling motor 65, and cools the traveling motor 65 itself.
  • the heat medium is circulated between the battery 55 and the heat medium heater 66, when the heat medium heater 66 is generating heat, the heat medium heated by the heat medium heater 66 is supplied to the battery 55.
  • the battery 55 is circulated, and the battery 55 is heated by the heat medium heater 66 via the heat medium.
  • Heating / Battery Heating / Waste Heat Recovery Mode In this embodiment, in the heating operation or the dehumidifying heating operation described above, the air conditioning controller 32 executes a heating / battery heating / waste heat recovery mode described below. Next, the heating / battery heating / waste heat recovery mode will be described with reference to FIG. As described above, when the temperature of the battery 55 is extremely low, for example, in an extremely low temperature environment, it becomes difficult to charge and discharge the battery 55.
  • FIG. 9 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium of the device temperature controller 61 (dashed arrow) in the heating / battery heating / waste heat recovery mode.
  • the air-conditioning controller 32 further opens the solenoid valve 22 and opens the auxiliary expansion valve 73 in the same heating operation state of the refrigerant circuit R as in FIG. 3 of the first embodiment. To control the valve opening. Then, the controller controls the first to fourth three-way valves 81 to 84 of the device temperature adjusting device 61 to set the flow of the heat medium in the heat medium pipe 68 to the above-described third flow path control state, and to control the first circulation pump. By operating the 62 and the third circulation pump 87, the heat medium heater 66 is also energized to generate heat.
  • the refrigerant flowing out of the radiator 4 is diverted at the upstream side of the outdoor expansion valve 6 as described above, and reaches the upstream side of the indoor expansion valve 8 via the refrigerant pipe 13F.
  • the refrigerant enters the branch pipe 72, is decompressed by the auxiliary expansion valve 73, flows into the refrigerant passage 64 B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72, and evaporates. At this time, it exhibits an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 sequentially (indicated by a solid line arrow in FIG. 9).
  • the heat medium discharged from the first circulation pump 62 is a heat medium pipe 64A, a first three-way valve 81, a heat medium pipe 68D, a heat medium pipe 68C, a second three-way valve 82, a heat medium pipe 68H, and a heat medium pipe 68G.
  • the heat medium discharged from the third circulation pump 87 is a heat medium pipe 68S, a heat medium heater 66, a heat medium pipe 68T, a heat medium pipe 68B, a battery 55, a heat medium pipe 68N, a fourth three-way valve 84,
  • the circulation which flows in the order of the medium pipe 68R and is sucked into the third circulation pump 87 is performed (indicated by a broken arrow in FIG. 9: a third flow path control state).
  • the heat medium absorbed and cooled by the refrigerant in the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is circulated to the traveling motor 65, and exchanges heat with the traveling motor 65 to perform the traveling motor.
  • the waste heat is recovered from the motor 65 and the traveling motor 65 is cooled.
  • the waste heat recovered from the traveling motor 65 is pumped up by the refrigerant in the refrigerant-heat medium heat exchanger 64 and contributes to the heating of the vehicle interior in the radiator 4.
  • the heat medium flowing out of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is not circulated to the battery 55. Instead, the heat medium heated by the heat medium heater 66 is supplied to the battery 55.
  • the battery 55 is heated by the heat medium heater 66 via the heat medium, and the temperature rises.
  • the air-conditioning controller 32 ends the heating / battery heating / waste heat recovery mode when the battery temperature Tb detected by the battery temperature sensor 76 rises above the upper threshold THb, for example. As a result, the temperature of the battery 55 is maintained in the above-described appropriate temperature range.
  • the air-conditioning controller 32 executes the same heating / battery heating / waste heat recovery mode in the dehumidifying and heating operation as in the above-described heating operation. In this case, the auxiliary expansion valve 73 is operated in the state of FIG.
  • the refrigerant is released, a part of the refrigerant flowing into the refrigerant pipe 13B is diverted to the branch pipe 72, and thereafter, the heat is absorbed from the heat medium by the refrigerant-heat medium heat exchanger 64 as in the case of FIG. 2 will be sucked.
  • the device temperature adjusting device 61 is provided with the heating medium heater 66 for heating the battery 55, and the air conditioning controller 32 cools the traveling motor 65 with the refrigerant in the heating operation or the dehumidifying heating operation, and the heating medium heating device
  • the air-conditioning controller 32 executes the heating / battery heating / waste heat recovery mode.
  • the heating / waste heat recovery mode in which the battery 55 is heated while recovering waste heat from the motor 65 can be started appropriately.
  • the device temperature adjusting device 61 includes a first circulating pump 62, a second circulating pump 63, and a third circulating pump 87 for circulating the heat medium through the battery 55, the traveling motor 65, and the heat medium heater 66. And a refrigerant-heat medium heat exchanger 64 for exchanging heat between the refrigerant and the heat medium, and first to fourth heat control elements for controlling circulation of the heat medium to the battery 55, the traveling motor 65 and the heat medium heater 66.
  • Fourth three-way valves 81 to 84 are provided, and in the heating / battery heating / waste heat recovery mode, the air-conditioning controller 32 depressurizes the refrigerant, and then flows to the refrigerant-heat medium heat exchanger 64 to absorb heat from the heat medium, and -The heat medium exiting the heat medium heat exchanger 64 is circulated to the traveling motor 65 without being circulated to the battery 55, and the heat medium is circulated between the heat medium heater 66 and the battery 55. Since so as to heat the battery 55 by, it is possible to smoothly realize the operation of the traction motor 65 to cool heat the battery 55 while recovering the waste heat.
  • the device temperature adjusting device 61 is switched to the first to third flow path control states to change the heating / waste heat recovery mode, the cooling / battery cooling / temperature control target cooling mode, and the heating / battery heating / cooling mode.
  • Each operation mode of the waste heat recovery mode can be executed.
  • the present invention is not limited thereto.
  • the first three-way valve 81 communicates the inlet with one of the outlets, and the second three-way valve 82 communicates with the inlet.
  • the heat medium discharged from the first circulation pump 62 is supplied with the heat medium pipe 64A, the first three-way valve 81, the heat medium pipe 68B, the battery 55 , Heat medium pipe 68C, second three-way valve 82, heat medium pipe 68H, heat medium pipe 68G, traveling motor 65, heat medium pipe 68J, third three-way valve 83, heat medium pipe 68K, heat medium pipe 68E, refrigerant Heat medium Heat medium channel 64A of exchanger 64, so performing the circulation is sucked into the first circulating pump 62 flows in the order of the heat medium pipe 68F.
  • the heat medium is circulated between the battery 55 and the traveling motor 65 and the refrigerant-heat medium heat exchanger 64.
  • the heat medium absorbed and cooled by the refrigerant in the heat medium flow path 64A of the heat medium heat exchanger 64 is circulated to the battery 55 and the traveling motor 65, and exchanges heat with the battery 55 and the traveling motor 65 to exchange the battery.
  • the waste heat is recovered from the motor 55 and the traveling motor 65, and the battery 55 and the traveling motor 65 themselves are cooled.
  • the heat medium cooled by the refrigerant-heat medium heat exchanger 64 can be circulated simultaneously to the battery 55 and the traveling motor 65 to cool them.
  • the battery 55 and the traveling motor 65 can be simultaneously cooled to recover waste heat.
  • the equipment temperature adjusting device 61 for adjusting the temperature of the battery 55 and the traveling motor 65 (the temperature adjustment target other than the battery) is provided.
  • a first-third circulation pump 62, 63, 87 for circulating through the traveling motor 65 and a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium and absorbing heat from the heat medium.
  • the air condition controller 32 controls the first to third circulation pumps 62, 63, 87 and the first to fourth three-way valves 81 to 84, the refrigerant-heat medium heat exchanger 64 Cooled by refrigerant
  • the temperature control target other than the battery 55 such as the battery 55 mounted on the vehicle or the traveling motor 65 is formed in various forms by using the heat medium cooled by the outside air in the air-heat medium heat exchanger 67. And can be cooled, which is very convenient.
  • the configuration of the air-conditioning controller 32 and the configurations of the refrigerant circuit R and the device temperature adjustment device 61 of the vehicle air conditioner 1 described in the embodiment are not limited thereto, and may be changed without departing from the spirit of the present invention. It goes without saying that it is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】車両に搭載されたバッテリ以外の被温調対象の冷却と当該被温調対象からの廃熱回収を支障無く、円滑に行うことができるようにした車両用空気調和装置を提供する。 【解決手段】圧縮機2から吐出された冷媒を放熱器4にて放熱させ、減圧した後、室外熱交換器7にて吸熱させて車室内を暖房する空調運転を実行するものであって、冷媒を用いて車両に搭載されたバッテリ55と当該バッテリ以外の走行用モータ65の温度を調整可能とされた機器温度調整装置61を備え、空調コントローラは、車室内を暖房する空調運転において機器温度調整装置61を制御し、冷媒によりバッテリ55を冷却すること無く、走行用モータ65を冷却する暖房/廃熱回収モードを有する。

Description

車両用空気調和装置
 本発明は、ヒートポンプ式の車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、車両に搭載されたバッテリから供給される電力で走行用モータを駆動するハイブリッド自動車や電気自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで車室内を暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させることで車室内を冷房するものが開発されている(例えば、特許文献1参照)。
 一方、バッテリは低温環境下では充放電性能が低下する。また、自己発熱等で高温となった環境下で充放電を行うと、劣化が進行し、やがては作動不良を起こして破損する危険性もある。そこで、冷媒回路を循環する冷媒と熱交換する冷却水(熱媒体)をバッテリに循環させることでバッテリの温度を調整することができるようにしたものも開発されている(例えば、特許文献2参照)。
特開2014-213765号公報 特許第5440426号公報
 上記のようにバッテリを冷却することで、バッテリの異常高温に伴う劣化を防止しながら、バッテリの廃熱を、冷却水を介して冷媒に回収し、車室内の暖房に寄与することができるものであるが、車室内の暖房が必要な例えば冬場等の低外気温環境下では、バッテリの温度も上がり難くなるため、冷却の必要性は低く、却って冷却することでバッテリ温度が低下し過ぎて性能が低下する危険性もあり、廃熱回収の効果も余り期待できない。
 他方、車両にはバッテリ以外に上述した走行用モータ等(バッテリ以外の被温調対象)も搭載されており、これら走行用モータ等も駆動されて発熱するため、安定した動作を行わせるためには冷却が必要となる。また、走行用モータ等はバッテリに比してより低温でも駆動可能である。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、車両に搭載されたバッテリ以外の被温調対象の冷却と当該被温調対象からの廃熱回収を支障無く、円滑に行うことができるようにした車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する空調運転を実行するものであって、冷媒を用いて車両に搭載されたバッテリと当該バッテリ以
外の所定の被温調対象の温度を調整可能とされた機器温度調整装置を備え、制御装置は、車室内を暖房する空調運転において機器温度調整装置を制御し、冷媒によりバッテリを冷却すること無く、被温調対象を冷却する暖房/廃熱回収モードを有することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、被温調対象の温度、若しくは、当該被温調対象の温度を示す指標の値が所定の上限閾値以上に上昇した場合、暖房/廃熱回収モードを実行することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において機器温度調整装置は、熱媒体をバッテリ及び被温調対象に循環させるための循環装置と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、バッテリ及び被温調対象への熱媒体の循環を制御するための流路切換装置を有し、制御装置は、暖房/廃熱回収モードにおいて冷媒を減圧した後、冷媒-熱媒体熱交換器に流し、熱媒体から吸熱させると共に、循環装置及び流路切換装置を制御し、冷媒-熱媒体熱交換器を出た熱媒体をバッテリに循環させること無く、被温調対象に循環させることを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において機器温度調整装置は、バッテリを加熱するための加熱装置を有し、制御装置は、車室内を暖房する空調運転において冷媒により被温調対象を冷却し、加熱装置によりバッテリを加熱する暖房/バッテリ加熱・廃熱回収モードを有することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、バッテリの温度、若しくは、当該バッテリの温度を示す指標の値が所定の下限閾値以下に低下した場合、暖房/バッテリ加熱・廃熱回収モードを実行することを特徴とする。
 請求項6の発明の車両用空気調和装置は、請求項4又は請求項5の発明において機器温度調整装置は、熱媒体をバッテリ、被温調対象及び加熱装置に循環させるための循環装置と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、バッテリ、被温調対象及び加熱装置への熱媒体の循環を制御するための流路切換装置を有し、制御装置は、暖房/バッテリ加熱・廃熱回収モードにおいて冷媒を減圧した後、冷媒-熱媒体熱交換器に流して熱媒体から吸熱させ、循環装置、流路切換装置及び加熱装置を制御し、冷媒-熱媒体熱交換器を出た熱媒体をバッテリに循環させること無く、被温調対象に循環させると共に、加熱装置とバッテリの間で熱媒体を循環させて当該バッテリを加熱することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記発明において冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器を備え、制御装置は、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させて車室内を冷房する空調運転を実行すると共に、この車室内を冷房する空調運転において機器温度調整装置を制御し、バッテリと被温調対象を冷却する冷房/バッテリ冷却・被温調対象冷却モードを有することを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、バッテリの温度、若しくは、当該バッテリの温度を示す指標の値が所定の上限閾値以上に上昇した場合、冷房/バッテリ冷却・被温調対象冷却モードを実行することを特徴とする。
 請求項9の発明の車両用空気調和装置は、請求項7又は請求項8の発明において機器温度調整装置は、熱媒体をバッテリ及び被温調対象に循環させるための循環装置と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、外気と熱媒体とを熱交換させる
ための空気-熱媒体熱交換器と、バッテリ及び被温調対象への熱媒体の循環を制御するための流路切換装置を有し、制御装置は、冷房/バッテリ冷却・被温調対象冷却モードにおいて冷媒を減圧した後、冷媒-熱媒体熱交換器に流し、熱媒体から吸熱させると共に、循環装置及び流路切換装置を制御し、冷媒-熱媒体熱交換器を出た熱媒体をバッテリに循環させて当該バッテリを冷却し、被温調対象と空気-熱媒体熱交換器の間で熱媒体を循環させて被温調対象を冷却することを特徴とする。
 請求項10の発明の車両用空気調和装置は、上記発明において空気-熱媒体熱交換器は、室外熱交換器の風下側に配置されていることを特徴とする。
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する空調運転を実行する車両用空気調和装置において、冷媒を用いて車両に搭載されたバッテリと当該バッテリ以外の所定の被温調対象の温度を調整可能とされた機器温度調整装置を備え、制御装置が、車室内を暖房する空調運転において機器温度調整装置を制御し、冷媒によりバッテリを冷却すること無く、被温調対象を冷却する暖房/廃熱回収モードを設けたので、車室内を暖房する空調運転において制御装置がこの暖房/廃熱回収モードを実行することで、バッテリを冷却すること無く、バッテリ以外の車両に搭載された被温調対象の熱を冷媒に回収し、当該被温調対象を冷却しながら車室内を暖房することができるようになる。
 これにより、車室内の暖房を行うときに、バッテリ以外の被温調対象の熱を有効に利用して効率良く車室内の暖房を行い、室外熱交換器への着霜を抑制しながら被温調対象の冷却を行うことができるようになる。このときバッテリは冷却しないので、特に外気温が低い等のバッテリの冷却を必要としない環境下でバッテリに与える悪影響も未然に回避することが可能となるものである。
 この場合、請求項2の発明の如く制御装置が、被温調対象の温度、若しくは、当該被温調対象の温度を示す指標の値が所定の上限閾値以上に上昇した場合に暖房/廃熱回収モードを実行するようにすれば、被温調対象のみを冷却する暖房/廃熱回収モードを適切に開始することができるようになる。
 また、請求項3の発明の如く機器温度調整装置に、熱媒体をバッテリ及び被温調対象に循環させるための循環装置と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、バッテリ及び被温調対象への熱媒体の循環を制御するための流路切換装置を設け、暖房/廃熱回収モードにおいては制御装置が、冷媒を減圧した後、冷媒-熱媒体熱交換器に流して熱媒体から吸熱させると共に、循環装置及び流路切換装置を制御して、冷媒-熱媒体熱交換器を出た熱媒体をバッテリに循環させること無く、被温調対象に循環させることで、バッテリを冷却すること無く被温調対象を冷却して、その廃熱を冷媒に回収させる動作を円滑に実現することができるようになる。
 更に、請求項4の発明の如く機器温度調整装置に、バッテリを加熱するための加熱装置を設け、制御装置が、車室内を暖房する空調運転において冷媒により被温調対象を冷却し、加熱装置によりバッテリを加熱する暖房/バッテリ加熱・廃熱回収モードを設けることで、特に低外気温の環境下において、被温調対象を冷却してその廃熱を回収しながら、バッテリの温度が下がり過ぎて性能が低下してしまう不都合も解消することができるようになる。
 この場合、請求項5の発明の如く制御装置が、バッテリの温度、若しくは、当該バッテリの温度を示す指標の値が所定の下限閾値以下に低下した場合、暖房/バッテリ加熱・廃熱回収モードを実行するようにすれば、被温調対象から廃熱を回収しながらバッテリは加熱する暖房/廃熱回収モードを適切に開始することができるようになる。
 また、請求項6の発明の如く機器温度調整装置に、熱媒体をバッテリ、被温調対象及び加熱装置に循環させるための循環装置と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、バッテリ、被温調対象及び加熱装置への熱媒体の循環を制御するための流路切換装置を設け、暖房/バッテリ加熱・廃熱回収モードにおいては制御装置が、冷媒を減圧した後、冷媒-熱媒体熱交換器に流して熱媒体から吸熱させ、循環装置、流路切換装置及び加熱装置を制御し、冷媒-熱媒体熱交換器を出た熱媒体をバッテリに循環させること無く、被温調対象に循環させると共に、加熱装置とバッテリの間で熱媒体を循環させて当該バッテリを加熱することで、被温調対象を冷却してその廃熱を回収しながらバッテリを加熱する動作を円滑に実現することができるようになる。
 更に、請求項7の発明の如く冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器を設け、制御装置が、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させて車室内を冷房する空調運転を実行すると共に、この車室内を冷房する空調運転において機器温度調整装置を制御し、バッテリと被温調対象を冷却する冷房/バッテリ冷却・被温調対象冷却モードを設ければ、車室内を冷房する空調運転において制御装置が冷房/バッテリ冷却・被温調対象冷却モード実行することで、外気温が高い環境下において、バッテリと被温調対象の双方を冷却し、性能の低下を回避することができるようになる。
 この場合、請求項8の発明の如く制御装置が、バッテリの温度、若しくは、当該バッテリの温度を示す指標の値が所定の上限閾値以上に上昇した場合、冷房/バッテリ冷却・被温調対象冷却モードを実行するようにすれば、バッテリの温度が高くなって性能が低下する不都合を的確に回避することができるようになる。
 また、請求項9の発明の如く機器温度調整装置に、熱媒体をバッテリ及び被温調対象に循環させるための循環装置と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、外気と熱媒体とを熱交換させるための空気-熱媒体熱交換器と、バッテリ及び被温調対象への熱媒体の循環を制御するための流路切換装置を設け、冷房/バッテリ冷却・被温調対象冷却モードにおいては制御装置が、冷媒を減圧した後、冷媒-熱媒体熱交換器に流し、熱媒体から吸熱させると共に、循環装置及び流路切換装置を制御し、冷媒-熱媒体熱交換器を出た熱媒体をバッテリに循環させて当該バッテリを冷却し、被温調対象と空気-熱媒体熱交換器の間で熱媒体を循環させて被温調対象を冷却することで、バッテリは冷媒を用いて冷却しながら、バッテリ以外の被温調対象は外気により円滑に冷却することができるようになる。
 この場合、請求項10の発明の如く空気-熱媒体熱交換器を、室外熱交換器の風下側に配置すれば、冷房/バッテリ冷却・被温調対象冷却モードにおける室外熱交換器の放熱作用を空気-熱媒体熱交換器が阻害する不都合も回避することができるようになる。
本発明を適用した車両用空気調和装置の一実施例の構成図である(実施例1)。 図1の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。 図2の空調コントローラによる暖房運転を説明する図である。 図2の空調コントローラによる除湿暖房運転を説明する図である。 図2の空調コントローラによる除湿冷房運転/冷房運転を説明する図である。 図2の空調コントローラによる暖房/廃熱回収モードを説明する図である。 図2の空調コントローラによる冷房/バッテリ冷却・被温調対象冷却モードを説明する図である。 本発明を適用した他の実施例の車両用空気調和装置の構成図である(実施例2)。 図8の車両用空気調和装置において空調コントローラが実行する暖房/バッテリ加熱・廃熱回収モードを説明する図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明を適用した一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55(例えば、リチウム電池)が搭載され、外部電源からバッテリ55に充電された電力を走行用モータ(電動モータ)65に供給することで駆動し、走行するものである。そして、車両用空気調和装置1も、バッテリ55から給電されて駆動されるものである。
 即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転を行い、更に、除湿暖房運転や、除湿冷房運転、冷房運転の各空調運転を選択的に実行することで、車室内の空調を行うものである。
 尚、上記暖房運転と除湿暖房運転が本発明における車室内を暖房する空調運転であり、上記冷房運転と除湿冷房運転が本発明における車室内を冷房する空調運転である。また、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器(凝縮器)として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時(除湿時)に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。室外膨張弁6や室内膨張弁8は、冷媒を減圧膨張させると共に、全開や全閉も可能とされている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされ、この冷媒配管13Bは室内膨張弁8に接続されている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Dの接続点より下流側の冷媒配管13Cに逆止弁20が接続され、この逆止弁20より下流側の冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。
 更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁22を介して逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は補助加熱装置としての補助ヒータである。この補助ヒータ23は実施例ではPTCヒータ(電気ヒータ)から構成されており、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられている。そして、補助ヒータ23が通電されて発熱すると、これが所謂ヒータコアとなり、車室内の暖房を補完する。
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 
 更に、車両用空気調和装置1は、バッテリ55や走行用モータ65に熱媒体を循環させてこれらバッテリ55や走行用モータ65の温度を調整するための機器温度調整装置61を備えている。即ち、実施例においては走行用モータ65が車両に搭載されたバッテリ55以外の所定の被温調対象となる。尚、本発明における被温調対象としての走行用モータ65は電動モータそのものに限らず、これを駆動するためのインバータ回路等の電気機器も含む概念とする。また、被温調対象としては走行用モータ65以外の車両に搭載されて発熱する機器が適用可能であることは云うまでもない。
 この実施例の機器温度調整装置61は、バッテリ55や走行用モータ65に熱媒体を循環させるための循環装置としての第1循環ポンプ62及び第2循環ポンプ63と、冷媒-熱媒体熱交換器64と、空気-熱媒体熱交換器67と、流路切換装置としての第1三方弁81、第2三方弁82及び第3三方弁83を備え、それらとバッテリ55及び走行用モータ65が熱媒体配管68にて接続されている。
 この実施例の場合、第1循環ポンプ62の吐出側に熱媒体配管68Aが接続され、この熱媒体配管68Aは第1三方弁81の入口に接続されている。この第1三方弁81の一方の出口は熱媒体配管68Bに接続され、この熱媒体配管68Bはバッテリ55の入口に接続されている。そして、バッテリ55の出口は熱媒体配管68Cに接続され、この熱媒体配管68Cは第2三方弁82の入口に接続されている。第1三方弁81の他方の出口は熱媒体配管68Dに接続され、この熱媒体配管68Dはバッテリ55と第2三方弁82の間の熱媒体配管68Cに連通接続されている。これにより、熱媒体配管68Dはバッテリ55をバイパスするかたちとなる。
 また、第2三方弁82の一方の出口は熱媒体配管68Eに接続され、この熱媒体配管68Eは冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口に接続されている。そして、この熱媒体流路64Aの出口に熱媒体配管68Fが接続され、この熱媒体配管68Fが第1循環ポンプ62の吸込側に接続されている。
 一方、第2循環ポンプ63の吐出側に熱媒体配管68Gが接続され、この熱媒体配管68Gは走行用モータ65の入口に接続されている。尚、第2三方弁82の他方の出口は熱媒体配管68Hに接続され、この熱媒体配管68Hは第2循環ポンプ63と走行用モータ65の間の熱媒体配管68Gに連通接続されている。そして、走行用モータ65の出口は熱媒体配管68Jに接続され、この熱媒体配管68Jは第3三方弁83の入口に接続されている。
 この第3三方弁83の一方の出口は熱媒体配管68Kに接続され、この熱媒体配管68Kは第2三方弁82と冷媒-熱媒体熱交換器64の間の熱媒体配管68Eに連通接続されている。また、第3三方弁83の他方の出口は熱媒体配管68Lに接続され、この熱媒体配管68Lは空気-熱媒体熱交換器67の入口に接続されている。そして、この空気-熱媒体熱交換器67の出口に熱媒体配管68Mが接続され、この熱媒体配管68Mが第2循環ポンプ63の吸込側に接続されている。
 この機器温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、バッテリ55や走行用モータ65の周囲には例えば熱媒体が当該バッテリ55や走行用モータ65と熱交換関係で流通可能なジャケット構造が施されているものとする。また、空気-熱媒体熱交換器67は、室外送風機15で通風される外気(空気)の流れ(風路)に対して、室外熱交換器7の風下側に配置されている。
 そして、第1三方弁81が入口と他方の出口を連通し、第2三方弁82が入口と他方の出口を連通し、第3三方弁83が入口と一方の出口を連通する状態に切り換えられているときに、第1循環ポンプ62が運転されると、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68D、熱媒体配管68C、第2三方弁82、熱媒体配管68H、熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68K、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる循環を行う。これを第1の流路制御状態とする。
 この第1の流路制御状態では、後述する如く冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体は走行用モータ65に循環され、この走行用モータ65と熱交換して当該走行用モータ65から廃熱を回収すると共に、走行用モータ65自体は冷却されることになる。一方、バッテリ55には熱媒体は循環されないので、バッテリ55が熱媒体により冷却されることは無い。
 次に、第1三方弁81が入口と一方の出口を連通し、第2三方弁82が入口と一方の出口を連通し、第3三方弁83が入口と他方の出口を連通する状態に切り換えられ、第1循環ポンプ62及び第2循環ポンプ63が運転されると、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68B、バッテリ55、熱媒体配管68C、第2三方弁82、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる。他方、第2循環ポンプ63から吐出された熱媒体は熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68L、空気-熱媒体熱交換器67、熱媒体配管68Mの順に流れて第2循環ポンプ63に吸い込まれる循環を行う。これを第2の流路制御状態とする。
 この第2の流路制御状態では、バッテリ55と冷媒-熱媒体熱交換器64の間で熱媒体が循環される。従って、後述する如く冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体はバッテリ55に循環され、このバッテリ55と熱交換して当該バッテリ55を冷却する。また、走行用モータ65と空気-熱媒体熱交換器67の間で熱媒体が循環される。従って、空気-熱媒体熱交換器67で外気により冷却(空冷)された熱媒体は走行用モータ65に循環され、この走行用モータ65と熱交換して当該走行用モータ65を冷却することになる。
 一方、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには分岐回路としての分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。
 そして、分岐配管72の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端は逆止弁20の冷媒下流側であって、アキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、機器温度調整装置61の一部をも構成することになる。
 補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管27に流入し、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。
 次に、図2において32は車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32である。この空調コントローラ32は、走行用モータ65の駆動制御やバッテリ55の充放電制御を含む車両全般の制御を司る車両コントローラ35(ECU)に車両通信バス45を介して接続され、情報の送受信を行う構成とされている。これら空調コントローラ32や車両コントローラ35(ECU)は何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。
 空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、
吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、空調コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体の温度を検出する熱媒体出口温度センサ77と、走行用モータ65の温度(走行用モータ65自体の温度、又は、走行用モータ65を出た熱媒体の温度、或いは、走行用モータ65に入る熱媒体の温度:走行用モータ温度Tm)を検出する走行用モータ温度センサ78の各出力も接続されている。
 尚、上記バッテリ55を出た熱媒体の温度やバッテリ55に入る熱媒体の温度が、当該バッテリ55の温度を示す指標の値となり、走行用モータ65を出た熱媒体の温度や走行用モータ65に入る熱媒体の温度が、当該走行用モータ65の温度を示す指標の値となる。
 一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁21(暖房)の各電磁弁と、補助ヒータ23、第1及び第2循環ポンプ62、63、補助膨張弁73、第1~第3三方弁81~83が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35からの情報に基づいてこれらを制御するものである。
 以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は、この実施例では暖房運転と、除湿暖房運転と、除湿冷房運転と、冷房運転の各空調運転を切り換えて実行すると共に、バッテリ55や走行用モータ65(被温調対象)の温度を調整する。先ず、車両用空気調和装置1の冷媒回路Rの各空
調運転について説明する。
 (1)暖房運転(車室内を暖房する空調運転)
 最初に、図3を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。冬場等に空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、空調コントローラ32は電磁弁21(暖房用)を開放し、室内膨張弁8を全閉とする。また、電磁弁22(除湿用)を閉じる。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、当該冷媒配管13Cの逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補完する。
 (2)除湿暖房運転(車室内を暖房する空調運転)
 次に、図4を参照しながら除湿暖房運転について説明する。図4は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房運転では、空調コントローラ32は上記暖房運転の状態において電磁弁22を開放し、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
 空調コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。
 (3)除湿冷房運転(車室内を冷房する空調運転)
 次に、図5を参照しながら除湿冷房運転について説明する。図5は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房運転では、空調コントローラ32は室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、電磁弁21と電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。
 (4)冷房運転(車室内を冷房する空調運転)
 次に、冷房運転について説明する。冷媒回路Rの流れは図5の除湿冷房運転と同様である。夏場等に実行されるこの冷房運転では、空調コントローラ32は上記除湿冷房運転の状態において室外膨張弁6の弁開度を全開とする。尚、エアミックスダンパ28は放熱器4及び補助ヒータ23に空気が通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。
 室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (5)空調運転の切り換え
 空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。
 (6)暖房/廃熱回収モード
 次に、図6を参照しながら上述した暖房運転や除湿暖房運転において空調コントローラ32が実行する暖房/廃熱回収モードについて説明する。即ち、空調コントローラ32は以下に説明する暖房/廃熱回収モードを有している。尚、以下の説明では暖房運転中に行う場合について説明する。
 ここで、前述した如く走行用モータ65は走行により駆動されると発熱する。そして、その温度が異常に高くなると機能不全に陥って性能が低下すると共に、最悪の場合には故障する危険性もある。この走行用モータ65の適温範囲(使用温度範囲)は一般的に知られているものであるが、この出願では-15℃以上、+60℃以下の範囲とする。そして、この出願では走行用モータ65の適温範囲の例えば最も低い値である-15℃を走行用モータ65の温度(走行用モータ温度Tm)の下限閾値TLmとし、最も高い値である+60℃を上限閾値THmとする。
 また、バッテリ55は外気温度により温度が変化すると共に、自己発熱によっても温度が変化する。そして、外気温度が高温環境であるときや極低温環境であるときには、バッテリ55の温度が極めて高くなり、或いは、極めて低くなって、充放電が困難となる。このバッテリ55の適温範囲(使用温度範囲)も一般的に知られているものであるが、走行用モータ65の適温範囲よりも狭く、この出願では0℃以上、+40℃以下の範囲とする。そして、この出願ではバッテリ55の適温範囲の例えば最も低い値である0℃をバッテリ55の温度(バッテリ温度Tb)の下限閾値TLbとし、最も高い値である+40℃を上限閾値THbとする。
 そして、これら走行用モータ65やバッテリ55の温度が高くなるときに、その廃熱を回収できれば、暖房運転や除湿暖房運転ではそれらを冷却しながら廃熱を車室内の暖房に寄与させることが可能となるが、特に暖房運転は冬場等の低外気温環境下で行われるものであるから、バッテリ55は温度が上がり難くなるため、冷却の必要性は低く、却って冷却することでバッテリ温度Tbが低くなり過ぎて性能が低下する危険性もあり、廃熱回収の効果も余り期待できない。
 一方で、走行用モータ65は冬場等の低外気温環境下でも駆動されて高温となるため、安定した動作を行わせるためには冷却が必要となると共に、前述した如く走行用モータ65はバッテリ55に比してより適温範囲が高温側と低温側の双方で広く、より低温でも駆動可能である。そこで、空調コントローラ32は、例えば暖房運転において走行用モータ温度センサ78が検出する走行用モータ温度Tmが前述した上限閾値THm以上に上昇した場合、以下に説明する暖房/廃熱回収モードを実行する。
 図6はこの暖房/廃熱回収モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と機器温度調整装置61の熱媒体の流れ(破線矢印)を示している。この暖房/廃熱回収モードでは、空調コントローラ32は図3に示した冷媒回路Rの暖房運転の状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、機器温度調整装置61の第1~第3三方弁81~83を制御し、熱媒体配管68内の熱媒体の流れを前述した第1の流路制御状態とすると共に、第1循環ポンプ62を運転する。
 これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て室内膨張弁8の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図6に実線矢印で示す)。
 一方、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68D、熱媒体配管68C、第2三方弁82、熱媒体配管68H、熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68K、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる循環を行う(図6に破線矢印で示す:第1の流路制御状態)。
 従って、冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体は走行用モータ65に循環され、この走行用モータ65と熱交換して当該走行用モータ65から廃熱を回収すると共に、走行用モータ65を冷却する。但し、バッテリ55には熱媒体は循環されないので、バッテリ55が熱媒体(冷媒)により冷却されることは無い。走行用モータ65から回収された廃熱は、冷媒-熱媒体熱交換器64で冷媒に汲み上げられ、放熱器4における車室内の暖房に寄与することになる。
 尚、空調コントローラ32は例えば走行用モータ温度センサ78が検出する走行用モータ温度Tmが前述した下限閾値TLm以下に低下した場合、上記暖房/廃熱回収モードを終了する。これにより、走行用モータ65の温度を前述した適温範囲に維持する。
 また、空調コントローラ32は除湿暖房運転においても上述した暖房運転の場合と同様の暖房/廃熱回収モードを実行するものであるが、その際は図4の状態で補助膨張弁73を開放し、冷媒配管13Bに流入した冷媒の一部を分岐配管72に分流させて、その後は図6の場合と同様に冷媒-熱媒体熱交換器64で熱媒体から吸熱させた後、圧縮機2に吸い込ませることになる。
 (7)冷房/バッテリ冷却・被温調対象冷却モード
 次に、図7を参照しながら前述した冷房運転や除湿冷房運転において空調コントローラ32が実行する冷房/バッテリ冷却・被温調対象冷却モードについて説明する。即ち、空調コントローラ32は以下に説明する冷房/バッテリ冷却・被温調対象冷却モードを有している。
 前述した如くバッテリ55は外気温度が高い夏場等には温度が上昇すると共に、自己発熱によっても温度が上昇する。また、走行用モータ65も走行により駆動されると発熱して温度が高くなり、何れも性能が低下し、最悪の場合には故障する危険性もあるため、安定した動作を行わせるためには冷却が必要となる。但し、前述した如く走行用モータ65はバッテリ55に比してより高温でも駆動可能である(適温範囲が高い)。そこで、空調コントローラ32は、冷房運転や除湿冷房運転においてバッテリ温度センサ76が検出するバッテリ温度Tbが前述した上限閾値THb以上に上昇した場合、以下に説明する冷房/バッテリ冷却・被温調対象冷却モードを実行する。
 図7はこの冷房/バッテリ冷却・被温調対象冷却モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と機器温度調整装置61の熱媒体の流れ(破線矢印)を示している。この冷房/バッテリ冷却・被温調対象冷却モードでは、空調コントローラ32は図5に示した冷媒回路Rの冷房運転又は除湿冷房運転の状態で、補助膨張弁73を開いてその弁開度を制御する状態とする。そして、機器温度調整装置61の第1~第3三方弁81~83を制御し、熱媒体配管68内の熱媒体の流れを前述した第2の流路制御状態とすると共に、第1及び第2循環ポンプ62、63を運転する。
 これにより、圧縮機2から吐出された高温の冷媒は、放熱器4を経て室外熱交換器7に流入し、そこで室外送風機15により通風される外気や走行風と熱交換して放熱し、凝縮する。室外熱交換器7で凝縮した冷媒の一部は室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で空気流通路3内の空気が冷却されるので、車室内は冷房される。
 室外熱交換器7で凝縮した冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここで機器温度調整装置61内を循環する熱媒体から吸熱する。吸熱器9から出た冷媒は冷媒配管13C、逆止弁20、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれる(図7に実線矢印で示す)。
 他方、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68B、バッテリ55、熱媒体配管68C、第2三方弁82、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる。また、第2循環ポンプ63から吐出された熱媒体は熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68L、空気-熱媒体熱交換器67、熱媒体配管68Mの順に流れて第2循環ポンプ63に吸い込まれる循環を行う(図7の破線矢印で示す:第2の流路制御状態)。
 従って、冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体はバッテリ55に循環され、このバッテリ55と熱交換して当該バッテリ55を強力に冷却する。一方、空気-熱媒体熱交換器67で外気により冷却(空冷)された熱媒体は走行用モータ65に循環され、この走行用モータ65と熱交換して当該走行用モータ65を冷却することになる。
 尚、空調コントローラ32は例えばバッテリ温度センサ76が検出するバッテリ温度Tbが前述した下限閾値TLb以下に低下した場合、上記冷房/バッテリ冷却・被温調対象冷却モードを終了する。これにより、バッテリ55の温度を前述した適温範囲に維持すると共に、従属関係ではあるが走行用モータ65の温度も適温範囲に維持する。
 以上のように空調コントローラ32が、車室内を暖房する空調運転において機器温度調整装置61を制御し、冷媒によりバッテリ55を冷却すること無く、走行用モータ65を冷却する暖房/廃熱回収モードを設けたので、暖房運転や除湿暖房運転においてバッテリ55を冷却すること無く、バッテリ55以外の車両に搭載された走行用モータ65の熱を冷媒に回収し、当該走行用モータ65を冷却しながら車室内を暖房することができるようになる。
 これにより、車室内の暖房を行うときに、バッテリ55以外の走行用モータ65の熱を有効に利用して効率良く車室内の暖房を行い、室外熱交換器7への着霜を抑制しながら走行用モータ65の冷却を行うことができるようになる。このときバッテリ55は冷却しないので、特に外気温が低い冬場等のバッテリ55の冷却を必要としない環境下でバッテリ55に与える悪影響も未然に回避することが可能となる。
 この場合、実施例では走行用モータ温度センサ78が検出する走行用モータ温度Tmが上限閾値THm以上に上昇した場合に、空調コントローラ32が暖房/廃熱回収モードを実行するようにしているので、走行用モータ65のみを冷却する暖房/廃熱回収モードを適切に開始することができるようになる。
 また、実施例では機器温度調整装置61に、熱媒体をバッテリ55及び走行用モータ65に循環させるための第1及び第2循環ポンプ62、63と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器64と、バッテリ55及び走行用モータ65への熱媒体の循環を制御するための第1~第3三方弁81~83を設け、暖房/廃熱回収モードにおいては空調コントローラ32が、冷媒を減圧した後、冷媒-熱媒体熱交換器64に流して熱媒体から吸熱させると共に、冷媒-熱媒体熱交換器64を出た熱媒体をバッテリ55に循環させること無く、走行用モータ65に循環させるようにしているので、バッテリ55を冷却すること無く走行用モータ65を冷却して、その廃熱を冷媒に回収させる動作を円滑に実現することができるようになる。
 更に、実施例では冷房運転や除湿冷房運転において空調コントローラ32が機器温度調整装置61を制御し、バッテリ55と走行用モータ65を冷却する冷房/バッテリ冷却・被温調対象冷却モードを設けているので、夏場等の外気温が高い環境下において、バッテリ55と走行用モータ65の双方を冷却し、性能の低下を回避することができるようになる。
 この場合も、実施例ではバッテリ温度センサ76が検出するバッテリ温度Tbが上限閾値THb以上に上昇した場合に、空調コントローラ32が冷房/バッテリ冷却・被温調対象冷却モードを実行するようにしているので、バッテリ55の温度が高くなって性能が低下する不都合を的確に回避することができるようになる。
 特に、実施例では機器温度調整装置61に、外気と熱媒体とを熱交換させるための空気-熱媒体熱交換器67を設け、冷房/バッテリ冷却・被温調対象冷却モードにおいては空調コントローラ32が、冷媒を減圧した後、冷媒-熱媒体熱交換器64に流し、熱媒体から吸熱させると共に、第1及び第2循環ポンプ62、63を運転して冷媒-熱媒体熱交換器を出た熱媒体をバッテリ55に循環させて当該バッテリ55を冷却し、走行用モータ65と空気-熱媒体熱交換器67の間で熱媒体を循環させて走行用モータ65を冷却するようにしているので、バッテリ55は冷媒を用いて冷却しながら、バッテリ以外の走行用モータ65は外気により円滑に冷却することができるようになる。
 この場合、実施例では空気-熱媒体熱交換器67を、室外熱交換器7の風下側に配置しているので、冷房/バッテリ冷却・被温調対象冷却モードにおける室外熱交換器7の放熱作用を空気-熱媒体熱交換器67が阻害する不都合も回避することができるようになる。
 次に、図8を参照しながら、本発明のもう一つの実施例の車両用空気調和装置1の構成と動作について説明する。この実施例の構成は機器温度調整装置61のみが前記実施例1(図1)の場合と異なり、その他は同様である。この実施例の機器温度調整装置61では、バッテリ55の出口に熱媒体配管68Nが接続され、この熱媒体配管68Nはこれも流路切換装置である第4三方弁84の入口に接続されている。そして、この第4三方弁84の一方の出口に前述した熱媒体配管68Cが接続された構成とされている。
 また、第4三方弁84の他方の出口には熱媒体配管68Rが接続され、この熱媒体配管68Rはこれも循環装置である第3循環ポンプ87の吸込側に接続されている。この第3循環ポンプ87の吐出側には熱媒体配管68Sが接続され、この熱媒体配管68Sは加熱装置としての熱媒体加熱ヒータ66の入口に接続されている。そして、この熱媒体加熱ヒータ66の出口は熱媒体配管68Tに接続され、この熱媒体配管68Tは第1三方弁81とバッテリ55の間の熱媒体配管68Bに連通接続された構成とされている。
 尚、上記熱媒体加熱ヒータ66はPTCヒータ等の電気ヒータから構成されており、これら熱媒体加熱ヒータ66や第4三方弁84も空調コントローラ32により制御される(図2中に破線で示す)。
 そして、この図8の車両用空気調和装置1においても、第1三方弁81が入口と他方の出口を連通し、第2三方弁82が入口と他方の出口を連通し、第3三方弁83が入口と一方の出口を連通する状態に切り換え、第1循環ポンプ62を運転すれば、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68D、熱媒体配管68C、第2三方弁82、熱媒体配管68H、熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68K、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる。
 従って、この実施例の機器温度調整装置61においても実施例1の第1の流路制御状態を実行可能とされているので、空調コントローラ32は暖房運転や除湿暖房運運転を行っているときに、走行用モータ温度Tmが上限閾値THm以上に上昇した場合は、前述同様の暖房/廃熱回収モードを実行する。
 また、第1三方弁81が入口と一方の出口を連通し、第2三方弁82が入口と一方の出口を連通し、第3三方弁83が入口と他方の出口を連通し、更に第4三方弁84が入口と一方の出口を連通する状態に切り換え、第1循環ポンプ62及び第2循環ポンプ63を運転すれば、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68B、バッテリ55、熱媒体配管68N、第4三方弁84、熱媒体配管68C、第2三方弁82、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる。他方、第2循環ポンプ63から吐出された熱媒体は熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68L、空気-熱媒体熱交換器67、熱媒体配管68Mの順に流れて第2循環ポンプ63に吸い込まれる循環を行う。
 即ち、前述した実施例1の第2の流路制御状態と同様に冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体がバッテリ55に循環され、このバッテリ55と熱交換して当該バッテリ55を冷却し、空気-熱媒体熱交換器67で外気により冷却(空冷)された熱媒体が走行用モータ65に循環され、この走行用モータ65と熱交換して当該走行用モータ65を冷却することになる。
 これは前述した実施例1の第2の流路制御状態と同様であるので、この実施例でもこの状態を第2の流路制御状態をとする。そして、この実施例の機器温度調整装置61においても、空調コントローラ32は冷房運転や除湿冷房運転を行っているときに、バッテリ温度Tbが上限閾値THb以上に上昇した場合は、前述同様の冷房/バッテリ冷却・被温調対象冷却モードを実行するものとする。
 更に、この実施例では第1三方弁81が入口と他方の出口を連通し、第2三方弁82が入口と他方の出口を連通し、第3三方弁83が入口と一方の出口を連通する状態に切り換えられているときに、第4三方弁84を入口と他方の出口が連通した状態に切り換え、第1循環ポンプ62及び第3循環ポンプ87が運転されると、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68D、熱媒体配管68C、第2三方弁82、熱媒体配管68H、熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68K、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる循環を行い、第3循環ポンプ87から吐出された熱媒体は熱媒体配管68S、熱媒体加熱ヒータ66、熱媒体配管68T、熱媒体配管68B、バッテリ55、熱媒体配管68N、第4三方弁84、熱媒体配管68Rの順に流れて第3循環ポンプ87に吸い込まれる循環を行うようになる。これを第3の流路制御状態とする。
 この第3の流路制御状態では、走行用モータ65と冷媒-熱媒体熱交換器64との間で熱媒体が循環されるので、冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体は走行用モータ65に循環され、この走行用モータ65と熱交換して当該走行用モータ65から廃熱を回収すると共に、走行用モータ65自体は冷却されることになる。一方、バッテリ55と熱媒体加熱ヒータ66との間で熱媒体が循環されるので、熱媒体加熱ヒータ66が発熱している場合、この熱媒体加熱ヒータ66で加熱された熱媒体がバッテリ55に循環され、バッテリ55は熱媒体を介して熱媒体加熱ヒータ66により加熱されることになる。
 (8)暖房/バッテリ加熱・廃熱回収モード
 そして、この実施例では前述した暖房運転や除湿暖房運転において空調コントローラ32は、以下に説明する暖房/バッテリ加熱・廃熱回収モードを実行する。次に、図9を参照しながらこの暖房/バッテリ加熱・廃熱回収モードについて説明する。前述した如くバッテリ55は極低温環境であるとき等に温度が極めて低くなると充放電が困難となる。
 そこで、空調コントローラ32は、例えば冬場等の外気温度が極めて低い環境下で暖房運転を行う際、バッテリ温度センサ76が検出するバッテリ温度Tbが前述した下限閾値TLb以下に低下している場合、暖房/バッテリ加熱・廃熱回収モードを実行する。図9はこの暖房/バッテリ加熱・廃熱回収モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と機器温度調整装置61の熱媒体の流れ(破線矢印)を示している。
 この暖房/バッテリ加熱・廃熱回収モードでは、空調コントローラ32は実施例1の図3の場合と同様の冷媒回路Rの暖房運転の状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、機器温度調整装置61の第1~第4三方弁81~84を制御し、熱媒体配管68内の熱媒体の流れを前述した第3の流路制御状態とすると共に、第1循環ポンプ62及び第3循環ポンプ87を運転し、熱媒体加熱ヒータ66にも通電して発熱させる。
 これにより、前述同様に放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て室内膨張弁8の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。
 一方、第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68D、熱媒体配管68C、第2三方弁82、熱媒体配管68H、熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68K、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる循環を行う。また、第3循環ポンプ87から吐出された熱媒体は熱媒体配管68S、熱媒体加熱ヒータ66、熱媒体配管68T、熱媒体配管68B、バッテリ55、熱媒体配管68N、第4三方弁84、熱媒体配管68Rの順に流れて第3循環ポンプ87に吸い込まれる循環を行う(図9に破線矢印で示す:第3の流路制御状態)。
 従って、冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体は走行用モータ65に循環され、この走行用モータ65と熱交換して当該走行用モータ65から廃熱を回収すると共に、走行用モータ65を冷却する。走行用モータ65から回収された廃熱は、冷媒-熱媒体熱交換器64で冷媒に汲み上げられ、放熱器4における車室内の暖房に寄与することになる。また、冷媒-熱媒体熱交換器64の熱媒体流路64Aから出た熱媒体はバッテリ55に循環されることは無く、その代わりに、熱媒体加熱ヒータ66で加熱された熱媒体がバッテリ55に循環され、バッテリ55は熱媒体を介して熱媒体加熱ヒータ66により加熱され、温度が上昇することになる。
 尚、空調コントローラ32は例えばバッテリ温度センサ76が検出するバッテリ温度Tbが前述した上限閾値THb以上に上昇した場合、上記暖房/バッテリ加熱・廃熱回収モードを終了する。これにより、バッテリ55の温度を前述した適温範囲に維持する。また、空調コントローラ32は除湿暖房運転においても上述した暖房運転の場合と同様の暖房/バッテリ加熱・廃熱回収モードを実行するものであるが、その際も図4の状態で補助膨張弁73を開放し、冷媒配管13Bに流入した冷媒の一部を分岐配管72に分流させて、その後は図9の場合と同様に冷媒-熱媒体熱交換器64で熱媒体から吸熱させた後、圧縮機2に吸い込ませることになる。
 このように、機器温度調整装置61に、バッテリ55を加熱するための熱媒体加熱ヒータ66を設け、空調コントローラ32が暖房運転や除湿暖房運転において冷媒により走行用モータ65を冷却し、熱媒体加熱ヒータ66によりバッテリ55を加熱する暖房/バッテリ加熱・廃熱回収モードを設けたので、特に低外気温の環境下において、走行用モータ65を冷却してその廃熱を回収しながら、バッテリ55の温度が下がり過ぎて性能が低下してしまう不都合も解消することができるようになる。
 この場合、実施例では空調コントローラ32が、バッテリ温度センサ76が検出するバッテリ温度Tbが下限閾値TLb以下に低下した場合、暖房/バッテリ加熱・廃熱回収モードを実行するようにしたので、走行用モータ65から廃熱を回収しながらバッテリ55は加熱する暖房/廃熱回収モードを適切に開始することができるようになる。
 また、実施例では機器温度調整装置61に、熱媒体をバッテリ55、走行用モータ65及び熱媒体加熱ヒータ66に循環させるための第1循環ポンプ62、第2循環ポンプ63及び第3循環ポンプ87と、冷媒と熱媒体とを熱交換させるための冷媒-熱媒体熱交換器64と、バッテリ55、走行用モータ65及び熱媒体加熱ヒータ66への熱媒体の循環を制御するための第1~第4三方弁81~84を設け、暖房/バッテリ加熱・廃熱回収モードにおいては空調コントローラ32が、冷媒を減圧した後、冷媒-熱媒体熱交換器64に流して熱媒体から吸熱させ、冷媒-熱媒体熱交換器64を出た熱媒体をバッテリ55に循環させること無く、走行用モータ65に循環させると共に、熱媒体加熱ヒータ66とバッテリ55の間で熱媒体を循環させて当該バッテリ55を加熱するようにしたので、走行用モータ65を冷却してその廃熱を回収しながらバッテリ55を加熱する動作を円滑に実現することができるようになる。
 尚、実施例では機器温度調整装置61を第1乃至第3の流路制御状態に切り換えて暖房/廃熱回収モード、冷房/バッテリ冷却・被温調対象冷却モード、及び、暖房/バッテリ加熱・廃熱回収モードの各運転モードを実行できるようにしたが、それに限らず、例えば図3の回路で、第1三方弁81が入口と一方の出口を連通し、第2三方弁82が入口と他方の出口を連通する状態に切り換え、第1循環ポンプ62を運転すると、この第1循環ポンプ62から吐出された熱媒体は熱媒体配管64A、第1三方弁81、熱媒体配管68B、バッテリ55、熱媒体配管68C、第2三方弁82、熱媒体配管68H、熱媒体配管68G、走行用モータ65、熱媒体配管68J、第3三方弁83、熱媒体配管68K、熱媒体配管68E、冷媒-熱媒体熱交換器64の熱媒体流路64A、熱媒体配管68Fの順に流れて第1循環ポンプ62に吸い込まれる循環を行うようになる。
 このように機器温度調整装置61内に熱媒体を循環させることで、バッテリ55及び走行用モータ65と冷媒-熱媒体熱交換器64との間で熱媒体が循環されることになるので、冷媒-熱媒体熱交換器64の熱媒体流路64Aで冷媒により吸熱されて冷却された熱媒体はバッテリ55及び走行用モータ65に循環され、これらバッテリ55及び走行用モータ65と熱交換してバッテリ55及び走行用モータ65から廃熱を回収すると共に、バッテリ55及び走行用モータ65自体は冷却されることになる。
 このように冷媒-熱媒体熱交換器64で冷却された熱媒体をバッテリ55と走行用モータ65に同時に循環させ、それらを冷却することも可能であるので、例えば、冬場であってもバッテリ55の温度が極めて高い場合等にはバッテリ55及び走行用モータ65を同時に冷却し、廃熱を回収することも可能である。
 即ち、前述した如くバッテリ55及び走行用モータ65(バッテリ以外の被温調対象)の温度を調整するための機器温度調整装置61を設け、この機器温度調整装置61には、熱媒体をバッテリ55及び走行用モータ65に循環させるための第1~第3循環ポンプ62、63、87と、冷媒と熱媒体とを熱交換させ、冷媒を熱媒体から吸熱させるための冷媒-熱媒体熱交換器64と、外気と熱媒体とを熱交換させるための空気-熱媒体熱交換器67と、バッテリ55及び走行用モータ65への熱媒体の循環を制御するための第1~第4三方弁81~84を設けたことで、空調コントローラ32により第1~第3循環ポンプ62、63、87及び第1~第4三方弁81~84を制御することで、冷媒-熱媒体熱交換器64で冷媒により冷却された熱媒体や、空気-熱媒体熱交換器67で外気により冷却された熱媒体を用い、車両に搭載されたバッテリ55や走行用モータ65等のバッテリ55以外の被温調対象を様々なかたちで冷却することができるようになり、利便性の富んだものとなる。
 また、実施例で説明した空調コントローラ32の構成、車両用空気調和装置1の冷媒回路Rや機器温度調整装置61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 21、22 電磁弁
 32 空調コントローラ(制御装置)
 55 バッテリ
 61 機器温度調整装置
 62 第1循環ポンプ(循環装置)
 63 第2循環ポンプ(循環装置)
 64 冷媒-熱媒体熱交換器
 65 走行用モータ(被温調対象)
 66 熱媒体加熱ヒータ(加熱装置)
 67 空気-熱媒体熱交換器
 72 分岐配管
 73 補助膨張弁
 81 第1三方弁(流路切換装置)
 82 第2三方弁(流路切換装置
 83 第3三方弁(流路切換装置)
 84 第4三方弁(流路切換装置)
 87 第3循環ポンプ(循環装置)

Claims (10)

  1.  冷媒を圧縮する圧縮機と、
     前記冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられた室外熱交換器と、
     制御装置を備え、
     該制御装置により少なくとも、
     前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する空調運転を実行する車両用空気調和装置において、
     前記冷媒を用いて車両に搭載されたバッテリと当該バッテリ以外の所定の被温調対象の温度を調整可能とされた機器温度調整装置を備え、
     前記制御装置は、前記車室内を暖房する空調運転において前記機器温度調整装置を制御し、前記冷媒により前記バッテリを冷却すること無く、前記被温調対象を冷却する暖房/廃熱回収モードを有することを特徴とする車両用空気調和装置。
  2.  前記制御装置は、前記被温調対象の温度、若しくは、当該被温調対象の温度を示す指標の値が所定の上限閾値以上に上昇した場合、前記暖房/廃熱回収モードを実行することを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記機器温度調整装置は、
     熱媒体を前記バッテリ及び前記被温調対象に循環させるための循環装置と、
     前記冷媒と前記熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、
     前記バッテリ及び前記被温調対象への前記熱媒体の循環を制御するための流路切換装置を有し、
     前記制御装置は、前記暖房/廃熱回収モードにおいて前記冷媒を減圧した後、前記冷媒-熱媒体熱交換器に流し、前記熱媒体から吸熱させると共に、前記循環装置及び前記流路切換装置を制御し、前記冷媒-熱媒体熱交換器を出た前記熱媒体を前記バッテリに循環させること無く、前記被温調対象に循環させることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
  4.  前記機器温度調整装置は、前記バッテリを加熱するための加熱装置を有し、
     前記制御装置は、前記車室内を暖房する空調運転において前記冷媒により前記被温調対象を冷却し、前記加熱装置により前記バッテリを加熱する暖房/バッテリ加熱・廃熱回収モードを有することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
  5.  前記制御装置は、前記バッテリの温度、若しくは、当該バッテリの温度を示す指標の値が所定の下限閾値以下に低下した場合、前記暖房/バッテリ加熱・廃熱回収モードを実行することを特徴とする請求項4に記載の車両用空気調和装置。
  6.  前記機器温度調整装置は、
     熱媒体を前記バッテリ、前記被温調対象及び前記加熱装置に循環させるための循環装置と、
     前記冷媒と前記熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、
     前記バッテリ、前記被温調対象及び前記加熱装置への前記熱媒体の循環を制御するための流路切換装置を有し、
     前記制御装置は、暖房/バッテリ加熱・廃熱回収モードにおいて前記冷媒を減圧した後、前記冷媒-熱媒体熱交換器に流して前記熱媒体から吸熱させ、前記循環装置、前記流路切換装置及び前記加熱装置を制御し、前記冷媒-熱媒体熱交換器を出た前記熱媒体を前記バッテリに循環させること無く、前記被温調対象に循環させると共に、前記加熱装置と前記バッテリの間で前記熱媒体を循環させて当該バッテリを加熱することを特徴とする請求項4又は請求項5に記載の車両用空気調和装置。
  7.  前記冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器を備え、
     前記制御装置は、前記圧縮機から吐出された前記冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させて前記車室内を冷房する空調運転を実行すると共に、
     該車室内を冷房する空調運転において前記機器温度調整装置を制御し、前記バッテリと前記被温調対象を冷却する冷房/バッテリ冷却・被温調対象冷却モードを有することを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
  8.  前記制御装置は、前記バッテリの温度、若しくは、当該バッテリの温度を示す指標の値が所定の上限閾値以上に上昇した場合、前記冷房/バッテリ冷却・被温調対象冷却モードを実行することを特徴とする請求項7に記載の車両用空気調和装置。
  9.  前記機器温度調整装置は、
     熱媒体を前記バッテリ及び前記被温調対象に循環させるための循環装置と、
     前記冷媒と前記熱媒体とを熱交換させるための冷媒-熱媒体熱交換器と、
     外気と前記熱媒体とを熱交換させるための空気-熱媒体熱交換器と、
     前記バッテリ及び前記被温調対象への前記熱媒体の循環を制御するための流路切換装置を有し、
     前記制御装置は、前記冷房/バッテリ冷却・被温調対象冷却モードにおいて前記冷媒を減圧した後、前記冷媒-熱媒体熱交換器に流し、前記熱媒体から吸熱させると共に、前記循環装置及び前記流路切換装置を制御し、前記冷媒-熱媒体熱交換器を出た前記熱媒体を前記バッテリに循環させて当該バッテリを冷却し、前記被温調対象と前記空気-熱媒体熱交換器の間で前記熱媒体を循環させて前記被温調対象を冷却することを特徴とする請求項7又は請求項8に記載の車両用空気調和装置。
  10.  前記空気-熱媒体熱交換器は、前記室外熱交換器の風下側に配置されていることを特徴とする請求項9に記載の車両用空気調和装置。
PCT/JP2019/026547 2018-08-10 2019-07-04 車両用空気調和装置 WO2020031568A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/266,715 US11794548B2 (en) 2018-08-10 2019-07-04 Vehicle air conditioning device
DE112019004047.2T DE112019004047T5 (de) 2018-08-10 2019-07-04 Fahrzeugklimaanlage
CN201980052614.5A CN112585021A (zh) 2018-08-10 2019-07-04 车用空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151463A JP7268976B2 (ja) 2018-08-10 2018-08-10 車両用空気調和装置
JP2018-151463 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020031568A1 true WO2020031568A1 (ja) 2020-02-13

Family

ID=69415496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026547 WO2020031568A1 (ja) 2018-08-10 2019-07-04 車両用空気調和装置

Country Status (5)

Country Link
US (1) US11794548B2 (ja)
JP (1) JP7268976B2 (ja)
CN (1) CN112585021A (ja)
DE (1) DE112019004047T5 (ja)
WO (1) WO2020031568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114274993A (zh) * 2021-12-02 2022-04-05 中车株洲电力机车有限公司 轨道车辆舱室加热方法及系统、冷风机控制方法及系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102510377B1 (ko) * 2017-04-05 2023-03-16 한온시스템 주식회사 차량용 열관리 시스템의 수가열식 ptc 히터 제어 방법
JP6884028B2 (ja) 2017-04-26 2021-06-09 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7153174B2 (ja) * 2018-05-28 2022-10-14 サンデン株式会社 車両用空気調和装置
US11906216B2 (en) * 2019-04-05 2024-02-20 Hanon Systems Vehicular heat management system
JP7280770B2 (ja) * 2019-07-29 2023-05-24 サンデン株式会社 車両用空気調和装置
JP7372794B2 (ja) * 2019-09-18 2023-11-01 サンデン株式会社 車両用空気調和装置
JP7151684B2 (ja) * 2019-09-30 2022-10-12 トヨタ自動車株式会社 車両制御装置
CN116157947A (zh) * 2020-07-31 2023-05-23 日本电产株式会社 温度调节系统以及车辆
JP7468237B2 (ja) 2020-08-05 2024-04-16 株式会社デンソー 冷凍サイクル装置
KR20220121931A (ko) * 2021-02-25 2022-09-02 현대자동차주식회사 전기자동차의 열관리 시스템
KR20230030261A (ko) * 2021-08-25 2023-03-06 현대자동차주식회사 차량용 히트펌프 시스템
JP7203178B1 (ja) 2021-10-28 2023-01-12 マレリ株式会社 流路切換弁及び冷却水回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321389A (ja) * 2005-05-19 2006-11-30 Denso Corp 車両用廃熱利用装置
WO2012114447A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 車両用熱システム
WO2014034061A1 (ja) * 2012-08-28 2014-03-06 株式会社デンソー 車両用熱管理システム
WO2015136768A1 (ja) * 2014-03-12 2015-09-17 カルソニックカンセイ株式会社 車載温調装置、車両用空調装置及びバッテリ温調装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800940A3 (en) * 1996-04-10 2001-06-06 Denso Corporation Vehicular air conditioning system for electric vehicles
JP5078744B2 (ja) * 2008-05-20 2012-11-21 三菱重工業株式会社 車両用空調装置およびその制御方法
JP5440426B2 (ja) 2010-07-09 2014-03-12 株式会社日本自動車部品総合研究所 車両用温度調整システム
JP5861495B2 (ja) * 2011-04-18 2016-02-16 株式会社デンソー 車両用温度調整装置、および車載用熱システム
JP5880863B2 (ja) * 2012-02-02 2016-03-09 株式会社デンソー 車両用熱管理システム
JP2014125111A (ja) * 2012-12-26 2014-07-07 Calsonic Kansei Corp 空調装置、空調装置の制御方法、及びプログラム
JP5962556B2 (ja) * 2013-03-19 2016-08-03 株式会社デンソー 車両用熱管理システム
JP6125312B2 (ja) 2013-04-26 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置
JP6052222B2 (ja) * 2013-06-18 2016-12-27 株式会社デンソー 車両用熱管理システム
JP6390223B2 (ja) * 2014-07-09 2018-09-19 株式会社デンソー 車両用温度調整装置
KR102170463B1 (ko) * 2015-03-16 2020-10-29 한온시스템 주식회사 차량용 히트 펌프 시스템
JP6708099B2 (ja) * 2016-11-15 2020-06-10 株式会社デンソー 冷凍サイクル装置
JP6900186B2 (ja) * 2016-12-21 2021-07-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321389A (ja) * 2005-05-19 2006-11-30 Denso Corp 車両用廃熱利用装置
WO2012114447A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 車両用熱システム
WO2014034061A1 (ja) * 2012-08-28 2014-03-06 株式会社デンソー 車両用熱管理システム
WO2015136768A1 (ja) * 2014-03-12 2015-09-17 カルソニックカンセイ株式会社 車載温調装置、車両用空調装置及びバッテリ温調装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114274993A (zh) * 2021-12-02 2022-04-05 中车株洲电力机车有限公司 轨道车辆舱室加热方法及系统、冷风机控制方法及系统
CN114274993B (zh) * 2021-12-02 2023-01-20 中车株洲电力机车有限公司 轨道车辆舱室加热方法及系统、冷风机控制方法及系统

Also Published As

Publication number Publication date
US11794548B2 (en) 2023-10-24
US20210300146A1 (en) 2021-09-30
DE112019004047T5 (de) 2021-05-20
JP2020026196A (ja) 2020-02-20
JP7268976B2 (ja) 2023-05-08
CN112585021A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2020031568A1 (ja) 車両用空気調和装置
WO2020031569A1 (ja) 車両用空気調和装置
JP6925288B2 (ja) 車両用空気調和装置
JP7316872B2 (ja) 車両搭載発熱機器の温度調整装置及びそれを備えた車両用空気調和装置
WO2018193770A1 (ja) 車両用空気調和装置
WO2019039153A1 (ja) 車両用空気調和装置
WO2019150829A1 (ja) 車両用空気調和装置
WO2020066719A1 (ja) 車両用空気調和装置
CN114126900B (zh) 车用空调设备
WO2019058826A1 (ja) 車両用空気調和装置
WO2019163398A1 (ja) 車両用制御システム
WO2020026690A1 (ja) 車両用空気調和装置
WO2021192760A1 (ja) 車両用空気調和装置
CN113811727B (zh) 车辆用空气调节装置
WO2021054043A1 (ja) 車両用空気調和装置
JP7372793B2 (ja) 車両用空気調和装置
WO2020262125A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848009

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19848009

Country of ref document: EP

Kind code of ref document: A1