WO2012114447A1 - 車両用熱システム - Google Patents

車両用熱システム Download PDF

Info

Publication number
WO2012114447A1
WO2012114447A1 PCT/JP2011/053755 JP2011053755W WO2012114447A1 WO 2012114447 A1 WO2012114447 A1 WO 2012114447A1 JP 2011053755 W JP2011053755 W JP 2011053755W WO 2012114447 A1 WO2012114447 A1 WO 2012114447A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
heat medium
indoor
temperature
Prior art date
Application number
PCT/JP2011/053755
Other languages
English (en)
French (fr)
Inventor
禎夫 関谷
松嶋 弘章
忠史 尾坂
悠基 秋山
利一 内田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013500743A priority Critical patent/JP5619986B2/ja
Priority to PCT/JP2011/053755 priority patent/WO2012114447A1/ja
Priority to US13/985,380 priority patent/US20130319029A1/en
Publication of WO2012114447A1 publication Critical patent/WO2012114447A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00178Temperature regulation comprising an air passage from the HVAC box to the exterior of the cabin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve

Definitions

  • the present invention relates to a vehicle thermal system applied to an electric vehicle such as an electric vehicle, a hybrid vehicle, or an electric railway.
  • Patent Literature 1 and Patent Literature 2 are known.
  • Patent Document 1 discloses an HVAC unit that blows out temperature-adjusted air from a refrigerant evaporator, an air mix damper, and a heat medium heater disposed in an air passage, a refrigerant compressor, and circulation of the refrigerant.
  • the refrigerant circulation switching means for switching the direction, the air heat exchanger for exchanging heat between the refrigerant and the outside air, the refrigerant expansion means, and the refrigerant evaporator are connected in this order, and the refrigerant and the heat medium are connected to the refrigerant evaporator.
  • a heat pump cycle in which refrigerant / heat medium heat exchangers that exchange heat with each other are connected in parallel, a heat medium circulation pump, the refrigerant / heat medium heat exchanger, an electric heater for heating medium heating, and the heat medium heater Are connected in this order, and a cooling circuit of a traveling motor is connected in parallel to the heating medium cycle via a solenoid valve, and the heating medium in the cooling circuit is connected to the heating medium heater.
  • Heat transfer pump Through recyclable and has been that the vehicular air conditioning apparatus is described.
  • Patent Document 2 a duct for sending air toward the passenger compartment, a blower for blowing air into the passenger compartment in the duct, a refrigerant compressor for compressing and discharging the refrigerant, and the refrigerant compressor discharging
  • a refrigerant water heat exchanger that heats hot water by exchanging heat between the refrigerant and hot water, a refrigeration cycle having a refrigerant evaporator that cools air by the heat of evaporation of the refrigerant, and hot water heated by the refrigerant water heat exchanger
  • a vehicle air conditioner comprising: a circulating pump; and a hot water cycle installed in the duct and having a hot water heater that heats air flowing in the duct by hot water flowing in from the refrigerant water heat exchanger Is described.
  • the heat medium heater is cooled by cold air cooled by a refrigerant evaporator (corresponding to the “indoor heat exchanger for heat pump” of the present invention) and heated. Since the heat medium is sometimes heated by the refrigerant / heat medium heat exchanger (corresponding to the “intermediate heat exchanger for heat pump” of the present invention) and the air is heated by the heat medium heater, it is used for heating and cooling. Since the temperature of the heating medium is the same, there is a problem that fine temperature control cannot be performed.
  • the present invention solves the above-mentioned problems of the prior art, and always maintains the temperature of the heating element mounted on the vehicle in a wide range of environments from low outside temperature to high outside temperature, and reliably cools or heats the inside of the vehicle.
  • An object of the present invention is to provide a vehicle thermal system that can be performed.
  • the invention of claim 1 is a compressor, a first refrigerant switching means for switching a refrigerant flow direction, an outdoor heat exchanger, a first flow control means, a second flow control means, and an intermediate heat exchange for a heat pump.
  • a compressor a compressor, a first refrigerant switching means for switching a refrigerant flow direction, an outdoor heat exchanger, a first flow control means, a second flow control means, and an intermediate heat exchange for a heat pump.
  • the third flow rate control means, the heat pump indoor heat exchanger, the outlet side of the compressor and the inlet side of the compressor are switched from between the first flow rate control means and the second flow rate control means.
  • a heat pump system including a bypass circuit provided with a second refrigerant switching means, in which the refrigerant flows; a liquid pump; a heat exchanger for cooling that cools a heating element mounted on the vehicle; an indoor heat exchanger for a heat medium; A heat medium circuit in which heat medium intermediate heat exchangers are sequentially connected and a heat medium flows therein is provided, and the heat pump intermediate heat exchanger and the heat medium intermediate heat exchanger are provided so as to be capable of heat exchange.
  • Vehicle It is a thermal system.
  • the invention according to claim 2 is the vehicle heat system according to claim 1, wherein the heat exchanger for heat medium includes a first heat exchanger for heat medium and the first heat heat exchanger.
  • the invention of claim 3 is the vehicle heat system according to claim 1, wherein the heat exchanger for cooling the heating element is a battery heat exchanger, an inverter heat exchanger, or a voltage converter heat.
  • the heat exchanger for the battery, the heat exchanger for the voltage converter, and the heat exchanger for the transmission are controlled by connecting the exchanger, the heat exchanger for the motor, and the heat exchanger for the transmission in series. A bypass path is provided.
  • the invention of claim 4 is the vehicle heat system according to claim 1, wherein a second heat medium circuit independent of the heat medium circuit through which the heat medium flows is provided, and the second heat medium
  • the circuit is provided with a combustor for heating the second heat medium flowing through the circuit and a heat exchanger for auxiliary heating, so that heat can be exchanged between the heat exchanger for auxiliary heating and the intermediate heat exchanger for heat medium. It is provided.
  • the invention of claim 5 is the vehicle heat system according to claim 4, wherein the intermediate heat exchanger for heat pump, the intermediate heat exchanger for heat medium, and the heat exchanger for auxiliary heating are pressed. It is provided so that heat can be exchanged by force, and each can be separated when the pressing force is removed.
  • the temperature control of the heating element mounted on the vehicle is facilitated regardless of the air conditioning load in the vehicle interior, it is possible to reliably cool the heating element.
  • the exhaust heat of the heating element mounted on the vehicle can be effectively used for heating the passenger compartment.
  • the air heated by the first heat medium indoor heat exchanger is exhausted to the outside, and this is introduced into the room. Can be prevented.
  • the present invention by providing a bypass passage provided with a flow rate control means for controlling the flow rate of the heat medium in the cooling heat exchanger, even when the heat medium flow rate required for cooling is different, the heat medium flow rate is maximized.
  • the flow rate of the other device is made to flow through the bypass passage in accordance with the device to be reduced, so that the flow resistance of the heat medium can be reduced and the power consumption of the pump can be reduced.
  • the electronic parts of the battery, the inverter, and the voltage converter are preferentially cooled to increase the reliability of the electronic parts having a relatively low heat-resistant temperature, and the efficiency of the battery, the transmission, etc.
  • the electronic parts having a relatively low heat-resistant temperature and the efficiency of the battery, the transmission, etc.
  • the auxiliary heating device is provided, and the auxiliary heating heat exchanger and the intermediate heat exchanger for the heat medium are provided so as to be able to exchange heat, thereby ensuring the heating capacity even in the case of a low outside air temperature.
  • the consumption of the battery due to heating can be suppressed, and the travel distance of the vehicle can be ensured.
  • the present invention by enabling separation of the heat pump intermediate heat exchanger, the heat medium intermediate heat exchanger, and the auxiliary heating heat exchanger, it is easy to retrofit when an auxiliary heating device is required. In addition, even if a failure occurs in the auxiliary heating device or the heat medium circuit, it can be easily disconnected from the heat pump system, eliminating the need to recover the refrigerant enclosed in the heat pump system, and preventing global warming due to the release of refrigerant into the atmosphere. Can be prevented.
  • the schematic structure of the thermal system for vehicles of the present invention is shown.
  • the structure of the intermediate heat exchanger 19 for heat pumps which concerns on this invention is shown. Indicates the air conditioning / cooling / cooling / warming condition / operating conditions of the components.
  • 1 shows a vehicle thermal system of the present invention in a cooling operation mode.
  • 1 shows a vehicle thermal system of the present invention in a cooling / cooling operation mode.
  • the heat system for vehicles of the present invention in cooling and heating operation mode is shown.
  • the heat system for vehicles of the present invention in the dehumidification operation mode is shown.
  • 1 shows a vehicle thermal system of the present invention in a warm-up operation mode.
  • 1 shows a vehicle thermal system of the present invention in an auxiliary heating operation mode.
  • the vehicle thermal system of the present invention is applied to an electric vehicle, but the scope of the present invention is not limited to this.
  • this invention is not limited to an electric vehicle, It can apply also to electric vehicles, such as a hybrid vehicle or an electric railway, a construction vehicle, and other special vehicles.
  • a motor driven by an inverter will be described as an example.
  • the present invention is not limited to a drive motor by an inverter.
  • a DC motor driven by a converter such as a thyristor Leonard device
  • the present invention can be applied to all kinds of rotating electric machines (motors / generators) such as a pulse motor driven by a chopper power source.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle thermal system according to the present invention.
  • the vehicle thermal system shown in FIG. 1 adjusts the temperature of an indoor air-conditioning unit 60 for cooling and heating / cooling / heating of a passenger compartment or a device requiring temperature adjustment, a heat pump system 10, and a heating element mounted on the vehicle.
  • a heat medium circuit 30 for controlling the air conditioner and an air conditioning control device (not shown) for controlling them.
  • the various actuators provided in the vehicle thermal system are controlled by control signals from the air conditioning control device.
  • the actuator relating to the present embodiment includes a compressor 11, an expansion valve A15 as a first flow rate control means, an expansion valve B17 as a second flow rate control means, and an expansion valve C18 as a third flow rate control means.
  • a heat medium for example, ethylene glycol aqueous solution
  • a heating element mounted on the vehicle in the embodiment shown in FIG. 1, a battery, an inverter, a voltage converter, a motor.
  • the heat medium whose temperature has risen due to the cooling can be appropriately heated by the air sent into the passenger compartment, and then circulates back to the pump 31 via the intermediate heat exchanger for the heat medium.
  • a heat medium temperature sensor 80 for detecting the temperature of the heat medium, a battery temperature sensor 81 for detecting the temperature of each heating element, an inverter temperature sensor 82, a voltage converter temperature sensor 83, a motor temperature sensor 84, a transmission temperature sensor 85 Is provided.
  • the refrigeration cycle of the heat pump system 10 includes a compressor 11 that compresses a refrigerant (for example, R1234yf), an outdoor heat exchanger 13 that exchanges heat between the refrigerant and the outside air, and a heat pump that is in a branched refrigeration cycle circuit.
  • a refrigerant for example, R1234yf
  • An intermediate heat exchanger 19 and a heat pump indoor heat exchanger 21 that performs heat exchange between the refrigerant and the room air are provided.
  • a four-way valve 12 is provided between the suction pipe and the discharge pipe of the compressor 11, and either the suction pipe or the discharge pipe is connected to the outdoor heat exchanger 13 by switching the four-way valve 12, while the other Can be connected to the intermediate heat exchanger 19 for heat pump.
  • the three-way valve 22 switches the heat pump indoor heat exchanger 21 to one of the suction side and the discharge side of the compressor 11 by switching the three-way valve 22.
  • a receiver tank 16 is provided between the expansion valve A15 and the expansion valve B17 to store excess refrigerant in the liquid, and a bypass circuit from the receiver tank 16 to the expansion valve C18 is provided.
  • the indoor unit inflow air temperature sensor 87 that detects the temperature of the air flowing into the indoor air conditioning unit 60
  • the indoor heat exchanger temperature sensor 88 for the heat pump that detects the temperature of the indoor heat exchanger 21 for the heat pump, and the temperature of the outside air
  • An outside air temperature sensor 89 is provided. The air conditioning load is calculated from the temperature difference between the set temperature of the air conditioning control device and the room temperature (not shown) and the outside air temperature calculated by the outside air temperature sensor 89.
  • FIG. 2 shows a configuration of the intermediate heat exchanger 25 according to the present invention.
  • the intermediate heat exchanger 25 is configured so that the heat pump intermediate heat exchanger 19, the heat medium intermediate heat exchanger 39, and the auxiliary heating heat exchanger 72 are brought into contact with each other in a heat-exchangeable state, and the heat exchanger holding frame 27 And holding the holding frame 27 to the heat exchanger mounting portion 26.
  • the presser frame 27 is released from the heat exchanger mounting portion 26, the heat pump intermediate heat exchanger 19, the heat medium intermediate heat exchanger 39, and the auxiliary heating heat exchanger 72 can be separated from each other.
  • FIG. 3 shows conditions for cooling / heating and cooling / warming of components of the vehicle thermal system according to the present invention.
  • the cooling operation mode is a battery temperature sensor 81 that detects the temperature of each heating element, an inverter temperature sensor 82, a voltage converter temperature sensor 83, a motor temperature sensor 84, and a gear shift when indoor air conditioning is stopped. This is a mode in which the machine temperature sensor 85 is automatically driven when one temperature detected by the temperature sensor 80 exceeds the first set temperature set for each heating element.
  • the air-cooling operation mode is controlled.
  • the pump 31 is operated, the air passage switching device A62 is on the first heat exchanger 37 side for the heat medium, the air passage switching device B63 is on the outside air side, the two-way valve E44 and the two-way valve G46 are closed, and the two-way valve F45 is opened.
  • the indoor fan 61 is operated under control.
  • the heat medium for example, ethylene glycol aqueous solution
  • the heat medium flows through the heat exchanger 36 and cools these heating elements.
  • the efficiency of the heating element has an appropriate value depending on the temperature
  • the transmission includes a battery bypass passage 47, a transmission bypass passage 49, a two-way valve A40, a two-way valve B41, and a two-way valve for flow control.
  • C42 and a two-way valve D43 are provided.
  • the two-way valve A40 When the battery temperature detected by the battery temperature sensor 81 is equal to or lower than a first battery set value (for example, 40 ° C.), the two-way valve A40 is closed and the two-way valve B41 is opened.
  • the heat medium flows through the battery bypass 47, and when the temperature of the battery rises due to the heat generated by the battery, the two-way valve A40 is opened and the two-way valve B41 is closed when the temperature exceeds the second battery set temperature (for example, 60 ° C.).
  • the medium flows through the battery heat exchanger 32 to cool the battery. Therefore, the battery temperature can always be maintained at a high discharge efficiency.
  • the transmission temperature is controlled within a predetermined range by the transmission bypass 49, the two-way valve C42, and the two-way valve D43, and the viscosity of the lubricating oil sealed in the transmission is maintained at an appropriate value. Compatibility and efficiency can be achieved.
  • the flow rate of the heat medium flowing through the voltage converter heat exchanger 34 can be made appropriate by providing the voltage converter bypass path 48. The pressure loss of the heat medium in the voltage converter heat exchanger 34 can be reduced.
  • the heat medium heated by the heating element passes through the two-way valve F, is cooled by the air blown by the indoor fan 61, and returns to the pump 31 again through the heat medium intermediate heat exchanger 39.
  • the air heated by cooling the heat medium is discharged to the outside by the air path switching device B63.
  • the two-way valve B is opened and the heat flows to the heat medium intermediate heat exchanger 39. By reducing the flow rate of the heat medium, the temperature of the heat medium can be properly maintained.
  • the heat pump system 10 is driven by controlling the four-way valve 12 to the cooling side, the three-way valve 22 to the cooling side, the expansion valve C18 to be fully closed, and the outdoor fan 14 to operate.
  • the heat medium circuit 30 and the indoor air conditioning unit are controlled in the same manner as in the air cooling mode.
  • the refrigerant in the heat pump system 10 becomes a high-temperature and high-pressure gas refrigerant in the compressor 11, passes through the four-way valve 12, and is sent to the outdoor heat exchanger 13.
  • the outdoor heat exchanger 13 dissipates heat to the air blown by the outdoor fan 14 to become liquid refrigerant, and is decompressed by the expansion valve A15 to become saturated liquid refrigerant, which is sent to the receiver tank 16.
  • the liquid refrigerant in the receiver tank 17 is sent to the expansion valve B17, further reduced in pressure to become a low-pressure and low-temperature two-phase refrigerant, sent to the heat pump intermediate heat exchanger 19 in the intermediate heat exchanger 25, and contacted by the holding frame 27 on the surface.
  • the intermediate heat exchanger 39 for the heat medium is cooled, becomes a low-pressure gas refrigerant, returns to the compressor 11 through the four-way valve 12.
  • the heat medium is cooled by the intermediate heat exchanger 25 by the heat pump system 10 in addition to the cooling by the air blown by the indoor fan 61 as in the blow cooling mode.
  • the air-cooling mode is controlled again. Since the rotation speed of the compressor 11 is controlled by the temperature of the heat medium, the cooling capacity can be controlled according to the amount of heat generated by the heat generating device, and cooling can be performed reliably.
  • the heat pump system can be separated from the heat pump intermediate heat exchanger and the heat medium intermediate heat exchanger so that heat can be exchanged by the holding frame. Does not need to be removed, and can be prevented from being discharged during recovery of the refrigerant sealed inside.
  • Cooling / cooling operation mode a cooling operation is selected by the air conditioning control device, and a battery temperature sensor 81, an inverter temperature sensor 82, a voltage converter temperature sensor 83 for detecting the temperature of each heating element.
  • the motor temperature sensor 84 and the transmission temperature sensor 85 are automatically driven when one temperature detected by the temperature sensor 80 exceeds the first set temperature set for each heating element.
  • the four-way valve 12 of the heat pump system 10 is switched to the cooling side, the discharge side of the compressor is connected to the outdoor heat exchanger 13, the three-way valve 22 is switched to the cooling side, and the expansion valve C18 is set.
  • the compressor 11 and the outdoor fan 14 are driven by the opening degree.
  • the pump 31 of the heat medium circuit 30 and the indoor fan 61 of the indoor air conditioning unit 60 are driven to control the air path switching device A62 to the intermediate position and the air path switching device B63 to the outside air side.
  • the refrigerant of the heat pump system 10 becomes liquid refrigerant in the outdoor heat exchanger 13 and is sent to the receiver tank 23 in a saturated liquid state.
  • the refrigerant of the saturated liquid is depressurized by the expansion valve C18 to become a low-pressure low-temperature two-phase refrigerant, sent to the intermediate heat exchanger 21 for the heat pump, cools the air blown by the indoor fan 61, becomes a gas refrigerant, and is compressed through the three-way valve 22. Return to the machine.
  • the air cooled by the heat pump intermediate heat exchanger 21 flows out into the room and cools the room.
  • the heat medium flows into the heat medium circuit 30 by the pump 31, and its temperature rises by cooling each heat generating device, passes through the two-way valve F45, and passes through the first heat exchanger 37 for heat medium. Cooling is performed by releasing heat to the air branched by the path switching device B62.
  • the expansion valve B17 When the temperature of the heat medium exceeds the second set temperature, the expansion valve B17 is opened to the set opening.
  • the expansion valve B17 When the expansion valve B17 is opened, a part of the liquid refrigerant in the receiver tank 16 is decompressed by the expansion valve B17 and flows to the heat pump intermediate heat exchanger 19 to cool the heat medium flowing through the heat medium intermediate heat exchanger 39, The refrigerant passes through the four-way valve 12 and flows through the heat pump intermediate heat exchanger 21 and the three-way valve 22, and returns to the compressor 11.
  • the number of rotations of the compressor and the opening degrees of the expansion valve B17 and the expansion valve C18 are set from the temperature of the heat medium and the indoor air conditioning load. Therefore, the cooling of the heat medium and the cooling operation can be performed simultaneously.
  • the expansion valve B17 When the temperature of the heat medium becomes equal to or lower than the second set value, the expansion valve B17 is fully closed, and the heat medium circuit 30 enters the air cooling mode. Furthermore, the temperature of the heat medium is detected by a battery temperature sensor 81, an inverter temperature sensor 82, a voltage converter temperature sensor 83, a motor temperature sensor 84, a transmission temperature sensor 85, and a temperature sensor 80 that detect the temperature of each heating element.
  • the pump 31 is stopped and the air path switching device A62 is switched to the indoor heat exchanger side for the heat pump. The air is sent to the indoor heat exchanger 21 for the heat pump and controlled to the cooling operation mode for cooling the room.
  • Cooling / Heating Operation Mode In the cooling / heating operation mode, a battery temperature sensor 81, an inverter temperature sensor 82, a voltage converter temperature sensor 83 for detecting the temperature of each heating element when the heating operation is selected by the air conditioning control device. In this mode, the motor temperature sensor 84 and the transmission temperature sensor 85 are automatically driven when one temperature detected by the temperature sensor 80 exceeds the first set temperature set for each heating element.
  • the four-way valve 12 of the heat pump system 10 is switched to the cooling side, the discharge side of the compressor is connected to the outdoor heat exchanger 13, the three-way valve 22 is switched to the heating side, and the expansion valve C18 is set.
  • the compressor 11 and the outdoor fan 14 are driven by the opening degree.
  • the pump 31 of the heat medium circuit 30 and the indoor fan 61 of the indoor air conditioning unit 60 are driven, the air path switching device A62 is on the heat medium first heat exchanger 37 side, and the air path switching device B63 is the heat pump indoor heat.
  • the two-way valve G46 on the exchanger side is controlled to be closed.
  • the two-way valve E44 and the two-way valve F are the heat pump temperature detected by the indoor air conditioning unit 60 detected by the indoor air conditioning unit inlet heat medium temperature sensor 86 and the heat pump intermediate temperature detected by the heat pump intermediate heat exchanger temperature sensor 88. Controlled by the heat exchanger temperature, if the heat medium temperature is higher than the intermediate heat exchanger temperature for heat pump, the two-way valve E44 is open, the two-way valve F is closed, and if it is lower, the two-way valve E44 is closed, two-way Valve F is controlled to open.
  • the high-temperature and high-pressure refrigerant in the compressor 11 passes through the three-way valve 22 and is sent to the heat pump indoor heat exchanger 21 to heat the air blown by the indoor fan 61 to expand the expansion valve C18. Then, it becomes a saturated solution and is sent to the receiver tank 16.
  • the refrigerant that has been decompressed by the expansion valve A15 from the receiver tank 16 and has become a low-pressure and low-temperature two-phase refrigerant absorbs heat from the air blown by the outdoor fan 14 in the outdoor heat exchanger 13 and becomes a gas refrigerant and returns to the compressor through the four-way valve 12. .
  • the heat medium temperature is higher than the intermediate heat exchanger temperature for the heat pump
  • the heat medium of the heat medium circuit whose temperature is increased by cooling the heat generating device passes through the two-way valve E44, and in the second heat exchanger 38 for the heat medium
  • the air heated by the heat pump indoor heat exchanger 21 is further heated to be cooled.
  • the heat medium temperature is lower than the heat pump intermediate heat exchanger temperature
  • the heat medium passes through the two-way valve F45 and is cooled by heating the air blown by the indoor fan 61 in the heat medium first heat exchanger 37.
  • the heat radiation of the heat generating device for indoor heating
  • the amount of heat required for the heat pump system can be reduced, and the power consumption of the heat pump system can be reduced.
  • the heat dissipation of the heat generating device is small and the heat medium temperature is the intermediate heat exchange for the heat pump.
  • the heat dissipation can be used for heating even when the temperature is lower than the oven temperature.
  • the heat medium temperature is higher than the intermediate heat exchanger temperature for the heat pump, the temperature of the air heated by the heat pump system can be lowered, and the efficiency of the heat pump system is improved. Power consumption can be reduced.
  • the dehumidification operation mode is a mode that is automatically driven when the dehumidification operation is selected by the air conditioning control device. At this time, when the indoor set temperature is lower than the room temperature, cooling dehumidification is controlled, and when the indoor set temperature is higher than the room temperature, heating dehumidification is controlled.
  • the dehumidifying operation will be described with reference to FIG. 7.
  • the four-way valve 12 of the heat pump system 10 is switched to the cooling side, the three-way valve 22 is switched to the cooling side, the expansion valve B17 is controlled to be closed, and the compressor 11 and the outdoor fan 14 are driven.
  • the pump 31 of the heat medium circuit 30 and the indoor fan 61 of the indoor air conditioning unit 60 are driven, the air path switching device A62 is on the heat pump indoor heat exchanger side, and the air path switching device B63 is on the heat pump indoor heat exchanger side.
  • the two-way valve E44 is controlled to be opened, and the two-way valve F45 and the two-way valve G46 are controlled to be closed.
  • the high-temperature and high-pressure refrigerant in the compressor 11 passes through the four-way valve 12 and dissipates heat in the outdoor heat exchanger 13, passes through the expansion valve A15, and is sent to the receiver tank 16 as saturated liquid.
  • the liquid refrigerant in the receiver tank 16 is depressurized by the expansion valve C18, becomes a low-pressure and low-temperature two-phase refrigerant, is sent to the intermediate heat exchanger 21 for heat pump, cools the air blown by the indoor fan 61, and gas refrigerant Then, it returns to the compressor 11 through the three-way valve 22.
  • the heat medium of the heat medium circuit which has been sent to each heat exchanger of the heat generating device by the pump 31 and the temperature has risen, passes through the two-way valve E44, is the second heat exchanger 38 for the heat medium, and is the indoor heat exchanger 21 for the heat pump.
  • the cooled air is cooled again by heating, passes through the heat medium intermediate heat exchanger 39, and returns to the pump 31.
  • the air blown by the indoor fan 61 is cooled by the heat pump indoor heat exchanger 21, dehumidified by condensing moisture, and reheated by the heat medium intermediate heat exchanger 38, thereby reducing the humidity. It flows into the room at a relatively low temperature, and the room is dehumidified and cooled.
  • the rotational speed of the compressor 11 is controlled by the temperature of the heat medium detected by the indoor unit inflow heat medium temperature sensor 86, the indoor fan inflow air temperature detected by the indoor unit inflow air temperature sensor 87, and the indoor air conditioning load.
  • the four-way valve 12 of the heat pump system 10 is switched to the heating side, the three-way valve 22 is switched to the cooling side, the expansion valve A15 is controlled to be closed, and the compressor 11 and the outdoor fan 14 are driven. Further, the pump 31 of the heat medium circuit 30 and the indoor fan 61 of the indoor air conditioning unit 60 are driven, the air path switching device A62 is on the heat pump indoor heat exchanger side, and the air path switching device B63 is on the heat pump indoor heat exchanger side.
  • the two-way valve E44 is controlled to be opened, and the two-way valve F45 and the two-way valve G46 are controlled to be closed.
  • the high-temperature and high-pressure refrigerant in the compressor 11 passes through the four-way valve 12 and heats the heat medium flowing through the heat medium intermediate heat exchanger 39 in the heat pump intermediate heat exchanger 19 to be liquid refrigerant. Then, it passes through the expansion valve B17 and is sent to the receiver tank 16 as a saturated liquid. The liquid refrigerant in the receiver tank 16 is depressurized by the expansion valve C18, becomes a low-pressure low-temperature two-phase refrigerant, is sent to the intermediate heat exchanger 21 for heat pump, cools the air blown by the indoor fan 61, and gas refrigerant Then, it returns to the compressor 11 through the three-way valve 22.
  • the heat medium of the heat medium circuit which has been sent to each heat exchanger of the heat generating device by the pump 31 and the temperature has risen, passes through the two-way valve E44, is the second heat exchanger 38 for the heat medium, and is the indoor heat exchanger 21 for the heat pump.
  • the cooled air is cooled again by heating, and is heated by the heat pump intermediate heat exchanger 19 in the heat medium intermediate heat exchanger 39 and returned to the pump 31.
  • the heating to the heat medium adds the heat dissipation amount of the heat pump system 10 to the heat dissipation amount of the heating element, and is always larger than the cooling amount in the intermediate heat exchanger 21 for heat pump.
  • the air blown by the indoor fan 61 is cooled by the indoor heat exchanger 21 for heat pump, dehumidified by condensing moisture, and heated again by the intermediate heat exchanger 38 for heat medium. It flows into the room at a high temperature and performs indoor dehumidification heating.
  • the rotational speed of the compressor 11 is controlled by the temperature of the heat medium detected by the indoor unit inlet heat medium temperature sensor 86, the indoor fan 87 inflow air temperature detected by the indoor unit inflow temperature sensor 87, and the indoor air conditioning load.
  • the warm-up operation mode will be described with reference to FIG.
  • the warm-up mode occurs immediately after the vehicle is started because the outside air temperature is low as in winter.
  • the temperature of the heat medium detected by the heat medium temperature sensor 80 is equal to or lower than a third set value (for example, 20 ° C.)
  • the warm-up mode is controlled.
  • the dehumidification is set by the air conditioner controller, the heat pump system 10, the heat medium circuit 30, and the indoor air conditioning unit 60 are controlled in the same way as the heating dehumidification, and each heating element adds to its own heat generation, and the heat pump system 10 Therefore, the temperature of the heating element can be increased rapidly.
  • the receiver tank 16 When dehumidification is not selected by the air conditioner controller, the receiver tank 16 is controlled by closing the expansion valve C18 of the heat pump system 10, opening the expansion valve A15 to the set opening degree, and controlling the others in the same manner as the heating dehumidification.
  • the liquid refrigerant passes through the expansion valve A15, absorbs heat from the air sent to the outdoor heat exchanger 89 by the low-pressure and low-temperature two-phase refrigerant, and is blown by the outdoor fan 14, and becomes gas refrigerant and returns to the compressor 11 through the four-way valve 12. .
  • the indoor fan 61 may be stopped, the air blowing from the indoor air conditioning unit 60 to the room is stopped, and the temperature of the heat medium can be raised to an appropriate temperature more quickly. Therefore, just after starting in winter, the time when each heat generating device is low temperature, the battery chemical reaction is insufficient and the discharge efficiency is low, or the lubricating oil in the transmission is low temperature and the viscosity is high and the transmission efficiency is low. Can be shortened.
  • Auxiliary Heating Operation Mode When the heating operation is selected by the air conditioning control device and the outside air temperature detected by the outside air temperature sensor 89 falls below the first outside air temperature set value (for example, 0 ° C.), the heat pump system 10 and the auxiliary heating are operated. In the first auxiliary heating operation mode by the device 70, when the outside air temperature becomes equal to or lower than the second outside air temperature set value (for example, ⁇ 20 ° C.), the auxiliary heating device 70 is controlled to the second auxiliary heating operation mode alone.
  • the four-way valve 12 of the heat pump system 10 is switched to the heating side, the suction side of the compressor is connected to the outdoor heat exchanger 13, and the three-way valve 22 is heated.
  • the expansion valve B17 is controlled to be closed, and the compressor 11 and the outdoor fan 14 are driven.
  • Fuel for example, kerosene
  • an auxiliary heating pump (not shown) is driven.
  • the pump 31 of the heat medium circuit 30 and the indoor fan 61 of the indoor air conditioning unit 60 are driven, the air path switching device A62 is on the side of the heat pump indoor heat exchanger 21, and the air path switching device B63 is on the heat pump indoor heat exchanger.
  • the two-way valve E44 is controlled to be opened, and the two-way valve F45 and the two-way valve G46 are controlled to be closed.
  • the compressor 11 is driven, the high-temperature and high-pressure refrigerant in the compressor 11 passes through the three-way valve 22 and is sent to the heat pump indoor heat exchanger 21 to heat the air blown by the indoor fan 61 to expand the expansion valve C18. Then, it becomes a saturated solution and is sent to the receiver tank 16.
  • the liquid refrigerant in the receiver tank 16 passes through the expansion valve A15, absorbs heat from the air sent to the outdoor heat exchanger 89 by the low-pressure and low-temperature two-phase refrigerant, and blown by the outdoor fan 14, and becomes a gas refrigerant and is compressed through the four-way valve 12.
  • the heating medium heated by combustion by the auxiliary heating pump of the auxiliary heating device 70 passes through the auxiliary combustion circuit 73 and is sent to the auxiliary heating intermediate heat exchanger 72 in the intermediate heat exchanger 25, where the holding frame
  • the intermediate heat exchanger 39 for the heat medium in contact with the surface by 27 is heated and returned to the combustor 71.
  • the heat medium heated by the intermediate heat exchanger 39 for the heat medium is sent to each heating element by the pump 31 and further increases in temperature, passes through the two-way valve E44, and is heated by the second heat exchanger 38 for the heat medium.
  • the air heated by the indoor heat exchanger 21 is further heated to be cooled, and then returned to the intermediate heat exchanger 39 for the heat medium.
  • the air heated by the heat pump indoor heat exchanger 21 and the heat medium second heat exchanger 38 flows into the room and heats the room.
  • the compressor 11 and the outdoor fan 14 in the first auxiliary heating operation mode are stopped, and the indoor heating is performed only by the second heat exchanger 38 for the heat medium heat medium.
  • the refrigerant density at the compressor inlet will be low, and even if using a heat pump system where the capacity is reduced or using auxiliary heating by combustion together, reliable heating capacity is ensured even if the outside air temperature is low
  • the operating range of the heat pump system can be reduced, and the heat pump system can be provided with high efficiency.
  • the ratio between the suction pressure and the discharge pressure of the compressor does not increase, and the temperature rise of the compressor can be prevented and reliability is improved. High heat pump system.
  • the fuel for the auxiliary heater is not limited to kerosene, but may be any material that can be easily transported and supplemented, such as ethanol or liquefied propane sealed in a small container.
  • heating can be performed by replenishing only the fuel, and it is possible to stay in the vehicle for a long time in the winter regardless of the use like a battery.
  • an intermediate heat exchanger for auxiliary heating and an intermediate heat exchanger for heat medium that are in contact with each other by a holding frame and capable of heat exchange the area where the vehicle is used does not require auxiliary heating. Therefore, even if it moves to the area where auxiliary heating exists, attachment becomes possible easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

低外気温度から高外気温度までの幅広い環境で、車両に搭載された発熱体の温度を常に保持するとともに、車内の冷房又は暖房を確実に行うことが可能な車両用熱システムを提供するために、圧縮機、冷媒の流れ方向を切り替える第1の冷媒切り替え手段、室外熱交換器、第1の流量制御手段、第2の流量制御手段及びヒートポンプ用中間熱交換器を順に接続するとともに、第1の流量制御手段と第2の流量制御手段の間から第3の流量制御手段、ヒートポンプ用室内熱交換器、圧縮機の出口側と圧縮機の入口側を切り替える第2の冷媒切り替え手段を設けたバイパス回路を備え、内部を冷媒が流れるヒートポンプシステムと、液ポンプ、車両に搭載された発熱体を冷却する冷却用熱交換器、熱媒体用室内熱交換器及び熱媒体用中間熱交換器を順次接続し内部を熱媒体が流れる熱媒体回路を設け、前記ヒートポンプ用中間熱交換器と前記熱媒体用中間熱交換器を熱交換可能に設けたことを特徴とする。

Description

車両用熱システム
 本発明は、電気自動車、ハイブリッド自動車、あるいは電気鉄道等の電動車両に適用される車両用熱システムに関する。
 電気自動車等の車両用熱システムについて、例えば特許文献1及び特許文献2に記載された技術が知られている。
 特許文献1には、空気流路中に配設されている冷媒蒸発器、エアミックスダンパ、および熱媒ヒータにより温調された空気を車室内に吹き出すHVACユニットと、冷媒圧縮機、冷媒の循環方向を切替る冷媒循環切替手段、冷媒と外気とを熱交換する空気熱交換器、冷媒膨張手段、および前記冷媒蒸発器がこの順に接続されるとともに、前記冷媒蒸発器に対して冷媒と熱媒とを熱交換する冷媒/熱媒熱交換器が並列に接続されているヒートポンプサイクルと、熱媒循環ポンプ、前記冷媒/熱媒熱交換器、熱媒加熱用の電気ヒータ、および前記熱媒ヒータがこの順に接続されている熱媒サイクルと、を備え、前記熱媒サイクルに走行用モータの冷却回路が電磁弁を介して並列に接続され、前記熱媒ヒータに前記冷却回路中の熱媒が熱媒ポンプを介して循環可能とされている車両用空調装置が記載されている。
 特許文献2には、車室内へ向かって空気を送るためのダクトと、このダクト内において車室内へ送風する送風機と、冷媒を圧縮して吐出する冷媒圧縮機、この冷媒圧縮機より吐出された冷媒と温水とを熱交換させて温水を加熱する冷媒水熱交換器、および冷媒の蒸発熱により空気を冷却する冷媒蒸発器を有する冷凍サイクルと、前記冷媒水熱交換器で加熱された温水を循環させるポンプ、および前記ダクト内に設置され、前記冷媒水熱交換器より流入した温水により前記ダクト内を流れる空気を加熱する温水式加熱器を有する温水サイクルと、を備えた車両用空気調和装置が記載されている。
特開2009-280020号公報 特開平8-197937号公報
 特許文献1および特許文献2にみられる技術では、冷房時は、冷媒蒸発器(本発明の「ヒートポンプ用室内熱交換器」に相当する。)で冷却した冷風で熱媒ヒータを冷却し、暖房時に冷媒/熱媒体熱交換器(本発明の「ヒートポンプ用中間熱交換器」に相当する。)で熱媒体を加熱し、熱媒ヒータで空気を加熱する方式であるので、暖房用と冷房用の熱媒体の温度が同一となるので、きめ細かい温度制御ができないという問題点があった。
 本発明は、従来技術の上記問題点を解決し、低外気温度から高外気温度までの幅広い環境で、車両に搭載された発熱体の温度を常に保持するとともに、車内の冷房又は暖房を確実に行うことが可能な車両用熱システムを提供することを課題とするものである。
(1) 請求項1の発明は、圧縮機、冷媒の流れ方向を切り替える第1の冷媒切り替え手段、室外熱交換器、第1の流量制御手段、第2の流量制御手段及びヒートポンプ用中間熱交換器を順に接続するとともに、第1の流量制御手段と第2の流量制御手段の間から第3の流量制御手段、ヒートポンプ用室内熱交換器、圧縮機の出口側と圧縮機の入口側を切り替える第2の冷媒切り替え手段を設けたバイパス回路を備え、内部を冷媒が流れるヒートポンプシステムと、液ポンプ、車両に搭載された発熱体を冷却する冷却用熱交換器、熱媒体用室内熱交換器及び熱媒体用中間熱交換器を順次接続し内部を熱媒体が流れる熱媒体回路を設け、前記ヒートポンプ用中間熱交換器と前記熱媒体用中間熱交換器を熱交換可能に設けたことを特徴とする車両用熱システムである。
(2) 請求項2の発明は、請求項1に記載された車両用熱システムにおいて、前記熱媒体用室内熱交換器が、第1の熱媒体用室内熱交換器と、該第1の熱媒体用室内熱交換器を通過する空気流の下流側に置かれた第2の熱媒体用室内熱交換器を含み、前記第1の熱媒体用室内熱交換器を通過した空気の流れを前記第2のヒートポンプ用室内熱交換器又は外部側に向ける風路切り替え手段を設け、前記ヒートポンプ用室内熱交換器を通過した空気の流れの下流側に前記第2の熱媒体用室内熱交換器を設けたことを特徴とする。
(3) 請求項3の発明は、請求項1に記載された車両用熱システムにおいて、前記発熱体の冷却用熱交換器として、バッテリ用熱交換器、インバータ用熱交換器、電圧変換器用熱交換器、モータ用熱交換器及び変速機用熱交換器を直列に接続し、バッテリ用熱交換器、電圧変換機用熱交換器及び変速機用熱交換器のそれぞれに熱媒体の流量を制御するバイパス路を設けたことを特徴とする。
(4) 請求項4の発明は、請求項1に記載された車両用熱システムにおいて、前記熱媒体が流れる熱媒体回路とは独立した第2の熱媒体回路を設け、前記第2の熱媒体回路に、該回路を流れる第2の熱媒体を加熱する燃焼器と補助暖房用熱交換器を設けて、前記補助暖房用熱交換器と前記熱媒体用中間熱交換器とを熱交換可能に設けたことを特徴とする。
(5) 請求項5の発明は、請求項4に記載された車両用熱システムにおいて、前記ヒートポンプ用中間熱交換器、前記熱媒体用中間熱交換器及び前記補助暖房用熱交換器は、押し付け力によって熱交換可能に設けられると共に、該押し付け力を取り除くとそれぞれが分離可能に構成されたことを特徴とする。
 本発明によれば、車室内の空調負荷に関わらず、車両に搭載された発熱体の温度制御を容易化するので、発熱体の適切な冷却を確実に行うことができる。
 本発明によれば、車両に搭載された発熱体の排熱を、車室内の暖房に有効に活用できる。また、空調停止時あるいは冷房時に風路を外部に設定することにより、第1の熱媒体用室内熱交換器で加熱された空気を、外部に排出することにより、これが室内に導入されるのを防止することができる。
 本発明によれば、冷却用熱交換器に熱媒体の流量を制御する流量制御手段を設けたバイパス路を設けることにより、冷却に必要な熱媒体流量が異なる場合でも、熱媒体流量を最大となる機器に合わせ、その他の機器の流量をバイパス路に流すことにより、熱媒体の流路抵抗を小さくすると共にポンプの消費電力を少なくすることができる。
 本発明によれば、バッテリ、インバータ、電圧変換器の電子部品を優先的に冷却することで、比較的耐熱温度低い電子部品の信頼性を増加し、また、バッテリ、変速機のように、効率および信頼性から最適な温度範囲がある機器については、熱媒体流量を制御することにより常に高効率で信頼性の高い最適な運転を確保することができる。
 本発明によれば、補助暖房装置を設けて、補助暖房用熱交換器と熱媒体用中間熱交換器を熱交換可能に設けることにより、低外気温度の場合にも、暖房能力を確保すると共に、暖房によるバッテリの消費を抑制して、車両の走行距離の確保することができる。
 本発明によれば、ヒートポンプ用中間熱交換器、熱媒体用中間熱交換器、補助暖房用熱交換器を分離可能とすることで、補助暖房装置が必要となった場合に後付けが容易であり、また、補助暖房装置、熱媒体回路に故障が生じても、ヒートポンプシステムから容易に切り離しが可能となり、ヒートポンプシステム内に封入された冷媒の回収を不要とし、冷媒の大気放出による地球温暖化を防止することができる。
本発明の車両用熱システムの概略構成を示す。 本発明に係るヒートポンプ用中間熱交換器19の構成を示す。 コンポーネント類の冷暖房、冷却/暖機の状態/運転条件を示す。 冷却運転モードにおける本発明の車両用熱システムを示す。 冷却・冷房運転モードにおける本発明の車両用熱システムを示す。 冷却・暖房運転モードにおける本発明の車両用熱システムを示す。 除湿運転モードにおける本発明の車両用熱システムを示す。 暖機運転モードにおける本発明の車両用熱システムを示す。 補助暖房運転モードにおける本発明の車両用熱システムを示す。
 以下では、本発明の車両用熱システムを電気自動車に適用した一実施の形態を説明するが、本発明の範囲はこれに限定されるものではない。なお、本発明は電気自動車に限定されず、ハイブリッド自動車、あるいは電気鉄道、建設車両、その他の特殊車両等の電動車両に対しても適用することができる。また、この一実施の形態ではインバータにより駆動されるモータを例に挙げて説明するが、本発明はインバータにより駆動モータに限定されず、例えばサイリスタレオナード装置などのコンバータにより駆動される直流モータ、あるいはチョッパ電源により駆動されるパルスモータなど、あらゆる種類の回転電機(モータ・ジェネレータ)に適用することができる。
(1) 車両用熱システムの構成について
 図1は、本発明の車両用熱システムの概略構成を示す図である。図1に示す車両用熱システムは、車室や温度調節が必要な機器の冷暖房、冷却/加熱を行うための室内空調ユニット60と、ヒートポンプシステム10と、車両に搭載された発熱体を温度調節するための熱媒体回路30と、これらを制御する空調制御装置(図示省略)を備える。
 車両用熱システムに設けられた各種アクチュエータは、空調制御装置からの制御信号により制御される。本実施の形態に関係するアクチュエータには、圧縮機11、第1の流量制御手段としての膨張弁A15、第2の流量制御手段としての膨張弁B17、第3の流量制御手段としての膨張弁C18、第1の冷媒切り替え手段としての四方弁12、第2の冷媒切り替え手段としての三方弁22、二方弁A40、二方弁B41、二方弁C42、二方弁D43、二方弁E44、二方弁F45、二方弁G46、室外ファン14および室内ファン61がある。
 熱媒体回路30内には、ポンプ31によって熱媒体(例えばエチレングリコール水溶液)が送出し、車両に搭載された発熱体(図1に示された実施例では、バッテリ、インバータ、電圧変換器、モータ、変速機)を冷却し、これにより温度上昇した熱媒体は、車室内に送られる空気を適宜加熱できるようになって、更に熱媒体用中間熱交換器を経て、ポンプ31に戻るように循環する。また、熱媒体の温度を検出する熱媒体温度センサ80、各発熱体の温度を検出するバッテリ温度センサ81、インバータ温度センサ82、電圧変換器温度センサ83、モータ温度センサ84、変速機温度センサ85が設けられている。
 これに対して、ヒートポンプシステム10の冷凍サイクルには、冷媒(例えばR1234yf)を圧縮する圧縮機11、冷媒と外気との熱交換を行う室外熱交換器13、分岐した冷凍サイクル回路にあるヒートポンプ用中間熱交換器19、冷媒と室内空気との熱交換を行うヒートポンプ用室内熱交換器21が設けられている。
 圧縮機11の吸込配管と吐出配管との間には、四方弁12が設けられ、四方弁12を切り換えることによって、吸込配管および吐出配管のいずれか一方を室外熱交換器13に接続し、他方をヒートポンプ用中間熱交換器19に接続することができる。また、三方弁22は、これを切り換えることによって、ヒートポンプ用室内熱交換器21を圧縮機11の吸込側および吐出側のいずれか一方に接続する。
 また、膨張弁A15と膨張弁B17の間には余剰になった冷媒を液で溜めておくレシーバタンク16が設けられ、レシーバタンク16から、膨張弁C18へのバイパス回路が設けられている。さらに、室内空調ユニット60に流入する空気の温度を検出する室内ユニット流入空気温度センサ87、ヒートポンプ用室内熱交換器21の温度を検出するヒートポンプ用室内熱交換器温度センサ88、外気の温度を検出する外気温度センサ89が設けられる。空調負荷は空調制御装置の設定温度と室内温度(図示省略)の温度差、外気温度センサ89で算出される外気温度から算出される。
 図2は、本発明に係る中間熱交換器25の構成を示す。中間熱交換器25は、ヒートポンプ用中間熱交換器19、熱媒体用中間熱交換器39、補助暖房用熱交換器72を、互いに熱交換可能な状態に接触させて熱交換器押さえ枠27内に収納して、押さえ枠27を熱交換器取付部26に固定することで構成されたものである。他方、熱交換器取付部26から押さえ枠27を解放すると、ヒートポンプ用中間熱交換器19、熱媒体用中間熱交換器39、補助暖房用熱交換器72は、互いに分離可能である。
(2) コンポーネント類の冷房/暖房、冷却/暖機の運転動作について
 図3は、本発明に係る車両用熱システムのコンポーネント類の冷房/暖房、冷却/暖機についての条件を示す。
 次に、図1に示した車両用熱システムの運転動作について、順次説明する。以下では、冷却、冷却+冷房、冷却+暖房、冷却+除湿、暖機、補助暖房の運転について説明する。
(3) 冷却運転モードについて
 冷却運転モードは、室内空調が停止状態で、各発熱体の温度を検出するバッテリ温度センサ81、インバータ温度センサ82、電圧変換器温度センサ83、モータ温度センサ84、変速機温度センサ85温度センサ80で検出される温度が一つでも各発熱体に設定されている第1の設定温度を超えると自動的に駆動されるモードである。
 図4を用いて説明する。熱媒体温度センサ80で検出される熱媒体の温度が各発熱体に設定されている第1の設定温度の最も低い温度以上になると送風冷却運転モードに制御される。ポンプ31を運転、風路切り替え装置A62を熱媒体用第1熱交換器37側、風路切り替え装置B63を外気側、二方弁E44、二方弁G46が閉、二方弁F45が開に制御され、室内ファン61が運転される。
 ポンプ31が運転されると熱媒体回路30内の熱媒体(例えば、エチレングリコール水溶液)が循環し、インバータ用熱交換器33、電圧変換器用熱交換器34、モータ用熱交換器35、変速機用熱交換器36を熱媒体が流れてこれらの発熱体を冷却する。この時、発熱体の効率が温度により適正値があるバッテリ、変速機にはそれぞれバッテリバイパス路47、変速機バイパス路49と流量制御のための二方弁A40、二方弁B41、二方弁C42、二方弁D43が設けられ、バッテリ温度センサ81で検出されるバッテリ温度が第1のバッテリ設定値(例えば40℃)以下の場合は二方弁A40が閉、二方弁B41が開となり熱媒体はバッテリバイパス路47を流れ、バッテリの発熱によりバッテリの温度が上昇し、第2のバッテリ設定温度(例えば60℃)以上になると二方弁A40が開、二方弁B41が閉となり熱媒体はバッテリ熱交換器32を流れバッテリを冷却する。したがって、バッテリの温度は常に放電効率が高い温度に維持できる。
 また、変速機バイパス路49、二方弁C42、二方弁D43により変速機の温度も所定の範囲に制御され、変速機内に封入されている潤滑油の粘度が適正な値に維持され、信頼性と効率の両立が可能となる。一方、発熱量が少なく、低温時の効率変化が少ない電圧変換器では、電圧変換器バイパス路48を設けることにより、電圧変換器用熱交換器34に流れる熱媒体の流量を適正にすることができ、電圧変換器用熱交換器34での熱媒体の圧力損失低くできる。
 発熱体により加熱された熱媒体は二方弁Fを通り室内ファン61で送風された空気により冷却され、熱媒体用中間熱交換器39を通り再びポンプ31に戻る。熱媒体を冷却し加熱された空気は風路切替装置B63により外部に放出される。ここで、室内ユニット流入空気温度センサ87で検出される室内ユニット流入空気温度が低く、熱媒体を冷却しすぎる場合には、二方弁Bを開にし、熱媒体用中間熱交換器39に流れる熱媒体の流量を少なくすることで、熱媒体の温度を適正に維持できる。
 発熱機器の発熱量が増加、あるいは外気温度が上昇し熱媒体温度センサ80で検出された熱媒体の温度が各発熱体に設けられた第2の設定値の中で最も低い温度値以上になると強制冷却モードになる。四方弁12を冷却側、三方弁22を冷房側、膨張弁C18を全閉、室外ファン14を運転に制御されヒートポンプシステム10が駆動される。熱媒体回路30、室内空調ユニットは送風冷却モードと同一に制御される。
 ヒートポンプシステム10内の冷媒は圧縮機11で高温高圧のガス冷媒となり四方弁12を通り室外熱交換器13に送られる。室外熱交換器13で室外ファン14による送風された空気に放熱し液冷媒となり、膨張弁A15で減圧され飽和状態の液冷媒となりレシーバタンク16に送られる。レシーバタンク17内の液冷媒は膨張弁B17に送られ、さらに減圧され低圧低温の二相冷媒となり中間熱交換器25内のヒートポンプ用中間熱交換器19に送られ、押さえ枠27により面で接触している熱媒体用中間熱交換器39を冷却し、低圧のガス冷媒となって四方弁12を通り圧縮機11に戻る。
 したがって、熱媒体は送風冷却モードと同様に室内ファン61で送風された空気による冷却に加え、ヒートポンプシステム10により、中間熱交換器25で熱媒体を冷却する。第2の設定温度以下になると再び送風冷却モードに制御される。圧縮機11の回転数は熱媒体の温度により制御されるために、発熱機器の発熱量に応じて冷却能力を制御でき、確実に冷却できる。さらに、ヒートポンプ用中間熱交換器と熱媒体用中間熱交換器を分離可能構造とし、押さえ枠により熱交換可能に設けることにより、熱媒体回路に故障が生じ、取り外す必要があっても、ヒートポンプシステムは取り外す必要がなく、内部に封入されている冷媒の回収時の放出を防止できる。
(4) 冷却・冷房運転モードについて
 冷却・冷房運転モードは、空調制御装置で冷房運転が選択され、各発熱体の温度を検出するバッテリ温度センサ81、インバータ温度センサ82、電圧変換器温度センサ83、モータ温度センサ84、変速機温度センサ85温度センサ80で検出される温度が一つでも各発熱体に設定されている第1の設定温度を超えると自動的に駆動されるモードである。
 図5を用いて説明すると、ヒートポンプシステム10の四方弁12を冷却側に切り替えて圧縮機の吐出側を室外熱交換器13に接続し、三方弁22を冷房側に切り替え、膨張弁C18は設定開度に制御され、圧縮機11、室外ファン14が駆動される。さらに、熱媒体回路30のポンプ31と、室内空調ユニット60の室内ファン61が駆動され、風路切り替え装置A62が中間位置に、風路切り替え装置B63が外気側に制御される。
 圧縮機11が駆動されると、ヒートポンプシステム10の冷媒は室外熱交換器13で液冷媒となりレシーバタンク23に飽和液の状態で送られる。飽和液の冷媒は膨張弁C18で減圧され低圧低温の二相冷媒となりヒートポンプ用中間熱交換器21に送られ、室内ファン61により送風された空気を冷却し、ガス冷媒となり三方弁22を通り圧縮機に戻る。ヒートポンプ用中間熱交換器21で冷却された空気は室内に流出し室内を冷房する。
 一方、熱媒体回路30には、ポンプ31によって熱媒体が流れ、各発熱機器を冷却することによりその温度が上昇し、二方弁F45を通り、熱媒体用第一熱交換器37で、風路切替装置B62により分岐された空気に放熱することにより冷却される。
 熱媒体の温度第2の設定温度以上になると、膨張弁B17が設定開度に開かれる。膨張弁B17が開かれるとレシーバタンク16内の液冷媒の一部が膨張弁B17で減圧されヒートポンプ用中間熱交換器19に流れ、熱媒体用中間熱交換器39を流れる熱媒体を冷却し、四方弁12を通りヒートポンプ用中間熱交換器21、三方弁22を流れた冷媒と合流して圧縮機11に戻る。圧縮機の回転数と膨張弁B17と膨張弁C18の開度は、熱媒体の温度と室内の空調負荷から設定される。したがって、熱媒体の冷却と冷房運転が同時に可能となる。
 熱媒体の温度が第2の設定値以下になると、膨張弁B17が全閉となり、熱媒体回路30は送風冷却モードとなる。さらに、熱媒体の温度が低下し各発熱体の温度を検出するバッテリ温度センサ81、インバータ温度センサ82、電圧変換器温度センサ83、モータ温度センサ84、変速機温度センサ85温度センサ80で検出される温度のすべてが各発熱体に設定されている第1の設定温度以下になると、ポンプ31が停止、風路切替装置A62がヒートポンプ用室内熱交換器側に切り替えられ、室内ファン61からのすべての空気がヒートポンプ用室内熱交換器21に送られ、室内を冷房する冷房運転モードに制御される。
(5) 冷却・暖房運転モードについて
 冷却・暖房運転モードは、空調制御装置で暖房運転が選択され、各発熱体の温度を検出するバッテリ温度センサ81、インバータ温度センサ82、電圧変換器温度センサ83、モータ温度センサ84、変速機温度センサ85温度センサ80で検出される温度が一つでも各発熱体に設定されている第1の設定温度を超えると自動的に駆動されるモードである。
 図6を用いて説明すると、ヒートポンプシステム10の四方弁12を冷却側に切り替えて圧縮機の吐出側を室外熱交換器13に接続し、三方弁22を暖房側に切り替え、膨張弁C18は設定開度に制御され、圧縮機11、室外ファン14が駆動される。さらに、熱媒体回路30のポンプ31と、室内空調ユニット60の室内ファン61が駆動され、風路切り替え装置A62は熱媒体用第一熱交換器37側、風路切り替え装置B63がヒートポンプ用室内熱交換器側、二方弁G46が閉に制御される。
 二方弁E44、二方弁Fは室内空調ユニット入口熱媒体温度センサ86により検出された室内空調ユニット60に流入する熱媒体温度とヒートポンプ用中間熱交換器温度センサ88によって検出されるヒートポンプ用中間熱交換器温度によって制御され、熱媒体温度がヒートポンプ用中間熱交換器温度より高い場合は、二方弁E44が開、二方弁Fが閉、低い場合は二方弁E44が閉、二方弁Fが開に制御される。
 圧縮機11が駆動されると、圧縮機11で高温高圧となった冷媒は三方弁22を通りヒートポンプ用室内熱交換器21に送られ、室内ファン61で送風された空気を加熱し膨張弁C18で飽和液となりレシーバタンク16に送られる。レシーバタンク16から膨張弁A15で減圧され低圧低温の二相になった冷媒は室外熱交換器13で室外ファン14により送風される空気から吸熱し、ガス冷媒となり四方弁12を通り圧縮機に戻る。
 発熱機器を冷却し温度が上昇した熱媒体回路の熱媒体は、熱媒体温度がヒートポンプ用中間熱交換器温度より高い場合は二方弁E44を通り、熱媒体用第二熱交換器38で、ヒートポンプ用室内熱交換器21で加熱された空気をさらに加熱することで冷却される。熱媒体温度がヒートポンプ用中間熱交換器温度より低い場合は二方弁F45を通り、熱媒体用第一熱交換器37で室内ファン61により送風された空気を加熱することにより冷却される。
 以上のように発熱機器の放熱を室内の暖房に用いることによりヒートポンプシステムで必要な熱量を低減でき、ヒートポンプシステムの消費電力を削減できる。また、熱媒体温度とヒートポンプ用中間熱交換器温度により、発熱機器の放熱をヒートポンプ用室内熱交換器の前後に切り替えることにより、発熱機器の放熱量が少なく、熱媒体温度がヒートポンプ用中間熱交換器温度より低い場合でも放熱量を暖房に利用でき、逆に、熱媒体温度がヒートポンプ用中間熱交換器温度より高い場合、ヒートポンプシステムで加熱する空気温度が低くでき、ヒートポンプシステムの効率が向上し消費電力を低減できる。
(6)除湿運転モード及び暖機運転モードについて
 除湿運転モードは、空調制御装置で除湿運転が選択されると自動的に駆動されるモードである。この時、室内の設定温度が室内温度より低い場合は冷房除湿、室内の設定温度が室内温度より高い場合は暖房除湿に制御される。
 図7を用いて除湿運転を説明すると、ヒートポンプシステム10の四方弁12を冷却側、三方弁22は冷房側に切り替え、膨張弁B17は閉に制御され、圧縮機11、室外ファン14が駆動される。さらに、熱媒体回路30のポンプ31と、室内空調ユニット60の室内ファン61が駆動され、風路切り替え装置A62はヒートポンプ用室内熱交換器側、風路切り替え装置B63がヒートポンプ用室内熱交換器側、二方弁E44が開、二方弁F45と二方弁G46が閉に制御される。
 圧縮機11が駆動されると、圧縮機11で高温高圧となった冷媒は四方弁12を通り室外熱交換器13で放熱し膨張弁A15を通り飽和液でレシーバタンク16に送られる。レシーバタンク16内の液冷媒は膨張弁C18で減圧され、低圧低温の二相の冷媒となってヒートポンプ用中間熱交換器21に送られ、室内ファン61によって送風された空気を冷却し、ガス冷媒となり、三方弁22を通り圧縮機11に戻る。ポンプ31により発熱機器の各熱交換器に送られ温度が上昇した熱媒体回路の熱媒体は二方弁E44を通り、熱媒体用第二熱交換器38で、ヒートポンプ用室内熱交換器21で冷却された空気を再び加熱することで冷却され、熱媒体用中間熱交換器39を通りポンプ31に戻る。
 したがって、室内ファン61により送風された空気はヒートポンプ用室内熱交換器21で冷却され、水分を凝縮することにより除湿され、熱媒体用中間熱交換器38で再び加熱されることで、低湿度で比較的低温度で室内に流出し、室内を除湿冷房を行う。圧縮機11の回転数は室内ユニット流入熱媒体温度センサ86で検出される熱媒体の温度、室内ユニット流入空気温度センサ87で検出される室内ファン流入空気温度と室内の空調負荷によって制御される。
 次に、図8を用いて暖房除湿について説明する。ヒートポンプシステム10の四方弁12を加熱側、三方弁22は冷房側に切り替え、膨張弁A15は閉に制御され、圧縮機11、室外ファン14が駆動される。さらに、熱媒体回路30のポンプ31と、室内空調ユニット60の室内ファン61が駆動され、風路切り替え装置A62はヒートポンプ用室内熱交換器側、風路切り替え装置B63がヒートポンプ用室内熱交換器側、二方弁E44が開、二方弁F45と二方弁G46が閉に制御される。
 圧縮機11が駆動されると、圧縮機11で高温高圧となった冷媒は四方弁12を通りヒートポンプ用中間熱交換器19で熱媒体用中間熱交換器39を流れる熱媒体を加熱し液冷媒となって膨張弁B17を通り飽和液でレシーバタンク16に送られる。レシーバタンク16内の液冷媒は膨張弁C18で減圧され、低圧低温の二相の冷媒となってヒートポンプ用中間熱交換器21に送られ、室内ファン61によって送風された空気を冷却し、ガス冷媒となり、三方弁22を通り圧縮機11に戻る。ポンプ31により発熱機器の各熱交換器に送られ温度が上昇した熱媒体回路の熱媒体は二方弁E44を通り、熱媒体用第二熱交換器38で、ヒートポンプ用室内熱交換器21で冷却された空気を再び加熱することで冷却され、熱媒体用中間熱交換器39でヒートポン用中間熱交換器19により加熱されポンプ31に戻る。
 したがって、熱媒体への加熱は発熱体の放熱量にヒートポンプシステム10の放熱量が加わり、必ず、ヒートポンプ用中間熱交換器21での冷却量より大きくなる。室内ファン61により送風された空気はヒートポンプ用室内熱交換器21で冷却され、水分を凝縮することにより除湿され、熱媒体用中間熱交換器38で再び加熱されることで、低湿度で比較的高温度で室内に流出し、室内の除湿暖房を行う。圧縮機11の回転数は室内ユニット入口熱媒体温度センサ86で検出される熱媒体の温度、室内ユニット流入温度センサ87で検出される室内ファン87流入空気温度と室内の空調負荷によって制御される。
 図8を用いて暖機運転モードについて説明する。暖機モードは冬季のように外気温が低く、車両の起動直後に生じる。熱媒体温度センサ80で検出される熱媒体の温度が第3の設定値(例えば20℃)以下の場合は、暖機モードに制御される。ここで、空調装置制御器で除湿が設定されるとヒートポンプシステム10、熱媒体回路30、室内空調ユニット60は暖房除湿と同様に制御され、各発熱体はそれ自身の発熱に加え、ヒートポンプシステム10により加熱された熱媒体により加熱されるために、発熱体の温度を急速に上げることができる。
 また、空調装置制御器で除湿が選定されていない時には、ヒートポンプシステム10の膨張弁C18を閉、膨張弁A15を設定開度に開き、その他を暖房除湿と同様に制御することにより、レシーバタンク16の液冷媒は膨張弁A15を通り、低圧低温の二相冷媒で室外熱交換器89に送られ室外ファン14により送風される空気から吸熱し、ガス冷媒となり四方弁12を通り圧縮機11に戻る。
 したがって、ヒートポンプ用室内熱交換器21には冷媒が流れないために、室内に供給する空気の冷却がなく、室内の温度を早く高めることができる。また、室内の空調が不必要な時には室内ファン61を停止すればよく、室内空調ユニット60から室内への送風が停止されるとともに、熱媒体の温度をさらに早く適正温度に上げることができる。したがって、冬季の起動直後のように各発熱機器が低温度で、バッテリの化学反応が不十分で放電効率が低い、あるいは、変速機内の潤滑油が低温で粘度が高く変速機の効率が低い時間を短くできる。
(7)補助暖房運転モードについて
 空調制御装置で暖房運転を選択され、外気温度センサ89で検出される外気温度が第1の外気温度設定値(例えば0℃)以下になるとヒートポンプシステム10と補助暖房装置70による第1の補助暖房運転モード、外気温度が第2の外気温度設定値以下(例えば-20℃)以下になると補助暖房装置70の単独による第2の補助暖房運転モードに制御される。
 図9を用いて説明すると、第1の補助暖房運転モードでは、ヒートポンプシステム10の四方弁12を加熱側に切り替えて圧縮機の吸込側を室外熱交換器13に接続し、三方弁22を暖房側に切り替え、膨張弁B17を閉に制御され、圧縮機11、室外ファン14が駆動される。補助暖房装置70の燃焼器71に燃料(例えば灯油)が供給され燃料が開始され、補助暖房ポンプ(図示せず)が駆動される。
 さらに、熱媒体回路30のポンプ31と、室内空調ユニット60の室内ファン61が駆動され、風路切り替え装置A62はヒートポンプ用室内熱交換器21側、風路切り替え装置B63がヒートポンプ用室内熱交換器21側、二方弁E44が開、二方弁F45と二方弁G46が閉に制御される。圧縮機11が駆動されると、圧縮機11で高温高圧となった冷媒は三方弁22を通りヒートポンプ用室内熱交換器21に送られ、室内ファン61で送風された空気を加熱し膨張弁C18で飽和液となりレシーバタンク16に送られる。
 レシーバタンク16の液冷媒は、膨張弁A15を通り、低圧低温の二相冷媒で室外熱交換器89に送られ室外ファン14により送風される空気から吸熱し、ガス冷媒となり四方弁12を通り圧縮機11に戻る。一方、補助暖房装置70の補助暖房用ポンプにより燃焼により加熱された加熱用媒体が補助燃焼用回路73を通り、中間熱交換器25内の補助暖房用中間熱交換器72に送られ、押さえ枠27により面で接触している熱媒体用中間熱交換器39を加熱し、燃焼器71に戻る。
 熱媒体用中間熱交換器39で加熱された熱媒体は、ポンプ31により各発熱体に送られさらに温度が上昇し、二方弁E44を通り、熱媒体用第二熱交換器38で、ヒートポンプ用室内熱交換器21で加熱された空気をさらに加熱することで冷却され、熱媒体用中間熱交換器39に戻る。ヒートポンプ用室内熱交換器21と熱媒体用第二熱交換器38で加熱された空気は室内に流入し、室内を暖房する。
 第2の補助暖房運転モードは、第1の補助暖房運転モードの圧縮機11、室外ファン14が停止したもので、室内の暖房は熱体熱媒体用第二熱交換器38でのみ行う。
 したがって、外気温度が低くなると圧縮機入口の冷媒の密度が低くなり、能力が低下するヒートポンプシステムを使用しても、燃焼による補助暖房を併用することで外気温度が低いでも確実な暖房能力を確保できるとともに、ヒートポンプシステムの運転範囲を小さくでき、高効率はヒートポンプシステムを提供できる。さらに、外気温度が極めて低くなる第2の外気温度設定値以下ではヒートポンプシステムを停止することにより、圧縮機の吸込圧力と吐出圧力の比が大きくならず、圧縮機の温度上昇が防止でき信頼性の高いヒートポンプシステムを提供できる。
 また、補助暖房器の燃料は、灯油だけでなく、エタノールあるいは小型の容器に封入された液化プロパンのような搬送と補充が容易なものであればよい。この場合、何らかのアクシデントで車両の移動が困難になっても、燃料のみを補充することで暖房ができ、冬季でもバッテリのように用にかかわらず長時間車内にいることが可能となる。さらに、中間熱交換器の助暖房用中間熱交換器と熱媒体用中間熱交換器を押さえ枠により面で接触させ、熱交換可能に設けることにより、車両の使用地域が補助暖房の要らない地域から、補助暖房のいる地域に移動しても容易に取り付けが可能となる。
10:ヒートポンプシステム、11:圧縮機、12:四方弁、13:室外熱交換器、14:室外ファン、15:膨張弁A、16:レシーバタンク、17:膨張弁C、18:膨張弁C、19:ヒートポンプ用中間熱交換器、
21:ヒートポンプ用室内熱交換器、22:三方弁、23:空調用バイパス路、25:中間熱交換器、
30:熱媒体回路、31:ポンプ、32:バッテリ用熱交換器、33:インバータ用熱交換器、34:電圧変換器用熱交換器、35:モータ用熱交換器、36:変速機用熱交換器、37:熱媒体用第一熱交換器、38:熱媒体用第二熱交換器、39:熱媒体用中間熱交換器、
40:二方弁A、41:二方弁B、42:二方弁C、43:二方弁D、44:二方弁E、45:二方弁F、46:二方弁G、47:バッテリバイパス路、48:電圧変換器バイパス路、49:変速機バイパス路、
50:室内空調ユニットバイパス路、
60:室内空調ユニット、61:室内ファン、62:風路切替装置A、63:風路切替装置B、
70:補助暖房装置、71:燃焼器、72:補助暖房用熱交換器、73:補助暖房用ポンプ、74:補助暖房用回路
80:熱媒体温度センサ、81:バッテリ温度センサ、82:インバータ温度センサ、83:電圧変換器温度センサ、84:モータ温度センサ、85:変速機温度センサ、86:室内空調ユニット入口熱媒体温度センサ、87:室内ユニット流入空気温度センサ,88:ヒートポンプ用中間熱交換器温度センサ,89:外気温度センサ

Claims (5)

  1.  圧縮機、冷媒の流れ方向を切り替える第1の冷媒切り替え手段、室外熱交換器、第1の流量制御手段、第2の流量制御手段及びヒートポンプ用中間熱交換器を順に接続するとともに、第1の膨張弁と第2の膨張弁の間から第3の流量制御手段、ヒートポンプ用室内熱交換器、圧縮機の出口側と圧縮機の入口側を切り替える第2の冷媒切り替え手段を設けたバイパス回路を備え、内部を冷媒が流れるヒートポンプシステムと、
     液ポンプ、車両に搭載された発熱体を冷却する冷却用熱交換器、熱媒体用室内熱交換器及び熱媒体用中間熱交換器を順次接続し内部を熱媒体が流れる熱媒体回路を設け、前記ヒートポンプ用中間熱交換器と前記熱媒体用中間熱交換器を熱交換可能に設けたことを特徴とする車両用熱システム。
  2.  請求項1に記載された車両用熱システムにおいて、
     前記熱媒体用室内熱交換器が、第1の熱媒体用室内熱交換器と、該第1の熱媒体用室内熱交換器を通過する空気流の下流側に置かれた第2の熱媒体用室内熱交換器を含み、
     前記第1の熱媒体用室内熱交換器を通過した空気の流れを前記第2のヒートポンプ用室内熱交換器又は外部側に向ける風路切り替え手段を設け、
     前記ヒートポンプ用室内熱交換器を通過した空気の流れの下流側に前記第2の熱媒体用室内熱交換器を設けたことを特徴とする車両用熱システム。
  3.  請求項1に記載された車両用熱システムにおいて、
     前記発熱体の冷却用熱交換器として、バッテリ用熱交換器、インバータ用熱交換器、電圧変換器用熱交換器、モータ用熱交換器及び変速機用熱交換器を直列に接続し、バッテリ用熱交換器、電圧変換機用熱交換器及び変速機用熱交換器のそれぞれに熱媒体の流量を制御するバイパス路を設けたことを特徴とする車両用熱システム。
  4.  請求項1に記載された車両用熱システムにおいて、
     前記熱媒体が流れる熱媒体回路とは独立した第2の熱媒体回路を設け、
     前記第2の熱媒体回路に、該回路を流れる第2の熱媒体を加熱する燃焼器と補助暖房用熱交換器を設けて、
     前記補助暖房用熱交換器と前記熱媒体用中間熱交換器とを熱交換可能に設けたことを特徴とする車両用熱システム。
  5.  請求項4に記載された車両用熱システムにおいて、
     前記ヒートポンプ用中間熱交換器、前記熱媒体用中間熱交換器及び前記補助暖房用熱交換器は、押し付け力によって熱交換可能に設けられると共に、該押し付け力を取り除くとそれぞれが分離可能に構成されたことを特徴とする車両用熱システム。
PCT/JP2011/053755 2011-02-22 2011-02-22 車両用熱システム WO2012114447A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013500743A JP5619986B2 (ja) 2011-02-22 2011-02-22 車両用熱システム
PCT/JP2011/053755 WO2012114447A1 (ja) 2011-02-22 2011-02-22 車両用熱システム
US13/985,380 US20130319029A1 (en) 2011-02-22 2011-02-22 Vehicle thermal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053755 WO2012114447A1 (ja) 2011-02-22 2011-02-22 車両用熱システム

Publications (1)

Publication Number Publication Date
WO2012114447A1 true WO2012114447A1 (ja) 2012-08-30

Family

ID=46720267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053755 WO2012114447A1 (ja) 2011-02-22 2011-02-22 車両用熱システム

Country Status (3)

Country Link
US (1) US20130319029A1 (ja)
JP (1) JP5619986B2 (ja)
WO (1) WO2012114447A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088060A (ja) * 2012-10-29 2014-05-15 Mitsubishi Heavy Ind Ltd ヒートポンプ式車両用空調装置及び車両
KR20160129169A (ko) * 2015-04-29 2016-11-09 한온시스템 주식회사 차량용 히트 펌프 시스템
CN108749513A (zh) * 2018-06-13 2018-11-06 上海加冷松芝汽车空调股份有限公司 一种电动车热管理系统
WO2019230118A1 (ja) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020031568A1 (ja) * 2018-08-10 2020-02-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020031569A1 (ja) * 2018-08-10 2020-02-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020158207A1 (ja) * 2019-01-30 2020-08-06 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2020147161A (ja) * 2019-03-13 2020-09-17 トヨタ自動車株式会社 車載温調装置
WO2020250765A1 (ja) * 2019-06-10 2020-12-17 株式会社デンソー 車両用熱管理システム
WO2021049340A1 (ja) * 2019-09-10 2021-03-18 株式会社デンソー 車両の熱交換システム
WO2022030182A1 (ja) * 2020-08-05 2022-02-10 株式会社デンソー 冷凍サイクル装置
WO2023161985A1 (ja) * 2022-02-22 2023-08-31 サンデン株式会社 熱マネジメントシステム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984471B1 (fr) * 2011-12-15 2013-11-29 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'une chaine de traction et d'un habitacle de vehicule
US8933658B2 (en) * 2013-01-08 2015-01-13 Honeywell International Inc. Thermal protection method and system to maximize availability of electric drive system
US10375901B2 (en) 2014-12-09 2019-08-13 Mtd Products Inc Blower/vacuum
KR102170463B1 (ko) * 2015-03-16 2020-10-29 한온시스템 주식회사 차량용 히트 펌프 시스템
KR102504482B1 (ko) * 2016-03-30 2023-03-02 한온시스템 주식회사 차량용 공조 시스템
JP6587538B2 (ja) * 2015-12-25 2019-10-09 日立建機株式会社 ハイブリッド式建設機械
JP6590321B2 (ja) * 2016-03-25 2019-10-16 パナソニックIpマネジメント株式会社 車両用空調装置
PL4012087T3 (pl) 2016-06-06 2024-03-18 Owens Corning Intellectual Capital, Llc Układ środka wiążącego
CN109416205B (zh) * 2016-06-17 2021-10-15 开利公司 电池组冷启动的热气旁路
DE102017204116B4 (de) * 2017-03-13 2022-06-15 Audi Ag Kälteanlage eines Fahrzeugs mit einem als Kältekreislauf für einen Kältebetrieb und als Wärmepumpenkreislauf für einen Heizbetrieb betreibbaren Kältemittelkreislauf
WO2019029218A1 (zh) * 2017-08-08 2019-02-14 杭州三花研究院有限公司 汽车空调系统
US10906377B2 (en) 2018-01-19 2021-02-02 Ford Global Technologies, Llc System and method for heating passenger cabin with inverter waste heat boosted by a heater
JP2019190107A (ja) * 2018-04-24 2019-10-31 ヤンマー株式会社 電動式作業機械
US20190351740A1 (en) * 2018-05-18 2019-11-21 Nio Usa, Inc. Use of an inside condenser to maximize total thermal system performance
CN110816201B (zh) * 2018-08-10 2022-12-27 翰昂汽车零部件有限公司 车辆的热管理系统
JP7260986B2 (ja) 2018-09-28 2023-04-19 株式会社Subaru 車両の熱管理システム
US11549606B2 (en) * 2018-11-28 2023-01-10 Mahle International Gmbh Pilot-pressure-controlled flow valve and fluid system containing same
KR102633864B1 (ko) * 2018-12-06 2024-02-05 현대자동차 주식회사 차량용 배터리 냉각 시스템
KR102633867B1 (ko) * 2018-12-10 2024-02-05 현대자동차 주식회사 차량용 히트펌프 시스템
JP2020097320A (ja) * 2018-12-18 2020-06-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
EP3719919A1 (en) * 2019-03-20 2020-10-07 Hamilton Sundstrand Corporation Thermal regulation of batteries
KR20220135340A (ko) * 2021-03-30 2022-10-07 현대자동차주식회사 차량용 열 관리 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015217A (ja) * 1983-07-04 1985-01-25 Nippon Denso Co Ltd 車両用空気調和装置
JPS6192910A (ja) * 1984-10-11 1986-05-10 Diesel Kiki Co Ltd 車両用空気調和装置
JPH08258548A (ja) * 1995-03-23 1996-10-08 Matsushita Electric Ind Co Ltd 自動車用空気調和装置
JPH1134640A (ja) * 1997-07-24 1999-02-09 Denso Corp 車両用空調装置
JP2007278624A (ja) * 2006-04-07 2007-10-25 Denso Corp ヒートポンプサイクル
JP2008230594A (ja) * 2007-02-20 2008-10-02 Calsonic Kansei Corp 車両用空調システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277038A (en) * 1992-08-28 1994-01-11 Instatherm Company Thermal storage system for a vehicle
US6347528B1 (en) * 1999-07-26 2002-02-19 Denso Corporation Refrigeration-cycle device
DE10001065C2 (de) * 2000-01-13 2002-11-21 Ballard Power Systems Plattenstapel-Wärmeübertrager, insbesondere zur Verwendung als Reformierungsreaktor
US7779639B2 (en) * 2006-08-02 2010-08-24 Bsst Llc HVAC system for hybrid vehicles using thermoelectric devices
US8419512B2 (en) * 2006-10-10 2013-04-16 Hdt Tactical Systems, Inc. Vehicle cabin heating cooling and ventilation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015217A (ja) * 1983-07-04 1985-01-25 Nippon Denso Co Ltd 車両用空気調和装置
JPS6192910A (ja) * 1984-10-11 1986-05-10 Diesel Kiki Co Ltd 車両用空気調和装置
JPH08258548A (ja) * 1995-03-23 1996-10-08 Matsushita Electric Ind Co Ltd 自動車用空気調和装置
JPH1134640A (ja) * 1997-07-24 1999-02-09 Denso Corp 車両用空調装置
JP2007278624A (ja) * 2006-04-07 2007-10-25 Denso Corp ヒートポンプサイクル
JP2008230594A (ja) * 2007-02-20 2008-10-02 Calsonic Kansei Corp 車両用空調システム

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088060A (ja) * 2012-10-29 2014-05-15 Mitsubishi Heavy Ind Ltd ヒートポンプ式車両用空調装置及び車両
KR102227223B1 (ko) 2015-04-29 2021-03-16 한온시스템 주식회사 차량용 히트 펌프 시스템
KR20160129169A (ko) * 2015-04-29 2016-11-09 한온시스템 주식회사 차량용 히트 펌프 시스템
WO2019230118A1 (ja) * 2018-05-28 2019-12-05 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11518216B2 (en) 2018-05-28 2022-12-06 Sanden Automotive Climate Systems Corporation Vehicle air conditioning apparatus
CN108749513A (zh) * 2018-06-13 2018-11-06 上海加冷松芝汽车空调股份有限公司 一种电动车热管理系统
CN108749513B (zh) * 2018-06-13 2023-07-04 上海加冷松芝汽车空调股份有限公司 一种电动车热管理系统
CN112543710A (zh) * 2018-08-10 2021-03-23 三电汽车空调系统株式会社 车用空调装置
US11772449B2 (en) 2018-08-10 2023-10-03 Sanden Corporation Vehicle air conditioning device
JP7268976B2 (ja) 2018-08-10 2023-05-08 サンデン株式会社 車両用空気調和装置
WO2020031568A1 (ja) * 2018-08-10 2020-02-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN112585021A (zh) * 2018-08-10 2021-03-30 三电汽车空调系统株式会社 车用空调装置
JP2020026196A (ja) * 2018-08-10 2020-02-20 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11794548B2 (en) 2018-08-10 2023-10-24 Sanden Corporation Vehicle air conditioning device
JP2020026197A (ja) * 2018-08-10 2020-02-20 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020031569A1 (ja) * 2018-08-10 2020-02-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020158207A1 (ja) * 2019-01-30 2020-08-06 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7349246B2 (ja) 2019-01-30 2023-09-22 サンデン株式会社 車両用空気調和装置
JP2020121633A (ja) * 2019-01-30 2020-08-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP2020147161A (ja) * 2019-03-13 2020-09-17 トヨタ自動車株式会社 車載温調装置
WO2020250765A1 (ja) * 2019-06-10 2020-12-17 株式会社デンソー 車両用熱管理システム
JP2021041780A (ja) * 2019-09-10 2021-03-18 株式会社デンソー 車両の熱交換システム
JP7287204B2 (ja) 2019-09-10 2023-06-06 株式会社デンソー 車両の熱交換システム
CN114390980A (zh) * 2019-09-10 2022-04-22 株式会社电装 车辆的热交换系统
WO2021049340A1 (ja) * 2019-09-10 2021-03-18 株式会社デンソー 車両の熱交換システム
CN114390980B (zh) * 2019-09-10 2024-01-30 株式会社电装 车辆的热交换系统
WO2022030182A1 (ja) * 2020-08-05 2022-02-10 株式会社デンソー 冷凍サイクル装置
JP7468237B2 (ja) 2020-08-05 2024-04-16 株式会社デンソー 冷凍サイクル装置
WO2023161985A1 (ja) * 2022-02-22 2023-08-31 サンデン株式会社 熱マネジメントシステム

Also Published As

Publication number Publication date
US20130319029A1 (en) 2013-12-05
JP5619986B2 (ja) 2014-11-05
JPWO2012114447A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
WO2012114447A1 (ja) 車両用熱システム
JP7095848B2 (ja) 車両用空気調和装置
JP7185469B2 (ja) 車両の熱管理システム
US11577579B2 (en) Vehicle air-conditioning device
JP7268976B2 (ja) 車両用空気調和装置
JP6838527B2 (ja) 車両用空調装置
WO2020031569A1 (ja) 車両用空気調和装置
WO2019039153A1 (ja) 車両用空気調和装置
WO2020066719A1 (ja) 車両用空気調和装置
JP2018177083A (ja) 車両用空気調和装置
JP6150113B2 (ja) 車両熱管理システム
WO2021024755A1 (ja) 車両搭載発熱機器の温度調整装置及びそれを備えた車両用空気調和装置
WO2019150829A1 (ja) 車両用空気調和装置
JP2014037182A (ja) 電動車両用熱管理システム
WO2019135334A1 (ja) 車両用冷却装置
WO2019163398A1 (ja) 車両用制御システム
KR102039170B1 (ko) 자동차용 히트펌프
WO2019058826A1 (ja) 車両用空気調和装置
JP2013203190A (ja) バッテリの温度調節装置
WO2020184146A1 (ja) 車両用空気調和装置
JP7164986B2 (ja) 車両用空気調和装置
JP7053906B1 (ja) 温度制御システム
WO2020235262A1 (ja) 車両用空気調和装置
JP2012076589A (ja) 車両用空調装置
WO2020100410A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013500743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13985380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859168

Country of ref document: EP

Kind code of ref document: A1