WO2024080136A1 - 電池用表面処理金属板 - Google Patents

電池用表面処理金属板 Download PDF

Info

Publication number
WO2024080136A1
WO2024080136A1 PCT/JP2023/034962 JP2023034962W WO2024080136A1 WO 2024080136 A1 WO2024080136 A1 WO 2024080136A1 JP 2023034962 W JP2023034962 W JP 2023034962W WO 2024080136 A1 WO2024080136 A1 WO 2024080136A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
tin
layer
treated metal
batteries
Prior art date
Application number
PCT/JP2023/034962
Other languages
English (en)
French (fr)
Inventor
道雄 河村
聡子 原田
沙恵子 溝口
慎一郎 堀江
大輔 松重
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Publication of WO2024080136A1 publication Critical patent/WO2024080136A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a surface-treated metal sheet for batteries that has excellent gas generation suppression effects.
  • alkaline batteries Types of secondary batteries that use an alkaline aqueous solution as the electrolyte, known as alkaline batteries, include nickel-cadmium batteries and nickel-metal hydride batteries, which have been put to practical use and are widely known.
  • Other types of alkaline secondary batteries include air batteries and nickel-zinc batteries, which use nickel hydroxide or the like for the positive electrode, zinc or the like for the negative electrode active material, and an alkaline aqueous solution for the electrolyte.
  • Patent Document 1 an attempt is made to solve the problem of hydrogen gas generation as described above by increasing the hydrogen overvoltage by using an alloy of copper and tin as the material for the negative electrode current collector.
  • the concentration of potassium hydroxide in the electrolyte is preferably 20% by weight or more, and for higher performance, a concentration of 25 to 40% by weight is desirable. Therefore, a material that has a better effect of suppressing gas generation in a high-concentration electrolyte environment such as that described above is desired.
  • the inventors have conducted extensive research to develop a surface-treated metal sheet for batteries that can be used as a negative electrode current collector material, battery tab/lead material, or battery container (battery exterior material) that is more effective at suppressing gas generation during charging and discharging of alkaline secondary batteries.
  • a surface-treated metal sheet for batteries that can be used as a negative electrode current collector material, battery tab/lead material, or battery container (battery exterior material) that is more effective at suppressing gas generation during charging and discharging of alkaline secondary batteries.
  • a surface-treated metal sheet for batteries that includes a metal substrate, a nickel layer provided on at least one side of the metal substrate, and a tin layer provided on the nickel layer, and thus completed the present invention.
  • Aspect 1 of the present invention is a surface-treated metal sheet for a battery, comprising a metal substrate, a nickel layer provided on at least one surface of the metal substrate, and a tin layer provided on an upper layer of the nickel layer, wherein, for the tin layer, at least one of the following formula (1) or the following formula (2) exceeds 1: N(220)/N(200) (1) N(220)/N(400) (2)
  • N(220) represents the crystal orientation index of the (220) plane of the tin layer
  • N(200) represents the crystal orientation index of the (200) plane of the tin layer
  • N(400) represents the crystal orientation index of the (400) plane of the tin layer.
  • Aspect 2 of the present invention is a surface-treated metal sheet for batteries according to aspect 1, further comprising a nickel-tin alloy layer formed between the nickel layer and the tin layer.
  • Aspect 3 of the present invention is a surface-treated metal sheet for batteries according to aspect 1 or 2, in which the metal substrate is an iron-based metal substrate.
  • a fourth aspect of the present invention is the surface-treated metal sheet for a battery according to any one of the first to third aspects, wherein the nickel coating weight in the nickel layer is more than 1.0 g/ m2 and not more than 20.0 g/ m2 .
  • a fifth aspect of the present invention is the surface-treated metal sheet for a battery according to any one of the first to fourth aspects, wherein the tin coating amount in the tin layer is 1.0 g/ m2 or more and 15.0 g/ m2 or less.
  • Aspect 6 of the present invention is a surface-treated metal sheet for batteries according to any one of aspects 1 to 5, in which at least one of formula (1) or formula (2) satisfies 2 or more.
  • the present invention provides a surface-treated metal sheet for batteries that has excellent gas generation suppression effects.
  • FIG. 1 is a cross-sectional view of a surface-treated metal sheet for batteries according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a surface-treated metal sheet for batteries according to another embodiment of the present invention.
  • FIG. 3A is an X-ray diffraction (XRD) chart showing the diffraction peak of the (200) plane of the tin layer.
  • FIG. 3B is an X-ray diffraction (XRD) chart showing the diffraction peak of the (220) plane of the tin layer.
  • FIG. 3C is an X-ray diffraction (XRD) chart showing the diffraction peak of the (400) plane of the tin layer.
  • FIG. 4 is an X-ray diffraction chart of the alloy phase that constitutes the nickel-tin alloy layer.
  • the surface-treated metal sheet for batteries of the present invention is a surface-treated metal sheet used for batteries, for example, as a current collector for positive or negative electrodes, or as a battery container for housing a power generating element of a battery.
  • Batteries are not particularly limited, but include aqueous batteries using alkaline electrolyte, such as nickel-cadmium batteries, nickel-metal hydride batteries, air-zinc batteries, and nickel-zinc batteries, and non-aqueous batteries such as lithium-ion batteries.
  • the surface-treated metal sheet for batteries of the present invention is suitable for use in aqueous batteries, and is particularly suitable for use as a current collector for constituting aqueous batteries (e.g., nickel-zinc batteries) in which zinc is involved in the battery reaction, or as a battery container.
  • aqueous batteries e.g., nickel-zinc batteries
  • the present invention can be applied to both primary and secondary aqueous batteries.
  • FIG. 1 is a cross-sectional view of a surface-treated metal sheet 10 for batteries according to an embodiment of the present invention.
  • the surface-treated metal sheet 10 for batteries according to this embodiment includes nickel layers 30 provided on both sides of a metal substrate 20, and a tin layer 40 provided on the upper layer of the nickel layer 30.
  • the nickel layer 30 and the tin layer 40 may be formed on at least one side of the metal substrate 20, and the embodiment is not particularly limited to the embodiment in which the nickel layer 30 and the tin layer 40 are formed on both sides of the metal substrate 20. In this embodiment, the nickel layer 30 and the tin layer 40 may be formed on the side where gas generation suppression is required.
  • the nickel layer 30 and the tin layer 40 may be formed on both sides of the metal substrate 20.
  • the nickel layer 30 and the tin layer 40 may be formed on the surface of the metal substrate 20 that will be the inner surface of the battery.
  • the nickel layer 30 and the tin layer 40 are formed.
  • the surface that will be the outer surface of the battery is not particularly limited, but may be one that has not been surface-treated.
  • an iron-based metal plate is preferably used.
  • low carbon steel carbon content 0.01 to 0.15 wt%
  • ultra-low carbon steel with a carbon content of 0.003 wt% or less non-aging ultra-low carbon steel obtained by adding Ti, Nb, etc. to ultra-low carbon steel, and the like
  • low carbon steel and ultra-low carbon steel can be preferably used.
  • electrolytic foil made of pure iron electrolytic foil with an iron content of 99.9 wt% or more
  • the metal substrate 20 may be a perforated plate or perforated foil having through holes.
  • the thickness of the metal substrate 20 is not particularly limited, but for example, when used as a current collector, it is preferably 0.005 to 2.0 mm, more preferably 0.01 to 0.8 mm, even more preferably 0.025 to 0.8 mm, and particularly preferably 0.025 to 0.3 mm. When used as a battery container, it is preferably 0.1 to 2.0 mm, more preferably 0.15 to 0.8 mm, and even more preferably 0.15 to 0.5 mm. Methods for measuring the thickness of the metal substrate 20 include, but are not limited to, thickness measurement with a micrometer.
  • the surface-treated metal sheet 10 for batteries according to this embodiment includes nickel layers 30 formed on both sides of a metal substrate 20.
  • the nickel layers 30 are formed on both sides of the metal substrate 20, but the present invention is not limited to such an embodiment, and it is sufficient that the nickel layer 30 is formed on at least one side of the metal substrate 20.
  • the presence or absence of the nickel layer 30 can be confirmed by X-ray diffraction (XRD) measurement using CuK ⁇ as a radiation source.
  • XRD X-ray diffraction
  • the nickel deposition amount in the nickel layer 30 is preferably more than 0.5 g/m 2 and 20.0 g/m 2 or less, more preferably more than 1.0 g/m 2 and 15.0 g/m 2 or less, even more preferably more than 2.0 g/m 2 and 10.0 g/m 2 or less, and particularly preferably more than 3.0 g/m 2 and 10.0 g/m 2 or less.
  • the nickel deposition amount can be determined by performing fluorescent X-ray measurement or ICP emission spectroscopy on the surface-treated metal sheet for batteries 10. The above nickel deposition amount represents the deposition amount on one side of the metal substrate 20.
  • the thickness of the nickel layer 30 is preferably 0.05 to 2.00 ⁇ m, more preferably 0.10 to 1.50 ⁇ m, further preferably 0.20 to 1.20 ⁇ m, and particularly preferably 0.30 to 1.00 ⁇ m.
  • the thickness of the nickel layer 30 can be determined by converting the nickel deposition amount determined by the above method into a thickness based on the density of nickel (g/m 3 ) (dividing the nickel deposition amount by the density), but is not limited thereto, and thickness measurement by cross-sectional observation with a scanning electron microscope (SEM), thickness measurement with a transmission electron microscope (TEM), measurement with a high-frequency glow discharge optical emission spectrometer, etc. can be applied.
  • the method for forming the nickel layer 30 is not particularly limited, but a method of plating the metal substrate 20 with nickel using a nickel plating bath is preferable.
  • a plating bath normally used in nickel plating i.e., a Watts bath, a sulfamic acid bath, a boron fluoride bath, a chloride bath, etc., can be used.
  • the nickel layer can be formed using a Watts bath having a bath composition of 200 to 350 g/L of nickel sulfate, 20 to 60 g/L of nickel chloride, and 10 to 50 g/L of boric acid under conditions of pH 3.0 to 4.8 (preferably pH 3.6 to 4.6), bath temperature 50 to 70° C., and current density 10 to 40 A/dm 2 (preferably 20 to 30 A/dm 2 ).
  • additives such as known brighteners may be added to the plating bath to form bright nickel plating or semi-bright nickel plating.
  • the surface-treated metal sheet 10 for batteries according to this embodiment includes a tin layer 40 formed on the nickel layer 30.
  • the tin layer 40 can be formed by tin plating on the nickel layer 30.
  • the presence or absence of the tin layer 40 can be confirmed by X-ray diffraction (XRD) measurement using CuK ⁇ as a radiation source, similar to the nickel layer 30 described above.
  • the tin layer 40 satisfies that at least one of the following formula (1) or (2) regarding the crystal orientation indexes of the (220), (200), and (400) planes exceeds 1. It is more preferable that both of the following formula (1) and formula (2) exceed 1. N(220)/N(200) (1) N(220)/N(400) (2)
  • N(220) represents the crystal orientation index of the (220) plane of the tin layer 40
  • N(200) represents the crystal orientation index of the (200) plane of the tin layer 40
  • N(400) represents the crystal orientation index of the (400) plane of the tin layer 40.
  • the crystal orientation indices of the (220), (200), and (400) planes of the tin layer 40 are not particularly limited as long as at least one of the above formula (1) or (2) exceeds 1, but in order to further enhance the effect of suppressing gas generation, at least one of the above formula (1) or (2) is preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more. In addition, in order to more significantly enhance the effect of suppressing gas generation, both the above formula (1) and the above formula (2) are preferably 2 or more, more preferably 5 or more, and even more preferably 10 or more.
  • the upper limit of the above formula (1) or the above formula (2) is not particularly limited, but is usually 300 or less, preferably 200 or less.
  • the crystal orientation index (N(220)) of the (220) plane of the tin layer 40 can be determined by the following method. That is, after measuring the diffraction intensity of each crystal plane on the surface of the tin layer 40 with an X-ray diffractometer, the obtained diffraction peak of tin and the diffraction peak of a standard tin powder are used to calculate the crystal orientation index (N(220)) as follows by the method of Willson and Rogers (described in "K.S. Willson and J.A. Rogers; Tech. Proceeding Amer. Electroplaters Soc., 51,92 (1964)").
  • IF(220) is the X-ray diffraction intensity ratio from the (220) plane
  • IFR(220) is the theoretical X-ray diffraction intensity ratio of a standard tin powder.
  • IF(220) and IFR(220) can be determined as follows.
  • I(220) I(220) / [I(200) + I(101) + I(220) + I(301) + I(112) + I(400) + I(321) + I(420) + I(411) + I(312) + I(501)]
  • IFR(220) IR(220) / [IR(200) + IR(101) + IR(220) + IR(301) + IR(112) + IR(400) + IR(321) + IR(420) + IR(411) + IR(312) + IR(501)]
  • I(hkl) is the X-ray diffraction intensity from the (hkl) plane
  • IR(hkl) is the X-ray diffraction intensity from the (hkl) plane described in 00-004-0673 of the ICDD PDF-2 2014 database for standard tin powder (h, k, and l are each an integer from 0 to 5).
  • the problem of hydrogen gas generation is one of the challenges to practical application of alkaline secondary batteries.
  • Hydrogen gas is generated, for example, when a reaction condition for hydrogen gas generation is satisfied under conditions in which a chemical reaction other than a battery reaction (self-discharge) occurs due to the formation of a local battery between different metals inside the battery.
  • a chemical reaction other than a battery reaction self-discharge
  • a local battery between different metals inside the battery For example, in a nickel-zinc battery, zinc or zinc oxide is present during charging, and the zinc dissolves during discharging.
  • zinc is one of the metals with a low potential among those used in aqueous batteries, the discharge amount is large when a local battery state is formed between zinc and other metals used in the battery, and the hydrogen gas generation condition is easily satisfied.
  • the current collector material is a material that is more likely to generate hydrogen gas because zinc and the like in the electrolyte precipitates on its surface and comes into direct contact with it, and is also a material that is more likely to self-discharge.
  • One method for reducing this hydrogen gas generation is known to be the use of a material with a high hydrogen overvoltage, and in this embodiment, tin (Sn) in the tin layer 40 can be said to be a material with a high hydrogen overvoltage.
  • tin (Sn) with a high hydrogen overvoltage it has been confirmed that even when tin (Sn) with a high hydrogen overvoltage is used, the effect of suppressing hydrogen gas generation varies depending on the crystal orientation state of the tin layer.
  • the inventors therefore conducted extensive research into materials that have an even greater effect in suppressing hydrogen gas generation, and through repeated experiments, discovered that an excellent effect in suppressing hydrogen gas generation can be achieved by controlling the crystal orientation indices of the (220), (200), and (400) planes of the tin layer 40 so that at least one of the above formulas (1) and (2) exceeds 1.
  • the nickel layer 30 makes it possible to suppress dissolution of the metal substrate 20 into the electrolyte.
  • the uniformity of the tin plating that constitutes the tin layer 40 can be improved, thereby suppressing gas generation during charging and discharging.
  • the crystal orientation index of the (200) or (400) plane is large and neither formula (1) nor formula (2) is satisfied, the tin plating becomes non-uniform, and part of the nickel layer 30 is exposed from the tin layer 40, which tends to make it easier for gas to be generated during charging and discharging.
  • the amount of tin attached in the tin layer 40 is preferably 1.0 to 15.0 g/m 2 , more preferably 2.0 to 15.0 g/m 2 , even more preferably 2.0 to 13.0 g/m 2 , and particularly preferably 3.0 to 13.0 g/m 2.
  • the amount of tin attached can be determined by subjecting the surface-treated metal sheet for batteries 10 to fluorescent X-ray measurement or ICP emission spectrometry. The above amount of tin attached represents the amount attached on one side of the metal substrate 20.
  • the lower limit of the thickness of the tin layer 40 is preferably 0.05 ⁇ m or more, more preferably 0.10 ⁇ m or more, even more preferably 0.20 ⁇ m or more, and particularly preferably 0.50 ⁇ m or more. If the thickness of the tin layer 40 is too small, the crystal orientation index of the tin layer 40 cannot be appropriately controlled, and gas generation tends to become significant.
  • the upper limit of the thickness of the tin layer 40 is not particularly limited, but is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1.0 ⁇ m or less.
  • the thickness of the tin layer 40 can be obtained by converting the tin deposition amount obtained by the above method into a thickness based on the density of tin (g/m 3 ) (dividing the tin deposition amount by the density), but is not limited thereto, and thickness measurement by cross-sectional observation with a scanning electron microscope (SEM), thickness measurement by a transmission electron microscope (TEM), measurement by a high-frequency glow discharge optical emission spectrometer, etc. can be applied.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • a high-frequency glow discharge optical emission spectrometer etc.
  • the method of controlling the crystal orientation index of the (220), (200), and (400) planes of the tin layer 40 so that at least one of the above formulas (1) and (2) exceeds 1 is not particularly limited, but examples include a method of adding a small amount of nickel to the tin plating bath used to form the tin layer 40, a method of adding an additive to the tin plating bath, a method of controlling the thickness of the tin layer 40, and a combination of these methods.
  • the tin plating bath used to form the tin layer 40 may be a ferrostane bath, MSA bath, halogen bath, or sulfuric acid bath, which further contains trace amounts of nickel and/or additives as described above.
  • a sulfuric acid bath it is preferable to use a sulfuric acid bath, and it is preferable to use a bath composition of 10 to 60 g/L of tin ions and 25 to 110 mL/L of sulfuric acid, which further contains trace amounts of nickel and/or additives as described above. It is particularly preferable to use a bath composition of 10 to 60 g/L of tin ions and 25 to 60 mL/L of sulfuric acid, which further contains trace amounts of nickel and/or additives as described above.
  • the amount of nickel added is preferably 10 to 200 ppm by weight, more preferably 10 to 100 ppm by weight, and particularly preferably 20 to 100 ppm by weight.
  • Additives to be added to the tin plating bath include ethoxylated naphthol and ethoxylated naphthol sulfonic acid.
  • Commercially available products include Technistan TP Additive manufactured by Technique Japan and UTB 230R manufactured by Ishihara Chemical Co., Ltd. Of these, it is preferable to use Technistan TP Additive manufactured by Technique Japan, and the amount added to the tin plating bath is preferably 10 to 100 mL/L, and more preferably 40 to 100 mL/L.
  • the current density is preferably 1.0 to 30.0 A/ dm2 , more preferably 2.0 to 15.0 A/ dm2 , and particularly preferably 4.0 to 15.0 A/ dm2 .
  • the temperature of the plating bath is preferably 25 to 60°C, and more preferably 35 to 55°C.
  • FIG. 2 is a cross-sectional view of a surface-treated metal sheet for batteries according to another embodiment of the present invention.
  • the surface-treated metal plate 10a for batteries according to this embodiment may further include a nickel-tin alloy layer 50 between the nickel layer 30 and the tin layer 40, as shown in FIG. 2.
  • a nickel-tin alloy layer 50 between the nickel layer 30 and the tin layer 40, as shown in FIG. 2.
  • the thickness of the nickel-tin alloy layer 50 is not particularly limited, but is preferably 0.05 to 2.00 ⁇ m, more preferably 0.05 to 1.50 ⁇ m, and even more preferably 0.10 to 1.00 ⁇ m. By setting the thickness of the nickel-tin alloy layer 50 within the above range, the effect of suppressing gas generation and electrolyte resistance can be further improved.
  • the thickness of the nickel-tin alloy layer 50 can be determined by thickness measurement through cross-sectional observation with a scanning electron microscope (SEM), measurement with a high-frequency glow discharge optical emission spectrometer, etc.
  • the total deposition amount of nickel contained in the nickel-tin alloy layer 50 and nickel contained in the nickel layer 30 is preferably more than 1.0 g / m 2 and 20.0 g / m 2 or less, more preferably more than 1.5 g / m 2 and 15.0 g / m 2 or less, even more preferably more than 2.0 g / m 2 and 10.0 g / m 2 or less, and particularly preferably more than 3.0 g / m 2 and 10.0 g / m 2 or less.
  • the total deposition amount of tin contained in the nickel-tin alloy layer 50 and tin contained in the tin layer 40 is preferably 1.0 to 15.0 g / m 2 , more preferably 2.0 to 15.0 g / m 2 , even more preferably 2.0 to 13.0 g / m 2 , and particularly preferably 3.0 to 13.0 g / m 2 .
  • the thickness of the nickel layer 30 and the thickness of the tin layer 40 in the surface-treated metal plate 10a for batteries are in the same range as those in the surface-treated metal plate 10 for batteries described above.
  • the method for forming the nickel-tin alloy layer 50 is not particularly limited, but by forming the nickel layer 30 on the metal substrate 20 by the above-mentioned method, and then forming the tin layer 40 with controlled crystal orientation indices of the (220), (200), and (400) planes in that order, diffusion occurs at the interface between the nickel layer 30 and the tin layer 40 to form the nickel-tin alloy layer 50.
  • diffusion occurs at the interface between the nickel layer 30 and the tin layer 40 to form the nickel-tin alloy layer 50.
  • the treatment temperature when performing the room temperature diffusion treatment is not particularly limited, but is preferably 0° C. or higher and lower than 50° C.
  • the treatment time (aging period) is not particularly limited, but is preferably 5 days or more, more preferably 7 days or more, even more preferably 10 days or more, and particularly preferably 30 days or more.
  • the nickel-tin alloy layer 50 can be made to mainly contain Ni—Sn 42-43 as the alloy phase.
  • the surface-treated metal plate 10, 10a for a battery according to the embodiment of the present invention may further include an iron-nickel diffusion layer as a lower layer of the nickel layer 30.
  • a nickel layer 30 is formed on a metal substrate 20, and a heat treatment is performed to form an iron-nickel diffusion layer, and then a tin layer 40 is formed on the upper layer of the nickel layer 30, thereby obtaining a structure including an iron-nickel diffusion layer in addition to the nickel layer 30 and the tin layer 40.
  • FIG. 1 the embodiment of the surface-treated metal plate 10a for a battery shown in FIG.
  • a nickel layer 30 is formed on a metal substrate 20, and a heat treatment is performed to form an iron-nickel diffusion layer, and then a tin layer 40 is formed on the upper layer of the nickel layer 30, and further a room temperature diffusion treatment is performed, thereby obtaining a structure including an iron-nickel diffusion layer in addition to the nickel layer 30, the nickel-tin alloy layer 50, and the tin layer 40.
  • a method for forming the iron-nickel diffusion layer As a method for forming the iron-nickel diffusion layer, a method of forming a tin layer 40 on the nickel layer 30 and then performing heat treatment to form the iron-nickel diffusion layer is also considered, but this method is not preferred because it is difficult to control the crystal orientation state of the tin layer 40 and a nickel-tin alloy layer 50 containing Ni-Sn 42-43 cannot be obtained. Therefore, it is preferred to form the nickel layer 30 as described above, form the iron-nickel diffusion layer by performing heat treatment, and then form the tin layer 40 on the nickel layer 30, or to form the iron-nickel diffusion layer, form the tin layer 40 on the nickel layer 30, and then form the nickel-tin alloy layer 50 between the nickel layer 30 and the tin layer 40.
  • the heat treatment conditions for forming the iron-nickel diffusion layer are not particularly limited, but when heat treatment is performed by box annealing, the heat treatment temperature is preferably from over 400°C to 600°C, more preferably from 450°C to 600°C, and the soaking time is preferably 0.5 to 8 hours.
  • the heat treatment temperature is preferably from 600°C to 900°C, more preferably from 600°C to 800°C, and the heat treatment time is preferably 3 to 120 seconds.
  • the surface-treated metal plate 10 for batteries comprises a metal substrate 20, a nickel layer 30 formed on at least one side of the metal substrate 20, and a tin layer 40 formed as an upper layer of the nickel layer 30.
  • the crystal orientation index of the tin layer 40 satisfies at least one of the above formula (1) or (2) above, which exceeds 1, and can exhibit an excellent effect of suppressing gas generation.
  • the surface-treated metal plate 10a for batteries further comprising a nickel-tin alloy layer 50 between the nickel layer 30 and the tin layer 40, the effect of suppressing gas generation and electrolyte resistance are exhibited.
  • the surface-treated metal plate 10, 10a for batteries according to the embodiment of the present invention can be preferably used as a positive or negative electrode current collector or battery container by making use of such characteristics, and can be more preferably used as a current collector or battery container in an alkaline secondary battery using an alkaline electrolyte, and can be particularly preferably used as a current collector or battery container in a nickel-zinc battery.
  • the nickel deposition amount and the tin deposition amount were quantified by a calibration curve method using X-ray fluorescence (XRF) measurement.
  • the X-ray fluorescence device used was a ZSX100e manufactured by Rigaku Corporation. It was confirmed that the X-ray fluorescence measurement allows quantification of the metal elements contained in each of the nickel layer 30, the nickel-tin alloy layer 50, and the tin layer 40 of the surface-treated metal sheet by the calibration curve method.
  • X-ray diffraction (XRD) measurement Presence or absence of nickel layer 30 and tin layer 40
  • the surface-treated metal sheets 10 and 10a for batteries obtained in each of the examples and comparative examples were subjected to X-ray diffraction (XRD) measurement to confirm the presence or absence of the nickel layer 30 and the tin layer 40.
  • the X-ray diffraction measurement device used was a SmartLab manufactured by Rigaku Corporation, and the surface-treated metal sheets for batteries obtained were cut into 30 mm x 30 mm samples to be used as measurement samples.
  • the specific measurement conditions for the X-ray diffraction (XRD) measurement were as follows.
  • X-ray source CuK ⁇ Goniometer radius: 300 nm
  • Optical system focusing method (entrance side slit system)
  • ⁇ Solar slit 5° -Longitudinal limit slit: 5 mm
  • Divergence slit 1/2° (Light receiving slit system)
  • Scattering slit 1/2° ⁇ Solar slit: 5° ⁇ Receiving slit: 0.3 mm
  • Monochromatization method Counter monochromator method - Detector: Scintillation counter (measurement parameters)
  • Scan axis 2 ⁇ / ⁇ Scanning mode: Continuous Measurement range: 2 ⁇ 30 to 100° Scanning speed: 10°/n Step: 0.05°
  • ⁇ X-ray diffraction (XRD) measurement (crystal orientation index of tin layer 40)>
  • the diffraction intensity of each crystal plane of tin on the surface of the tin layer 40 was measured by the above-mentioned X-ray diffraction (XRD) measurement method, and then the crystal orientation indexes of the (220) plane, (200) plane, and (400) plane on the surface of the tin layer 40 were obtained using the obtained diffraction intensity of tin and the diffraction intensity of the standard tin powder, respectively, and the ratios of the crystalline orientation indexes, N(220)/N(200) and N(220)/N(400), were calculated.
  • the diffraction angles of each crystal plane of tin and the diffraction angles of each crystal plane of the standard tin powder were those described in 00-004-0673 of the diffraction ICDD PDF
  • X-ray diffraction (XRD) measurement presence or absence of nickel-tin alloy layer 50
  • the surface-treated metal plate 10, 10a for batteries obtained in each example and comparative example was confirmed to have the nickel-tin alloy layer 50 by the above-mentioned X-ray diffraction (XRD) measurement method.
  • XRD X-ray diffraction
  • a Zn plate was used as the counter electrode, and the obtained surface-treated metal plate for battery 10, 10a was immersed in an alkaline solution and the corrosion current density was measured using an electrochemical measurement system to evaluate the gas generation inhibition.
  • the corrosion current density of 0.15 mA/ cm2 or less was evaluated as "A+”
  • the corrosion current density of more than 0.15 mA/ cm2 and less than 0.20 mA/ cm2 was evaluated as "A”
  • the corrosion current density of more than 0.20 mA/ cm2 and less than 0.25 mA/ cm2 was evaluated as "B”
  • the corrosion current density of more than 0.25 mA/ cm2 was evaluated as "C”.
  • the corrosion current density of 20 mA/cm 2 or less was evaluated as "A+”
  • the corrosion current density of more than 20 mA/cm 2 and less than 30 mA/cm 2 was evaluated as "A”
  • the corrosion current density of more than 30 mA/cm 2 and less than 40 mA/cm 2 was evaluated as "B”
  • the corrosion current density of more than 40 mA/cm 2 was evaluated as "C”.
  • the anode reaction test was carried out under the following conditions.
  • ⁇ Electrochemical measuring instrument Hokuto Denko HZ7000 Test electrode: measurement sample (evaluation area 20 mm x 20 mm)
  • Counter electrode Cu plate
  • Reference electrode Ag/AgCl (KCl saturated)
  • Electrolyte 30% by weight potassium hydroxide solution
  • Current density 50 mA/ cm2
  • Measurement method Chronopotentiometry Electrical quantity: 21 C/ cm2
  • Example 1 First, a cold-rolled sheet (thickness: 60 ⁇ m) of low-carbon aluminum-killed steel having the chemical composition shown below was prepared as the metal substrate 20 .
  • the prepared metal base material 20 was subjected to electrolytic degreasing and pickling by immersion in sulfuric acid, and then nickel plating was performed under the following conditions to form nickel layers 30 on both sides of the metal base material 20.
  • the nickel plating conditions were as follows. The nickel plating treatment time was set so that the nickel deposition amount was the amount shown in Table 1. (Bath composition: Watts bath) Nickel sulfate hexahydrate: 250g/L Nickel chloride hexahydrate: 45 g/L Boric acid: 30g/L (Plating conditions) Bath temperature: 60°C pH: 4.0-5.0 Agitation: air agitation or jet agitation Current density: 10 A/ dm2
  • the metal substrate 20 on which the nickel layer 30 was formed was tin-plated to form a tin layer 40 on the nickel layer 30 formed on both sides of the metal substrate 20.
  • the tin plating conditions were as follows.
  • the tin plating treatment time was set under conditions such that the amount of tin attached was the amount shown in Table 1, and a surface-treated metal sheet 10 for batteries was obtained.
  • the obtained surface-treated metal sheet 10 for batteries was then subjected to the above-mentioned measurements. The results are shown in Table 1.
  • Example 2 In the same manner as in Example 1, a steel sheet having a nickel layer and a tin layer was obtained, and the obtained steel sheet having a nickel layer and a tin layer was subjected to room temperature diffusion treatment under conditions of a temperature of 25° C. and an aging period of 180 days, thereby obtaining a surface-treated metal sheet for batteries 10a having a nickel-tin alloy layer 50.
  • the treatment times for nickel plating and tin plating were set under conditions such that the nickel adhesion amount and tin adhesion amount were the amounts shown in Table 1.
  • the obtained surface-treated metal sheet for batteries 10a was subjected to the above-mentioned respective measurements. The results are shown in Table 1.
  • Examples 3 to 5 A surface-treated metal sheet for batteries 10a was obtained in the same manner as in Example 2, except that the aging period in the room temperature diffusion treatment was changed to the conditions shown in Table 1. The treatment times for nickel plating and tin plating were set under conditions such that the nickel deposition amount and tin deposition amount were the amounts shown in Table 1. Then, the obtained surface-treated metal sheet for batteries 10a was subjected to the above-mentioned measurements. The results are shown in Table 1.
  • Example 6 A surface-treated metal sheet for batteries 10a was obtained in the same manner as in Example 2, except that the thickness of the metal substrate 20 was changed to 25 ⁇ m and the aging period in the room temperature diffusion treatment was changed to the conditions shown in Table 1. The treatment times for nickel plating and tin plating were set under conditions such that the nickel deposition amount and tin deposition amount were the amounts shown in Table 1. Then, the obtained surface-treated metal sheet for batteries 10a was subjected to the above-mentioned measurements. The results are shown in Table 1.
  • Example 7 to 8> A surface-treated metal sheet for batteries 10a was obtained in the same manner as in Example 2, except that the current density conditions in the tin plating and the aging period in the room temperature diffusion treatment were changed to those shown in Table 1. The treatment times for nickel plating and tin plating were set so that the nickel deposition amount and the tin deposition amount were the amounts shown in Table 1. The obtained surface-treated metal sheet for batteries 10a was then subjected to the above-mentioned measurements. The results are shown in Table 1.
  • Example 9 to 10> A surface-treated metal sheet for batteries 10a was obtained in the same manner as in Example 2, except that the current density conditions in nickel plating and tin plating, and the aging period in the room temperature diffusion treatment were changed to the conditions shown in Table 1. The treatment times for nickel plating and tin plating were set so that the nickel deposition amount and tin deposition amount were the amounts shown in Table 1. Then, the obtained surface-treated metal sheet for batteries 10a was subjected to the above-mentioned measurements. The results are shown in Table 1.
  • Examples 11 to 12 A surface-treated metal sheet for batteries 10a was obtained in the same manner as in Example 2, except that the current density conditions in nickel plating and tin plating, the amount of additive added in the tin plating bath, and the aging period in the room temperature diffusion treatment were changed to the conditions shown in Table 1. The treatment times for nickel plating and tin plating were set so that the nickel adhesion amount and tin adhesion amount were the amounts shown in Table 1. Then, the obtained surface-treated metal sheet for batteries 10a was subjected to the above-mentioned measurements. The results are shown in Table 1.
  • Example 13 A surface-treated metal sheet for batteries 10a was obtained in the same manner as in Example 7, except that the thickness of the metal substrate 20 was changed to 110 ⁇ m.
  • the treatment times for nickel plating and tin plating were set under conditions such that the nickel deposition amount and tin deposition amount were as shown in Table 1.
  • the obtained surface-treated metal sheet for batteries 10a was then subjected to the above-mentioned measurements. The results are shown in Table 1.
  • Example 5 A surface-treated metal sheet was obtained in the same manner as in Example 2, except that nickel was not added to the tin plating bath, and the amounts of additives added to the tin plating bath and the aging period in the room temperature diffusion treatment were changed to the conditions shown in Table 1. The treatment times for nickel plating and tin plating were set so that the nickel deposition amount and tin deposition amount were the amounts shown in Table 1. The results are shown in Table 1.
  • Example 6 A surface-treated metal sheet was obtained in the same manner as in Example 4, except that the amount of tin deposition was changed to the conditions shown in Table 1. The treatment times for nickel plating and tin plating were set so that the amount of nickel deposition and the amount of tin deposition were as shown in Table 1. The results are shown in Table 1.
  • Examples 1 to 13 when at least one of formulas (1) and (2) relating to the crystal orientation index of the tin layer 40 exceeds 1, the corrosion current density before the anodic reaction is 0.25 mA/ cm2 or less, and it was confirmed that the gas generation suppression effect is excellent. Also, in Examples 1 to 10, both formulas (1) and (2) are 2 or more, and it was confirmed that the gas generation suppression effect is more excellent. Furthermore, in Examples 1 to 6, both formulas (1) and (2) are 10 or more, and it was confirmed that the gas generation suppression effect is significantly excellent.
  • a nickel-tin alloy layer 50 was further provided between the nickel layer 30 and the tin layer 40.
  • Table 1 the results of the corrosion current density after the anodic reaction confirmed that the presence of the nickel-tin alloy layer 50 even after the anodic reaction suppresses gas generation and also provides excellent electrolyte resistance.
  • the alloy phase constituting the nickel-tin alloy layer 50 mainly contains Ni-Sn 42-43 , and it has been confirmed that these surface-treated metal sheets for batteries 10a have a corrosion current density of 40 mA/cm 2 or less after the anode reaction, have an effect of suppressing gas generation, and are excellent in electrolyte resistance. It was confirmed that when the nickel-tin alloy layer 50 is formed, the effect of suppressing gas generation in the nickel-tin alloy layer 50 is more excellent when the crystal orientation indices of the tin layer 40 formed on the nickel layer 30 are controlled so that both of the formulas (1) and (2) are 2 or more.
  • the crystal orientation indices of the tin layer 40 are controlled so that both of the formulas (1) and (2) are 10 or more, the corrosion current density after the anodic reaction is 20 mA/ cm2 or less, and the effect of suppressing gas generation is significantly excellent.
  • FIG. 3A to 3C show X-ray diffraction (XRD) charts of the tin layer 40 obtained by X-ray diffraction (XRD) measurement for the surface-treated metal sheet 10a for batteries of Example 9.
  • XRD X-ray diffraction
  • FIG. 3A is an X-ray diffraction chart showing the diffraction peak of the (200) plane of the tin layer 40
  • FIG. 3B is an X-ray diffraction chart showing the diffraction peak of the (220) plane of the tin layer 40
  • FIG. 3C is an X-ray diffraction chart showing the diffraction peak of the (400) plane of the tin layer 40.
  • the ratio of the crystal orientation index of the tin layer 40 was calculated using the diffraction peaks of the (200), (220), and (400) planes of the tin layer 40 detected in this way.
  • the ratio of the crystal orientation index of the tin layer 40 was calculated using the diffraction peaks of the (200), (220), and (400) planes of the tin layer 40.
  • FIG. 4 shows an X-ray diffraction chart of the alloy phase constituting the nickel-tin alloy layer detected in Example 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

電池用表面処理金属板であって、金属基材と、前記金属基材の少なくとも片面に設けられたニッケル層と、前記ニッケル層の上層に設けられた錫層と、を備え、前記錫層について、下記(1)式または下記(2)式の少なくともいずれか一方が1を超えることを満たす電池用表面処理金属板を提供する。 N(220)/N(200)> (1) N(220)/N(400)> (2) 上記(1)式および(2)式中、N(220)は前記錫層の(220)面の結晶配向指数を表し、上記(1)式中、N(200)は前記錫層の(200)面の結晶配向指数を表し、上記(2)式中、N(400)は前記錫層の(400)面の結晶配向指数を表す。

Description

電池用表面処理金属板
 本発明は、ガス発生の抑制効果に優れた電池用表面処理金属板に関する。
 電解液がアルカリ水溶液からなる、いわゆるアルカリ電池の二次電池の種類としては、ニッケルカドミウム電池、ニッケル水素電池などが実用化され、広く知られている。また、アルカリ二次電池においては、空気電池や、正極に水酸化ニッケル等、負極活物質に亜鉛等を用い、電解液にアルカリ水溶液を用いるニッケル亜鉛電池が知られている。
 二次電池としての空気亜鉛電池やニッケル亜鉛電池の実用化への課題の一つとして、充放電時(自然放電含む)における水素ガス発生の問題があった。水素ガス発生が生じ、その発生量が多くなりすぎると、電池性能の低下や、内圧上昇を引き起こし、電池の漏液につながるおそれがある。これらの問題は、特に電池反応に亜鉛が関与する電池において、顕著に生じうる。
 上述のような水素ガス発生の問題は、負極集電体に水素過電圧の高い材料を適用することにより解決可能であることは、従来知られている。たとえば、特許文献1では、負極の集電体の材料として銅と錫の合金を用いることにより水素過電圧を高くして、上記のような水素ガス発生の問題を解決しようとしている。
特開平2-75160号公報
 しかしながら、上記した特許文献1に記載の技術で、実用的なアルカリ二次電池に用いる場合、ガス発生の抑制効果としては不十分であった。すなわち、アルカリ二次電池として十分な電池性能を発揮するためには、電解液中の水酸化カリウムの濃度が、20重量%以上であることが好ましく、より高性能とするためには25~40重量%とすることが望まれる。そのため、上記したような高濃度の電解液環境下において、ガス発生の抑制効果がより優れた材料が望まれる。
 上記課題に鑑み、本発明者らは、アルカリ二次電池の充放電時におけるガス発生の抑制効果がより優れた、負極の集電体材料、電池タブ・リード材料や電池容器(電池外装材料)となる電池用表面処理金属板を開発すべく、鋭意検討した。その結果、電池用表面処理金属板を、特定の構成とすることにより、上記した課題を解決させることが可能であることを見出し、本発明に想到したものである。
 本発明者等は、上記目的を達成すべく鋭意検討を行った結果、金属基材と、金属基材の少なくとも片面に設けられたニッケル層と、ニッケル層の上層に設けられた錫層と、を備える電池用表面処理金属板によれば、上記目的を達成できることを見出し、本発明を完成させるに至った。
[1]本発明の態様1は、電池用表面処理金属板であって、金属基材と、前記金属基材の少なくとも片面に設けられたニッケル層と、前記ニッケル層の上層に設けられた錫層と、を備え、前記錫層について、下記(1)式または下記(2)式の少なくともいずれか一方が1を超えることを満たす電池用表面処理金属板である。
 N(220)/N(200)  (1)
 N(220)/N(400)  (2)
 上記(1)式および(2)式中、N(220)は前記錫層の(220)面の結晶配向指数を表し、上記(1)式中、N(200)は前記錫層の(200)面の結晶配向指数を表し、上記(2)式中、N(400)は前記錫層の(400)面の結晶配向指数を表す。
[2]本発明の態様2は、態様1の電池用表面処理金属板において、前記ニッケル層と前記錫層との間に形成されたニッケル-錫合金層をさらに備える電池用表面処理金属板である。
[3]本発明の態様3は、態様1または2の電池用表面処理金属板において、前記金属基材が、鉄を基とする金属基材である電池用表面処理金属板である。
[4]本発明の態様4は、態様1~3のいずれかの電池用表面処理金属板において、前記ニッケル層中のニッケル付着量が1.0g/m超、20.0g/m以下である電池用表面処理金属板である。
[5]本発明の態様5は、態様1~4のいずれかの電池用表面処理金属板において、前記錫層中の錫付着量が1.0g/m以上、15.0g/m以下である電池用表面処理金属板である。
[6]本発明の態様6は、態様1~5のいずれかの電池用表面処理金属板において、前記(1)式または前記(2)式の少なくともいずれか一方が2以上を満たす電池用表面処理金属板である。
[7]本発明の態様7は、態様2の電池用表面処理金属板において、前記ニッケル-錫合金層において、合金相として、CuKαを線源とするX線回折測定による回折角2θ=42~43°の範囲に回折ピークが得られる電池用表面処理金属板である。
 本発明によれば、ガス発生の抑制効果に優れた電池用表面処理金属板を提供することができる。
図1は、本発明の実施形態に係る電池用表面処理金属板の断面図である。 図2は、本発明の別の実施形態に係る電池用表面処理金属板の断面図である。 図3Aは、錫層の(200)面の回折ピークを示すX線回折(XRD)チャートである。 図3Bは、錫層の(220)面の回折ピークを示すX線回折(XRD)チャートである。 図3Cは、錫層の(400)面の回折ピークを示すX線回折(XRD)チャートである。 図4は、ニッケル-錫合金層を構成する合金相のX線回折チャートである。
 本発明の電池用表面処理金属板は、電池用途に用いられる表面処理金属板であり、たとえば、正極用または負極用の集電体用途や、電池の発電要素を収容するための電池容器用途などに用いられる。電池としては、特に限定されないが、アルカリ電解液を用いた、ニッケルカドミウム電池、ニッケル水素電池、空気亜鉛電池、ニッケル亜鉛電池などの水系電池や、リチウムイオン電池などの非水系電池などが挙げられるが、本発明の電池用表面処理金属板は、水系電池に好適に用いられ、水系電池の中でも特に、電池反応に亜鉛が関与する水系電池(例えばニッケル亜鉛電池など)を構成するための集電体用途や、電池容器用途として好適に用いられる。なお、本発明は水系電池であれば一次電池または二次電池のどちらでも適用することが可能である。
 以下、図面に基づいて本発明の一実施形態について説明する。
 図1は、本発明の実施形態に係る電池用表面処理金属板10の断面図である。本実施形態に係る電池用表面処理金属板10は、図1に示すように、金属基材20の両面に設けられたニッケル層30と、ニッケル層30の上層に設けられた錫層40と、を備えている。
 また、図1には、金属基材20の両面に、ニッケル層30および錫層40が形成された態様を例示したが、本実施形態においては、金属基材20の少なくとも一方の面に、ニッケル層30および錫層40が形成されたものであればよく、金属基材20の両面にニッケル層30および錫層40が形成されたものに特に限定されるものではない。また、本実施形態において、ニッケル層30および錫層40は、ガス発生抑制が要求される面に形成すればよい。たとえば、本実施形態に係る電池用表面処理金属板10を、正極または負極の集電体用途(たとえば、ニッケル亜鉛電池の負極の集電体用途として用いる場合)やリード材、タブ材として用いる場合には、金属基材20の両面に、ニッケル層30および錫層40が形成された態様とすることができる。また、本実施形態に係る電池用表面処理金属板10を、容器または電極缶といった電池容器用途として用いる場合には、金属基材20のうち、電池内面側となる面に、ニッケル層30および錫層40が形成された態様とすることができ、特に電池内面側が負極電位にさらされるような構造の場合には、ニッケル層30および錫層40が形成された態様とすることが望ましい。また、電池外面側となる面については、特に限定されないが、表面処理を行っていないものとすることもできる。
<金属基材20>
 金属基材20としては、鉄を基とする金属板が好適に用いられる。特に限定されないが、具体的には、たとえば、低炭素鋼(炭素量0.01~0.15重量%)や、炭素量が0.003重量%以下の極低炭素鋼、極低炭素鋼にTiやNbなどを添加してなる非時効性極低炭素鋼などの鋼板などを用いることができ、これらのなかでも、低炭素鋼、極低炭素鋼を好適に用いることができる。また、金属基材20としては、純鉄からなる電解箔(鉄の含有率が、99.9重量%以上である電解箔)などが挙げられる。また、本実施形態に係る電池用表面処理金属板10を、正極または負極の集電体用途として用いる場合には、金属基材20は、貫通孔を有する有孔板あるいは有孔箔であってもよい。
 金属基材20の厚みは、特に限定されないが、たとえば、集電体用途として用いる場合には、好ましくは0.005~2.0mmであり、より好ましくは0.01~0.8mm、さらに好ましくは0.025~0.8mm、特に好ましくは0.025~0.3mmである。また、電池容器用途として用いる場合には、好ましくは0.1~2.0mmであり、より好ましくは0.15~0.8mm、さらに好ましくは0.15~0.5mmである。なお、金属基材20の厚みの測定方法は、マイクロメーターでの厚み測定等が挙げられるが、これに限られるものではない。
<ニッケル層30>
 本実施形態に係る電池用表面処理金属板10は、図1に示すように、金属基材20の両面に形成されたニッケル層30を備えている。本実施形態では、金属基材20の両面にニッケル層30が形成されているが、特にこのような態様に限定されず、金属基材20の少なくとも片面にニッケル層30が形成されていればよい。なお、ニッケル層30の有無については、CuKαを線源とするX線回折(XRD)測定により確認することができる。
 ニッケル層30中のニッケル付着量は、好ましくは0.5g/m超、20.0g/m以下であり、より好ましくは1.0g/m超、15.0g/m以下であり、さらに好ましくは2.0g/m超、10.0g/m以下であり、特に好ましくは3.0g/m超、10.0g/m以下である。ニッケル付着量は、電池用表面処理金属板10について蛍光X線測定やICP発光分光分析を行うことで求めることができる。なお、上記のニッケル付着量は、金属基材20の片面における付着量を表す。
 また、ニッケル層30の厚みは、好ましくは0.05~2.00μm、より好ましくは0.10~1.50μm、さらに好ましくは0.20~1.20μm、特に好ましくは0.30~1.00μmである。なおニッケル層30の厚みは、上記の方法で求めたニッケル付着量をニッケルの密度(g/m)に基づいて厚みに換算する(ニッケル付着量を密度で除する)ことにより求めることができるが、これに限られるものではなく、走査型電子顕微鏡(SEM)の断面観察による厚み測定、透過型電子顕微鏡(TEM)による厚み測定、高周波グロー放電発光分光分析装置による測定等が適用可能である。
 ニッケル層30の形成方法としては、特に限定されないが、ニッケルめっき浴を用いて、金属基材20に対して、ニッケルめっきを行う方法が好適である。ニッケルめっき浴としては、ニッケルめっきで通常用いられているめっき浴、すなわち、ワット浴や、スルファミン酸浴、ほうフッ化物浴、塩化物浴などを用いることができる。たとえば、ニッケル層は、ワット浴として、硫酸ニッケル200~350g/L、塩化ニッケル20~60g/L、ほう酸10~50g/Lの浴組成のものを用い、pH3.0~4.8(好ましくはpH3.6~4.6)、浴温50~70℃にて、電流密度10~40A/dm(好ましくは20~30A/dm)の条件で形成することができる。また、公知の光沢剤などの添加物をめっき浴に添加して、光沢ニッケルめっき又は半光沢ニッケルめっきとしてもよい。
<錫層40>
 本実施形態に係る電池用表面処理金属板10は、図1に示すように、ニッケル層30の上層に形成された錫層40を備えている。錫層40は、ニッケル層30の上に錫めっきを施すことにより形成することができる。なお、錫層40の有無については、上述したニッケル層30と同様に、CuKαを線源とするX線回折(XRD)測定により確認することができる。
 錫層40は、(220)面、(200)面、および(400)面の結晶配向指数に関する下記(1)式または下記(2)式の少なくともいずれか一方が1を超えることを満たすものである。なお、下記(1)式および下記(2)式の両方が1を超えることを満たしていることがより好ましい。
 N(220)/N(200)  (1)
 N(220)/N(400)  (2)
 上記(1)式および(2)式中、N(220)は錫層40の(220)面の結晶配向指数を表し、上記(1)式中、N(200)は錫層40の(200)面の結晶配向指数を表し、上記(2)式中、N(400)は錫層40の(400)面の結晶配向指数を表す。
 錫層40の(220)面、(200)面、および(400)面の結晶配向指数は、上記(1)式または上記(2)式の少なくともいずれか一方が1を超えることを満たしていれば特に限定されないが、ガス発生の抑制効果をより高めるためには、上記(1)式または上記(2)式の少なくともいずれか一方が、好ましくは2以上であり、より好ましくは5以上であり、さらに好ましくは10以上である。また、ガス発生の抑制効果をより顕著に高めるためには、上記(1)式および上記(2)式の両方が、好ましくは2以上であり、より好ましくは5以上であり、さらに好ましくは10以上である。なお上記(1)式または上記(2)式の上限は、特に限定されないが、通常300以下であり、好ましくは200以下である。
 なお、上述した(1)式(N(220)/N(200))は、錫層40の(220)面と錫層40の(200)面の結晶配向指数の比を意味しており、また(2)式(N(220)/N(400))は、錫層40の(220)面と錫層40の(400)面の結晶配向指数の比を意味する。
 錫層40の(220)面の結晶配向指数(N(220))は、次のような方法により求めることができる。すなわち、X線回折装置により錫層40の表面における各結晶面の回折強度を測定した後、得られた錫の回折ピークと標準錫粉末の回折ピークを利用して、WillsonとRogersの方法(「K.S.Willson and J.A.Rogers;Tech. Proceeding Amer. Electroplaters Soc., 51,92(1964)」に記載された方法)にて、以下のようにして算出することができる。
 N(220)=IF(220)/IFR(220)
 上記式中、IF(220)は、(220)面からのX線回折強度比であり、IFR(220)は、標準錫粉末の理論X線回折強度比である。IF(220)及びIFR(220)はそれぞれ以下のようにして求めることができる。
 IF(220)=I(220)/[I(200)+I(101)+I(220)+I(301)+I(112)+I(400)+I(321)+I(420)+I(411)+I(312)+I(501)] 
 IFR(220)=IR(220)/[IR(200)+IR(101)+IR(220)+IR(301)+IR(112)+IR(400)+IR(321)+IR(420)+IR(411)+IR(312)+IR(501)] 
 上記式中、I(hkl)は、(hkl)面からのX線回折強度であり、IR(hkl)は、標準錫粉末のICDD PDF-2 2014のデータベースの00-004-0673に記載されている(hkl)面からのX線回折強度である(h,k,lはそれぞれ0~5の整数である)。なお、錫の各結晶面の回折角については、上述のデータベースに記載されているものを用いる。
 錫層40の(200)面の結晶配向指数(N(200))および(400)面の結晶配向指数(N(400))は、(220)面の結晶配向指数と同様の算出方法で求めることができる。すなわち、(200)面の結晶配向指数、および(400)面の結晶配向指数は、下記式に基づいて算出することができる。
 N(200)=IF(200)/IFR(200)
 N(400)=IF(400)/IFR(400)
 本実施形態において、上記構成を有することが望ましい理由は以下の通りである。
 すなわち上述したように、アルカリ二次電池の実用化への課題として、水素ガス発生の問題がある。水素ガスは例えば、電池の内部において異種金属間で局部電池が形成されることに起因して、電池反応以外の化学反応(自己放電)が起こる条件において、水素ガス発生の反応条件が満たされた場合に生じる。例えばニッケル亜鉛電池においては、充電時には亜鉛または酸化亜鉛などが存在し、放電時には当該亜鉛が溶解するが、亜鉛は水系電池に使用される金属の中でも電位が低い金属の一つであるため、電池に使用される他の金属との間で局部電池状態となったときの放電量が多く、水素ガス発生条件を満たしやすい。
 水素ガス発生が多く生じた場合、電池性能の低下や、漏液の問題に繋がる。具体的には、自己放電により水素ガス発生が起こった場合には、電池反応に寄与すべき電子が水素ガス発生により消費されてしまうため電池性能の低下につながる。そして、水素ガスの生成量が多くなるほど、電池性能としてはより低下してしまう。また、漏液は内圧上昇に起因して生じるおそれがあり、安全性の低下につながる。なお、ここでいう自己放電とは、充電・放電時の副反応(水素ガス発生プロセスを含む化学反応)および、充放電時以外、つまり自然放置状態で起こる化学反応の両方を含む。
 このような電池性能の低下や漏液の問題を回避するため、水素ガス発生量は極力抑制する必要がある。特に集電体材料は、その表面に、電解液中の亜鉛等が析出し直接接触することとなるため水素ガスがより発生しやすい部材であり、また自己放電が起こりやすい部材である。この水素ガス発生を低減するための方法の一つとして、水素過電圧の高い材料を適用することが知られており、本実施形態において、錫層40中の錫(Sn)は水素過電圧の高い材料といえる。しかしながら、水素過電圧の高い錫(Sn)を用いた場合でも、錫層の結晶配向状態によって、水素ガス発生の抑制効果に優劣があることを確認した。
 そのため本発明者らは、上述した水素ガス発生の抑制効果をより高めた材料を鋭意検討し、実験を繰り返す中で、錫層40の(220)面、(200)面、および(400)面の結晶配向指数を、上述した(1)式または(2)式の少なくともいずれか一方が1を超えることを満たすよう制御することにより、水素ガス発生の抑制効果が優れることを見出したものである。なお、ニッケル層30の上層に錫層40を形成することにより、錫層40の結晶配向指数を制御しやすく、またアルカリ二次電池に適用される電解液の種類によって、錫層40の一部に溶解が生じた場合、ニッケル層30が形成されているため、金属基材20の電解液中への溶出を抑制することが可能である。
 錫層40の(200)面、(220)面、および(400)面の結晶配向指数において、上述した(1)式または(2)式の少なくともいずれか一方が1を超えることを満たすよう制御することにより、錫層40を構成する錫めっきの均一性を向上することができ、これにより、充放電時におけるガス発生の抑制を図ることができる。一方、(200)面または(400)面の結晶配向指数が大きく、上記(1)式および上記(2)式のいずれも満たさない場合には、錫めっきが不均一なものとなり、ニッケル層30の一部が錫層40から露出し、充放電時にガスが発生しやすくなる傾向にある。
 錫層40中の錫付着量は、好ましくは1.0~15.0g/mであり、より好ましくは2.0~15.0g/mであり、さらに好ましくは2.0~13.0g/mであり、特に好ましくは3.0~13.0g/mである。錫層40中の錫付着量を上記範囲内とすることにより、充放電時のガス発生を有効に抑制にすることができる。錫付着量は、電池用表面処理金属板10について蛍光X線測定やICP発光分光分析を行うことで求めることができる。なお、上記の錫付着量は、金属基材20の片面における付着量を表す。
 錫層40の厚みの下限は、好ましくは0.05μm以上、より好ましくは0.10μm以上、さらに好ましくは0.20μm以上、特に好ましくは0.50μm以上である。錫層40の厚みが小さすぎると、錫層40の結晶配向指数を適切に制御することができず、ガス発生が顕著となる傾向にある。また錫層40の厚みの上限は、特に限定されないが、好ましくは2.0μm以下、より好ましくは1.5μm以下、さらに好ましくは1.0μm以下である。なお、錫層40の厚みは、上記の方法で求めた錫付着量を錫の密度(g/m)に基づいて厚みに換算する(錫付着量を密度で除する)ことにより求めることができるが、これに限られるものではなく、走査型電子顕微鏡(SEM)の断面観察による厚み測定、透過型電子顕微鏡(TEM)による厚み測定、高周波グロー放電発光分光分析装置による測定等が適用可能である。
 錫層40の(220)面、(200)面、および(400)面の結晶配向指数において、上述した(1)式または(2)式の少なくともいずれか一方が1を超えることを満たすように制御する方法としては、特に限定されないが、たとえば、錫層40の形成に用いる錫めっき浴に微量のニッケルを添加する方法、錫めっき浴に添加剤を加える方法、錫層40の厚みを制御する方法、およびこれらを組み合わせる方法などが挙げられる。
 錫層40の形成に用いる錫めっき浴としては、フェロスタン浴、MSA浴、ハロゲン浴、硫酸浴などに、上述した微量のニッケルおよび/または添加剤をさらに含有したものを用いることができる。このうち、硫酸浴を用いることが好ましく、錫イオン10~60g/L、硫酸25~110mL/Lの浴組成のものに、上述した微量のニッケルおよび/または添加剤をさらに含有したものが好ましい。また、錫イオン10~60g/L、硫酸25~60mL/Lの浴組成のものに、上述した微量のニッケルおよび/または添加剤をさらに含有したものが特に好ましい。
 錫めっき浴に微量のニッケルを添加する方法におけるニッケルの添加量は、好ましくは10~200重量ppmであり、より好ましくは10~100重量ppmであり、特に好ましくは20~100重量ppmである。
 錫めっき浴に添加する添加剤としては、エトキシ化ナフトール、エトキシ化ナフトールスルホン酸、などが挙げられる。市販品としては、テクニックジャパン社製テクニスタンTPアディティブ、石原ケミカル社製UTB 230Rなどが挙げられる。このうち、テクニックジャパン社製テクニスタンTPアディティブを用いることが好ましく、錫めっき浴への添加量としては、好ましくは10~100mL/Lであり、より好ましくは40~100mL/Lである。
 錫層40を形成する際のめっき条件のうち、電流密度は、好ましくは1.0~30.0A/dmであり、より好ましくは2.0~15.0A/dmであり、特に好ましくは4.0~15.0A/dmである。また、めっき浴の温度は、好ましくは25~60℃であり、より好ましくは35~55℃である。
<ニッケル-錫合金層50>
 図2は、本発明の別の実施形態に係る電池用表面処理金属板の断面図である。
 本実施形態に係る電池用表面処理金属板10aは、図2に示すように、上述したニッケル層30と錫層40の間に、ニッケル-錫合金層50をさらに備えるものであってもよい。ニッケル-錫合金層50を備えたものとすることにより、電解液への浸漬による錫層40の溶解が生じた場合であっても、ニッケル-錫合金層50が形成されているため、ガス発生の抑制と耐電解液性の両方に優れたものとすることができる。
 ニッケル-錫合金層50は、特に限定されないが、合金相として、CuKαを線源とするX線回折測定による、回折角2θ=42~43°の範囲に回折ピークが得られるニッケル-錫合金(以下、このニッケル-錫合金を「Ni-Sn42-43」とする)を含有することが好ましい。ニッケル-錫合金層50中に、Ni-Sn42-43を含有するよう制御することにより、ニッケル-錫合金層50の上層に形成されている錫層40における錫の結晶配向状態を維持し易い。また、ニッケル-錫合金層50の表面における錫(Sn)の含有率を高めることを可能とし、ガス発生の抑制効果と耐電解液性の両方に優れた電池用表面処理金属板10aとすることができる。なお、回折角2θ=42~43°の範囲における回折ピークは、純ニッケル、純錫、純鉄の回折ピークとは異なることを確認した。
 ニッケル-錫合金層50の厚みは、特に限定されないが、好ましくは0.05~2.00μm、より好ましくは0.05~1.50μm、さらに好ましくは0.10~1.00μmである。ニッケル-錫合金層50の厚みを上記範囲とすることにより、ガス発生の抑制効果および耐電解液性をより高めることができる。ニッケル-錫合金層50の厚みは、走査型電子顕微鏡(SEM)の断面観察による厚み測定、高周波グロー放電発光分光分析装置による測定等により求めることができる。
 電池用表面処理金属板10aにおいて、ニッケル-錫合金層50に含まれるニッケルと、ニッケル層30に含まれるニッケルの合計付着量が、好ましくは1.0g/m超、20.0g/m以下であり、より好ましくは1.5g/m超、15.0g/m以下であり、さらに好ましくは2.0g/m超、10.0g/m以下であり、特に好ましくは3.0g/m超、10.0g/m以下である。また、ニッケル-錫合金層50に含まれる錫と、錫層40に含まれる錫の合計付着量においては、好ましくは1.0~15.0g/mであり、より好ましくは2.0~15.0g/mであり、さらに好ましくは2.0~13.0g/mであり、特に好ましくは3.0~13.0g/mである。
 なお、電池用表面処理金属板10aにおける、ニッケル層30の厚みや錫層40の厚みについては、上述した電池用表面処理金属板10と同様の範囲である。
 ニッケル-錫合金層50の形成方法は、特に限定されないが、金属基材20上に、上述した方法でニッケル層30を形成し、次いで、(220)面、(200)面、および(400)面の結晶配向指数を制御した錫層40をこの順に形成することにより、ニッケル層30と、錫層40との界面において拡散を起こさせ、ニッケル-錫合金層50を形成することができる。特に、上述した(1)式または(2)式の少なくともいずれか一方が1を超えることを満たすよう制御することで、ニッケル-錫合金層50を形成することが可能である。
 なお、ニッケル-錫合金層50の形成をより促進させるためには、常温拡散処理を用いることが好ましい。常温拡散処理を行う際における処理温度は、特に限定されないが、好ましくは0℃以上~50℃未満であり、処理時間(経時期間)は、特に限定されないが、好ましくは5日以上、より好ましくは7日以上、さらに好ましくは10日以上、特に好ましくは30日以上であればよい。常温拡散処理を行うことにより、ニッケル-錫合金層50を、合金相として、Ni-Sn42-43を主として含有するものとするものとすることができる。
 また、本発明の実施形態に係る電池用表面処理金属板10,10aは、ニッケル層30の下層として、鉄-ニッケル拡散層をさらに備えていてもよい。図1に示す電池用表面処理金属板10の態様においては、金属基材20上にニッケル層30を形成し、熱処理を行うことで鉄-ニッケル拡散層を形成した後、ニッケル層30の上層に錫層40を形成することで、ニッケル層30および錫層40に加え鉄-ニッケル拡散層を備える構造を得ることができる。また、図2に示す電池用表面処理金属板10aの態様では、金属基材20上にニッケル層30を形成し、熱処理を行うことで鉄-ニッケル拡散層を形成した後、ニッケル層30の上層に錫層40を形成し、さらに常温拡散処理を行うことで、ニッケル層30、ニッケル-錫合金層50、および錫層40に加え、鉄-ニッケル拡散層を備える構造を得ることができる。なお、鉄-ニッケル拡散層を形成する方法として、ニッケル層30の上層に錫層40を形成した後、熱処理を行うことで鉄-ニッケル拡散層を形成する方法も考えられるが、この方法は、錫層40の結晶配向状態の制御が困難であり、且つNi-Sn42-43を含有するニッケル-錫合金層50が得られないため好ましくない。そのため、上述のようにニッケル層30を形成し、熱処理を行うことで鉄-ニッケル拡散層を形成した後、ニッケル層30の上層に錫層40を形成した構成や、鉄-ニッケル拡散層を形成した後、ニッケル層30の上層に錫層40を形成し、次いでニッケル層30と錫層40の間にニッケル-錫合金層50を形成した構成とすることが好ましい。
 鉄-ニッケル拡散層を形成するための熱処理条件としては、特に限定されないが、箱型焼鈍により熱処理を行う場合には、熱処理温度を、好ましくは400℃越え~600℃以下、より好ましくは450℃以上~600℃以下とし、均熱時間を、好ましくは0.5~8時間とすればよい。また、連続焼鈍により熱処理を行う場合には、熱処理温度を、好ましくは600℃以上~900℃以下、より好ましくは600℃以上~800℃以下とし、熱処理時間を、好ましくは3~120秒とすればよい。
 本実施形態に係る電池用表面処理金属板10は、金属基材20と、金属基材20の少なくとも片面に形成されたニッケル層30と、ニッケル層30の上層として形成された錫層40と、を備えてなるものであり、錫層40の結晶配向指数において、上記(1)式または上記(2)式の少なくともいずれか一方が1を超えることを満たすものであり、優れたガス発生の抑制効果を発揮することが可能である。また、ニッケル層30と錫層40の間に、ニッケル-錫合金層50をさらに備えている電池用表面処理金属板10aの場合、ガス発生の抑制効果および耐電解液性を発揮するものである。そのため、本発明の実施形態に係る電池用表面処理金属板10、10aは、このような特性を活かし、正極または負極の集電体や電池容器として、好ましく用いることができ、特に、アルカリ電解液を使用したアルカリ二次電池における、集電体や電池容器として、より好ましく用いることができ、とりわけ、ニッケル亜鉛電池における、集電体や電池容器として、特に好ましく用いることができる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
 なお、各特性の評価方法は、以下のとおりである。
<ニッケル付着量、錫の付着量の測定>
 各実施例、比較例において得られた表面処理金属板10、10aについて、ニッケル付着量、および錫付着量を、蛍光X線(XRF)測定を用いて検量線法により定量した。蛍光X線装置は、リガク社製、ZSX100eを用いた。蛍光X線測定においては表面処理金属板の、ニッケル層30、ニッケル-錫合金層50、錫層40の各層に含まれる金属元素の検量線法による定量が可能であることを確認した。
<X線回折(XRD)測定(ニッケル層30および錫層40の有無)>
 各実施例、比較例において得られた電池用表面処理金属板10、10aについて、X線回折(XRD)測定を行うことで、ニッケル層30および錫層40の有無を確認した。X線回折測定装置としては、リガク社製 SmartLabを用い、得られた電池用表面処理金属板を30mm×30mmに切断したものを測定サンプルとした。なお、X線回折(XRD)測定の具体的な測定条件は以下の通りとした。
(装置構成)
 ・X線源:CuKα
 ・ゴニオメータ半径:300nm
 ・光学系:集中法
(入射側スリット系)
 ・ソーラースリット:5°
 ・長手制限スリット:5mm
 ・発散スリット:1/2°
(受光側スリット系)
 ・散乱スリット:1/2°
 ・ソーラースリット:5°
 ・受光スリット:0.3mm
 ・単色化法:カウンターモノクロメーター法
 ・検出器:シンチレーションカウンタ
(測定パラメータ)
 ・管電圧-管電流:45kV 200mA
 ・走査軸:2θ/θ
 ・走査モード:連続
 ・測定範囲:2θ 30~100°
 ・走査速度:10°/n
 ・ステップ:0.05°
 なお、得られたピーク強度値に対しては、リガク社製 統合粉末X線解析ソフトウェア PDXLを用いてバックグラウンド除去を行い、データ解析を行った。ニッケル層30および錫層40の有無の確認方法については、ニッケルの回折ピークおよび錫の回折ピークの有無に基づき判断した。ニッケルの回折ピークは、回折角2θ=51~53°に現れる(200)面のピーク、回折角2θ=76~77°に現れる(220)面のピーク、および回折角2θ=92~94°に現れる(311)面のピークに基づき判断した(ICDD PDFカード03-065-2865)。また、錫の回折ピークは、回折角2θ=30~31°に現れる(200)面のピーク、回折角2θ=43.5~44.1°に現れる(220)面のピーク、および回折角2θ=63.5~64.2°に現れる(400)面のピークに基づき判断した(ICDD PDFカード00-004-0673)。
 <X線回折(XRD)測定(錫層40の結晶配向指数)>
 各実施例、比較例において得られた電池用表面処理金属板10、10aについて、上述したX線回折(XRD)測定方法により、錫層40の表面における錫の各結晶面の回折強度を測定した後、得られた錫の回折強度と、標準錫粉末の回折強度を用いて、錫層40の表面の(220)面、(200)面、および(400)面の結晶配向指数をそれぞれ求め、結晶性配向指数の比、N(220)/N(200)、およびN(220)/N(400)を算出した。なお、錫の各結晶面の回折角と、標準錫粉末の各結晶面の回折角は、回折ICDD PDF-2 2014のデータベースの00-004-0673に記載されているものを用いた。
<X線回折(XRD)測定(ニッケル-錫合金層50の有無)>
 各実施例、比較例において得られた電池用表面処理金属板10、10aについて、上述したX線回折(XRD)測定方法により、ニッケル-錫合金層50の有無を確認した。ニッケル-錫合金層50の有無の確認方法については、ニッケル、錫、および鉄の回折ピークに該当しない、回折角2θ=42~43°に現れる回折ピークを確認することで、ニッケル-錫合金層50を有すると判断した。具体的には、回折角2θ=42~43°に現れる回折ピークは、ICDD PDFカード03-065-2865(ニッケル)、ICDD PDFカード00-004-0673(錫)、およびICDD PDFカード03-065-4899(鉄)に記載される回折角に該当せず、ニッケル-錫合金に由来する回折ピークであると判断できるため、当該角度に回折ピークを確認できた場合、ニッケル-錫合金層50を有すると判断した。
<アノード反応前の腐食電流密度測定によるガス発生抑制評価>
 各実施例、比較例において得られた電池用表面処理金属板10、10aについて、アルカリ溶液に浸漬した場合の腐食電流密度を測定することにより、ガス発生抑制効果について評価した。腐食電流密度測定は、下記の条件において実施し、30重量%水酸化カリウム溶液での下記試験極と対極間で発生する腐食電流密度(単位:mA/cm)を測定した。
 ・測定装置:北斗電工社製 HZ7000
 ・試験極:Zn板(評価面積20mm×20mm、厚み0.5mm)
 ・対極:測定サンプル(測定径φ6mm)
 ・測定方法:無抵抗電流計
 具体的には、析出Znとの局部電池を模す試験として、対極にZn板を用い、得られた電池用表面処理金属板10、10aを、アルカリ溶液中に浸漬させた上で電気化学測定システムを用いて腐食電流密度を測定することにより、ガス発生抑制について評価した。アルカリ溶液に浸漬して30秒経過時点での腐食電流密度が小さいほど、ガス発生抑制の効果が高いと判断できる。腐食電流密度が0.15mA/cm以下を「A+」、腐食電流密度が0.15mA/cm超、0.20mA/cm以下を「A」、腐食電流密度が0.20mA/cm超、0.25mA/cm以下を「B」、腐食電流密度が0.25mA/cmを超えるものを「C」として評価した。
<アノード反応後の腐食電流密度測定によるガス発生抑制評価>
 また、得られた電池用表面処理金属板10、10aについて、亜鉛二次電池用途を想定した場合、電池設計によっては充放電を繰り返した際に負極活物質の亜鉛層が厚くなることがある。厚くなりすぎた亜鉛層を除去するためには、過放電状態に近い状態まで放電反応(アノード反応)を行うことが想定される。この様な状態を模す試験として、アルカリ溶液(30重量%水酸化カリウム溶液)を用いたアノード反応試験を行い、アノード反応試験後の電池用表面処理金属板10、10aについて、上記と同様にして腐食電流密度を測定した。腐食電流密度が20mA/cm以下を「A+」、腐食電流密度が20mA/cm超、30mA/cm以下を「A」、腐食電流密度が30mA/cm超、40mA/cm以下を「B」、腐食電流密度が40mA/cmを超えるものを「C」として評価した。
 なお、アノード反応試験は、下記の条件において実施したものである。
 ・電気化学測定器:北斗電工社製 HZ7000
 ・試験極:測定サンプル(評価面積20mm×20mm)
 ・対極:Cu板
 ・参照極:Ag/AgCl(KCl飽和)
 ・電解液:30重量%水酸化カリウム溶液
 ・電流密度:50mA/cm
 ・測定方法:クロノポテンショメトリ
 ・電気量:21C/cm
<実施例1>
 まず、金属基材20として、下記に示す化学組成を有する低炭素アルミキルド鋼の冷間圧延板(厚さ60μm)を準備した。
 C:0.04重量%、Mn:0.32重量%、Si:0.01重量%、P:0.012重量%、S:0.014重量%、残部:Feおよび不可避的不純物
 次いで、準備した金属基材20について、電解脱脂、硫酸浸漬の酸洗を行った後、下記条件にてニッケルめっきを行うことで、金属基材20の両面に、ニッケル層30を形成した。なお、ニッケルめっきの条件は、以下の通りとした。また、ニッケルめっきの処理時間は、ニッケル付着量が表1に示す量となるような条件とした。
(浴組成:ワット浴)
  硫酸ニッケル六水和物:250g/L
  塩化ニッケル六水和物:45g/L
  ほう酸:30g/L
(めっき条件)
  浴温:60℃
  pH:4.0~5.0
  撹拌:空気撹拌または噴流撹拌
  電流密度:10A/dm
 次いで、ニッケル層30を形成した金属基材20に対し、錫めっきを行うことで、金属基材20の両面に形成されたニッケル層30の上層に、錫層40を形成した。なお、錫めっきの条件は、以下の通りとした。また、錫めっきの処理時間は、錫付着量が表1に示す量となるような条件として、電池用表面処理金属板10を得た。そして、得られた電池用表面処理金属板10について、上記した各測定を行った。結果を表1に示す。
(浴組成)
  錫イオン:20g/L
  硫酸:45mL/L
  添加剤(商品名「テクニスタンTPアディティブ」、テクニックジャパン社製):50mL/L
  ニッケル:50重量ppm
(めっき条件)
  pH:1以下
  浴温:45℃
  電流密度:5A/dm
<実施例2>
 実施例1と同様にして、ニッケル層および錫層を有する鋼板を得て、得られたニッケル層および錫層を有する鋼板について、温度25℃、経時期間180日の条件で常温拡散処理を行うことで、ニッケル-錫合金層50を有する電池用表面処理金属板10aを得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。そして、得られた電池用表面処理金属板10aについて、上記した各測定を行った。結果を表1に示す。
<実施例3~5>
 常温拡散処理における経時期間を表1に示す条件に変更した以外は、実施例2と同様にして電池用表面処理金属板10aを得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。そして、得られた電池用表面処理金属板10aについて、上記した各測定を行った。結果を表1に示す。
<実施例6>
 金属基材20の厚みを25μmに変更、ならびに常温拡散処理における経時期間を表1に示す条件に変更した以外は、実施例2と同様にして電池用表面処理金属板10aを得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。そして、得られた電池用表面処理金属板10aについて、上記した各測定を行った。結果を表1に示す。
<実施例7~8>
 錫めっきにおける電流密度の条件、ならびに常温拡散処理における経時期間を表1に示す条件に変更した以外は、実施例2と同様にして電池用表面処理金属板10aを得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。そして、得られた電池用表面処理金属板10aについて、上記した各測定を行った。結果を表1に示す。
<実施例9~10>
 ニッケルめっきおよび錫めっきにおける電流密度の条件、ならびに常温拡散処理における経時期間を表1に示す条件に変更した以外は、実施例2と同様にして電池用表面処理金属板10aを得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。そして、得られた電池用表面処理金属板10aについて、上記した各測定を行った。結果を表1に示す。
<実施例11~12>
 ニッケルめっきおよび錫めっきにおける電流密度の条件、錫めっき浴中における添加剤の添加量、ならびに常温拡散処理における経時期間を表1に示す条件に変更した以外は、実施例2と同様にして電池用表面処理金属板10aを得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。そして、得られた電池用表面処理金属板10aについて、上記した各測定を行った。結果を表1に示す。
<実施例13>
 金属基材20の厚みを110μmに変更した以外は、実施例7と同様にして電池用表面処理金属板10aを得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。そして、得られた電池用表面処理金属板10aについて、上記した各測定を行った。結果を表1に示す。
<比較例1~2>
 錫めっき浴中に添加剤およびニッケルのいずれも添加せず、錫めっきにおける電流密度の条件、ならびに常温拡散処理における経時期間を表1に示す条件に変更した以外は、実施例2と同様にして表面処理金属板を得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。結果を表1に示す。
<比較例3>
 常温拡散処理を行わなかった以外は、比較例1と同様にして表面処理金属板を得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。結果を表1に示す。
<比較例4>
 錫めっき浴にニッケルを50m重量ppm添加した以外は、比較例3と同様にして表面処理金属板を得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。結果を表1に示す。
<比較例5>
 錫めっき浴中にニッケルを添加せず、錫めっき浴中における添加剤の添加量、ならびに常温拡散処理における経時期間を表1に示す条件に変更した以外は、実施例2と同様にして表面処理金属板を得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。結果を表1に示す。
<比較例6>
 錫付着量を表1に示す条件に変更した以外は、実施例4と同様にして表面処理金属板を得た。なお、ニッケルめっき、錫めっきの処理時間は、ニッケル付着量、錫付着量が表1に示す量となるような条件とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、錫層40の(200)面、(220)面、および(400)面の結晶配向指数において、上述した(1)式または(2)式の少なくともいずれか一方が1を超えることを満たす表面処理金属板10、10aによれば、アノード反応前後において、腐食電流密度が低減され、ガス発生が有効に抑制することができた(実施例1~13)。
 より詳細には、実施例1~13において、錫層40の結晶性配向指数に関する(1)式または(2)式の少なくともいずれか一方が1を超えることを満たす場合、アノード反応前における腐食電流密度が0.25mA/cm以下となり、ガス発生の抑制効果が優れることを確認した。また、実施例1~10においては、(1)式および(2)式の両方が2以上であり、ガス発生の抑制効果がより優れることを確認した。さらに、実施例1~6においては、(1)式および(2)式の両方が10以上であり、ガス発生の抑制効果がより顕著に優れることを確認した。
 また、実施例2~13においては、ニッケル層30と錫層40の間にニッケル-錫合金層50をさらに備えており、表1に示すように、アノード反応後における腐食電流密度の結果から、アノード反応後においてもニッケル-錫合金層50を有することにより、ガス発生の抑制効果を有しつつ、且つ耐電解液性にも優れたものであることが確認された。
 より詳細には、実施例2~13おいて、ニッケル-錫合金層50を構成する合金相として、Ni-Sn42-43を主として含有するものであり、これらの電池用表面処理金属板10aは、アノード反応後における腐食電流密度が40mA/cm以下となり、ガス発生の抑制効果を有しつつ、且つ耐電解液性にも優れることを確認した。
 なお、ニッケル-錫合金層50を形成する際、ニッケル層30の上層に形成された錫層40の結晶配向指数において、(1)式および(2)式の両方が2以上を満たすよう制御した場合、ニッケル-錫合金層50におけるガス発生の抑制効果がより優れることを確認した。特に、錫層40の結晶配向指数において、(1)式および(2)式の両方が10以上を満たす場合には、アノード反応後における腐食電流密度が20mA/cm以下となり、ガス発生の抑制効果が顕著に優れることを確認した。
 一方、比較例1~6においては、錫層40の結晶配向指数に関する(1)式または(2)式のいずれも1を超えない表面処理金属板のため、アノード反応の前後における腐食電流密度が、実施例1~13よりも大きいことを確認した。
 図3A~図3Cに、実施例9の電池用表面処理金属板10aについて、X線回折(XRD)測定により得られた錫層40のX線回折(XRD)チャートを示す。なお、図3Aは錫層40の(200)面の回折ピークを示すX線回折チャートであり、図3Bは錫層40の(220)面の回折ピークを示すX線回折チャートであり、図3Cは錫層40の(400)面の回折ピークを示すX線回折チャートである。このように検出された錫層40の(200)面、(220)面、および(400)面の回折ピークを用いて、錫層40の結晶配向指数の比率を算出した。同様に、実施例1~8、10~13で得られた電池用表面処理金属板10、10aでも、錫層40の(200)面、(220)面、および(400)面の回折ピークを用いて、錫層40の結晶配向指数の比率を算出した。
 また、図4は、実施例9において検出されたニッケル-錫合金層を構成する合金相のX線回折チャートを示す。図4に示すように、実施例9で得られた電池用表面処理金属板10aでは、X線回折測定により回折角2θ=42~43°の範囲に回折ピークに得られ、ニッケル-錫合金層50が形成されていることが確認された。同様に、実施例2~8、10~13で得られた電池用表面処理金属板10aでも、回折角2θ=42~43°の範囲に回折ピークに得られた。
10,10a…電池用表面処理金属板
 20…金属基材
 30…ニッケル層
 40…錫層
 50…ニッケル-錫合金層

Claims (7)

  1.  電池用表面処理金属板であって、
     金属基材と、
     前記金属基材の少なくとも片面に設けられたニッケル層と、
     前記ニッケル層の上層に設けられた錫層と、を備え、
     前記錫層について、下記(1)式または下記(2)式の少なくともいずれか一方が1を超えることを満たす電池用表面処理金属板。
     N(220)/N(200)  (1)
     N(220)/N(400)  (2)
     上記(1)式および(2)式中、N(220)は前記錫層の(220)面の結晶配向指数を表し、上記(1)式中、N(200)は前記錫層の(200)面の結晶配向指数を表し、上記(2)式中、N(400)は前記錫層の(400)面の結晶配向指数を表す。
  2.  前記ニッケル層と前記錫層との間に形成されたニッケル-錫合金層をさらに備える請求項1に記載の電池用表面処理金属板。
  3.  前記金属基材が、鉄を基とする金属基材である請求項1または2に記載の電池用表面処理金属板。
  4.  前記ニッケル層中のニッケル付着量が1.0g/m超であり、20.0g/m以下である請求項1~3のいずれかに記載の電池用表面処理金属板。
  5.  前記錫層中の錫付着量が1.0g/m以上、15.0g/m以下である請求項1~4のいずれかに記載の電池用表面処理金属板。
  6.  前記(1)式、または前記(2)式の少なくともいずれか一方が2以上を満たす請求項1~5のいずれかに記載の電池用表面処理金属板。
  7.  前記ニッケル-錫合金層において、合金相として、CuKαを線源とするX線回折測定による回折角2θ=42~43°の範囲に回折ピークが得られる請求項2に記載の電池用表面処理金属板。
PCT/JP2023/034962 2022-10-12 2023-09-26 電池用表面処理金属板 WO2024080136A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-164282 2022-10-12
JP2022164282A JP2024057495A (ja) 2022-10-12 2022-10-12 電池用表面処理金属板

Publications (1)

Publication Number Publication Date
WO2024080136A1 true WO2024080136A1 (ja) 2024-04-18

Family

ID=90588864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034962 WO2024080136A1 (ja) 2022-10-12 2023-09-26 電池用表面処理金属板

Country Status (3)

Country Link
JP (1) JP2024057495A (ja)
CN (2) CN117878333A (ja)
WO (1) WO2024080136A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459769A (en) * 1987-08-31 1989-03-07 Alkali Dry Battery Eng Lab Negative current collector for zinc-alkaline battery
JP2743416B2 (ja) * 1988-12-01 1998-04-22 株式会社ユアサコーポレーション 二次電池用亜鉛極板
JP2000048799A (ja) * 1998-07-28 2000-02-18 Matsushita Electric Ind Co Ltd 電 池
JP2006351432A (ja) * 2005-06-17 2006-12-28 Toyo Kohan Co Ltd 電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6459769A (en) * 1987-08-31 1989-03-07 Alkali Dry Battery Eng Lab Negative current collector for zinc-alkaline battery
JP2743416B2 (ja) * 1988-12-01 1998-04-22 株式会社ユアサコーポレーション 二次電池用亜鉛極板
JP2000048799A (ja) * 1998-07-28 2000-02-18 Matsushita Electric Ind Co Ltd 電 池
JP2006351432A (ja) * 2005-06-17 2006-12-28 Toyo Kohan Co Ltd 電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池

Also Published As

Publication number Publication date
JP2024057495A (ja) 2024-04-24
CN117878333A (zh) 2024-04-12
CN117878332A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US11242591B2 (en) Surface-treated metal plate, cell container, and cell
KR102366582B1 (ko) 축전 디바이스 용기용 강박, 축전 디바이스용 용기 및 축전 디바이스, 및 축전 디바이스 용기용 강박의 제조 방법
JP7187469B2 (ja) 表面処理鋼板およびその製造方法
WO2012147843A1 (ja) 電池容器用表面処理鋼板、電池容器および電池
WO2010128681A1 (ja) 2次電池用負極、電極用銅箔、2次電池および2次電池用負極の製造方法
JP7270660B2 (ja) アルカリ二次電池用表面処理板およびその製造方法
WO2020204018A1 (ja) アルカリ二次電池用表面処理板およびその製造方法
CN113544882B (zh) 碱性二次电池用表面处理板及其制造方法
CN109072449B (zh) 电池外筒罐用钢板、电池外筒罐和电池
WO2024080136A1 (ja) 電池用表面処理金属板
CN115038817B (zh) 镀Ni钢板及其制造方法
JP7162026B2 (ja) アルカリ二次電池用表面処理板およびその製造方法
WO2023033118A1 (ja) 電池用表面処理金属板
JP2021150293A (ja) リチウムイオン二次電池用表面処理銅箔
WO2022231008A1 (ja) 集電体用表面処理鋼箔
WO2022231009A1 (ja) 集電体用表面処理鋼箔及びその製造方法
JP2005063764A (ja) リチウムイオン二次電池用銅箔及びその製造方法
JP2023098438A (ja) 集電体用表面処理金属箔及びその製造方法
JP6823219B2 (ja) 電解銅箔
US20240229284A1 (en) Surface treated steel foil
US20230265575A1 (en) Electrolytic iron foil
JP2023098440A (ja) 集電体用表面処理金属箔
JP2023098439A (ja) 集電体用表面処理金属箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877142

Country of ref document: EP

Kind code of ref document: A1