WO2022231009A1 - 集電体用表面処理鋼箔及びその製造方法 - Google Patents

集電体用表面処理鋼箔及びその製造方法 Download PDF

Info

Publication number
WO2022231009A1
WO2022231009A1 PCT/JP2022/019466 JP2022019466W WO2022231009A1 WO 2022231009 A1 WO2022231009 A1 WO 2022231009A1 JP 2022019466 W JP2022019466 W JP 2022019466W WO 2022231009 A1 WO2022231009 A1 WO 2022231009A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
steel foil
iron
current collector
layer
Prior art date
Application number
PCT/JP2022/019466
Other languages
English (en)
French (fr)
Inventor
啓志 桂
美里 上野
慎一郎 堀江
悦郎 堤
聡子 原田
利文 小柳
駿季 小幡
興 吉岡
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to CN202280031142.7A priority Critical patent/CN117255875A/zh
Priority to EP22795922.8A priority patent/EP4332275A1/en
Priority to JP2023517638A priority patent/JPWO2022231009A1/ja
Priority to KR1020237029898A priority patent/KR20240000449A/ko
Publication of WO2022231009A1 publication Critical patent/WO2022231009A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a surface-treated steel foil that is particularly suitable for current collectors such as secondary batteries, and a method for producing the same.
  • nickel-metal hydride batteries and lithium-ion batteries are known as secondary batteries used in vehicles.
  • the types of electrode structures of these secondary batteries include a monopolar electrode in which a positive electrode layer or a negative electrode layer is formed on both sides of a current collector, and a positive electrode layer (positive electrode active material layer) and a negative electrode layer on both sides of the current collector. (Negative electrode active material layer) is known.
  • a bipolar battery is constructed by stacking the above-described bipolar electrodes with an electrolyte, a separator, etc. sandwiched therebetween and housing them in a single battery case. It is known that this structure enables the electrodes to be stacked in a series circuit, so that the internal resistance of the battery can be reduced and the operating voltage and output can be easily increased. In addition to battery performance, battery volume and weight can be reduced by eliminating or reducing the number of parts such as leads for extracting current through battery design compared to conventional batteries using monopolar electrodes. It is believed that the volumetric and gravimetric energy densities of batteries can be improved. For example, Patent Document 1 below discloses that a metal foil such as a nickel foil is used as a current collector of a bipolar battery.
  • the inventors of the present invention have been making efforts to improve battery characteristics while proceeding with development using metal foil such as steel foil as a metal material suitable for the current collector. Among them, the inventors have found that deterioration of battery performance can be reduced by suppressing hydrogen permeation in a metal material used as a current collector.
  • hydrogen is used as the active material of the negative electrode, and generally a hydrogen-absorbing alloy is used.
  • the surface should have electrolyte resistance according to the battery type. When such a permeation phenomenon occurs, the battery performance tends to deteriorate.
  • An object of the present invention is to provide a surface-treated steel foil for a current collector that has both properties and the like.
  • the surface-treated steel foil for a current collector in one embodiment of the present invention includes (1) a first surface on which a hydrogen-absorbing alloy is arranged; A surface-treated steel foil for a current collector having a second surface located on the opposite side, the first surface side of a metal substrate made of a steel foil, and the side opposite to the first surface side an iron-nickel alloy layer that is laminated on at least one side of the surface-treated steel foil for a current collector and suppresses permeation or diffusion of hydrogen in the surface-treated steel foil for a current collector, the iron-nickel alloy At least one of the layers has a thickness of 0.5 ⁇ m or more.
  • the metal substrate is preferably low carbon steel or ultra-low carbon steel.
  • the amount of nickel attached to the iron-nickel alloy layer is 0.80 g/m 2 to 53.4 g/m 2 .
  • the amount of nickel attached to the iron-nickel alloy layer is 0.80 g/m 2 to 53.4 g/m 2 .
  • the surface-treated steel foil for a current collector according to any one of (1) to (4) above, further comprising (5) a metal layer formed on the iron-nickel alloy layer, wherein the metal layer is a nickel layer. is preferred.
  • the metal layer is a nickel layer, and the total amount of nickel deposited on the iron-nickel alloy layer and the nickel layer is 2.0 g/m 2 to 2.0 g/m 2 . It is preferably 53.4 g/m 2 .
  • the surface-treated steel foil for a current collector preferably has (7) a hydrogen permeation current density measured electrochemically of 20 ⁇ A/cm 2 or less.
  • the hydrogen permeation current density is the hydrogen detection side when a potential of -1.5 V is applied to the hydrogen generation side under the condition that the potential of the hydrogen detection side is +0.4 V in the electrolyte solution at 65 ° C.
  • the increment of the oxidation current measured at The reference electrode for the hydrogen detection side and hydrogen generation side potential is Ag/AgCl.
  • the outermost surface of either the first surface side or the second surface side is roughened.
  • a nickel layer is formed, and the three-dimensional surface texture parameter Sa of the roughened nickel layer is preferably 0.2 ⁇ m to 1.3 ⁇ m.
  • a method for producing a surface-treated steel foil for a current collector includes (9) a first metal substrate in which a hydrogen-absorbing alloy is arranged; On at least one of the surface side and the second surface side opposite to the first surface side, iron that suppresses permeation or diffusion of hydrogen in the surface-treated steel foil for current collector It is characterized by having a step of forming a nickel alloy layer.
  • the amount of nickel attached to the iron-nickel alloy layer is 0.80 g/m 2 to 53.4 g/m 2 . is preferred.
  • a surface-treated steel foil for a current collector that has both hydrogen barrier properties suitable for bipolar batteries and electrolytic solution resistance required for secondary batteries.
  • FIG. 1 is a schematic diagram of an apparatus for measuring the hydrogen barrier properties of the surface-treated steel foil 10 for current collector of this embodiment.
  • FIG. 1 is a schematic diagram of an apparatus for measuring the hydrogen barrier properties of the surface-treated steel foil 10 for current collector of this embodiment.
  • FIG. 1 is a schematic diagram of an apparatus for measuring the hydrogen barrier properties of the surface-treated steel foil 10 for current collector of this embodiment.
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 4 is a diagram schematically showing a surface-treated steel foil for a current collector of another embodiment
  • FIG. 1 is a diagram schematically showing one embodiment of a surface-treated steel foil 10 for a current collector of the present invention.
  • the surface-treated steel foil 10 for a current collector of the present embodiment can be applied not only to the current collector of a bipolar battery, but also to the current collector of a positive electrode or a negative electrode of a monopolar battery.
  • the type of battery may be a secondary battery or a primary battery.
  • the surface-treated steel foil 10 for current collector of this embodiment has a metal substrate 20 and an iron-nickel alloy layer 30 .
  • the surface-treated steel foil 10 for current collector has a first surface 10a and a second surface 10b opposite to the first surface.
  • a hydrogen absorbing alloy as a negative electrode material is arranged on the side of the first surface 10a.
  • a positive electrode material is arranged on the side of the second surface 10b.
  • the surface-treated steel foil 10 for current collector of the present embodiment is characterized by having the iron-nickel alloy layer 30 as described above.
  • the iron-nickel alloy layer 30 may be arranged on the second surface 10b side as shown in FIG. 1(a), or may be arranged on the first surface 10a as shown in FIG. 1(b). may be placed on either side. Moreover, as shown in FIG. 1(c), they may be arranged on both the surface side of the first surface 10a and the surface side of the second surface 10b.
  • the iron-nickel alloy layer 30 may be arranged on the outermost surface of the surface-treated steel foil 10 for current collector as shown in FIGS. It may be arranged inside (middle) of the surface-treated steel foil 10 for current collector.
  • the iron-nickel alloy layer 30 has a function of suppressing permeation or diffusion of hydrogen in the surface-treated steel foil for the front current collector.
  • the steel foil of the metal substrate 20 used in the surface-treated steel foil 10 for current collector of the present embodiment an iron-based metal substrate containing less than 1.0% by weight of Cr and other additive metal elements is used. wood is preferred.
  • low carbon steel carbon content 0.01 to 0.15% by weight
  • ultra-low carbon steel with a carbon content of less than 0.01% by weight or ultra-low carbon steel
  • a non-aging ultra-low carbon steel obtained by adding Ti, Nb, or the like to is preferably used.
  • the thickness of the metal substrate 20 used in the surface-treated steel foil 10 for current collector of this embodiment is preferably in the range of 0.01 mm to 0.5 mm. When used as a current collector for a battery in which the viewpoint of volume and weight energy density is emphasized, it is more preferably 0.01 mm to 0.3 mm, more preferably 0.01 mm to 0.3 mm, more preferably from the viewpoint of strength and the desired battery capacity. 0.025 mm to 0.1 mm.
  • the thickness of the metal substrate 20 is preferably measured by cross-sectional observation with an optical microscope or scanning electron microscope (SEM). As the thickness measurement before surface treatment, ie, before nickel plating or before iron-nickel alloy plating, thickness measurement with a micrometer or the like can be applied.
  • the metal substrate 20 is usually a rolled steel foil, but may be an electrolytic iron foil produced by electrolytic plating.
  • the iron-nickel alloy layer 30 contained in the surface-treated steel foil 10 for current collector of the present embodiment is an alloy layer containing iron (Fe) and nickel (Ni), and is an alloy made of iron and nickel ("iron-nickel alloy”, “Fe—Ni alloy”).
  • the alloy state of iron and nickel may be a solid solution, eutectoid/eutectic, or compound (intermetallic compound), or they may coexist.
  • the iron-nickel alloy layer 30 contained in the surface-treated steel foil 10 for current collector of the present embodiment may contain other metal elements and unavoidable impurities as long as the problems of the present invention can be solved.
  • the iron-nickel alloy layer 30 may contain metallic elements such as cobalt (Co) and molybdenum (Mo), and additive elements such as boron (B).
  • the ratio of metal elements other than iron (Fe) and nickel (Ni) in the iron-nickel alloy layer 30 is preferably 10% by weight or less, more preferably 5% by weight or less, and even more preferably 1% by weight or less. preferable.
  • the iron-nickel alloy layer 30 may be a binary alloy consisting essentially of only iron and nickel, the lower limit of the content of other metal elements excluding unavoidable impurities is 0%.
  • the types and amounts of other metal elements contained can be measured by known means such as a fluorescent X-ray (XRF) measuring device and GDS (glow discharge emission surface analysis method).
  • plating or a method using plating and heat treatment is preferable. Examples include methods such as plating and dry plating. Among these methods, the method using electroplating is particularly preferable from the viewpoint of cost, film thickness control, and the like.
  • a Ni plating layer is formed on at least one side of the metal substrate 20 by a method such as electrolytic plating, and then iron (Fe) and nickel (Ni) in the metal substrate 20 are diffused by a thermal diffusion treatment or the like to form an alloy. and a method of forming an alloy layer by FeNi alloy plating. Details of these manufacturing methods will be described later.
  • the present inventors have found that a voltage drop (self-discharge) phenomenon of unknown cause occurs, and in order to eliminate the phenomenon, the surface-treated steel foil 10 for current collector We have found that it is effective to suppress hydrogen permeation.
  • the cause of hydrogen permeation and the reason why the occurrence of the voltage drop (self-discharge) phenomenon described above can be suppressed by suppressing hydrogen permeation in the surface-treated steel foil 10 for current collector are not yet clear, the present invention They predicted the following.
  • the current collector surface-treated steel foil 10 when used as an electrode of a bipolar battery, at least one of the current collector surface-treated steel foils 10 is made of a hydrogen-absorbing alloy used as a negative electrode material. While it arrange
  • the surface-treated steel foil of the present embodiment is particularly suitably used as a current collector for a battery using a hydrogen-absorbing alloy, particularly a bipolar battery.
  • the hydrogen entry side is also referred to as the hydrogen generation side, and is the side on which the hydrogen storage alloy is arranged, that is, the side of the first surface 10a of the surface-treated steel foil 10 for current collector.
  • the hydrogen detection side is the opposite side to the hydrogen permeation side, and is the positive electrode side of the bipolar electrode structure, that is, the second surface 10b side of the surface-treated steel foil 10 for current collector.
  • the inventors conducted measurement and evaluation, and in the present embodiment, in order to suppress the occurrence of the voltage drop (self-discharge) as described above, the surface-treated steel for current collector of the present embodiment
  • the conclusion was that the foil 10 preferably had a hydrogen permeation current density of 20 ⁇ A/cm 2 or less, as obtained from an oxidation current measured electrochemically.
  • the conditions for measuring the hydrogen permeation current density in this embodiment are as follows. It is assumed that the potential on the side is +0.4V. All the potential values used in the method for measuring the hydrogen permeation current density in this embodiment are based on Ag/AgCl (silver silver chloride) as a reference electrode.
  • the current value is detected using a measuring device configured as shown in FIG. It is possible to quantify and evaluate the hydrogen barrier properties of the steel foil 10 .
  • the measuring apparatus shown in FIG. 2(a) will be described below.
  • Each measuring cell contains an alkaline electrolyte and is submerged with a reference electrode (RE1 and RE2) and a counter electrode (CE1 and CE2).
  • An Ag/AgCl electrode in a saturated KCl solution is used as the reference electrode, and platinum (Pt) is used as the counter electrode.
  • the composition of the alkaline electrolyte is KOH, NaOH, and LiOH, and the liquid temperature is 65°C.
  • the measured diameter of the surface-treated steel foil 10 for current collector is ⁇ 20 mm (measured area: 3.14 cm 2 ).
  • Potentiostats are used for potential control and current measurement on the hydrogen entry side and the hydrogen detection side, as shown in Fig. 2(a).
  • a potentiostat for example, "Multi electrochemical measurement system HZ-Pro" manufactured by Hokuto Denko Co., Ltd. can be used.
  • the sample of the surface-treated steel foil 10 for current collector to be evaluated and the connection of each electrode can be performed as shown in FIG. 2(a).
  • the sample On the hydrogen generation side, the sample is polarized to the cathode (base potential), hydrogen is generated on the sample surface, and the hydrogen penetrates.
  • the potential is applied in steps of -0.7 V, -1.1 V, and -1.5 V, and each potential is applied for 15 minutes. The reason why the potential is applied stepwise in this way is to suppress the influence of potential changes and obtain a stable plot. It should be noted that measurement plots are taken every 5 seconds.
  • the operating potential of the negative electrode in the charging/discharging reaction of the battery is around -1.1V.
  • measurement conditions under which hydrogen is generated more significantly were investigated as a method for confirming the effect of hydrogen barrier properties without using a hydrogen storage alloy.
  • the hydrogen permeation current density I ( ⁇ A/cm 2 ) the change in the oxidation current (hereinafter also referred to as the oxidation current change) when the potential applied to the hydrogen generating side was ⁇ 1.5 V was used.
  • the working potential of the positive electrode is generally around +0.4 V in the charging/discharging reaction of the battery. Therefore, in this measurement method, a potential of +0.4 V was applied to the detection side and held during measurement. Before applying the voltage to the hydrogen generation side, the hydrogen detection side was held at the aforementioned potential for 60 minutes in order to stabilize the current value. In addition, after the application of hydrogen generation, that is, after the application of ⁇ 1.5 V for 15 minutes was completed and the application on the hydrogen generation side was set to zero, the hydrogen detection side applied +0.4 V for 5 minutes for background calculation. Hold for minutes. Measurement plots are taken every 5 seconds.
  • the hydrogen permeation current density I ( ⁇ A/cm 2 ) can be calculated from the oxidation current change on the hydrogen detection side obtained by the above method. Plots of the obtained oxidation current and numerical images of the hydrogen permeation current density I ( ⁇ A/cm 2 ) are shown in FIGS. 2(c) to 2(e).
  • FIG. 2(c) is a diagram showing the overall current value measurement including pre- and post-processes for evaluation.
  • FIG. 2(d) is a diagram showing changes in the current value for actual evaluation, and is an enlarged view from around 5300 seconds to around 6500 seconds in FIG. 2(c).
  • FIG. 2(e) is a diagram shown for comparison with the present invention, in which a nickel plating layer with a thickness of 1.0 ⁇ m is provided on a steel foil with a thickness of 50 ⁇ m without heat treatment, that is, an iron-nickel alloy layer is formed. It is a figure which shows the change of the current value when the same current value measurement as FIG.2(c) is performed using the surface-treated steel foil of the state which does not have. According to FIG.
  • the detection side current value during application of -1.5 V for 15 minutes is as shown in FIG. 2(c) It can be confirmed that it is clearly higher than the metal foil shown in .
  • the hydrogen permeation current density I ( ⁇ A/cm 2 ) is calculated based on the oxidation current change when the potential applied to the hydrogen generation side is ⁇ 1.5 V as shown in FIG. It can be calculated by the following formula.
  • Hydrogen permeation current density I ( ⁇ A/cm 2 ) ((average value of oxidation current from Ib to Ic)/S) - ((average of Ia and Id)/S)
  • Ia ( ⁇ A) is the oxidation current 5 seconds before application of -1.5V
  • Ib ( ⁇ A) is the oxidation current 155 seconds after the start of application of -1.5V
  • Ic ( ⁇ A) is the end of application of -1.5V.
  • Id ( ⁇ A) is the oxidation current at 155 seconds after the end of ⁇ 1.5 V application
  • S (cm 2 ) is the measurement area (evaluation area) of the test piece.
  • the hydrogen permeation current density electrochemically measured as described above is 55 ⁇ A/cm 2 or less, from the viewpoint of the hydrogen barrier property in the surface-treated steel foil 10 for current collector, It was concluded that it is suitable for bipolar electrodes. From the viewpoint of further suppressing the voltage drop, it is more preferably 20 ⁇ A/cm 2 or less.
  • the hydrogen permeation current density is -1.5 V on the hydrogen generation side (cathode side) under the condition that the potential on the hydrogen detection side is +0.4 V (vs Ag/AgCl) in the electrolyte at 65 ° C. is the increase in oxidation current measured on the hydrogen detection side (anode side) when a potential of .
  • metal materials have different hydrogen diffusion coefficients depending on their types.
  • a metal material that suppresses penetration of hydrogen is sometimes required.
  • high-alloy steel is used to suppress delayed fracture of high-strength bolts
  • titanium welded members are used to suppress cracking of pressure reaction vessels.
  • such materials and applications are not expected to penetrate hydrogen in an environment where the amount of hydrogen increases positively, such as when a hydrogen storage alloy is placed on the surface.
  • the problem with these techniques is that hydrogen stays in the metal and affects the mechanical properties of the metal itself, and there is no problem of hydrogen permeating the metal material and affecting the opposite side.
  • the thickness of the iron-nickel alloy layer 30 is such that at least one layer has a thickness of 0.5 ⁇ m or more. is required, preferably 0.6 ⁇ m or more, more preferably 0.7 ⁇ m or more. There is no particular upper limit, but if it is too thick, the proportion of the hard layer in the surface-treated steel foil for current collector will increase, and the surface-treated steel foil for current collector itself may crack easily. 7.5 .mu.m or less, more preferably 6 .mu.m or less per side.
  • the total thickness of both surfaces is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, even more preferably 7 ⁇ m or less, and even more preferably 3.5 ⁇ m or less.
  • the thickness per side is preferably 6 ⁇ m or less, more preferably 3.5 ⁇ m or less.
  • the entire surface-treated steel foil 10 for current collector may be the iron-nickel alloy layer 30 .
  • the metal base material 20 is not included, when the surface-treated steel foil 10 for current collector is produced, for example, the iron-nickel alloy layer 30 is formed on the support by electroplating, and then the collector is peeled off. It is possible to manufacture the surface-treated steel foil 10 for electric bodies.
  • the thickness of the surface-treated steel foil 10 for current collector is preferably 4 ⁇ m to 25 ⁇ m.
  • the iron-nickel alloy layer 30 may be arranged on both the surface side of the first surface 10a and the surface side of the second surface 10b as shown in FIG. From the viewpoint of hydrogen barrier properties, the iron-nickel alloy layer 30 should have a thickness of 0.5 ⁇ m on at least one side. From the viewpoint of further enhancing hydrogen barrier properties, the total thickness of the iron-nickel alloy layers on both sides is preferably 0.7 ⁇ m or more, more preferably 0.8 ⁇ m or more. The thickness of the iron-nickel alloy layer on both sides may be the same thickness, or may be different, as long as the thickness is 0.5 ⁇ m or more on at least one side.
  • a method for calculating the thickness of the iron-nickel alloy layer 30 in this embodiment will be described.
  • the thickness from the surface layer side is analyzed by SEM-EDX (energy dispersive X-ray spectroscopy) in the cross section of the surface-treated steel foil for current collector. Quantitative analysis of Ni and Fe at depths up to at least 10 ⁇ m in the direction can be performed. If the diffusion layer thickness exceeds 10 ⁇ m, quantitative analysis is performed up to the required depth.
  • the horizontal axis indicates the distance ( ⁇ m) in the depth direction from the surface layer side
  • the vertical axis indicates the X-ray intensity of Ni and Fe.
  • the graph of FIG. 3 shows that the portion shallower in the thickness direction has a higher nickel content and a lower iron content.
  • the content of iron increases as it progresses in the thickness direction.
  • the distance between 2/10 of the maximum value of each of nickel and iron is defined as the iron-nickel alloy layer 30, and the thickness can be read from the graph. It is possible. Even when a metal layer 40 or a roughened nickel layer 50, which will be described later, is formed on the iron-nickel alloy layer 30, the thickness of the iron-nickel alloy layer 30 can be obtained by the above method.
  • the reason why the thickness of the iron-nickel alloy layer 30 is set to 2/10 of the maximum values of nickel and iron in the present embodiment is as follows. That is, in the present invention, it is preferable to set the thickness of the iron-nickel alloy layer 30 to a predetermined value or more. It was found that even in a sample in which iron did not diffuse in the sample, the iron intensity at the position where the nickel intensity peaked was detected at a numerical value of about 10% to 20% of the nickel intensity. Further, after the nickel strength was attenuated, that is, in the measurement of the metal substrate 20 portion, the nickel strength continued to detect a numerical value of about 3 to 8% of the maximum nickel strength.
  • the strength of nickel at this time was also about 2% of the strength of iron, and did not fall below 1% even when measurements were continued for 2 ⁇ m or more after attenuation.
  • the nickel strength and iron strength are affected by each other in the trace range. Therefore, in the present specification, the thickness of the alloy layer that is more reliably formed into an alloy and can ensure the hydrogen barrier property is defined as a range in which the strength of 2/10 or more of the maximum strength is detected. .
  • the nickel adhesion amount in the iron-nickel alloy layer 30 is 0.80 g/m 2 to 53.4 g/m 2 , which is suitable for bipolar electrodes. It is preferable from the viewpoint of barrier properties, electrolytic solution resistance, and the like. More preferably 0.80 g/m 2 to 26.7 g/m 2 .
  • the amount of nickel deposited on the iron-nickel alloy layer 30 can be measured by X-ray fluorescence spectroscopy (XRF) or the like.
  • the crystallite size in the (200) plane of the iron-nickel alloy is preferably 3 nm or more, more preferably 8 nm or more, from the viewpoint of hydrogen barrier properties. Although there is no particular upper limit, it is usually 50 nm or less.
  • hydrogen permeates an iron-nickel alloy layer it is not clear what route hydrogen moves, but it is thought that grain boundaries and interfaces with a large orientation difference are places where hydrogen can easily pass. Therefore, in the case of a structure in which the crystallite diameter is small and the number of grain boundaries tends to increase, there are many paths for hydrogen, the total amount of permeation of hydrogen tends to increase, and the hydrogen barrier property tends to deteriorate.
  • the crystallite size is large, there are few grain boundaries and interfaces with a large misorientation, and it is considered that hydrogen is less likely to permeate.
  • an iron-nickel alloy layer is formed by iron-nickel alloy plating, the grains tend to be fine and the crystallite diameter tends to be small. hydrogen barrier properties can be obtained.
  • the crystallite diameter exceeds 50 nm, it is assumed that the Fe diffusion from the iron of the base material to the outermost surface has progressed significantly due to the heat treatment, and the Fe composition on the surface of the iron-nickel alloy layer 30 tends to increase. , which is not preferable because it tends to cause elution of Fe.
  • the reason why it is preferable to define the crystallite diameter in the (200) plane of the iron-nickel alloy as described above is that the iron-nickel alloy has a face-centered cubic structure. , (200) plane is suitable for control because it is easy to obtain strength, the crystallite size of iron-nickel can be measured more accurately, and is suitable for control.
  • the crystallite diameter of the (200) plane of the iron-nickel alloy in the iron-nickel alloy layer 30 of the present embodiment is obtained from the peak half-value width by X-ray diffraction using the following formula.
  • X-ray diffraction measurement is performed using, for example, a known X-ray diffraction device.
  • D K ⁇ /( ⁇ cos ⁇ )
  • D crystallite diameter
  • Wavelength of X-ray used
  • Half width of diffracted X-ray of crystallite
  • Bragg angle
  • the thickness of the entire surface-treated steel foil 10 for current collector in this embodiment will be described.
  • thickness measurement by cross-sectional observation with a scanning electron microscope (SEM) or thickness measurement with a micrometer can also be applied.
  • the overall thickness of the current collector surface-treated steel foil 10 in the present embodiment is preferably in the range of 0.01 to 0.5 mm when the roughened nickel layer 50 described later is not provided. From the standpoint of strength, desired battery capacity, etc., it is more preferably 0.01 to 0.3 mm, still more preferably 0.025 to 0.1 mm.
  • the overall thickness of the surface-treated steel foil 10 for current collector in the present embodiment is preferably in the range of 0.02 to 0.51 mm. From the standpoint of strength, desired battery capacity, etc., it is more preferably 0.02 to 0.31 mm, still more preferably 0.035 to 0.11 mm. If the upper limit of the thickness range is exceeded, it is not preferable from the viewpoint of the volume and weight energy density of the battery to be manufactured, and is particularly not preferable when aiming at thinning the battery.
  • the thickness is less than the lower limit of the above thickness range, it is difficult to have sufficient strength against the effects of charging and discharging of the battery, and the battery may be torn, torn, or torn during manufacturing or handling. Wrinkles and the like are more likely to occur.
  • the surface-treated steel foil 10 for current collector in this embodiment may further have a metal layer 40 formed on the iron-nickel alloy layer 30, as shown in FIG.
  • the metal material forming the metal layer 40 include nickel, chromium, titanium, copper, cobalt, and alloys containing these. Of these, nickel or a nickel alloy is particularly preferred because of its excellent electrolyte resistance and strength.
  • the metal layer 40 includes a nickel layer formed on the iron-nickel alloy layer by preventing iron from diffusing to the surface. You can Furthermore, nickel plating may be applied thereon.
  • the following points are the effects of forming the metal layer 40 formed on the iron-nickel alloy layer 30 . That is, by forming the metal layer 40 in addition to the iron-nickel alloy layer 30, it is possible to adjust the conductivity, electrolyte resistance, strength, etc. of the surface-treated steel foil 10 for current collector as a whole. It is possible to produce a surface-treated steel foil for a current collector as a current collector material having the properties of
  • the total amount of nickel deposited on the iron-nickel alloy layer 30 and the metal layer 40 is 2. 0 g/m 2 to 53.4 g/m 2 is preferable from the viewpoint of hydrogen barrier properties and electrolytic solution resistance suitable for bipolar electrodes. More preferably from 2.0 g/m 2 to 26.7 g/m 2 .
  • the amount of nickel deposited on the iron-nickel alloy layer 30 and the metal layer 40 can be measured by X-ray fluorescence spectroscopy (XRF) or the like.
  • the thickness of the metal layer 40 is preferably 0.1 ⁇ m to 4.0 ⁇ m. It is more preferably 0.1 ⁇ m to 3.5 ⁇ m, still more preferably 0.1 to 3.0 ⁇ m, particularly preferably 0.2 to 2.5 ⁇ m.
  • the thickness ratio of the iron-nickel alloy layer 30 and the metal layer 40 in the surface-treated steel foil 10 for current collector especially when the metal layer 40 is a layer made of nickel, the hydrogen barrier property is further improved.
  • the ratio of iron-nickel alloy layer 30:metal layer 40 is preferably 3:10 to 60:1, and more preferably iron-nickel alloy layer 30:metal layer 40 is 3:4 to 35. :1.
  • the thickness of the metal layer 40 can be measured by analyzing the cross section of the surface-treated steel foil for current collector by SEM-EDX (energy dispersive X-ray spectroscopy). Applicable.
  • a roughened nickel layer 50 may be formed on the outermost surface as shown in FIG.
  • a roughened nickel layer may be formed on the metal layer 40 described above.
  • the roughened nickel layer 50 may be formed on the second surface 10b side of the surface-treated steel foil 10 for current collector as shown in FIG. 5(a), or may be formed as shown in FIG. It may be formed on the side of the first surface 10a, or may be formed on both sides.
  • the roughened nickel layer is described in, for example, the application of the present applicants (WO2021/020338, etc.), so the details will be omitted.
  • a thickness of 2 ⁇ m to 1.3 ⁇ m is preferable from the viewpoint of improving adhesion to the active material. More preferably, it is 0.36 to 1.2 ⁇ m.
  • a base nickel layer is formed before roughening nickel plating is applied, and further roughening nickel plating is applied. After that, coating nickel plating may be applied to form a roughened nickel layer. That is, the nickel plating applied as the metal layer 40 on the iron-nickel alloy layer may be used as the underlying nickel layer, and the roughened nickel layer 50 may be formed thereon.
  • the metal layer 40 formed by nickel plating is used as the base nickel layer.
  • a roughened nickel layer 50 may be formed thereon.
  • the metal layer 40 described above and the description herein of "roughened nickel layer 50" may include a coated nickel layer. Details of the underlying nickel layer, the roughened nickel layer and the covering nickel layer will be described later.
  • the total amount of nickel deposited on the iron-nickel alloy layer 30 and the roughened nickel layer 50 is preferably 7.7 g/m 2 to 106 g/m 2 , More preferably 9 g/m 2 to 70 g/m 2 , still more preferably 15 g/m 2 to 60 g/m 2 .
  • the total nickel coverage in layer 50 is preferably between 7.7 g/m 2 and 106 g/m 2 , more preferably between 9 g/m 2 and 70 g/m 2 , even more preferably between 15 g/m 2 and 60 g/ m2 .
  • a method for measuring the amount of nickel deposited on the roughened nickel layer 50 for example, the methods described in International Publication No. WO2020/017655 and International Publication No. WO2021/020338 can be appropriately adopted. That is, it can be determined by measuring the total nickel content of the surface-treated steel foil 10 for current collector using X-ray fluorescence analysis (XRF) or the like.
  • XRF X-ray fluorescence analysis
  • the method for manufacturing the surface-treated steel foil 10 for a current collector of this embodiment includes the first surface 10a on which the hydrogen storage alloy is arranged and the second surface opposite to the first surface 10a. 10b side, forming an iron-nickel alloy layer 30 for suppressing permeation or diffusion of hydrogen in the surface-treated steel foil for current collector.
  • the iron-nickel alloy layer 30 may be formed by subjecting at least one surface of the steel foil as the metal substrate 20 to electrolytic plating using a plating bath containing iron ions and nickel ions. That is, the steps of forming the iron-nickel alloy layer 30 include (i-1) forming a nickel-plated layer on at least one side of the steel foil and (i-2) heat-treating the nickel-plated layer on the formed steel foil. a step of forming the iron-nickel alloy layer 30 by thermal diffusion. Alternatively, (ii) a step of forming the iron-nickel alloy layer 30 on at least one side of the steel foil using a plating bath containing iron ions and nickel ions can also be mentioned.
  • known conditions can be applied to the plating conditions for forming the nickel plating layer and the iron-nickel alloy plating layer by electroplating. Examples of plating conditions are shown below.
  • Nickel Plating Bath (Watt Bath) and Plating Conditions]
  • ⁇ Bath composition Nickel sulfate hexahydrate: 200-300g/L Nickel chloride hexahydrate: 20-60g/L Boric acid: 10-50g/L Bath temperature: 40-70°C pH: 3.0-5.0
  • Agitation Air agitation or jet agitation Current density: 5 to 30 A/dm 2
  • a known nickel sulfamate bath or citric acid bath may be used in addition to the Watt bath described above.
  • bright nickel plating or semi-bright nickel plating may be obtained by adding an additive such as a known brightening agent to the plating bath.
  • Nickel sulfate hexahydrate 150 to 250 g / L
  • Iron sulfate heptahydrate 5-100g/L
  • Nickel chloride hexahydrate 20-50g/L
  • Boric acid 20-50g/L
  • ⁇ Temperature 25 to 70°C ⁇ pH: 2 to 4
  • ⁇ Agitation air agitation or jet agitation
  • ⁇ Current density 5 to 40 A/dm 2
  • the temperature of the above bath if it is less than 25°C, the electrodeposition efficiency is lowered, or it is difficult to deposit, which makes it difficult to form the desired alloy layer, which is not preferable. Moreover, it is not preferable because the layer may not be deposited. On the other hand, if the temperature exceeds 70° C., the plated film becomes hard and the probability of cracking or other defects increases, which is not preferable. Moreover, it is not preferable because it becomes difficult to control the composition of iron (Fe) and nickel (Ni).
  • the pH is less than 2, nickel (Ni) will be difficult to precipitate, making it impossible to control the desired composition of iron (Fe) and nickel (Ni), which is not preferable. Moreover, it is not preferable because the deposition efficiency of the plating is lowered. On the other hand, if the pH exceeds 4, iron (Fe) becomes difficult to precipitate, and the desired composition control of iron (Fe) and nickel (Ni) cannot be achieved, which is not preferable. In addition, it is not preferable because sludge may be involved in the obtained iron-nickel alloy layer.
  • the current density if it is less than 5 A/dm 2 , the stress in the film becomes too high, which is not preferable because defects such as cracks tend to occur in the plating film. Moreover, there is a possibility that the production efficiency may be lowered, which is not preferable. If it exceeds 40 A/dm 2 , plating burn may occur, which is not preferable. A suitable amount of pitting inhibitor may also be added.
  • the nickel plating layer or iron-nickel alloy plating layer formed on the steel foil preferably has a nickel adhesion amount of 0.80 g/m 2 to 53.4 g/m 2 per side. . If the deposition amount exceeds 53.4 g/m 2 , the workability of electrolytic plating is lowered, resulting in a significant increase in cost. On the other hand, if the adhesion amount is less than 0.80 g/m 2 , it is not preferable because there is a possibility that sufficient electrolytic solution resistance cannot be obtained.
  • the amount of nickel deposited on the steel foil after alloy plating or after the heat treatment described later is 0.80 g/m 2 to 26.7 g/m 2 per side. is more preferably 1.6 g/m 2 to 53.5 g/m 2 .
  • Conditions for the heat treatment process in this embodiment include the following conditions.
  • the heat treatment in this embodiment may be continuous annealing or batch annealing (box annealing).
  • the heat treatment performed after the iron-nickel alloy plating, not after the nickel plating may be performed under the same conditions, and the crystallite size can be adjusted to a more preferable range by performing the heat treatment after the iron-nickel alloy plating.
  • the temperature and time are within the range of 650°C to 950°C and the soaking time is in the range of 15 seconds to 150 seconds. If the temperature is lower than this or for a short period of time, there is a possibility that a sufficient iron-nickel alloy layer 30 cannot be obtained, which is not preferable. On the other hand, if the heat treatment is performed at a higher temperature or for a longer time than the above range, the change in mechanical properties of the steel foil used as the base material is large, resulting in a marked decrease in strength, or is not preferable from the viewpoint of cost.
  • An example of temperature and time in the case of batch annealing (box annealing) treatment is 450 ° C to 690 ° C, soaking time 1.5 hours to 20 hours, total time of temperature rising, soaking and cooling time It is preferable to carry out within the range of 4 hours to 80 hours. If the temperature is lower than this or for a short period of time, there is a possibility that a sufficient iron-nickel alloy layer 30 cannot be obtained, which is not preferable. On the other hand, if the heat treatment is performed at a higher temperature or for a longer time than the above range, the mechanical properties of the steel foil used as the base material may change significantly, and the strength may be significantly reduced. I don't like it.
  • the above-described Watt bath, nickel sulfamate bath can be formed by a known nickel bath such as a citric acid bath. In this case, it is preferable to perform a known strike nickel plating treatment immediately before forming the nickel layer. From the viewpoint of adhesion with a roughened nickel layer, which will be described later, it is preferable not to perform heat treatment after forming the metal layer using nickel plating.
  • the plating bath for forming the roughened nickel layer preferably has a chloride ion concentration of 3 to 90 g/L, more preferably 3 to 75 g/L, and still more preferably 3 to 50 g/L.
  • the ratio of nickel ions to ammonium ions is preferably 0.05 to 0.75, more preferably 0.05 to 0.60, and still more preferably 0.05 to 0.50, still more preferably 0.05 to 0.30, and the bath conductivity at 50° C.
  • the method of adjusting the chloride ion concentration, the ratio of nickel ions and ammonium ions, and the bath conductivity of the plating bath to the above ranges is not particularly limited. Nickel hexahydrate and ammonium sulfate are included, and a method of appropriately adjusting the blending amounts of these is included.
  • An example of plating conditions is as follows.
  • ⁇ An example of roughening nickel plating conditions Bath composition Nickel sulfate hexahydrate 10-100 g/L, nickel chloride hexahydrate 1-90 g/L, ammonium sulfate 10-130 g/L pH 4.0-8.0 Bath temperature 25-70°C Current density 4-40A/ dm2 Plating time 10 to 150 seconds Stirring: Air stirring or jet stirring Incidentally, ammonia water or ammonium chloride may be used instead of ammonium sulfate to add ammonia to the nickel plating bath.
  • the concentration of ammonia in the plating bath is preferably 6-35 g/L, more preferably 10-35 g/L, even more preferably 16-35 g/L, still more preferably 20-35 g/L.
  • a basic nickel carbonate compound, hydrochloric acid, sodium chloride, potassium chloride, or the like may be used to control the chloride ion concentration.
  • coating nickel plating may be applied to form a roughening nickel layer.
  • covering nickel plating conditions detailed description thereof is omitted here.
  • the three-dimensional surface texture parameter Sa of the roughened nickel layer 50 is preferably 0.2 ⁇ m to 1.3 ⁇ m as described above.
  • the numerical value of the three-dimensional surface property parameter Sa of the roughened nickel layer 50 for example, in addition to controlling the surface roughness of the metal substrate 20, adjusting the roughening nickel plating conditions and thickness, It can also be carried out by adjusting nickel plating conditions and thickness, coating nickel plating conditions and thickness, and the like.
  • the thickness of the iron-nickel alloy layer was calculated by SEM-EDX (energy dispersive X-ray spectroscopy) (equipment name SU8020 manufactured by Hitachi High-Technologies and EDAX manufactured by AMETEK) from the surface layer to a depth of 15 ⁇ m in the thickness direction. Elemental analysis of Ni and Fe in the thickness was performed by line analysis. The measurement conditions were acceleration voltage: 15 kV, observation magnification: 5000 times, and measurement step: 0.1 ⁇ m. As shown in FIG. 3, the horizontal axis is the distance ( ⁇ m) in the depth direction from the surface layer, and the vertical axis is the X-ray intensity of Ni and Fe. The thickness of the iron-nickel alloy layer 30 was read from the graph as the distance between 2/10 of the maximum value of each iron.
  • the evaluation sample is used as the working electrode
  • the reference electrode is Ag/AgCl
  • the potential on the hydrogen generation side (cathode side) is ⁇ 1.5 V
  • the potential on the hydrogen detection side (anode side) is Measured under the condition of +0.4V.
  • the apparatus shown in FIG. 2(a) was used as described above.
  • the electrolytic solution an alkaline aqueous solution containing 6 mol/L of KOH at 65° C. as a main component and a total concentration of 7 mol/L of KOH, NaOH, and LiOH composed of KOH, NaOH, and LiOH was used.
  • Table 1 shows the hydrogen permeation current density I ( ⁇ A/cm 2 ) obtained by the following formula (1).
  • Hydrogen permeation current density I ( ⁇ A/cm 2 ) ((average value of oxidation current from Ib to Ic)/S)-((average of Ia and Id)/S) (1)
  • Ia ( ⁇ A) is the oxidation current 5 seconds before application of -1.5V
  • Ib ( ⁇ A) is the oxidation current 155 seconds after the start of application of -1.5V
  • Ic ( ⁇ A) is the end of application of -1.5V.
  • the oxidation current, Id ( ⁇ A) is the oxidation current at 155 seconds after the end of ⁇ 1.5 V application
  • the measurement area (evaluation area) is S (cm 2 ).
  • the crystallite size was calculated based on the following formula for the obtained measurement value using integrated powder X-ray analysis software PDXL manufactured by Rigaku Corporation. Specifically, in the obtained measurement chart, the half width at the 51.05° peak derived from the (200) plane of the iron-nickel alloy was calculated to obtain the crystallite diameter of the (200) plane of the iron-nickel alloy. If there is a peak around 51.85° derived from the nickel (200) plane, it is possible to separate the peak.
  • the peak shape can be a split-type pseudo-Voigt function.
  • Example 1 a cold-rolled foil (50 ⁇ m thick) of low-carbon aluminum-killed steel having the chemical composition shown below was prepared as the metal substrate 20 .
  • C 0.04% by weight
  • Mn 0.32% by weight
  • Si 0.01% by weight
  • P 0.012% by weight
  • S 0.014% by weight
  • balance Fe and unavoidable impurities
  • the nickel plating conditions were as follows. (Ni plating conditions) Bath composition: Nickel sulfate hexahydrate: 250g/L Nickel chloride hexahydrate: 45g/L Boric acid: 30g/L Bath temperature: 60°C pH: 4.0-5.0 Agitation: air agitation or jet agitation Current density: 10 A/dm 2
  • the amount of nickel deposited was measured using a fluorescent X-ray device (equipment name: ZSX100e manufactured by Rigaku Corporation), and the obtained values are shown in Table 1. Since the specific measurement method is the same as the method described in WO2020/017655, the detailed description is omitted here.
  • the steel foil having the nickel plating layer formed above is subjected to box annealing at a heat treatment temperature of 640° C. for a soaking time of 2 hours (total of heating time, soaking time, and cooling time: 6 hours).
  • the heat treatment was performed under the conditions of a reducing atmosphere.
  • This heat treatment yielded a surface-treated steel foil having iron-nickel alloy layers on both sides with a thickness of 1.4 ⁇ m on one side (total thickness of iron-nickel alloy layers on both sides: 2.8 ⁇ m).
  • a nickel film for measurement was formed on both sides of the obtained surface-treated steel foil. After that, the hydrogen permeation current density was measured.
  • This "measurement nickel film” is a film provided for the purpose of avoiding the influence of the difference in surface state between each example and comparative example on the measurement conditions and measured values (oxidation current). It was formed by plating conditions. Table 1 shows the results obtained.
  • Bath composition nickel sulfate hexahydrate 250 g/L, nickel chloride hexahydrate 45 g/L, boric acid 30 g/L pH 4.0-5.0 Bath temperature 60°C Current density 10A/ dm2
  • the target thickness of the nickel layer for measurement was 1.0 ⁇ m on each side.
  • Example 2 The procedure of Example 1 was repeated except that the target thickness of the nickel plating layer formed on the steel foil was 1.5 ⁇ m. Table 1 shows the results.
  • Example 3 The procedure of Example 1 was repeated except that the target thickness of the nickel plating layer formed on the steel foil was 3.0 ⁇ m. Table 1 shows the results.
  • Example 4 The procedure of Example 1 was repeated except that the target thickness of the nickel plating layer formed on the steel foil was 1.0 ⁇ m. Table 1 shows the results. In addition, when the crystallite diameter of the (200) plane of the iron-nickel alloy layer was obtained before and after the formation of the nickel film for measurement, it was 12 nm before the formation of the nickel film for measurement, and 10 nm after the formation of the nickel film for measurement. 0.9 nm.
  • Example 5 The target thickness of the nickel plating layer formed on the steel foil is 1.5 ⁇ m, and the heat treatment conditions for box annealing are a heat treatment temperature of 560 ° C. and a soaking time of 6 hours (sum of heating time, soaking time, cooling time: 10 hours). Other than that, it was performed in the same manner as in Example 1. Table 1 shows the results.
  • Example 6 The procedure of Example 5 was repeated except that the target thickness of the nickel plating layer formed on the steel foil was 2.0 ⁇ m. Table 1 shows the results.
  • Example 7 The procedure of Example 5 was repeated except that the target thickness of the nickel plating layer formed on the steel foil was 0.5 ⁇ m. Table 1 shows the results.
  • Example 8> The procedure of Example 5 was repeated except that the target thickness of the nickel plating layer formed on the steel foil was 1.0 ⁇ m. Table 1 shows the results.
  • Example 9 The procedure of Example 5 was repeated except that the target thickness of the nickel plating layer formed on the steel foil was 3.0 ⁇ m. Table 1 shows the results.
  • Example 10 The target thickness of the nickel plating layer formed on the steel foil was set to 3.0 ⁇ m, and the heat treatment was carried out in the same manner as in Example 1 except that the temperature reached 900° C. and the soaking time was set to 120 seconds by continuous annealing.
  • Example 11 The target thickness of the nickel plating layer formed on the steel foil was set to 0.7 ⁇ m, and the heat treatment was carried out in the same manner as in Example 1 except that the temperature reached 900° C. and the soaking time was set to 120 seconds by continuous annealing.
  • Example 12 The target thickness of the nickel plating layer formed on the steel foil was set to 0.7 ⁇ m, and the heat treatment was carried out in the same manner as in Example 1 except that the temperature reached 900° C. and the soaking time was set to 30 seconds by continuous annealing.
  • Example 13> The same procedure as in Example 1 was carried out, except that the target thickness of the nickel plating layer formed on the steel foil was set to 1.0 ⁇ m, and the heat treatment was performed by continuous annealing with a final temperature of 900° C. and a soaking time of 20 seconds. .
  • Example 14 A metal substrate was plated with an iron-nickel alloy under the following conditions to obtain a surface-treated steel foil having iron-nickel alloy layers with a target thickness of 5.0 ⁇ m on both sides.
  • Iron-nickel alloy plating conditions ⁇ Bath composition Nickel sulfate hexahydrate: 200 g/L Iron sulfate heptahydrate: 50g/L Nickel chloride hexahydrate: 45g/L Boric acid: 30g/L Trisodium citrate: 10 g/L Saccharin sodium: 5g/L Pit prevention agent: 1ml/L ⁇ Temperature: 60°C ⁇ pH: 2.5 to 3.0 ⁇ Agitation: air agitation ⁇ Current density: 15 A/dm 2 No post-plating heat treatment was performed. Otherwise, the procedure was the same as in Example 1. Table 1 shows the results. Further, after forming the nickel film for measurement, the crystallite diameter of the (200) plane of the iron-nickel alloy layer was
  • Example 15 By performing iron-nickel alloy plating on the metal substrate under the same conditions as in Example 14, a surface-treated steel foil having iron-nickel alloy layers with a target thickness of 1.0 ⁇ m on both sides was obtained. No post-plating heat treatment was performed. Otherwise, the procedure was the same as in Example 1. Table 1 shows the results. In addition, when the crystallite diameter of the (200) plane of the iron-nickel alloy layer was obtained before and after the formation of the nickel film for measurement, it was 5.0 nm before the formation of the nickel film for measurement, and after the formation of the nickel film for measurement. was 5.3 nm.
  • Example 16> By performing iron-nickel alloy plating on the metal substrate under the same conditions as in Example 14, a surface-treated steel foil having iron-nickel alloy layers with a target thickness of 1.0 ⁇ m on both sides was obtained.
  • the heat treatment after plating was carried out by continuous annealing, with a final temperature of 900° C. and a soaking time of 120 seconds. Otherwise, the procedure was the same as in Example 1.
  • Table 1 shows the results.
  • the crystallite diameter of the (200) plane of the iron-nickel alloy layer was 11.7 nm before the formation of the nickel film for measurement.
  • Example 17 The same procedure as in Example 5 was carried out, except that the target thickness of the nickel plating layer formed on the steel foil was 0.25 ⁇ m on one side and 0.1 ⁇ m on the other side.
  • the hydrogen permeation current density was measured using the surface of the nickel plating layer with a target thickness of 0.1 ⁇ m as the detection surface. Table 2 shows the results.
  • Example 18> After performing the heat treatment by continuous annealing in Example 14, without forming the nickel film for measurement, on the iron-nickel alloy layer on one side under the following conditions, "underlying nickel layer, roughening nickel layer” was formed, Only an underlying nickel layer was formed on the iron-nickel alloy layer on the opposite side. The roughened nickel layer was formed by roughening nickel plating and coating nickel plating.
  • ⁇ Nickel base plating conditions Bath composition: nickel sulfate hexahydrate 250 g/L, nickel chloride hexahydrate 45 g/L, boric acid 30 g/L pH 4.0-5.0 Bath temperature 60°C Current density 10A/ dm2 Table 3 shows the target thickness of the underlying nickel layer.
  • Nickel sulfate hexahydrate concentration in plating bath 10 g/L
  • Nickel chloride hexahydrate concentration in plating bath 10 g/L
  • Chloride ion concentration of plating bath 3 g/L
  • the total amount of nickel deposited on the iron-nickel alloy layer, base nickel layer and roughened nickel layer of the obtained surface-treated steel foil was 38.1 g/m 2 .
  • the hydrogen permeation current density was measured using the roughened nickel layer as a detection surface.
  • the hydrogen permeation current density may not be normally measured due to leaching of the electrolyte from the roughened gaps. Therefore, in order to suppress the influence of electrolyte leaching from the gaps between the roughening layers, polypropylene resin having a measurement diameter of 20 mm was cut out on the surface on which the roughening layer was formed prior to installation between the measurement cells. After gluing to the measuring position, the test piece was placed between the measuring cells.
  • a polypropylene resin film having a thickness of 70 ⁇ m was used, and the films were bonded by thermocompression bonding under conditions of 170° C. and 0.1 to 0.4 MPa for 3 seconds. Further, when the three-dimensional surface texture parameter Sa of the outermost surface of the surface-treated steel foil on which the roughened nickel layer was formed was measured, it was 0.6 ⁇ m. Table 3 shows the results.
  • the three-dimensional surface texture parameter Sa was measured using a laser microscope (3D measurement laser microscope LEXT OLS5000 manufactured by Olympus Corporation) under the condition of an OLS5000 objective lens of 100 times.
  • Example 19 After the heat treatment in Example 1, a "base nickel layer, roughened nickel layer" was formed on the iron-nickel alloy layer on one side under the same conditions as in Example 18 without forming the nickel film for measurement. , and only an underlying nickel layer was formed on the iron-nickel alloy layer on the opposite side. The roughened nickel layer was formed by roughening nickel plating and coating nickel plating. Further, in the same manner as in Example 18, the total nickel deposition amount was obtained, and the hydrogen permeation current density and the three-dimensional surface texture parameter Sa were measured. Table 3 shows the results.
  • Example 20 The thickness of the cold-rolled foil as the metal base material 20 was set to 60 ⁇ m, and the target thickness of the nickel plating layer formed on the steel foil was changed. The same procedure as in Example 1 was carried out, except that the soaking time was 8 hours (total of heating time, soaking time, and cooling time: 80 hours), and cold rolling was performed at a rolling reduction of 17.7% after the heat treatment. rice field. Incidentally, the measurement of the amount of nickel deposited by a fluorescent X-ray device was performed after the cold rolling. Table 1 shows the results.
  • Example 1 The same procedure as in Example 1 was carried out, except that the steel foil having the nickel plating layer was not heat-treated. Table 1 shows the results. In Comparative Example 1, no heat treatment was performed, so an iron-nickel alloy layer was not actually formed, but the distance from iron 2/10 strength to nickel 2/10 strength was measured by SEM-EDX. was 0.3 ⁇ m.
  • the nickel film as plated on the surface is not essential as an actual form, but it is possible to form a nickel plating layer with a preferable thickness as an upper layer of the alloy layer for other purposes. It is also found that it does not inhibit the Similarly, in Examples 18 and 19, it was found that the hydrogen barrier property was not impaired even when a roughened nickel layer was formed. Furthermore, in Example 20, it was found that the hydrogen barrier property was not impaired even when rolling was performed by 25% or less after forming the iron-nickel alloy layer.
  • the present embodiment in a strongly alkaline environment in hydrogen permeation current density measurement, and in a state where a potential of +0.4 V is applied to the hydrogen detection side, no peak indicating dissolution appears, and the background oxidation current is stable. Therefore, it can be said that the present embodiment also has electrolyte resistance. The tendency of the background oxidation current was the same even in the absence of the nickel film for measurement.
  • the surface-treated steel foil of this embodiment has good hydrogen barrier properties. That is, it is thought that voltage drop due to hydrogen permeation can be suppressed, that is, deterioration of battery performance can be suppressed.
  • the surface-treated steel foil of the present embodiment can maintain good battery performance for a long period of time by suppressing hydrogen permeation, and can improve battery performance over time. It is possible to use
  • the surface-treated steel foil for current collector of the present invention can be applied to current collectors of various types of batteries that require hydrogen barrier properties.
  • the surface-treated steel foil for electric bodies is used in a vehicle battery or the like, it can particularly contribute to a reduction in fuel consumption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】水素吸蔵合金を用いる電池に好適な水素バリア性を備えた集電体用表面処理鋼箔を提供する。 【解決手段】水素吸蔵合金が配置される第1の面および、前記第1の面と反対側に位置する第2の面を有した集電体用表面処理鋼箔であって、鋼箔からなる金属基材の、前記第1の面側、及び前記第1の面側とは反対側の第2の面側、の少なくとも一方の面側に積層されて、前記集電体用表面処理鋼箔内の水素の透過又は拡散を抑制する鉄ニッケル合金層を有し、前記鉄ニッケル合金層のうち、少なくとも一つの層の厚みが0.5μm以上であることを特徴とする集電体用表面処理鋼箔。

Description

集電体用表面処理鋼箔及びその製造方法
 本発明は、二次電池などの集電体に特に好適に使用される表面処理鋼箔及びその製造方法に関する。
 従来、車載用等に採用される二次電池としてニッケル水素電池やリチウムイオン電池が知られている。そしてこれらの二次電池の電極構造の種類としては、集電体の両面に共に正極層または負極層を形成したモノポーラ電極と、集電体の両面に正極層(正極活物質層)と負極層(負極活物質層)とを形成したバイポーラ電極とが知られている。
 バイポーラ電池は、上記したバイポーラ電極を電解質、セパレータなどを挟んで積層し、単一の電槽内に収容することにより構成される。この構成により、各電極を直列回路で積層配置することが可能となるため、電池の内部抵抗を小さくすることができ、作動電圧、出力を大きくし易いことが知られている。また、電池性能と併せて、モノポーラ電極を用いた従来の電池と比較して、電流を取り出すためのリードなどの部材点数を電池設計によって省略、削減することで、電池体積あるいは重量を低減できることから、電池の体積および重量エネルギー密度の向上を図ることができると考えられている。
 例えば下記の特許文献1には、ニッケル箔等の金属箔をバイポーラ電池の集電体として用いることが開示されている。
特開2020-053401号公報
 本発明者らは集電体に好適な金属材料として鋼箔等の金属箔を用いた開発を進めている中で、電池特性を向上させるために鋭意努力していた。その中で、集電体として使用される金属材料における水素透過を抑制することにより電池性能の劣化を低減することができることを見出した。
 すなわち例えばニッケル水素電池では、負極の活物質として水素を、一般的には水素吸蔵合金を使用する。従来のモノポーラ電極であれば電池種に応じた耐電解液性を表面に有すればよかったところ、上記のようなバイポーラ電極の場合は、負極側に存在する水素が金属材料中を移動し正極側に透過する現象が生じやすく、このような透過現象が発現した場合、電池性能が低下しやすくなることに想到した。
 本発明は、かような課題を解決することを鑑みてなされたものであり、バイポーラ電池に求められる水素バリア性(水素の透過を抑制する性能)、及び、二次電池に求められる耐電解液性等を兼ね備えた集電体用表面処理鋼箔を提供することを目的とする。
 上記に例示した課題を解決するために、本発明の一実施形態における集電体用表面処理鋼箔は、(1)水素吸蔵合金が配置される第1の面および、前記第1の面と反対側に位置する第2の面を有した集電体用表面処理鋼箔であって、鋼箔からなる金属基材の、前記第1の面側、及び前記第1の面側とは反対側の第2の面側、の少なくとも一方の面側に積層されて、前記集電体用表面処理鋼箔内の水素の透過又は拡散を抑制する鉄ニッケル合金層を有し、前記鉄ニッケル合金層のうち、少なくとも一つの層の厚みが0.5μm以上であることを特徴とする。
 上記した(1)に記載の集電体用表面処理鋼箔において、(2)前記集電体用表面処理鋼箔の前記第1の面および前記第2の面の両方の面側に鉄ニッケル合金層が形成されると共 に、前記両方の面側の前記鉄ニッケル合金層の厚みの合計が0.7μm以上であることが好ましい。
 また上記(1)又は(2)の集電体用表面処理鋼箔において、(3)前記金属基材が、低炭素鋼又は極低炭素鋼であることが好ましい。
 上記(1)~(3)のいずれかの集電体用表面処理鋼箔において、(4)前記鉄ニッケル合金層におけるニッケルの付着量が0.80g/m~53.4g/mであることが好ましい。
 上記(1)~(4)のいずれかの集電体用表面処理鋼箔において、(5)前記鉄ニッケル合金層上に形成される金属層をさらに有し、前記金属層がニッケル層であることが好ましい。
 上記(5)の集電体用表面処理鋼箔において、(6)前記金属層がニッケル層であり、前記鉄ニッケル合金層及び前記ニッケル層におけるニッケル付着量の合計が2.0g/m~53.4g/mであることが好ましい。
 上記(1)~(6)のいずれかの集電体用表面処理鋼箔において、(7)電気化学的に測定される水素透過電流密度が20μA/cm以下であることが好ましい。ただし水素透過電流密度とは、65℃の電解液中にて、水素検出側の電位を+0.4Vとする条件下において、水素発生側に-1.5Vの電位を印加した際に水素検出側で測定される酸化電流の増加分とする。水素検出側および水素発生側の電位の参照電極はAg/AgClである。
 上記(1)~(7)のいずれかの集電体用表面処理鋼箔において、(8)前記第1の面の側、及び前記第2の面の側のいずれかの最表面に粗化ニッケル層が形成され、前記粗化ニッケル層の三次元表面性状パラメータSaが0.2μm~1.3μmであることが好ましい。
 また上記に例示した課題を解決するために、本発明の一実施形態における集電体用表面処理鋼箔の製造方法は、(9)金属基材の、水素吸蔵合金が配置される第1の面側、及び、前記第1の面側とは反対側の第2の面側、の少なくとも一方の面側に、前記集電体用表面処理鋼箔内の水素の透過又は拡散を抑制する鉄ニッケル合金層を形成する工程を有することを特徴とする。
 上記した(9)に記載の集電体用表面処理鋼箔の製造方法において、(10)前記鉄ニッケル合金層におけるニッケルの付着量が0.80g/m~53.4g/mであることが好ましい。
 本発明によれば、バイポーラ電池に好適な水素バリア性、及び、二次電池に求められる耐電解液性等を兼ね備えた集電体用表面処理鋼箔を提供することができる。
本実施形態の集電体用表面処理鋼箔を模式的に示した図である。 本実施形態の集電体用表面処理鋼箔を模式的に示した図である。 本実施形態の集電体用表面処理鋼箔を模式的に示した図である。 本実施形態の集電体用表面処理鋼箔10の水素バリア性を測定する装置の模式図である。 本実施形態の集電体用表面処理鋼箔10の水素バリア性を測定する装置の模式図である。 本実施形態の集電体用表面処理鋼箔10の水素バリア性を測定する方法の説明図である。 本実施形態の集電体用表面処理鋼箔10の水素バリア性を測定する方法の説明図である。 本実施形態の集電体用表面処理鋼箔10の水素バリア性を測定する方法の説明図である。 本実施形態において鉄ニッケル合金層の厚み算出方法を説明する図である。 他の実施形態の集電体用表面処理鋼箔を模式的に示した図である。 他の実施形態の集電体用表面処理鋼箔を模式的に示した図である。 他の実施形態の集電体用表面処理鋼箔を模式的に示した図である。 他の実施形態の集電体用表面処理鋼箔を模式的に示した図である。
≪集電体用表面処理鋼箔10≫
 以下、本発明の集電体用表面処理鋼箔を実施するための実施形態について説明する。
 図1は、本発明の集電体用表面処理鋼箔10の一実施形態を模式的に示した図である。なお本実施形態の集電体用表面処理鋼箔10は、バイポーラ電池の集電体に適用されるほか、モノポーラ電池の正極又は負極の集電体にも適用され得る。電池の種類としては二次電池であっても一次電池であってもよい。
 本実施形態の集電体用表面処理鋼箔10は、金属基材20、及び鉄ニッケル合金層30を有する。集電体用表面処理鋼箔10は、第1の面10a、及び前記第1の面側とは反対側の第2の面10bを有する。前記第1の面10aの側には、電池として組み立てる際に負極材料としての水素吸蔵合金が配置される。一方で第2の面10bの側には、例えばバイポーラ電極構造のニッケル水素電池の場合、正極材料が配置される。
 本実施形態の集電体用表面処理鋼箔10は、上述のように鉄ニッケル合金層30を有することを特徴とする。鉄ニッケル合金層30は、図1(a)に示されるように、上記した第2の面10bの側に配置されてもよいし、図1(b)に示されるように第1の面10a側のいずれかに配置されてもよい。また図1(c)に示されるように第1の面10aの面側と第2の面10bの面側の両方に配置されてもよい。
 また鉄ニッケル合金層30は、図1(a)~(c)に示されるように集電体用表面処理鋼箔10の最表面に配置されていてもよいし、図4に示されるように集電体用表面処理鋼箔10の内部(中間)に配置されていてもよい。
 鉄ニッケル合金層30は、前記前集電体用表面処理鋼箔内の水素の透過又は拡散を抑制する機能を有する。
<金属基材20について>
 本実施形態の集電体用表面処理鋼箔10に使用される金属基材20の鋼箔としては、Crおよび他の添加金属元素が1.0重量%未満である鉄を基とする金属基材が好ましい。具体的には、低炭素アルミキルド鋼に代表される低炭素鋼(炭素量0.01~0.15重量%)、炭素量が0.01重量%未満の極低炭素鋼、または極低炭素鋼にTiやNbなどを添加してなる非時効性極低炭素鋼が好適に用いられる。
 本実施形態の集電体用表面処理鋼箔10に使用される金属基材20の厚さとしては、0.01mm~0.5mmの範囲が好適である。体積および重量エネルギー密度の観点を重視した電池の集電体として用いる場合は、強度の観点、及び、望まれる電池容量の観点、等より、より好ましくは0.01mm~0.3mm、さらに好ましくは0.025mm~0.1mmである。金属基材20の厚さは、光学顕微鏡や走査電子顕微鏡(SEM)の断面観察による厚み測定が好適に用いられる。また、表面処理前、つまり、ニッケルめっき前または鉄ニッケル合金めっき前の厚み測定としては、マイクロメーターでの厚み測定等が適用可能である。
 なお金属基材20は通常、圧延鋼箔が用いられるが電解めっきで製造される電解鉄箔であってもよい。
<鉄ニッケル合金層30について>
 本実施形態の集電体用表面処理鋼箔10に含まれる鉄ニッケル合金層30は鉄(Fe)とニッケル(Ni)が含まれる合金層であり、鉄とニッケルからなる合金(「鉄-ニッケル合金」、「Fe-Ni合金」とも称する)が含まれる金属層である。なおこの鉄とニッケルからなる合金状態としては、固溶体、共析・共晶、化合物(金属間化合物)のいずれであってもよいし、それらが共存していてもよい。
 本実施形態の集電体用表面処理鋼箔10に含まれる鉄ニッケル合金層30は、本発明の課題を解決し得る限り、他の金属元素や不可避の不純物を含んでいてもよい。例えば、鉄ニッケル合金層30中には、コバルト(Co)、モリブデン(Mo)等の金属元素やホウ素(B)等の添加元素が含まれていてもよい。なお、鉄ニッケル合金層30中の鉄(Fe)とニッケル(Ni)以外の金属元素の割合は10重量%以下が好ましく、より好ましくは5重量%以下が好ましく、さらに好ましくは1重量%以下が好ましい。鉄ニッケル合金層30は実質的に鉄とニッケルのみから構成される二元合金であってもよいため、不可避不純物を除く他の金属元素の含有割合の下限は0%である。
 含有される他の金属元素の種類及び量は、蛍光X線(XRF)測定装置やGDS(グロー放電発光表面分析法)等の公知の手段により測定することが可能である。
 本実施形態の集電体用表面処理鋼箔10に含まれる鉄ニッケル合金層30の形成方法としては、めっきまたはめっきおよび熱処理による方法が好ましく、めっきとしては、例えば電解めっき、無電解めっき、溶融めっき、乾式めっき等の方法が挙げられる。このうち、コストや膜厚制御等の観点より特に電解めっきによる方法が好ましい。
 例えば、金属基材20の少なくとも片面に、電解めっき等の方法によりNiめっき層を形成し、その後熱拡散処理等により金属基材20中の鉄(Fe)及びニッケル(Ni)を拡散させて合金化する方法や、FeNi合金めっきにより合金層を形成する方法等が挙げられる。なお、これらの製造方法について詳細は後述する。
 次に、本実施形態の集電体用表面処理鋼箔10に含まれる鉄ニッケル合金層30における水素バリア性について説明する。
 本発明者らは電池性能を向上するために実験を繰り返す過程において、原因不明の電圧低下(自己放電)現象の発生、及びその現象を解消するために集電体用表面処理鋼箔10中における水素透過を抑制することが有効であることを見出した。
 水素透過が発生している原因と、集電体用表面処理鋼箔10中における水素透過の抑制により上記した電圧低下(自己放電)現象の発生を抑制できる理由はいまだ明らかではないが、本発明者らは以下のように予測した。
 すなわち本実施形態において、集電体用表面処理鋼箔10がバイポーラ電池の電極に使用された場合には、負極材料として用いられる水素吸蔵合金が集電体用表面処理鋼箔10の少なくとも一方の面側に配置されると共に、その反対側には正極材料が配置されることとなる。この場合、集電体用表面処理鋼箔10を隔てて、水素が豊富な環境(負極)と水素が少ない環境(正極)とが存在し、水素濃度勾配が発生することとなる。そして何らかの契機により集電体用表面処理鋼箔10中を水素が透過・移動することにより、透過した水素が正極で反応し、上述のような電圧低下(自己放電)が発生するものと予想した。
 このような水素の透過が原因による電圧低下は、電池使用環境下に置いて水素が透過しやすい状態が多いほど反応が加速し、電圧低下が発生するまでの時間が早くなる、つまり、電池性能の劣化が早くなると考えられる。水素が透過しやすくなる条件としては、上記水素濃度勾配が高くなるほど透過しやすくなると考えられる。また、水素濃度勾配に加え、表面処理鋼箔の両面に電圧がかかった状態はさらに水素透過が促進されやすいと考えられる。つまり、水素吸蔵合金を用いる電池やニッケル水素電池などの濃度勾配の高い電池、充放電の多い二次電池において、水素透過が、時間経過とともに電池性能が漸減する一因となっている可能性がある。一方で、電池性能の漸減はその他の要因も大きく、水素透過の現象は捉えにくいため、従来のモノポーラ電池の使用・開発の中で明らかになってはいなかったところ、本発明者らがバイポーラ電池の集電体用表面処理鋼箔の開発の中で実験を繰り返す中で、電池性能の劣化の抑制に鉄ニッケル合金層の水素バリア性向上が寄与することに想到したものである。よって、本実施形態の表面処理鋼箔は、水素吸蔵合金を用いた電池、特にバイポーラ電池の集電体に特に好適に用いられるが、その他の水素吸蔵合金が用いられない電池であっても、水素を含む、あるいは水素が発生する電池であれば、これまでは捉えられていなかった水素透過による緩やかな電池性能の劣化がある可能性があると考えられ、本実施形態の表面処理鋼箔を好適に用いることができる。
 以下の説明において、水素侵入側は水素発生側とも記し、水素吸蔵合金を配置する側、すなわち集電体用表面処理鋼箔10の第1の面10aの側である。また、水素検出側は水素侵入側の反対面であり、バイポーラ電極構造の正極側、すなわち集電体用表面処理鋼箔10の第2の面10bの側である。
 次に、水素バリア性の評価について説明する。上述のように集電体用表面処理鋼箔10中を水素が透過・移動する場合、水素侵入側から水素検出側に到達した水素原子は酸化されて水素イオンとなる。このときの酸化電流の値は、水素検出面に到達した水素量に応じて増減するため、検出された電流値により集電体用表面処理鋼箔10の水素バリア性を数値化・評価することが可能となる。(水流 徹,東京工業大学,材料と環境,63,3-9(2014),電気化学法による鉄鋼への水素侵入・透過の計測)
 上記予想の結果、発明者らが測定・評価を行い、本実施形態において、上述したような電圧低下(自己放電)の発生を抑制するためには、本実施形態の集電体用表面処理鋼箔10は、電気化学的に測定される酸化電流から得られる水素透過電流密度が20μA/cm以下であることが好ましいという結論に帰結した。なお本実施形態における水素透過電流密度の測定条件は、65℃の電解液中にて、参照電極をAg/AgCl(銀塩化銀)とし、水素発生側の電位が-1.5V、及び水素検出側の電位が+0.4V、とする。なお、本実施形態における水素透過電流密度の測定方法に使用する電位の数値は全て参照電極をAg/AgCl(銀塩化銀)としたものである。
 本実施形態における水素透過電流密度の測定方法の具体例として、図2(a)に示すような構成の測定装置を用いて電流値(電流密度)を検出することにより、集電体用表面処理鋼箔10の水素バリア性を数値化及び評価することが可能である。図2(a)に示す測定装置について以下に説明する。
 水素発生用のセルXおよび透過水素の検出用セルYの2つのセルを準備し、この2つの測定セルの間に集電体用表面処理鋼箔10の試験片(サンプル)を設置する。各測定セルにはアルカリ電解液が収容され、参照電極(RE1及びRE2)および対極(CE1及びCE2)が浸漬している。参照電極には飽和KCl溶液のAg/AgCl電極、対極には白金(Pt)を使用する。また、アルカリ電解液の組成は、KOH、NaOH、LiOHからなり、液温は65℃とする。また、図2(b)に示すように集電体用表面処理鋼箔10における測定径はφ20mm(測定面積3.14cm)とする。
 水素侵入側および水素検出側の電位制御および電流測定は、図2(a)に示すようにポテンショスタットを用いる。ポテンショスタットとしては例えば、北斗電工株式会社製の「マルチ電気化学計測システムHZ-Pro」 を用いることができる。なお評価する集電体用表面処理鋼箔10のサンプルおよび各電極の接続は、図2(a)に示すように行うことができる。
 水素発生側ではサンプルをカソード(卑な電位)に分極し、サンプル表面に水素を発生させ、水素を侵入させる。電位は-0.7V、-1.1V、-1.5Vと段階的にかけ、それぞれの電位で15分ずつ印加する。このように段階的に電位をかける理由としては、電位の変化時の影響を抑え、安定的なプロットを得るためである。なお、測定プロットは5秒毎とする。
 なお一般的に、正極に水酸化ニッケル化合物、負極に水素吸蔵合金を用いたニッケル水素電池において、電池の充放電反応における負極の作動電位は-1.1V前後である。本実施形態に適用可能な上述の測定方法においては、水素吸蔵合金を用いずに水素バリア性の効果を確認可能な手法として、より顕著に水素が発生する測定条件を検討した。そして、水素透過電流密度I(μA/cm)の算出として、水素発生側の印加電位が-1.5V時の酸化電流の変化(以降、酸化電流変化とも記す)を用いることとした。
 水素検出側では、水素発生側から水素原子が透過してきた場合、透過してきた水素原子が水素検出側にて酸化されると、水素検出側のポテンショスタットにて測定される酸化電流が発生する。したがって、この酸化電流変化により、集電体用表面処理鋼箔10の水素透過性の数値化・評価が可能となる。なお、水素検出側では、水素原子の水素イオンへの酸化を促進させ、酸化電流のピークを明確化するために電位を印加して保持しておく。
 正極に水酸化ニッケル化合物、負極に水素吸蔵合金を用いたニッケル水素電池において、一般的に電池の充放電反応における正極作動電位は+0.4V前後である。そこで、本測定方法では検出側に+0.4Vの電位をかけ測定中保持した。なお、水素発生側の印加前に、水素検出側は電流値安定化のため前述の電位で60分間保持を実施している。また、水素発生印加終了後、つまり、15分間の-1.5Vの印加を終了し水素発生側の印加はゼロとした後、水素検出側はバックグラウンド算出のため、+0.4Vの印加を5分間保持している。測定プロットは5秒毎とする。
 すなわち、上記測定による評価の前工程としては、まず水素検出側にて+0.4Vで印加することから開始し、次いで60分間の印加により電流値を安定化した後で、実際の評価として水素発生側の印加を開始する(各電位で15分ずつ、合計45分)。
 上記手法にて得られた水素検出側の酸化電流変化より、水素透過電流密度I(μA/cm)を算出することが可能となる。得られた酸化電流のプロットおよび水素透過電流密度I(μA/cm)の数値化イメージを図2(c)~図2(e)に示す。
 図2(c)は、評価のための前後工程を含めた全体の電流値測定を示す図である。また、図2(d)は実際の評価のための電流値の変化を示す図であり、図2(c)における5300秒付近から6500秒付近を拡大した図である。図2(e)は、本発明の比較のために示す図であり、厚み50μmの鋼箔に1.0μmの厚みのニッケルめっき層を設け、熱処理をせずに、つまり、鉄ニッケル合金層を有しない状態の表面処理鋼箔を用いて図2(c)と同様の電流値測定を行った場合の電流値の変化を示す図である。図2(e)によれば、本発明の特徴である鉄ニッケル合金層を有しない表面処理鋼箔においては、15分間の-1.5Vの印加中の検出側電流値が図2(c)に示される金属箔よりも明らかに高いことが確認できる。
 なお本実施形態において、水素透過電流密度I(μA/cm)は、図2(d)に示されるような水素発生側の印加電位が-1.5V時の酸化電流変化に基づいて、以下の式で算出することができる。
水素透過電流密度I(μA/cm) = ((IbからIcまでの酸化電流の平均値)/S) ―((IaとIdの平均)/S)
 ただし、Ia(μA)は-1.5V印加5秒前の酸化電流、Ib(μA)は-1.5V印加開始から155秒後の酸化電流、Ic(μA)は-1.5V印加終了時の酸化電流、Id(μA)は-1.5V印加終了後155秒時点の酸化電流、S(cm)を測定試験片の測定面積(評価面積)とする。
 上記式より算出した水素透過電流密度I(μA/cm)が小さいと、水素の透過が抑制されている、すなわち水素バリア性が高く、水素透過電流密度I(μA/cm)が大きいと水素透過しやすいと判断できる。
 そして本実施形態においては、上記のように電気化学的に測定される水素透過電流密度が55μA/cm以下である場合に、集電体用表面処理鋼箔10中の水素バリア性の観点からバイポーラ電極に好適であるとの結論に至った。電圧低下をより抑制するという観点から20μA/cm以下であることがより好ましい。ただし水素透過電流密度とは、65℃の電解液中にて、水素検出側の電位を+0.4V(vs Ag/AgCl)とする条件下において、水素発生側(カソード側)に-1.5Vの電位を印加した際に水素検出側(アノード側)で測定される酸化電流の増加分である。
 なお、一般的に、金属材料はそれぞれの種類に応じて異なる水素の拡散係数を有していることが知られており、金属材料の用途に応じて、金属中の水素による欠陥や水素脆化現象を抑制するため、水素の侵入を抑制する金属材料が求められることがある。例えば高力ボルトの遅れ破壊の抑制のために高合金鋼を用いたり、圧力反応容器の割れ抑制のためにチタン溶接部材を用いたりする例などが挙げられる。
 しかしながらこのような材料・用途は、水素吸蔵合金を表面に載せるような積極的に水素量が増えるような環境下での水素侵入は想定されていない。そして、これらの技術の課題は金属中に水素が留まることにより金属そのものの機械特性へ影響を及ぼすことであり、水素が金属材料を透過し反対面側へ影響する問題は生じていない。
 また、電池部材における水素透過としては、たとえば燃料電池のセパレータにおいてガス不透過性として水素の不透過性が求められることが知られている。ただし、燃料電池においては、水素透過が問題になるのはカーボンセパレータの場合が主で、ステンレスやアルミのセパレータを用いた場合は水素透過はなく問題とはならないとされていた。また、燃料電池のセパレータは硫酸雰囲気下での耐食性が必須であり鋼板は適用が困難なため、鋼板を適用することを想定した課題は見出されていなかった。一方で、集電体の片面を負極活物質層、他方の面を正極活物質層とするバイポーラ電極構造における集電体では、燃料電池と比較して水素の透過現象が生じやすく、電池性能に影響をおよぼす場合があることが問題と判明した。これは、燃料電池とは、電池構造や、対象部位、内部環境等が異なるからこそ判明した課題であると考えられる。
 次に、鉄ニッケル合金層30の厚みについて説明する。
 上述したような水素透過の抑制の観点からは、本実施形態の集電体用表面処理鋼箔10に含まれる鉄ニッケル合金層30の厚みとしては、少なくとも一つの層における厚みが0.5μm以上が必要であり、0.6μm以上であることが好ましく、0.7μm以上であることがより好ましい。上限は特にないが、厚くなりすぎると集電体用表面処理鋼箔中に占める硬質な層の割合が多くなり集電体用表面処理鋼箔自体が割れやすくなる可能性があり、また、抵抗が高くなるので、片面あたり7.5μm以下が好ましく、より好ましくは6μm以下である。両面の合計の厚みとしては、15μm以下が好ましく、より好ましくは12μm以下、7μm以下がさらに好ましく、さらに好ましくは3.5μm以下である。特に、基材として連続鋼帯を用いる場合、つまり、連続鋼帯へ表面処理を施し本実施形態の鉄ニッケル合金層を有する集電体用表面処理鋼箔を得る場合は、めっき付着量制御や熱処理における不均一の回避の観点から、片面あたり好ましくは6μm以下、より好ましくは3.5μm以下である。
 なお上述したように、集電体用表面処理鋼箔10の全体が鉄ニッケル合金層30であってもよい。この場合は金属基材20を含まないため、集電体用表面処理鋼箔10を製造する際には例えば支持体上に電解めっきにより鉄ニッケル合金層30を形成させた後に剥離する方法により集電体用表面処理鋼箔10を製造することが可能である。またこの場合の集電体用表面処理鋼箔10の厚みは4μm~25μmが好ましい。
 なお鉄ニッケル合金層30は上述のように図1(c)に示されるように第1の面10aの面側と第2の面10bの面側の両方に配置されてもよいが、その場合、水素バリア性の観点から、鉄ニッケル合金層30は少なくとも片面に0.5μmの厚みが必要である。より水素バリア性を高めるという観点から、好ましくは、両面の鉄ニッケル合金層の厚みの合計が0.7μm以上であることが好ましく、より好ましくは0.8μm以上である。両面に鉄ニッケル合金層の厚みは同じ厚さでも良いし、異なる厚さでもよく、少なくとも一方の面に0.5μm以上形成されていればよい。
 なお本実施形態において鉄ニッケル合金層30の厚みの算出方法について説明する。本実施形態の鉄ニッケル合金層30の厚み算出方法としては、集電体用表面処理鋼箔の断面におけるSEM-EDX(エネルギー分散型X線分光法)での分析にて、表層側から厚さ方向へ少なくとも10μmまでの深さにおけるNiおよびFeの定量分析を行うことができる。拡散層厚みが10μmを超える場合には、必要な深さまでの定量分析を行う。
 SEM-EDXにより得られたグラフより鉄ニッケル合金層30の厚みを得る方法の一例を示す。図3のグラフにおいて、横軸は表層側からの深さ方向の距離(μm)、縦軸はNiおよびFeのX線強度を示す。図3のグラフでは厚さ方向に向かって浅い部分はニッケル含有量が多く鉄含有量が少ないことが示される。一方で厚さ方向に進むと共に鉄の含有量が増加していく。
 ニッケルの曲線と鉄の曲線が交差する前後の部分において、本実施形態においてはニッケルと鉄それぞれの最大値の2/10の間の距離を鉄ニッケル合金層30としてグラフよりその厚みを読み取ることが可能である。
 なお、鉄ニッケル合金層30上に後述の金属層40又は粗化ニッケル層50が形成されている場合においても、上記方法により鉄ニッケル合金層30の厚みを得ることが可能である。
 なお本実施形態においてニッケルと鉄それぞれの最大値の2/10の間の距離を鉄ニッケル合金層30の厚みとした理由は以下のとおりである。
 すなわち本発明においては、鉄ニッケル合金層30の厚みを所定以上とすることが好ましいところ、SEM-EDXで鉄ニッケル合金層30の厚みを測定した場合、熱処理を施していないサンプル、つまり、ニッケル中に鉄の拡散がないサンプルにおいても、ニッケル強度がピークとなる位置における鉄強度が、ニッケル強度に対し10%~20%程度の数値で検出されることが判明した。また、ニッケル強度が減衰した後、つまり、金属基材20部分の測定において、ニッケル強度は最大ニッケル強度の3~8%程度の数値を検出し続けた。このときのニッケル強度は鉄強度に対しても2%程度であり、減衰してから2μm以上測定し続けても1%を切ることはなかった。つまり、SEM-EDXでの測定において、ニッケル強度および鉄強度は、微量範囲において互いの影響を受けることがわかった。そこで、本明細書においては、より確実に合金となっており、水素バリア性を担保できる合金層の厚みとして、各最大強度の2/10以上の強度が検出される範囲を規定することとした。
 本実施形態の集電体用表面処理鋼箔10において、鉄ニッケル合金層30におけるニッケルの付着量は0.80g/m~53.4g/mであることが、バイポーラ電極に適した水素バリア性及び耐電解液性等の観点から好ましい。より好ましくは0.80g/m~26.7g/mである。なお、鉄ニッケル合金層30におけるニッケルの付着量は、蛍光X線分析(XRF)等により測定可能である。
 本実施形態の鉄ニッケル合金層30においては、水素バリア性の観点から鉄ニッケル合金の(200)面における結晶子径が3nm以上であることが好ましく、より好ましくは8nm以上である。上限は特にないが、通常50nm以下である。水素が鉄ニッケル合金層を透過する場合、水素がどのような経路で移動するのかは明確ではないが、粒界や方位差の大きい界面は通りやすい箇所であると考えられる。よって結晶子径が小さく、粒界が多くなりやすい構成の場合には、水素の通り道が多く、水素の透過量の総量が増えやすく、水素バリア性が悪くなりやすいと考えられる。一方で、結晶子径が大きい場合には、粒界や方位差の大きい界面が少なく、水素の透過が生じにくいと考えられる。特に、鉄ニッケル合金めっきで鉄ニッケル合金層を形成する場合には、微細粒となり、結晶子径も小さくなりやすいところ、合金めっき後に熱処理を施すことで、結晶子径を8nm以上とし、より効果的に水素バリア性を得ることができる。結晶子径が50nmを超える場合は、熱処理によって基材の鉄から最表面へのFe拡散が著しく進んだ状態となっていることが想定され、鉄ニッケル合金層30表面のFe組成が高くなり易く、Feの溶出を引き起こしやすいため好ましくない。
 本実施形態の鉄ニッケル合金層30において、鉄ニッケル合金の(200)面における結晶子径を上記のように規定することが好ましい理由としては、鉄ニッケル合金は面心立方構造を有しており、(200)面が強度が得やすく、鉄ニッケルの結晶子径をより正確に測定可能であり、制御に好適な面であるためである。
 本実施形態の鉄ニッケル合金層30において鉄ニッケル合金の(200)面の結晶子径は、以下の式を用いてX線回折によるピーク半値幅より求められる。X線回折の測定は、例えば公知のX線回折装置を用いて行われる。結晶子径の算出は2θ=51°付近に現れる鉄ニッケル合金の(200)面のピークを用いる。
 D=K×λ/(β×cosθ)
 D:結晶子径
  K:Scherrer定数(K=0.94を使用)
  λ:使用X線の波長
  β:結晶子の回折X線の半値幅
  θ:ブラッグ角
 次に、本実施形態における集電体用表面処理鋼箔10全体の厚みについて説明する。なお、本実施形態における「集電体用表面処理鋼箔10の厚み」とは、走査電子顕微鏡(SEM)の断面観察による厚み測定、またはマイクロメーターでの厚み測定も適用可能である。
 本実施形態における集電体用表面処理鋼箔10の全体の厚みは、後述する粗化ニッケル層50を有しない場合には、0.01~0.5mmの範囲が好適である。また、強度の観点、及び、望まれる電池容量の観点、等より、より好ましくは0.01~0.3mm、さらに好ましくは0.025~0.1mmである。
 一方で後述する粗化ニッケル層50を最表面に有する場合には、本実施形態における集電体用表面処理鋼箔10の全体の厚みは0.02~0.51mmの範囲が好適である。また、強度の観点、および望まれる電池容量の観点、等より、より好ましくは0.02~0.31mm、さらに好ましくは0.035~0.11mmである。
 上記厚み範囲の上限を超えた場合、製造する電池の体積および重量エネルギー密度の観点から好ましくなく、特に電池の薄型化を狙う場合好ましくない。一方で上記厚み範囲の下限未満の厚みでは、電池の充放電に伴う影響に対して充分な強度を有することが困難となるばかりでなく、電池の製造時や取扱い時等に破れや千切れ・シワ等が発生する可能性が高くなってしまう。
 本実施形態における集電体用表面処理鋼箔10は、図4に示すように、前記鉄ニッケル合金層30の上に形成される金属層40をさらに有していてもよい。前記金属層40を構成する金属材料としては、例えば、ニッケル、クロム、チタン、銅、コバルトまたはこれらを含む合金等が挙げられる。このうち、耐電解液性や強度に優れているという理由により特にニッケルまたはニッケル合金が好ましい。なお、電解ニッケルめっき後に熱処理を施して鉄ニッケル合金層30を形成する際に、表面まで鉄を拡散させないことにより、鉄ニッケル合金層上にニッケルの層を形成したものを金属層40に含んでいてもよい。また、さらにその上にニッケルめっきを施してもよい。
 すなわち、本実施形態の集電体用表面処理鋼箔10において、前記鉄ニッケル合金層30上に形成される金属層40を形成する効果としては以下の点が挙げられる。すなわち、鉄ニッケル合金層30に加えてさらに金属層40を形成することにより、集電体用表面処理鋼箔10全体としての導電性、耐電解液性、強度等を調整することができ、所望の性質を有する集電体材としての集電体用表面処理鋼箔を製造することが可能となる。
 本実施形態の集電体用表面処理鋼箔10において前記金属層40がニッケル層である場合、前記鉄ニッケル合金層30及び前記金属層40(ニッケル層)におけるニッケル付着量の合計は、2.0g/m~53.4g/mであることが、バイポーラ電極に適した水素バリア性及び耐電解液性等の観点から好ましい。より好ましくは2.0g/m~26.7g/mである。なお、鉄ニッケル合金層30及び前記金属層40におけるニッケルの付着量は、蛍光X線分析(XRF)等により測定可能である。
 なお、金属層40の厚みについて、0.1μm~4.0μmであることが好ましい。より好ましくは0.1μm~3.5μm、さらに好ましくは0.1~3.0μm、特に好ましくは0.2~2.5μmである。また、集電体用表面処理鋼箔10中における鉄ニッケル合金層30と金属層40の厚み比については、特に金属層40がニッケルからなる層である場合、より水素バリア性を向上させつつ、耐電解液性を向上させる観点から鉄ニッケル合金層30:金属層40=3:10~60:1であることが好ましく、より好ましくは鉄ニッケル合金層30:金属層40=3:4~35:1である。
 金属層40の厚みの測定方法についても、鉄ニッケル合金層30と同じく、集電体用表面処理鋼箔の断面におけるSEM-EDX(エネルギー分散型X線分光法)での分析にて厚み測定が適用可能である。
 本実施形態の集電体用表面処理鋼箔10においては、図5に示すように最表面に粗化ニッケル層50が形成されていてもよい。なお、図6に示すように上述の金属層40上に粗化ニッケル層が形成されていてもよい。
 粗化ニッケル層50は図5(a)に示すように集電体用表面処理鋼箔10の第2の面10bの側に形成されていてもよいし、図5(b)に示すように前記第1の面10aの側に形成されていてもよいし、その両方に形成されていてもよい。なお、粗化ニッケル層については例えば本出願人らの出願(WO2021/020338号公報等)に記載されているため詳細は省略するが、前記粗化ニッケル層の三次元表面性状パラメータSaが0.2μm~1.3μmであることが、活物質との密着性を向上させる観点からは好ましい。より好ましくは0.36~1.2μmである。
 なお、粗化ニッケル層50を形成するに際して、粗化ニッケル層50とその下層との密着性の観点から、粗化ニッケルめっきを施す前に下地ニッケル層を形成し、さらに粗化ニッケルめっきを施した後に被覆ニッケルめっきを施して粗化ニッケル層を形成してもよい。すなわち、鉄ニッケル合金層の上に金属層40として施したニッケルめっきを下地ニッケル層とし、その上に粗化ニッケル層50を形成してもよい。また、鉄ニッケル合金層を形成する際の熱処理において鉄ニッケル合金層の上に鉄が殆ど拡散していないニッケル層を残した上に、さらにニッケルめっきを施し形成した金属層40を下地ニッケル層とし、その上に粗化ニッケル層50を形成してもよい。また、上述の金属層40本明細書における「粗化ニッケル層50」の記載は、被覆ニッケル層を含む場合がある。なお下地ニッケル層、粗化ニッケル層及び被覆ニッケル層の詳細については後述する。
 粗化ニッケル層50が形成されている場合において、鉄ニッケル合金層30及び前記粗化ニッケル層50におけるニッケル付着量の合計は、7.7g/m~106g/mであることが好ましく、より好ましくは9g/m~70g/mであり、さらに好ましくは15g/m~60g/mである。
 粗化ニッケル層50が形成されている場合であって且つニッケルからなる金属層40上に粗化ニッケル層50が形成されている場合には、鉄ニッケル合金層30、金属層40および粗化ニッケル層50におけるニッケル付着量の合計が、7.7g/m~106g/mであることが好ましく、より好ましくは9g/m~70g/mであり、さらに好ましくは15g/m~60g/mである。
 なお、粗化ニッケル層50のニッケル付着量測定方法としては、例えばWO2020/017655号国際公開公報や、WO2021/020338号国際公開公報に記載の方法等を適宜採用することができる。すなわち、集電体用表面処理鋼箔10について蛍光X線分析(XRF)等を用いて総ニッケル量を測定することで求めることができる。
≪集電体用表面処理鋼箔の製造方法≫
 本実施形態の集電体用表面処理鋼箔10の製造方法について以下に説明する。本実施形態の集電体用表面処理鋼箔10の製造方法は、水素吸蔵合金が配置される第1の面10aの側、及び、前記第1の面10aとは反対側の第2の面10bの側、の少なくとも一方の面側に、前記集電体用表面処理鋼箔内の水素の透過又は拡散を抑制する鉄ニッケル合金層30を形成する工程を有する。
 本実施形態においては、金属基材20としての鋼箔の少なくとも片面に電解めっきによりニッケルめっき層を形成した後に、熱処理を施して熱拡散による鉄ニッケル合金層30を形成することができる。
 また、金属基材20としての鋼箔の少なくとも片面に、鉄イオン及びニッケルイオンを含むめっき浴を用いて電解めっきを施すことにより鉄ニッケル合金層30を形成してもよい。
 すなわち、鉄ニッケル合金層30を形成する工程としては、(i-1)鋼箔の少なくとも片面にニッケルめっき層を形成する工程及び(i-2)形成した鋼箔上のニッケルめっき層に対する熱処理により熱拡散による鉄ニッケル合金層30を形成する工程、が挙げられる。
 あるいは、(ii)鋼箔の少なくとも片面に鉄イオン及びニッケルイオンを含むめっき浴を用いて鉄ニッケル合金層30を形成する工程、をも挙げることができる。
 本実施形態の製造方法において、電解めっきによるニッケルめっき層形成や鉄ニッケル合金めっき層形成の際のめっき条件等は、公知の条件を適用することができる。以下に、めっき条件の例を示す。
[ニッケルめっき浴(ワット浴)及びめっき条件の一例]
・浴組成:
 硫酸ニッケル六水和物:200~300g/L
 塩化ニッケル六水和物:20~60g/L
 ほう酸:10~50g/L
 浴温:40~70℃
 pH:3.0~5.0
 撹拌:空気撹拌又は噴流撹拌
 電流密度:5~30A/dm
 なお、浴組成については、上記のワット浴の他、公知のスルファミン酸ニッケル浴やクエン酸浴を用いてもよい。さらに公知の光沢剤などの添加物をめっき浴に添加して、光沢ニッケルめっき又は半光沢ニッケルめっきとしてもよい。
[鉄ニッケル合金めっき浴及びめっき条件の一例]
 ・浴組成
  硫酸ニッケル六水和物:150~250g/L
  硫酸鉄七水和物:5~100g/L
  塩化ニッケル六水和物:20~50g/L
  ホウ酸:20~50g/L
  クエン酸ナトリウム(またはクエン酸三ナトリウム)1~15g/L
  サッカリンナトリウム:1~10g/L
 ・温度:25~70℃
 ・pH:2~4
 ・撹拌:空気撹拌もしくは噴流撹拌
 ・電流密度:5~40A/dm
 なお、上記の浴の温度に関して、25℃未満の場合には電析効率が落ちる、または析出しづらいために目的とする合金層の形成が難しいため好ましくない。また、層の析出ができない可能性があるため好ましくない。一方で70℃を超えた場合においても、めっき皮膜が硬質になり、割れなどの欠陥が発生する確率が高くなるため好ましくない。また、鉄(Fe)とニッケル(Ni)の組成制御が難しくなるため好ましくない。
 pHが2未満の場合は、ニッケル(Ni)が析出しづらくなり、目的の鉄(Fe)とニッケル(Ni)の組成制御が出来なくなるため好ましくない。また、めっきの析出効率が下がるため好ましくない。一方でpHが4を超えると鉄(Fe)が析出しづらくなり、目的の鉄(Fe)とニッケル(Ni)の組成制御が出来なくなるため好ましくない。また、得られる鉄ニッケル合金層にスラッジを巻き込む可能性があるため好ましくない。
 電流密度に関しては、5A/dm未満の場合には、皮膜の応力が高くなりすぎるため、めっき皮膜に割れなどの欠陥が生じやすくなり好ましくない。また、生産効率が低下するおそれがあり好ましくない。40A/dmを超えた場合には、めっきやけが生じるおそれがあるため好ましくない。
 また、ピット防止剤を適量添加してもよい。
 本実施形態の製造方法において、鋼箔上に形成させるニッケルめっき層又は鉄ニッケル合金めっき層におけるニッケルの付着量は、片面あたり0.80g/m~53.4g/mであることが好ましい。付着量が53.4g/mを超える場合には、電解めっきの操業性が低下するためコストが大幅に増大する。一方で付着量が0.80g/m未満である場合には、充分な耐電解液性が得られない可能性があるため好ましくない。コスト、耐電解液性の観点で、より好ましくは、合金めっき後または後述の熱処理後の鋼箔上のニッケル付着量として片面あたり0.80g/m~26.7g/mであり、両面の合計付着量としては1.6g/m~53.5g/mであることがさらに好ましい。
 次に、上述した(i-2)の工程における熱処理の条件について説明する。本実施形態における熱処理工程の条件としては、以下のような条件を挙げることができる。なお本実施形態の熱処理は、連続焼鈍でもよいしバッチ焼鈍(箱型焼鈍)であってもよい。また、ニッケルめっき後でなく、鉄ニッケル合金めっき後に施す熱処理も同様の条件でよく、鉄ニッケル合金めっき後に熱処理を施すことで結晶子径をより好ましい範囲とすることが可能である。
 連続焼鈍処理の場合の温度と時間の例は650℃~950℃で均熱時間15秒~150秒の範囲内で行うことが好ましい。これより低温又は短時間の場合、充分な鉄ニッケル合金層30を得られない可能性があり好ましくない。一方で、上記熱処理範囲より高温又は長時間の場合、基材となる鋼箔などの機械的性質の変化が大きく、著しく強度が低下してしまうこと、あるいはコスト的な観点から、好ましくない。
 バッチ焼鈍(箱型焼鈍)処理の場合の温度と時間の例は、450℃~690℃で均熱時間が1.5時間~20時間、昇温、均熱および冷却時間を合わせた合計時間が4時間~80時間の範囲内で行うことが好ましい。これより低温又は短時間の場合、充分な鉄ニッケル合金層30を得られない可能性があり好ましくない。一方で、上記熱処理範囲より高温又は長時間の場合、基材となる鋼箔などの機械的性質の変化が大きく、著しく強度が低下してしまう可能性があること、あるいはコスト的な観点から、好ましくない。
 なお本実施形態の集電体用表面処理鋼箔10の製造方法において、鉄ニッケル合金層30上にさらに金属層としてのニッケル層を形成する場合には、上述したワット浴、スルファミン酸ニッケル浴、クエン酸浴等の公知のニッケル浴により形成することが可能である。この場合、ニッケル層を形成する直前に公知のストライクニッケルめっき処理を施すのが好ましい。
 なお、このニッケルめっきを用いた金属層の形成後は、熱処理を施さないことが、後述する粗化ニッケル層との密着性の観点からは好ましい。
 また本実施形態の集電体用表面処理鋼箔10の製造方法において、最表面に粗化ニッケル層50を形成することが可能である。なお、粗化ニッケル層を形成するためのめっき浴としては、塩化物イオン濃度が、好ましくは3~90g/L、より好ましくは3~75g/L、さらに好ましくは3~50g/Lであり、ニッケルイオンとアンモニウムイオンとの比が、「ニッケルイオン/アンモニウムイオン」の重量比で、好ましくは0.05~0.75、より好ましくは0.05~0.60、さらに好ましくは0.05~0.50、さらにより好ましくは0.05~0.30であり、また、50℃における浴電導度が、好ましくは5.00~30.00S/m、より好ましくは5.00~20.00S/m、さらに好ましくは7.00~20.00S/mである。なお、塩化物イオン濃度が10g/L以上である場合には、粗化ニッケルめっきにおける付着量が少な目であっても良好な粗化めっき状態としやすい。めっき浴の塩化物イオン濃度、ニッケルイオンとアンモニウムイオンとの比、および浴電導度を上記範囲に調整する方法としては、特に限定されないが、たとえば、めっき浴を、硫酸ニッケル六水和物、塩化ニッケル六水和物、および硫酸アンモニウムを含むものとし、これらの配合量を適宜調整する方法が挙げられる。
 めっき条件の一例は以下のとおりである。
≪粗化ニッケルめっき条件の一例≫
浴組成
硫酸ニッケル六水和物 10~100g/L、塩化ニッケル六水和物 1~90g/L、硫酸アンモニウム 10~130g/L
 pH 4.0~8.0
 浴温 25~70℃
 電流密度 4~40A/dm
 めっき時間 10秒~150秒間
 撹拌の有無:空気撹拌または噴流撹拌
 なお、ニッケルめっき浴へのアンモニアの添加は、硫酸アンモニウムに代えて、アンモニア水や塩化アンモニウムなどを用いて行ってもよい。めっき浴中のアンモニア濃度は、好ましくは6~35g/L、より好ましくは10~35g/L、さらに好ましくは16~35g/L、さらにより好ましくは20~35g/Lである。また、塩素イオン濃度を制御するために、塩基性の炭酸ニッケル化合物、塩酸、塩化ナトリウムまたは塩化カリウムなどを用いてもよい。
 なお、WO2020/017655号国際公開公報に開示されるように、粗化ニッケルめっきの後段階として、被覆ニッケルめっきを施して粗化ニッケル層を形成してもよい。なお、被覆ニッケルめっき条件はWO2020/017655号国際公開公報に開示の内容を適用できるため、ここでは詳細な説明を省略する。
 上記粗化ニッケル層50の三次元表面性状パラメータSaは、上述のように0.2μm~1.3μmであることが好ましい。粗化ニッケル層50の三次元表面性状パラメータSaの数値をこの範囲内とするためには、例えば、金属基材20の表面粗度の制御、粗化ニッケルめっき条件や厚みの調整のほか、下地ニッケルめっき条件や厚みの調整、被覆ニッケルめっき条件や厚みの調整、等によっても行うことができる。
≪実施例≫
 以下に、実施例を挙げて本発明について、より具体的に説明する。まず、実施例における測定方法について記載する。
[熱処理後の鉄ニッケル合金層の厚み測定方法]
 鉄ニッケル合金層の厚みの算出はSEM-EDX(エネルギー分散型X線分光法)(装置名 日立ハイテクノロジーズ製SU8020およびAMETEK製EDAX)での分析にて、表層から厚さ方向へ15μmまでの深さにおけるNiおよびFeの元素分析を線分析で行った。なお、測定条件としては加速電圧:15kV、観察倍率:5000倍、測定ステップ:0.1μm、とした。図3に示すように、横軸を表層からの深さ方向の距離(μm)、縦軸をNiおよびFeのX線強度とし、ニッケルの曲線と鉄の曲線が交差する前後の部分において、ニッケルと鉄それぞれの最大値の2/10の間の距離を鉄ニッケル合金層30としてグラフよりその厚みを読み取った。
[水素透過電流密度測定方法]
 図2に記載の装置を用いて、評価サンプルを作用電極として、参照電極をAg/AgClとし、水素発生側(カソード側)の電位が-1.5V、水素検出側(アノード側)の電位が+0.4V、の条件下で測定した。なお、詳細な測定方法としては、上記に記載のとおり図2(a)に示す装置を用いて行った。電解液として、65℃のKOHを主成分として6mol/L含み、KOH、NaOH、LiOHの合計濃度が7mol/LであるKOH、NaOH、LiOHからなるアルカリ水溶液を用いた。ポテンショスタットとしては、北斗電工株式会社製の「マルチ電気化学計測システムHZ-Pro」 を用いた。まず水素検出側に+0.4Vの電位をかけ、電流値安定化のため60分間保持した。なお、水素検出側は引き続き同電位で保持した。次いで水素侵入側の電位を-0.7V、-1.1V、-1.5Vと段階的にかけ、それぞれの電位で15分ずつ印加した。なお水素侵入側の電位が-1.5Vの間の酸化電流変化を水素透過電流密度として本実施例及び比較例の評価対象とする。測定径はφ20mm、測定面積を3.14cmとした。
 以下の式(1)により得られる水素透過電流密度I(μA/cm)を表1に示した。
 水素透過電流密度I(μA/cm) = ((IbからIcまでの酸化電流の平均値)/S) ―((IaとIdの平均)/S)・・・(1)
 ただし、Ia(μA)は-1.5V印加5秒前の酸化電流、Ib(μA)は-1.5V印加開始から155秒後の酸化電流、Ic(μA)は-1.5V印加終了時の酸化電流、Id(μA)は-1.5V印加終了後155秒時点の酸化電流、S(cm)を測定面積(評価面積)とする。
[結晶子径の測定]
 結晶子径の測定のため、X線回折装置(株式会社リガク製、全自動多目的水平型X線回折装置SmartLab)を用いてX線回折を行った。
 <装置構成>
・X線源:CuKα
・ゴニオメータ半径:300nm
・光学系:集中法
 (入射側スリット系)
・ソーラースリット:5°
・長手制限スリット:5mm
・発散スリット:2/3°
(受光側スリット系)
・散乱スリット:2/3°
・ソーラースリット:5°
・受光スリット:0.3mm
・単色化法:カウンターモノクロメーター法
・検出器:シンチレーションカウンタ
<測定パラメータ>
・管電圧-管電流:45kV 200mA
・走査軸:2θ/θ(集中法)
・走査モード:連続
・測定範囲:2θ 40~100°
・走査速度:10°/min
・ステップ:0.02°
 サンプルを測定用試料台に載せ、鉄ニッケル合金層において、X線回折角2θ=40~100°の範囲を反射法にてX線回折測定した。その後、得られた測定値に対し、株式会社リガク製 統合粉末X線解析ソフトウェア PDXLを用いて、結晶子径を下記式に基づき算出した。
 具体的には、得られた測定チャートにおいて鉄ニッケル合金の(200)面由来の51.05°ピークにおける半値幅を算出し鉄ニッケル合金の(200)面の結晶子径を得た。なおニッケル(200)面由来の51.85°付近にピークがある場合はピーク分離を行うことが可能である。また上記X線解析ソフトウェアを用いてデータ処理を行う場合には、X線回折角2θ=48~54°の範囲において、ピークの最適化処理を2θ(FeNi(200))=51.05°、2θ(Ni(200))=51.85°にて角度のみ固定し、その他の設定は自動の設定でピークの最適化処理を行うことで、各成分のピーク分離と結晶子径の算出が可能である。なお最適化処理の条件は、ピーク形状を分割型擬Voigt関数とすることができる。
 D=K×λ/(β×cosθ)
 D:結晶子径
  K:Scherrer定数(K=0.94を使用)
  λ:使用X線の波長
  β:結晶子の回折X線の半値幅
  θ:ブラッグ角
<実施例1>
 まず金属基材20として下記に示す化学組成を有する低炭素アルミキルド鋼の冷間圧延箔(厚さ50μm)を準備した。
 C:0.04重量%、Mn:0.32重量%、Si:0.01重量%、P:0.012重量%、S:0.014重量%、残部:Feおよび不可避的不純物
 次に、準備した金属基材に対して電解脱脂、硫酸浸漬の酸洗を行った後、下記条件にて鋼箔の両面にニッケルめっきを行って、狙い厚み0.5μmでニッケル付着量4.45g/mのニッケルめっき層を形成した。なお、ニッケルめっきの条件は以下の通りとした。
(Niめっきの条件)
  浴組成:
  硫酸ニッケル六水和物:250g/L
  塩化ニッケル六水和物:45g/L
  ほう酸:30g/L
  浴温:60℃
  pH:4.0~5.0
  撹拌:空気撹拌又は噴流撹拌
  電流密度:10A/dm
 なおニッケル付着量は蛍光X線装置(装置名 リガク社製ZSX100e)を用いて測定し、得られた数値を表1に示した。なお具体的な測定方法については、WO2020/017655号国際公開公報に記載される方法と同様であるため、ここでは詳細は説明を省略する。
 次いで、上記で形成したニッケルめっき層を有する鋼箔に対して、箱形焼鈍により、熱処理温度640℃、均熱時間2時間(昇温時間、均熱時間、冷却時間の合計:6時間)、還元雰囲気の条件で熱処理を行った。この熱処理により、片面の鉄ニッケル合金層の厚さ1.4μm(両面の鉄ニッケル合金層の合計厚さ:2.8μm)の鉄ニッケル合金層を両面に有する表面処理鋼箔を得た。
 得られた表面処理鋼箔に対して、測定用ニッケル皮膜を両面に形成した。その後、水素透過電流密度を測定した。なおこの「測定用ニッケル皮膜」は、各実施例及び比較例間で表面状態の相違が測定条件および測定値(酸化電流)に与える影響を回避することを目的として設けた皮膜であり、以下のめっき条件により形成した。
 得られた結果を表1に示す。
<測定用ニッケルめっき条件>
浴組成:硫酸ニッケル六水和物 250g/L、塩化ニッケル六水和物 45g/L、ホウ酸30g/L
 pH 4.0~5.0
 浴温 60℃
 電流密度 10A/dm
 測定用ニッケル層の狙い厚みは、各面各々1.0μmとした。
<実施例2>
 鋼箔上に形成するニッケルめっき層の狙い厚みを1.5μmとした以外は、実施例1と同様に行った。結果を表1に示す。
<実施例3>
 鋼箔上に形成するニッケルめっき層の狙い厚みを3.0μmとした以外は、実施例1と同様に行った。結果を表1に示す。
<実施例4>
 鋼箔上に形成するニッケルめっき層の狙い厚みを1.0μmとした以外は、実施例1と同様に行った。結果を表1に示す。
 また、測定用ニッケル皮膜の形成前後において、鉄ニッケル合金層の(200)面の結晶子径を得たところ、測定用ニッケル皮膜の形成前においては12nm、測定用ニッケル皮膜の形成後においては10.9nmであった。
<実施例5>
 鋼箔上に形成するニッケルめっき層の狙い厚みを1.5μmとし、箱形焼鈍による熱処理条件を、熱処理温度560℃、均熱時間6時間(昇温時間、均熱時間、冷却時間の合計:10時間)とした。それ以外は、実施例1と同様に行った。結果を表1に示す。
<実施例6>
 鋼箔上に形成するニッケルめっき層の狙い厚みを2.0μmとした以外は、実施例5と同様に行った。結果を表1に示す。
<実施例7>
 鋼箔上に形成するニッケルめっき層の狙い厚みを0.5μmとした以外は、実施例5と同様に行った。結果を表1に示す。
<実施例8>
 鋼箔上に形成するニッケルめっき層の狙い厚みを1.0μmとした以外は、実施例5と同様に行った。結果を表1に示す。
<実施例9>
 鋼箔上に形成するニッケルめっき層の狙い厚みを3.0μmとした以外は実施例5と同様に行った。結果を表1に示す。
<実施例10>
 鋼箔上に形成するニッケルめっき層の狙い厚みを3.0μmとし、熱処理を連続焼鈍により、到達温度900℃、均熱時間120秒とした以外は、実施例1と同様に行った。
<実施例11>
 鋼箔上に形成するニッケルめっき層の狙い厚みを0.7μmとし、熱処理を連続焼鈍により、到達温度900℃、均熱時間120秒とした以外は、実施例1と同様に行った。
<実施例12>
 鋼箔上に形成するニッケルめっき層の狙い厚みを0.7μmとし、熱処理を連続焼鈍により、到達温度900℃、均熱時間30秒とした以外は、実施例1と同様に行った。
<実施例13>
 鋼箔上に形成するニッケルめっき層の狙い厚みを1.0μmとした点、熱処理を連続焼鈍により、到達温度900℃、均熱時間20秒とした点、以外は実施例1と同様に行った。
<実施例14>
 金属基材に対して下記条件で鉄ニッケル合金めっきを行うことにより、狙い厚み5.0μmの鉄ニッケル合金層を両面に有する表面処理鋼箔を得た。
(鉄ニッケル合金めっき条件)
 ・浴組成
   硫酸ニッケル六水和物:200g/L
   硫酸鉄七水和物:50g/L
   塩化ニッケル六水和物:45g/L
   ホウ酸:30g/L
   クエン酸三ナトリウム:10g/L
   サッカリンナトリウム:5g/L
   ピット防止剤:1ml/L
 ・温度:60℃
 ・pH:2.5~3.0
 ・撹拌:空気撹拌
 ・電流密度:15A/dm
 めっき後の熱処理は行わなかった。それ以外は実施例1と同様に行った。結果を表1に示す。
 また、測定用ニッケル皮膜の形成後において、鉄ニッケル合金層の(200)面の結晶子径を得たところ、5.3nmであった。
<実施例15>
 金属基材に対して実施例14と同じ条件で鉄ニッケル合金めっきを行うことにより、狙い厚み1.0μmの鉄ニッケル合金層を両面に有する表面処理鋼箔を得た。めっき後の熱処理は行わなかった。それ以外は実施例1と同様に行った。結果を表1に示す。
 また、測定用ニッケル皮膜の形成前後において、鉄ニッケル合金層の(200)面の結晶子径を得たところ、測定用ニッケル皮膜の形成前においては5.0nm、測定用ニッケル皮膜の形成後においては5.3nmであった。
<実施例16>
 金属基材に対して実施例14と同じ条件で鉄ニッケル合金めっきを行うことにより、狙い厚み1.0μmの鉄ニッケル合金層を両面に有する表面処理鋼箔を得た。めっき後の熱処理は連続焼鈍により、到達温度900℃、均熱時間120秒とした。それ以外は実施例1と同様に行った。結果を表1に示す。
 また、測定用ニッケル皮膜の形成前において、鉄ニッケル合金層の(200)面の結晶子径を得たところ、11.7nmであった。
<実施例17>
 鋼箔上に形成するニッケルめっき層の狙い厚みを、片面が0.25μm、他方の面が0.1μmとした以外は、実施例5と同様に行った。ニッケルめっき層の狙い厚みを0.1μmとした面を検出面として水素透過電流密度を測定した。結果を表2に示す。
<実施例18>
 実施例14において連続焼鈍による熱処理を行った後、測定用ニッケル皮膜を形成せずに、以下の条件で片面側の鉄ニッケル合金層上に「下地ニッケル層、粗化ニッケル層」を形成し、反対面側の鉄ニッケル合金層の上には下地ニッケル層のみ形成した。なお、粗化ニッケル層は粗化ニッケルめっきおよび被覆ニッケルめっきを施して形成した。
<下地ニッケルめっき条件>
浴組成:硫酸ニッケル六水和物 250g/L、塩化ニッケル六水和物 45g/L、ホウ酸30g/L
 pH 4.0~5.0
 浴温 60℃
 電流密度 10A/dm
 下地ニッケル層の狙い厚みは表3に示す通りとした。
<粗化ニッケルめっき条件>
 めっき浴中の硫酸ニッケル六水和物濃度:10g/L
 めっき浴中の塩化ニッケル六水和物濃度:10g/L
 めっき浴の塩化物イオン濃度:3g/L
 めっき浴中のニッケルイオンとアンモニウムイオンとの比:ニッケルイオン/アンモニウムイオン(重量比)=0.17
 pH:6
 浴温:50℃
 電流密度:12A/dm
 めっき時間:80秒間
<被覆ニッケルめっき条件>
 浴組成:硫酸ニッケル六水和物250g/L、塩化ニッケル六水和物45g/L、ホウ酸30g/L
 pH:4.0~5.0
 浴温:60℃
 電流密度:5A/dm
 めっき時間:36秒間
 得られた表面処理鋼箔の、鉄ニッケル合金層、下地ニッケル層および粗化ニッケル層におけるニッケル付着量の合計は、38.1g/mであった。水素透過電流密度の測定は、粗化ニッケル層を検出面として行った。
 なお、試験片に粗化層が形成されている場合、粗化の隙間からの電解液浸出により、水素透過電流密度の測定が正常に出来ない場合がある。そのため、粗化の隙間からの電解液浸出の影響を抑制するために、測定セルの間の設置に先立って、粗化層が形成されている面に、測定径Φ20mmを切りぬいたポリプロピレン樹脂を測定位置に合わせて接着した後、測定セルの間に試験片を配置した。ポリプロピレン樹脂は厚み70μmの厚さのフィルムを用い、170℃、0.1~0.4MPaの条件で3秒加圧する熱圧着の方法で接着した。
 また、表面処理鋼箔の粗化ニッケル層を形成した最表面における三次元表面性状パラメータSaを測定したところ、0.6μmであった。結果を表3に示す。三次元表面性状パラメータSaはレーザー顕微鏡(オリンパス社製、3D測定レーザー顕微鏡 LEXT OLS5000)を用いて、OLS5000の対物レンズ100倍の条件にて測定した。
<実施例19>
 実施例1において熱処理を行った後、測定用ニッケル皮膜を形成せずに、実施例18と同様の条件で片面側の鉄ニッケル合金層上に「下地ニッケル層、粗化ニッケル層」を形成し、反対面側の鉄ニッケル合金層の上には下地ニッケル層のみ形成した。なお、粗化ニッケル層は粗化ニッケルめっきおよび被覆ニッケルめっきを施して形成した。また実施例18と同様にしてニッケル付着量の合計値を得ると共に、水素透過電流密度の測定と三次元表面性状パラメータSaの測定を行った。結果を表3に示す。
<実施例20>
 金属基材20として冷間圧延箔の厚さを60μmとした点、鋼箔上に形成するニッケルめっき層の狙い厚みを変え、鉄ニッケル合金層を形成する際の熱処理条件を熱処理温度560℃、均熱時間8時間(昇温時間、均熱時間、冷却時間の合計:80時間)とし、熱処理後に17.7%の圧下率で冷間圧延を行った以外は、実施例1と同様に行った。なお,蛍光X線装置によるニッケル付着量の測定は、前記冷間圧延後に行った。結果を表1に示す。
<比較例1>
 ニッケルめっき層を有する鋼箔に対して熱処理を行わなかった以外は、実施例1と同様に行った。結果を表1に示す。なお、比較例1は熱処理を施していないため実際には鉄ニッケル合金層は形成されていないが、SEM-EDXでの測定上、鉄2/10強度からニッケル2/10強度となるまでの距離は0.3μmとなった。
<比較例2>
 ニッケルめっき層の厚みを表1に示すように変更した以外は比較例1と同様に行った。結果を表1に示す。
<比較例3>
 ニッケルめっき層の厚みを表1に示すように変更した以外は比較例1と同様に行った。結果を表1に示す。
<参考例1>
 実施例1と同様のNiめっき条件で、チタン基板上に狙い厚み26.0μm、ニッケル付着量231.4g/mのニッケル層を形成し剥離することにより電解ニッケル箔を作製した。熱処理は行わなかった。それ以外は実施例1と同様にして水素透過電流密度を測定した。結果を表1に示す。
<参考例2>
 参考例1と同様に狙い厚み50.0μm、ニッケル付着量445.0g/mのニッケルめっきを施し、電解ニッケル箔を作製した。それ以外は参考例1と同様にして水素透過電流密度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 各実施例は、好ましい水素バリア性を備えていることが確認された。一方で鋼箔にニッケル層のみ形成した比較例1においては、水素バリア性の観点において目的を達成することができなかったことが確認された。
 また、比較例2および比較例3において、ニッケル層の厚みを増やした場合、水素透過電流密度は小さくなる傾向にあるものの、十分な低減とはならず、水素バリア性の観点において目的を達成できないことが確認された。
 つまり、各実施例において、合金層厚みの効果の確認として、表面状態を統一するために1μmの厚みの測定用ニッケル皮膜を設けているが、水素バリア性の効果はニッケル皮膜の効果ではなく、合金層による効果であることが分かった。よって、水素バリア性の観点からは、実際の形態として表面のめっきままのニッケル皮膜は必須ではないが、その他の目的で合金層の上層として好ましい厚みのニッケルめっき層を形成させても水素バリア性を阻害しないことも併せて見出したものである。
 同様に、実施例18および実施例19において、粗化ニッケル層を形成した場合においても水素バリア性を阻害することがないことを見出したものである。
 さらに実施例20において、鉄ニッケル合金層形成後に25%以下の圧延を施した場合においても水素バリア性を阻害することがないことを見出したものである。
 また、鉄ニッケル合金層において鉄ニッケル合金の(200)面における結晶子径の効果の確認として、結晶子径が3nm以上、好ましくは8nm以上の場合、より良好な水素バリア性を得られることを見出した。特に、合金めっきでFeNi合金層を形成した実施例15および実施例16において、合金めっきの後に熱処理を施すことで、結晶子径を粗大化し、より効果的に水素バリア性を向上させ得ることが確認できた。
 また、本実施形態は水素透過電流密度測定における強アルカリ環境下、かつ、水素検出側に+0.4Vの電位をかけた状態において、溶解を示すピークが現れず、バックグラウンドとなる酸化電流が安定していることから、本実施形態は耐電解液性も兼ね備えているといえる。なお、測定用ニッケル皮膜がない状態においてもバックグラウンドとなる酸化電流の傾向は同様であった。
 以上の結果より、本実施形態の表面処理鋼箔は良好な水素バリア性を有している。すなわち、水素透過に起因する電圧低下の抑制、つまり電池性能の劣化を抑制することができると考えられる。
 本実施形態の表面処理鋼箔は、水素透過の抑制により良好な電池性能を長期間維持し、経時後の電池性能の向上が可能であり、バイポーラ構造の二次電池用集電体に好適に用いることが可能である。
 なお上記した実施形態と各実施例は、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。
 また、上記した実施形態と実施例における集電体用表面処理鋼箔は主としてバイポーラ構造の二次電池用集電体に用いられるものとして説明したが、本発明の集電体用表面処理鋼箔はバイポーラ構造の二次電池用集電体に限らず、水素吸蔵合金を用いる電池の集電体に適用可能であり、車載電池などの苛酷環境下においても有効な水素バリア性を有するため好適に用いることが可能である。
 以上説明したように、本発明の集電体用表面処理鋼箔は、水素バリア性が要求される種々の種類の電池の集電体に対して適用が可能であり、また、本発明の集電体用表面処理鋼箔を車載用電池等に用いた場合、特に低燃費化に貢献することができる。
10  集電体用表面処理鋼箔
10a 第1の面
10b 第2の面
20  金属基材
30  鉄ニッケル合金層
40  金属層
50  粗化ニッケル層
Ch1  ポテンショスタット
Ch2  ポテンショスタット

Claims (10)

  1.  水素吸蔵合金が配置される第1の面および、前記第1の面と反対側に位置する第2の面を有した集電体用表面処理鋼箔であって、
     鋼箔からなる金属基材の、前記第1の面側、及び前記第1の面側とは反対側の前記第2の面側、の少なくとも一方の面側に積層されて、前記集電体用表面処理鋼箔内の水素の透過又は拡散を抑制する鉄ニッケル合金層を有し、
     前記鉄ニッケル合金層のうち、少なくとも一つの層の厚みが0.5μm以上であることを特徴とする、集電体用表面処理鋼箔。
  2.  前記集電体用表面処理鋼箔の前記第1の面および前記第2の面の両方の面側に鉄ニッケル合金層が形成されると共に、前記両方の面側の前記鉄ニッケル合金層の厚みの合計が0.7μm以上である、請求項1に記載の集電体用表面処理鋼箔。
  3.  前記金属基材が、低炭素鋼又は極低炭素鋼である、請求項1又は2に記載の集電体用表面処理鋼箔。
  4.  前記鉄ニッケル合金層におけるニッケルの付着量が0.80g/m~53.4g/mである、請求項1~3のいずれか一項に記載の集電体用表面処理鋼箔。
  5.  前記鉄ニッケル合金層上に形成される金属層をさらに有し、前記金属層がニッケル層である、請求項1~4のいずれか一項に記載の集電体用表面処理鋼箔。
  6.  前記鉄ニッケル合金層及び前記ニッケル層におけるニッケル付着量の合計が2.0g/m~53.4g/mである、請求項5に記載の集電体用表面処理鋼箔。
  7.  電気化学的に測定される水素透過電流密度が20μA/cm以下である、請求項1~6のいずれか一項に記載の集電体用表面処理鋼箔。
     ただし前記水素透過電流密度とは、65℃の電解液中にて、水素検出側の電位を+0.4Vとする条件下において、水素発生側に-1.5Vの電位を印加した際に水素検出側で測定される酸化電流の増加分である。ただし、水素検出側および水素発生側の電位の参照電極はAg/AgClである。
  8.  前記第1の面の側、及び前記第2の面の側のいずれかの最表面に粗化ニッケル層が形成され、前記粗化ニッケル層の三次元表面性状パラメータSaが0.2μm~1.3μmである、請求項1~7のいずれか一項に記載の集電体用表面処理鋼箔。
  9.  金属基材の、水素吸蔵合金が配置される第1の面側、及び、前記第1の面側とは反対側の第2の面側、の少なくとも一方の面側に、前記集電体用表面処理鋼箔内の水素の透過又は拡散を抑制する鉄ニッケル合金層を形成する工程を有し、前記鉄ニッケル合金層は、ニッケルめっきを施す工程および前記ニッケルめっき後に熱処理を施す工程によって形成する、または、鉄ニッケル合金めっきを施して鉄ニッケル合金層を形成することを特徴とする、集電体用表面処理鋼箔の製造方法。
  10.  前記ニッケルめっきを施す工程においてニッケル層を形成する際のニッケルの付着量が0.80g/m~53.4g/mである、請求項9に記載の集電体用表面処理鋼箔の製造方法。
PCT/JP2022/019466 2021-04-28 2022-04-28 集電体用表面処理鋼箔及びその製造方法 WO2022231009A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280031142.7A CN117255875A (zh) 2021-04-28 2022-04-28 集电体用表面处理钢箔及其制造方法
EP22795922.8A EP4332275A1 (en) 2021-04-28 2022-04-28 Surface treated steel foil for current collector and method for manufacturing same
JP2023517638A JPWO2022231009A1 (ja) 2021-04-28 2022-04-28
KR1020237029898A KR20240000449A (ko) 2021-04-28 2022-04-28 집전체용 표면 처리 강박 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-076893 2021-04-28
JP2021076893 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022231009A1 true WO2022231009A1 (ja) 2022-11-03

Family

ID=83846933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019466 WO2022231009A1 (ja) 2021-04-28 2022-04-28 集電体用表面処理鋼箔及びその製造方法

Country Status (5)

Country Link
EP (1) EP4332275A1 (ja)
JP (1) JPWO2022231009A1 (ja)
KR (1) KR20240000449A (ja)
CN (1) CN117255875A (ja)
WO (1) WO2022231009A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005092A (ja) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd 電池缶およびその製造方法
WO2013157600A1 (ja) * 2012-04-19 2013-10-24 新日鐵住金株式会社 鋼箔及びその製造方法
JP2017047466A (ja) * 2015-09-04 2017-03-09 新日鐵住金株式会社 Niめっき鋼箔及び電池導電部材、Niめっき鋼箔の製造方法
WO2020017655A1 (ja) 2018-07-19 2020-01-23 東洋鋼鈑株式会社 粗化ニッケルめっき板
WO2020020338A1 (zh) 2018-07-27 2020-01-30 威海新北洋数码科技有限公司 一种自动售货机
JP2020053401A (ja) 2019-12-09 2020-04-02 株式会社豊田自動織機 蓄電装置
WO2021020338A1 (ja) 2019-07-26 2021-02-04 東洋鋼鈑株式会社 粗化ニッケルめっき材及びその製造方法
JP2021163639A (ja) * 2020-03-31 2021-10-11 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005092A (ja) * 2005-06-22 2007-01-11 Matsushita Electric Ind Co Ltd 電池缶およびその製造方法
WO2013157600A1 (ja) * 2012-04-19 2013-10-24 新日鐵住金株式会社 鋼箔及びその製造方法
JP2017047466A (ja) * 2015-09-04 2017-03-09 新日鐵住金株式会社 Niめっき鋼箔及び電池導電部材、Niめっき鋼箔の製造方法
WO2020017655A1 (ja) 2018-07-19 2020-01-23 東洋鋼鈑株式会社 粗化ニッケルめっき板
WO2020020338A1 (zh) 2018-07-27 2020-01-30 威海新北洋数码科技有限公司 一种自动售货机
WO2021020338A1 (ja) 2019-07-26 2021-02-04 東洋鋼鈑株式会社 粗化ニッケルめっき材及びその製造方法
JP2020053401A (ja) 2019-12-09 2020-04-02 株式会社豊田自動織機 蓄電装置
JP2021163639A (ja) * 2020-03-31 2021-10-11 日鉄ケミカル&マテリアル株式会社 ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOORU TSURU: "Materials and Environments", vol. 63, 2014, TOKYO INSTITUTE OF TECHNOLOGY, pages: 3 - 9

Also Published As

Publication number Publication date
JPWO2022231009A1 (ja) 2022-11-03
CN117255875A (zh) 2023-12-19
EP4332275A1 (en) 2024-03-06
KR20240000449A (ko) 2024-01-02

Similar Documents

Publication Publication Date Title
KR102366582B1 (ko) 축전 디바이스 용기용 강박, 축전 디바이스용 용기 및 축전 디바이스, 및 축전 디바이스 용기용 강박의 제조 방법
KR101679545B1 (ko) 고체 고분자형 연료 전지의 세퍼레이터용 스테인리스박
JP5796694B1 (ja) 固体高分子形燃料電池のセパレータ用ステンレス箔
JP7270660B2 (ja) アルカリ二次電池用表面処理板およびその製造方法
KR20190069485A (ko) 전지용 집전체 및 전지
WO2021075253A1 (ja) 電解箔及び電池用集電体
WO2020204018A1 (ja) アルカリ二次電池用表面処理板およびその製造方法
WO2022231009A1 (ja) 集電体用表面処理鋼箔及びその製造方法
WO2022231008A1 (ja) 集電体用表面処理鋼箔
WO2022231007A1 (ja) 表面処理鋼箔
JP7162026B2 (ja) アルカリ二次電池用表面処理板およびその製造方法
JP5700183B1 (ja) 固体高分子形燃料電池のセパレータ用ステンレス箔
JP2023098438A (ja) 集電体用表面処理金属箔及びその製造方法
JP2023098439A (ja) 集電体用表面処理金属箔
JP7332838B2 (ja) 電池用表面処理金属板
US10256478B2 (en) Stainless steel sheet for separator of polymer electrolyte fuel cell
JP2023098440A (ja) 集電体用表面処理金属箔
EP4183905A1 (en) Electrolytic iron foil
WO2024080136A1 (ja) 電池用表面処理金属板
WO2023210822A1 (ja) 圧延表面処理鋼板の製造方法及び圧延表面処理鋼板
KR20210001928A (ko) 피복 부재 및, 피복 부재의 제조 방법
CN113497234A (zh) 用于锂离子二次电池的表面处理铜箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517638

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280031142.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022795922

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795922

Country of ref document: EP

Effective date: 20231128