WO2024075233A1 - 制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法 - Google Patents

制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法 Download PDF

Info

Publication number
WO2024075233A1
WO2024075233A1 PCT/JP2022/037376 JP2022037376W WO2024075233A1 WO 2024075233 A1 WO2024075233 A1 WO 2024075233A1 JP 2022037376 W JP2022037376 W JP 2022037376W WO 2024075233 A1 WO2024075233 A1 WO 2024075233A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
guide
metal strip
width direction
command signal
Prior art date
Application number
PCT/JP2022/037376
Other languages
English (en)
French (fr)
Inventor
陽一 松井
優太 小田原
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to PCT/JP2022/037376 priority Critical patent/WO2024075233A1/ja
Publication of WO2024075233A1 publication Critical patent/WO2024075233A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/14Guiding, positioning or aligning work

Definitions

  • This disclosure relates to a control device, a control unit, a side guide device, a rolling equipment, and a control method.
  • Side guides are used to guide the transported metal strip in rolling mills and other equipment that processes metal strips.
  • Patent Document 1 discloses a method for controlling side guides installed between a rolling mill and a down coiler.
  • this control method when the leading edge of the strip enters the side guide, the gap between the side guides is narrowed from a standby state to a first gap, and then when the leading edge of the strip is caught in the pinch rolls just before the down coiler, the gap between the side guides is narrowed from the first gap to a second gap. This allows the strip to pass through the side guides smoothly and eliminates telescoping that may occur in the coil being wound by the down coiler.
  • the metal strip is thin, it is prone to buckling when it comes into contact with the side guide. If buckling occurs, the metal strip cannot be passed properly downstream of the side guide in the conveying direction of the metal strip.
  • At least one embodiment of the present invention aims to provide a control device, control unit, side guide device, rolling equipment, and control method that is simple in configuration and capable of centering even a relatively thin metal strip while transporting it.
  • a control device includes: A control device for controlling a side guide device for guiding a metal strip transported along a transport line, comprising: The side guide device is A pair of guide units provided on both sides of the conveying line; a driving unit for moving the pair of guide units in a width direction of the metal strip; Including, a control unit configured to provide a command signal to the drive unit; The control unit is configured to provide a first command signal to the drive unit for causing the pair of guide parts to move back and forth along the width direction within an area outside the extension range of the metal strip in the width direction when the center of the metal strip and the center of the conveying line coincide with each other, while maintaining the distance between the pair of guide parts in the width direction wider than the width of the metal strip.
  • control unit includes: a guide portion position detection portion for detecting a position of at least one of the pair of guide portions in the width direction;
  • the above-mentioned control device configured to generate the first command signal based on the position detected by the guide portion position detection unit; Equipped with.
  • the side guide device is A pair of guide units provided on both sides of the conveying line; a driving unit for moving the pair of guide units in a width direction of the metal strip;
  • the control device as described above, configured to provide the first command signal to the drive unit; Equipped with.
  • the rolling equipment includes: a rolling mill for rolling the metal strip conveyed along the conveying line; a side guide device as described above configured to guide the metal strip; Equipped with.
  • a control method includes: 1.
  • a control method for controlling a side guide device for guiding a metal strip transported along a transport line comprising: The side guide device is A pair of guide units provided on both sides of the conveying line; a driving unit for moving the pair of guide units in a width direction of the metal strip; Including, While maintaining the distance between the pair of guide parts in the width direction wider than the width of the metal strip, the pair of guide parts are moved back and forth along the width direction within an area outside the extension range of the metal strip in the width direction when the center of the metal strip and the center of the conveying line are aligned.
  • At least one embodiment of the present invention provides a control device, control unit, side guide device, rolling equipment, and control method that can center even a relatively thin metal strip while transporting it with a simple configuration.
  • FIG. 1 is a schematic configuration diagram of a rolling facility to which a control device according to an embodiment is applied;
  • FIG. 2 is a plan view of a portion of the rolling equipment shown in FIG. 1 .
  • FIG. 2 is a schematic diagram of a drive unit according to an embodiment.
  • FIG. 2 is a schematic diagram of a control device according to an embodiment.
  • 4 is an example of a flowchart of a control method for a side guide device according to an embodiment.
  • 6A to 6C are schematic time-series diagrams showing the movement of a guide part when a control method according to one embodiment is performed.
  • 11 is a graph showing the change over time in the position of a guide portion in a width direction when a control method according to an embodiment is applied.
  • 11 is a graph showing the change over time in the position of a guide portion in a width direction when a control method according to an embodiment is applied.
  • Fig. 1 is a schematic diagram of a rolling facility to which a control device according to an embodiment is applied.
  • Fig. 2 is a plan view of a portion of the rolling facility shown in Fig. 1.
  • the rolling facility 100 includes a rolling mill 2 for rolling a metal strip S transported along a transport line, and a side guide device 20 configured to guide the movement of the metal strip S along the transport line.
  • the symbol St in Figs. 1 and 2 indicates the tip of the metal strip S
  • the symbol CL in Fig. 2 indicates the center of the transport line for the metal strip S.
  • the rolling mill 2 includes a pair of work rolls 4, 4 provided on both sides of the metal strip S. As shown in FIG. 1, the rolling mill 2 may also include a pair of backup rolls 6, 6 for supporting the pair of work rolls 4, 4. The rolling mill 2 also includes a reduction device (hydraulic cylinder, etc.; not shown) for applying a load to the pair of work rolls 4, 4 to reduce the metal strip S between the pair of work rolls 4, 4.
  • a reduction device hydraulic cylinder, etc.; not shown
  • the rolling mill 2 is configured to roll the metal strip S unwound from the unwinder 8.
  • the metal strip S rolled by the rolling mill 2 is wound by the winder 14.
  • transport rolls 10, 12 may be provided between the unwinder 8 and the rolling mill 2, and between the rolling mill 2 and the winder 14, respectively.
  • the side guide device 20 includes a pair of guide sections 22A, 22B that are provided facing each other on both sides of the conveying line for the metal strip S, a drive section 30 for driving the pair of guide sections 22A, 22B, and a control device 70 for controlling the drive section 30.
  • FIG. 3 is a schematic diagram of the drive section 30 according to one embodiment
  • FIG. 4 is a schematic diagram of the control device 70 according to one embodiment.
  • the pair of guide parts 22A, 22B includes a guide part 22A provided on one of the two sides of the metal strip S in the width direction (hereinafter also simply referred to as the width direction) of the metal strip S to be rolled, which is a first side, and a guide part 22B provided on the other side, which is a second side.
  • the pair of guide parts 22A, 22B each have a guide surface 23A, 23B that extends along the conveying line and is provided to face the end of the metal strip S in the width direction.
  • the distance Wa between the pair of guide parts 22A, 22B in the width direction of the metal strip S (i.e., the distance between the guide surface 23A and the guide surface 23B in the width direction; see Figure 2) is set to be slightly larger than the width Ws (see Figure 2) of the metal strip S to be rolled.
  • the movement of the metal strip S in the conveying direction is guided by the guide surfaces 23A, 23B so that no significant meandering occurs.
  • the drive unit 30 is configured to move the pair of guide units 22A, 22B along the width direction of the metal strip S.
  • the drive unit 30 includes a pair of cylinders 32A, 32B for moving the pair of guide parts 22A, 22B, respectively, along the width direction of the metal strip S.
  • a fluid e.g., oil or air
  • a fluid source 38 is supplied to the pair of cylinders 32A, 32B as a working fluid.
  • the pair of cylinders 32A, 32B are provided so as to extend along the width direction of the metal strip S.
  • pistons 34A, 34B are provided which are slidable along the axial direction of the cylinders 32A, 32B (i.e., the width direction of the metal strip S), and the internal space of the cylinders 32A, 32B is divided into two chambers by the pistons 34A, 34B.
  • the pistons 34A, 34B are connected to the guide parts 22A, 22B via rods 36A, 36B, respectively.
  • the chamber located on the first side in the width direction of metal strip S is connected to first lines 46A, 46B, and fluid is supplied and discharged via the first lines 46A, 46B.
  • the chamber located on the second side in the width direction of metal strip S is connected to second lines 48A, 48B, and fluid is supplied and discharged via the second lines 48A, 48B.
  • the fluid source 38 includes a storage section 40 for storing fluid, and the fluid from the storage section 40 is supplied to one of the two chambers of the pistons 34A, 34B via a supply line 42, while the fluid discharged from the other of the two chambers of the pistons 34A, 34B is returned to the storage section 40 via a return line 44.
  • the supply line 42 is provided with a pump 41 for pressurizing the fluid from the storage section 40.
  • the drive unit 30 includes a first switching unit 50 for switching the movement direction in the width direction of the pair of guide units 22A, 22B.
  • the first switching unit 50 may include a first valve 51 provided between the pair of cylinders 32A, 32B and the fluid source 38 for controlling the flow of fluid between the fluid source 38 and the pair of cylinders 32A, 32B.
  • the first valve 51 is a solenoid valve provided in the supply line 42.
  • the illustrated first valve 51 has four ports including an A port, a B port, a P port, and a T port.
  • the P port and the T port are connected to the supply line 42 and the return line 44, respectively.
  • the A port is connected to one of the first line 46A or the second line 48A connected to the cylinder 32A, and one of the first line 46B or the second line 48B connected to the cylinder 32B, via a branch provided in the second valve 53, which will be described later, in the illustrated example.
  • the B port is connected to the other of the first line 46A or the second line 48A connected to the cylinder 32A, and the other of the first line 46B or the second line 48B connected to the cylinder 32B, via a branch provided in the second valve 53, which will be described later, in the illustrated example.
  • the position of the first valve 51 changes and the connection state between the P/T port and the A/B port is switched, and the supply destination of the fluid from the fluid source 38 is switched between the A port and the B port.
  • the supply destination of the fluid from the fluid source 38 is switched between the first line 46A and the second line 48A connected to the cylinder 32A, and between the first line 46B and the second line 48B connected to the cylinder 32B, so that the movement direction of the pistons 34A, 34B and the guide parts 22A, 22B in the axial direction of the cylinders 32A, 32B is switched. Therefore, by repeatedly turning on/off the driving current supplied to the first valve to repeatedly switch the connection state between the P/T port and the A/B port, the pair of guide parts 22A, 22B can be reciprocated in the width direction of the metal strip S.
  • the drive unit 30 also includes a second switching unit 52 for switching the operation mode of the pair of guide parts 22A, 22B between a same-direction movement mode in which the pair of guide parts move in the same direction in the width direction, and an opposite-direction movement mode in which the pair of guide parts 22A, 22B move in opposite directions to each other in the width direction.
  • the second switching unit 52 may include a second valve 53 provided between the pair of cylinders 32A, 32B and the first valve 51 for controlling the flow of fluid between the first valve 51 and the pair of cylinders 32A, 32B.
  • the second valve 53 is a solenoid valve provided on a line connected to the A port of the first valve 51 and a line connected to the B port.
  • the second valve 53 shown in FIG. 3 includes a branching section 54 that branches the fluid from the A port or the B port of the first valve 51, and a confluence section 55 that confluences the fluid flowing from the cylinders 32A, 32B toward the A port or the B port.
  • the branch section 54 and the junction section 55 are configured to communicate the A/B port of the first valve with a line connected to one of the two chambers of the cylinders 32A and 32B that is located on the same side in the width direction (for example, the first lines 46A and 46B connected to the one of the two chambers of the cylinders 32A and 32B that is located on the first side), or with a line connected to a room that is located on the opposite side in the width direction (for example, the first line 46A connected to the one of the two chambers of the cylinder 32A that is located on the first side, and the second line 48B connected to the one of the two chambers of the cylinder 32B that is located on the second side).
  • a line connected to one of the two chambers of the cylinders 32A and 32B that is located on the same side in the width direction for example, the first lines 46A and 46B connected to the one of the two chambers of the cylinders 32A and 32B that is located on the first side
  • the pistons 34A, 34B of the cylinders 32A, 32B and the pair of guide portions 22A, 22B move in the same direction in the width direction (i.e., the pair of guide portions 22A, 22B move simultaneously from the first side toward the second side or from the second side toward the first side).
  • the pistons 34A, 34B of the cylinders 32A, 32B and the pair of guide portions 22A, 22B move in opposite directions in the width direction (i.e., the pair of guide portions 22A, 22B move toward each other or away from each other).
  • the pair of guide parts 22A, 22B can be reciprocated so as to move in the same direction in the width direction.
  • the pair of guide parts 22A, 22B move in a direction toward or away from each other, so that the distance in the width direction between the pair of guide parts 22A, 22B can be changed.
  • the side guide device 20 may include a guide portion position detector 62 for detecting the position of at least one of the pair of guide portions 22A, 22B in the width direction of the metal strip S.
  • the guide portion position detector 62 may be configured to detect a distance L3 (see FIG. 2) between the guide portion position detector 62 and one of the guide portions 22A, 22B in the width direction of the metal strip S.
  • the guide portion position detector 62 is configured to detect the position of the guide portion 22A (specifically, the distance between the guide portion position detector 62 and the guide portion 22A in the width direction) of the pair of guide portions 22A, 22B that is provided on the first side in the width direction of the metal strip S.
  • a signal indicating the detection result by the guide portion position detector 62 is sent to the control device 70.
  • the side guide device 20 is provided upstream of the pair of guide sections 22A, 22B in the transport direction of the metal strip S, and may include a leading edge detection section 64 for detecting the leading edge St of the metal strip S.
  • the leading edge detection section 64 may include an edge position detector capable of detecting the edge position in the width direction of the metal strip S. A signal indicating the detection result by the leading edge detection section 64 is sent to the control device 70.
  • control device 70 includes a control unit 72 for providing a command signal to the drive unit 30.
  • the control device 70 may also include a command signal generation unit 74 for generating a command signal to be provided to the drive unit 30, and/or a determination unit 76 for determining that the tip St of the metal strip S has entered between the pair of guide portions 22A, 22B.
  • the control unit 72 is configured to provide the drive unit 30 with a first command signal for moving the pair of guide parts 22A, 22B back and forth along the width direction within an area outside the extension range of the metal strip S in the width direction when the center of the metal strip S coincides with the center CL of the conveying line, while maintaining the widthwise distance Wa (see FIG. 1) between the pair of guide parts 22A, 22B wider than the width Ws of the metal strip S.
  • the control unit 72 may be configured to repeatedly provide the first switching unit 50 (such as the first valve 51) with a direction switching command signal for switching the moving direction in the width direction of the pair of guide units 22A and 22B as the above-mentioned first command signal.
  • the direction switching command signal includes a signal for switching between supplying and stopping the supply of the excitation current to the first valve 51 (i.e., a signal for switching the position of the first valve 51 between a position where the P port is connected to the A port, and the T port is connected to the B port, and the T port is connected to the A port).
  • the position of the first valve 51 is repeatedly switched between the above-mentioned two positions, so that the pistons 34A and 34B of the pair of cylinders 32A and 32B and the pair of guide units 22A and 22B repeatedly reciprocate in the width direction.
  • the control unit 72 may be configured to provide the second switching unit 52 (such as the second valve 53) with a same-direction command signal for operating the pair of guide units 22A, 22B in a same-direction movement mode as the above-mentioned first command signal, and to repeatedly provide the first switching unit 50 (such as the first valve 51) with a direction switching command signal for switching the movement direction in the width direction of the pair of guide units 22A, 22B.
  • the second switching unit 52 includes the second valve 53
  • the position of the second valve 53 becomes a position where the pistons 34A, 34B of the pair of cylinders 32A, 32B and the pair of guide units 22A, 22B move in the same direction (the position of the second valve 53 shown in FIG. 3).
  • control unit 72 is configured to, when the determination unit 76 described below determines that the tip St of the metal strip S has entered the pair of guide sections, provide the drive unit 30 with a second command signal to narrow the distance between the pair of guide sections 22A, 22B, and then provide the drive unit 30 with the above-mentioned first command signal.
  • the control unit 72 is configured to provide an opposite direction command signal to the second switching unit 52 as the second command signal described above for operating the pair of guide units 22A, 22B in an opposite direction movement mode, and also to provide a direction switching command signal to the first switching unit so as to reduce the distance between the pair of guide units 22A, 22B.
  • the second valve 53 by providing a reverse direction command signal to the second valve 53 (second switching unit 52), the second valve 53 is set to a position where the pistons 34A, 34B of the pair of cylinders 32A, 32B and the pair of guide parts 22A, 22B move in opposite directions.
  • the first valve 51 is set to a position for supplying fluid from the fluid source 38 to the chamber located on the outer side in the width direction of each of the two chambers of the pair of cylinders 32A, 32B (i.e., the first chamber of the two chambers of the first cylinder 32A and the second chamber of the two chambers of the second cylinder 32B).
  • the command signal generating unit 74 is configured to generate the first command signal and/or the second command signal described above.
  • the command signal generating unit 74 may be configured to generate the above-mentioned first command signal based on the position in the width direction of at least one of the pair of guide parts 22A, 22B.
  • the command signal generating unit 74 may be configured to generate the above-mentioned first command signal based on the detection result of the guide part position detecting unit 62.
  • the determination unit 76 is configured to determine that the tip St of the metal strip S has entered between the pair of guide parts 22A, 22B.
  • the determination unit 76 may be configured to determine that the tip St of the metal strip S has entered between the pair of guide parts 22A, 22B based on the detection result of the tip detection unit 64.
  • the determination unit 76 may calculate the timing at which the tip St of the metal strip S enters between the pair of guide parts 22A, 22B from, for example, the timing at which the tip St of the metal strip S is detected by the tip detection unit 64, the conveying speed of the metal strip S, and the distance L1 (see FIG. 1) between the tip detection unit 64 and the pair of guide parts 22A, 22B in the conveying direction, and determine that the tip St of the metal strip S has entered between the pair of guide parts 22A, 22B based on the calculation result.
  • the control device 70 includes a computer equipped with a processor (CPU, etc.), a main memory device (memory device; RAM, etc.), an auxiliary memory device, an interface, etc.
  • the control device 70 is configured to receive signals from the guide portion position detection unit 62 and/or the tip detection unit 64 via the interface.
  • the processor is configured to process the signals received in this manner.
  • the processor is also configured to process a program deployed in the main memory device. This realizes the functions of the control unit 72, command signal generation unit 74, and determination unit 76 described above.
  • the processing contents in the control device 70 are implemented as programs executed by the processor.
  • the programs may be stored in an auxiliary storage device, for example. When the programs are executed, they are deployed in the main storage device.
  • the processor reads the programs from the main storage device and executes the instructions contained in the programs.
  • control device 70 together with the guide portion position detection unit 62, constitutes a control unit 60 according to some embodiments.
  • this control unit 60 By applying this control unit 60 to existing equipment (rolling equipment, etc.), it is possible to execute the control flow of the side guide device described below.
  • FIG. 5 is an example of a flowchart of a control method for a side guide device according to one embodiment.
  • FIG. 6 is a schematic diagram of a time series showing the movement of a pair of guide parts 22A, 22B when a control method according to one embodiment is executed.
  • the control unit 72 waits with the distance between the pair of guide sections 22A, 22B in the width direction of the metal strip S (hereinafter, the distance between the guide sections) set to Ws + ⁇ (where Ws is the width of the metal strip S) (S2; state shown in FIG. 6A). At this time, the respective distances between the guide surfaces 23A, 23B of the pair of guide sections 22A, 22B and the center CL of the conveying line are roughly equal, at approximately ⁇ /2.
  • the determination unit 76 determines whether or not the leading end St of the metal strip S has entered between the pair of guide portions 22A, 22B (S4). While the leading end St of the metal strip S has not entered between the pair of guide portions 22A, 22B (No in step S4), the distance between the guide portions is maintained at Ws+ ⁇ . On the other hand, if it is determined that the leading end St of the metal strip has entered between the pair of guide parts 22A, 22B (Yes in step S4), the control unit 72 narrows the distance between the guide parts to Ws+ ⁇ (S6; the state shown in FIG. 6B). At this time, the distances between the guide surfaces 23A, 23B of the pair of guide parts 22A, 22B and the center CL of the conveying line are approximately equal to each other, at about ⁇ /2.
  • step S6 the control unit 72 provides the drive unit 30 with a second command signal for narrowing the distance between the guides. More specifically, the control unit 72 provides the second command signal to the second valve 53 (second switching unit 52) as an opposite direction command signal for operating the pair of guides 22A, 22B in the opposite direction movement mode, and provides the first valve (first switching unit 50) with a direction switching command signal for decreasing the distance between the guides.
  • step S6 the control unit 72 provides a direction switching signal to the first switching unit 50 based on the detection result of the guide unit position detection unit 62 until the distance between the guide units becomes Ws + ⁇ .
  • the distance between the guide portions can be calculated based on the detection result of the guide portion position detection unit 62.
  • the distance between guide surface 23A and the center CL of the conveying line is (Ws+ ⁇ )/2 (see FIG. 6B ) when the distance between guide portion position detection unit 62 and guide portion 22A is L3B, then it is possible to calculate that the distance between the pair of guide portions (i.e., the distance between guide surface 23A and guide surface 23B) is Ws+ ⁇ , on the premise that the center positions of guide portions 22A and 22B coincide with the center CL of the conveying line.
  • the control unit 72 provides the drive unit 30 with a first command signal to cause the pair of guide parts 22A, 22B to reciprocate along the width direction within an area outside the extension range of the metal strip S in the width direction when the center of the metal strip S coincides with the center CL of the conveying line while maintaining the distance between the guide parts at Ws+ ⁇ (a value wider than the width of the metal strip S) during conveyance of the metal strip S.
  • the pair of guide parts 22A, 22B reciprocate along the width direction while maintaining the distance between the guide parts at Ws+ ⁇ (S8). That is, the transition from state (C) in FIG. 6 to state (D) and from state (D) to state (C) are repeated.
  • the pair of guide units 22A and 22B can be reciprocated while maintaining the distance between the pair of guide units in the width direction of the metal strip S wider than the width of the metal strip S.
  • the metal strip S can be pushed back to the center CL of the conveyance line by the guide unit 22A or 22B. Therefore, even if the metal strip S is thin, it is possible to automatically align the center of the metal strip S in the width direction with the center CL of the conveyance line (centering of the metal strip) while reducing the risk of buckling.
  • the metal strip S can be centered regardless of the plate end position of the metal strip S. Therefore, the device configuration is simpler than when the positions of the pair of guide units 22A and 22B are adjusted according to the plate end position of the metal strip S. Therefore, according to the above-mentioned control method, even a relatively thin metal strip S can be centered while being transported with a simple configuration.
  • the pair of guide parts 22A, 22B may be moved back and forth based on the position in the width direction of at least one of the pair of guide parts 22A, 22B (i.e., the detection result of the guide part position detection unit 62).
  • a first command signal (direction switching command signal) may be generated and given to the first switching unit based on the detection result of the guide part position detection unit 62 so that the guide surfaces 23A, 23B of the pair of guide parts 22A, 22B do not fall within the allowable range Ra in the width direction (see FIG. 6).
  • the allowable range Ra is a value determined based on the plate width Ws of the metal strip S, and has a length of Ws + 2 ⁇ in the example shown in FIG. 6.
  • a first command signal (direction switching command signal) is given to the first switching part 50 (i.e., the position of the first valve 51 is switched) to move the pair of guide parts 22A, 22B from the second side to the first side in the width direction.
  • a first command signal (direction switching command signal) is sent to the first switching part 50 (i.e., the position of the first valve 51 is switched) to move the pair of guide parts 22A, 22B from the first side to the second side in the width direction.
  • the pair of guide parts 22A, 22B can be repeatedly moved back and forth in the width direction so that the guide surfaces 23A, 23B of the pair of guide parts 22A, 22B do not fall within the allowable range Ra.
  • the pair of guide portions 22A, 22B may be moved in the same direction in the width direction while repeatedly moving the pair of guide portions 22A, 22B back and forth in the width direction.
  • the pair of guide portions 22A, 22B may be repeatedly moved back and forth in the width direction while maintaining the distance between the pair of guide portions 22A, 22B at a specified distance.
  • FIGS. 7 and 8 are graphs showing the change over time in the position of the guide surface 23A of the guide portion 22A in the width direction when a control method according to one embodiment is applied.
  • the positions of the pair of guide parts 22A, 22B may be kept constant at X1 or X2 for the length of the specified time T.
  • the length of the above-mentioned specified time T may be changed according to the rolling speed (the transport speed of the metal strip S). For example, the faster the rolling speed, the shorter the above-mentioned specified time T1 may be.
  • the above-mentioned specified time T may be made variable according to the progress of the material. For example, as shown in FIG. 8, immediately after the leading end St of the metal strip S passes through the guide sections 22A, 22B (i.e., immediately after the strip passes through the rolling mill and rolling begins), the above-mentioned specified time T may be set to a relatively long T1, and once the material has progressed to a certain extent, the above-mentioned specified time T may be set to a shorter T2.
  • the above-mentioned specified time T may be changed according to the distance L2 (see FIG. 1) between the guide parts 22A, 22B and the work roll 4 (rolling mill 2) in the conveying direction.
  • a control device (70) includes: A control device for controlling a side guide device (20) for guiding a metal strip (S) conveyed along a conveying line, comprising: The side guide device is A pair of guide portions (22A, 22B) provided on both sides of the conveying line; a driving unit (30) for moving the pair of guide units along the width direction of the metal strip; Including, A control unit (72) configured to give a command signal to the drive unit; The control unit is configured to give a first command signal to the drive unit to cause the pair of guide parts to move back and forth along the width direction within an area outside the extension range of the metal strip in the width direction when the center of the metal strip and the center (CL) of the conveying line coincide with each other while maintaining the distance between the pair of guide parts in the width direction wider than the width of the metal strip.
  • the pair of guide parts can be reciprocated while maintaining the distance between the pair of guide parts in the width direction of the metal strip (hereinafter also simply referred to as the width direction) wider than the width of the metal strip.
  • This makes it possible to automatically align the center of the width direction of the metal strip with the center of the transport line (centering of the metal strip) while reducing the risk of buckling even in the case of a thin metal strip. Therefore, even if the metal strip is relatively thin, it is possible to center the metal strip while suppressing buckling while transporting it.
  • the device configuration is simpler than when the positions of the pair of guide parts are adjusted according to the plate end position of the metal strip. Therefore, according to the above configuration (1), even a relatively thin metal strip can be centered while being transported with a simple configuration.
  • the control device includes: The device further includes a command signal generating section (74) configured to generate the first command signal based on a position in the width direction of at least one of the pair of guide sections.
  • a first command signal is generated for reciprocating the pair of guide parts along the width direction based on the position in the width direction of at least one of the pair of guide parts. Based on the first command signal generated in this way, the pair of guide parts can be reciprocated within a predetermined area in the width direction of the metal strip (an area outside the extension range of the metal strip) while the metal strip is being transported, thereby making it possible to center the metal strip regardless of the plate end position of the metal strip. Therefore, the device configuration is simpler than when the positions of the pair of guide parts are adjusted according to the plate end position of the metal strip. Therefore, according to the above configuration (2), even a relatively thin metal strip can be centered while being transported with a simple configuration.
  • the control unit is configured to move both of the pair of guide parts in the same direction in the width direction, and to give a first command signal to the drive unit to cause the pair of guide parts to move back and forth along the width direction within a region outside the extension range of the metal strip in the width direction when the center of the metal strip and the center of the conveying line coincide.
  • the pair of guide parts can be moved back and forth in the same direction in the width direction within an area outside the extension range of the metal strip in the width direction when the center of the metal strip and the center of the transport line are aligned. This makes it possible to properly center the metal strip while reducing the risk of buckling, even for thin metal strips.
  • control unit is configured to provide the first command signal to the drive unit for causing the pair of guide portions to move back and forth along the width direction within the region while maintaining the distance in the width direction between the pair of guide portions at a specified distance.
  • the pair of guide parts can be moved back and forth along the width direction while maintaining the distance between the pair of guide parts at a specified distance in the width direction. This makes it possible to properly center the metal strip while reducing the risk of buckling, even in the case of a thin metal strip.
  • the control device includes: a determination unit (76) for determining whether the leading end of the metal strip has entered between the pair of guide units, The control unit is configured to provide a second command signal to the drive unit to narrow the distance between the guide portions when it is determined that the tip of the metal strip has entered the pair of guide portions, and then provide the first command signal to the drive unit.
  • a control unit (60) includes: A guide portion position detection portion (62) for detecting the position of at least one of the pair of guide portions in the width direction; The control device according to any one of (1) to (5) above, configured to generate the first command signal based on the position detected by the guide portion position detection unit; Equipped with.
  • a first command signal is generated for reciprocating the pair of guide parts along the width direction based on the position in the width direction of at least one of the pair of guide parts detected by the guide part position detection unit. Based on the first command signal generated in this way, the pair of guide parts can be reciprocated within a predetermined area in the width direction of the metal strip (an area outside the extension range of the metal strip) while the metal strip is being transported, thereby making it possible to center the metal strip regardless of the plate end position of the metal strip. Therefore, the device configuration is simpler than when the positions of the pair of guide parts are adjusted according to the plate end position of the metal strip. Therefore, according to the above configuration (6), even a relatively thin metal strip can be centered while being transported with a simple configuration.
  • At least one embodiment of the side guide device (20) of the present invention comprises: A pair of guide portions (22A, 22B) provided on both sides of the conveying line; a driving unit (30) for moving the pair of guide units along the width direction of the metal strip; The control device according to any one of (1) to (5) above, configured to give the first command signal to the drive unit; Equipped with.
  • the pair of guide parts can be reciprocated while maintaining the distance between the pair of guide parts in the width direction of the metal strip wider than the width of the metal strip. This makes it possible to automatically align the center of the width direction of the metal strip with the center of the transport line (centering of the metal strip) while reducing the risk of buckling even in the case of a thin metal strip. Therefore, even if the metal strip is relatively thin, it is possible to center the metal strip while suppressing buckling while transporting it.
  • the device configuration is simpler than when the positions of the pair of guide parts are adjusted according to the plate end position of the metal strip. Therefore, according to the above configuration (7), even if the metal strip is relatively thin, it is possible to center it while transporting it with a simple configuration.
  • the drive unit includes a first switching unit (50) for switching the movement directions of the pair of guide units in the width direction
  • the control device is configured to repeatedly provide, as the first command signal, a direction switching command signal for switching the moving directions of the pair of guide portions in the width direction, to the first switching portion.
  • a direction switching command signal for switching the direction of movement of each of the pair of guide parts in the width direction is repeatedly given to the first switching unit, so that the pair of guide parts can be moved back and forth in the width direction. This makes it possible to automatically align the center of the metal strip in the width direction with the center of the conveying line while reducing the risk of buckling, even with a thin metal strip.
  • the pair of guide portions each have a guide surface (23A, 23B) extending along the conveying line and facing an end portion of the metal strip in the width direction
  • the control device is configured to provide the direction switching command signal to the first switching unit based on the position in the width direction of at least one of the pair of guide portions so that the guide surfaces of the pair of guide portions do not fall within the width direction tolerance range (Ra) determined based on the plate width of the metal strip.
  • a direction switching command signal is repeatedly sent to the first switching unit based on the widthwise position of at least one of the pair of guide parts so that the guide surfaces of the pair of guide parts do not fall within the widthwise tolerance range determined based on the plate width of the metal strip.
  • This allows the pair of guide parts to move back and forth within a specified area in the widthwise direction of the metal strip (an area outside the above-mentioned tolerance range). This makes it possible to automatically align the widthwise center of the metal strip with the center of the conveying line while reducing the risk of buckling, even with a thin metal strip.
  • the driving unit includes a pair of cylinders (32A, 32B) for respectively moving the pair of guide units along the width direction of the metal strip
  • the first switching unit is provided between the pair of cylinders and a fluid source (38) of fluid for actuating the pair of cylinders, and includes a first valve (51) for controlling the flow of the fluid between the fluid source and the pair of cylinders.
  • the above-mentioned direction switching command signal is repeatedly given to the first valve (first switching unit) for controlling the flow of fluid between a pair of cylinders for moving the pair of guide parts in the width direction, respectively, and a fluid source for operating the pair of cylinders, so that the pair of guide parts can be moved back and forth in the width direction.
  • the drive unit includes a second switching unit (52) for switching an operation mode of the pair of guide units between a same-direction movement mode in which the pair of guide units move in the same direction in the width direction and an opposite-direction movement mode in which the pair of guide units move in opposite directions in the width direction,
  • the control device is configured to provide a same-direction command signal to the second switching unit as the first command signal for operating the pair of guide units in the same-direction movement mode, and to repeatedly provide the direction switching command signal to the first switching unit.
  • a same-direction command signal is given to the second switching unit to switch the operation mode of the pair of guide parts between a same-direction movement mode and an opposite-direction movement mode, and the above-mentioned direction switching command signal is repeatedly given to the first switching unit, so that the pair of guide parts can be moved back and forth in the same direction in the width direction.
  • the control device includes a determination unit (72) for determining that a leading end of the metal strip has entered between the pair of guide units, the control device is configured to, when it is determined that the leading end of the metal strip has entered the pair of guide portions, provide a second command signal to the drive portion for narrowing the distance between the guide portions, and then provide the first command signal to the drive portion;
  • the control device is configured to provide, as the second command signal, an opposite direction command signal to the second switching unit for operating the pair of guide parts in the opposite direction movement mode, and to provide the direction switching command signal to the first switching unit so that the distance between the guide parts is reduced.
  • an opposite direction command signal is provided as the second command signal to the second switching section, and a direction switching command signal is provided to the first switching section so as to reduce the distance between the pair of guide sections, and then, as the first command signal, a same direction command signal is provided to the second switching section, and the direction switching command signal is repeatedly provided to the first switching section.
  • the driving unit includes a pair of cylinders (32A, 32B) for respectively moving the pair of guide units along the width direction of the metal strip
  • the first switching unit (50) is provided between the pair of cylinders and a fluid source of a fluid for operating the pair of cylinders, and includes a first valve (51) for controlling a flow of the fluid between the fluid source and the pair of cylinders
  • the second switching unit (52) is provided between the pair of cylinders and the first valve and includes a second valve (53) for controlling the flow of the fluid between the first valve and the pair of cylinders.
  • the drive unit includes a first valve (first switching unit) for controlling the flow of fluid between a pair of cylinders for moving the pair of guide parts respectively in the width direction and a fluid source of fluid for actuating the pair of cylinders, and a second valve (second switching unit) for controlling the flow of the above-mentioned fluid between the first valve and the pair of cylinders. Therefore, by providing the same direction command signal and the direction switching command signal as the first command signal to the first valve and the second valve, the pair of guide parts can be moved back and forth while moving in the same direction in the width direction.
  • first switching unit for controlling the flow of fluid between a pair of cylinders for moving the pair of guide parts respectively in the width direction and a fluid source of fluid for actuating the pair of cylinders
  • second valve second switching unit
  • the pair of guide parts can be moved in opposite directions in the width direction by providing the first valve and the second valve with an opposite direction command signal and a direction switching command signal as the second command signal.
  • the second command signal can be used to operate the drive part to narrow the distance between the pair of guide parts. This makes it possible to effectively prevent the end of the metal strip in the width direction from contacting the guide parts when the metal strip enters the guide parts.
  • At least one embodiment of the rolling equipment (100) of the present invention comprises: A rolling mill (2) for rolling a metal strip conveyed along a conveying line; A side guide device (20) according to any one of (7) to (13) above, configured to guide the metal strip; Equipped with.
  • the pair of guide parts can be reciprocated while maintaining the distance between the pair of guide parts in the width direction of the metal strip wider than the width of the metal strip. This makes it possible to automatically align the center of the width direction of the metal strip with the center of the transport line (centering of the metal strip) while reducing the risk of buckling even in the case of a thin metal strip. Therefore, even if the metal strip is relatively thin, it is possible to center the metal strip while suppressing buckling while transporting it.
  • a control method includes: A control method for controlling a side guide device (20) for guiding a metal strip conveyed along a conveying line, comprising the steps of:
  • the side guide device is A pair of guide portions (22A, 22B) provided on both sides of the conveying line; a driving unit (30) for moving the pair of guide units along the width direction of the metal strip; Including, While maintaining the distance between the pair of guide parts in the width direction wider than the width of the metal strip, the pair of guide parts are moved back and forth along the width direction within an area outside the extension range of the metal strip in the width direction when the center of the metal strip and the center of the conveying line coincide (S8).
  • the pair of guide parts are reciprocated while maintaining the distance between the pair of guide parts wider than the width of the metal strip. This makes it possible to automatically align the center of the width direction of the metal strip with the center of the conveying line (centering of the metal strip) while reducing the risk of buckling even in the case of a thin metal strip during conveying of the metal strip. Therefore, even if the metal strip is relatively thin, it is possible to center the metal strip while suppressing buckling during conveying.
  • the pair of guide parts are reciprocated while the distance between the pair of guide parts in the width direction of the metal strip remains wider than the width of the metal strip, so that the metal strip can be centered regardless of the plate end position of the metal strip. Therefore, the device configuration is simpler than when the positions of the pair of guide parts are adjusted according to the plate end position of the metal strip. Therefore, according to the method of (15) above, even a relatively thin metal strip can be centered while being transported with a simple configuration.
  • expressions expressing relative or absolute configuration do not only strictly express such a configuration, but also express a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
  • expressions indicating that things are in an equal state such as “identical,””equal,” and “homogeneous,” not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
  • expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
  • the expressions "comprise,””include,” or “have” a certain element are not exclusive expressions that exclude the presence of other elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)

Abstract

制御装置は、搬送ラインに沿って搬送される金属帯を案内するためのサイドガイド装置を制御するための制御装置であって、前記サイドガイド装置は、前記搬送ラインの両側に設けられる一対のガイド部と、前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部と、を含み、前記駆動部に指令信号を与えるように構成された制御部を備え、前記制御部は、前記一対のガイド部の間の前記幅方向における距離が前記金属帯の幅よりも広く維持されたままで、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させるための第1指令信号を前記駆動部に与えるように構成される。

Description

制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法
 本開示は、制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法に関する。
 圧延設備等の金属帯を処理する設備において、搬送される金属帯を案内するためのサイドガイドが用いられている。
 特許文献1には、圧延機とダウンコイラとの間に設けられるサイドガイドの制御方法が開示されている。この制御方法では、帯板先端がサイドガイド内に進入したときにサイドガイドの間隔を待機状態から第1の間隔に狭め、次いで、帯板先端がダウンコイラ手前のピンチロールに噛み込まれたらサイドガイドの間隔を第1の間隔から第2の間隔に狭めるようになっている。これにより、帯板をスムーズにサイドガイドを通過させるとともに、ダウンコイラに巻き取られるコイルに生じ得るテレスコープをなくすことが図られている。
特開平3-264110号公報
 ところで、金属帯の板厚が薄い場合、金属帯がサイドガイドに接触すると金属帯に座屈が生じやすく、このように座屈が生じた場合には、金属帯の搬送方向におけるサイドガイドの下流側にて金属帯を適切に通板させることができなくなる。
 この点、従来、冷間圧延等で比較的薄い金属帯を扱う場合には、金属帯がサイドガイドに接触しないように、金属帯の中心と搬送ラインの中心とを合わせるようにオペレータが手動でサイドガイドの位置調節を行うのが通常である。しかしこの場合、搬送ラインの近傍で作業するオペレータの安全のためにサイドガイドの位置調節時に金属帯の搬送を停止する必要があるため、通板にかかる所要時間が長い。あるいは、金属帯を搬送しながら、金属帯がサイドガイドに接触しないように制御装置を用いて金属帯の幅方向の板端位置に応じてサイドガイドの位置調節を行うことも考えられるが、この場合、精密な制御が必要となり、装置構成が複雑となる。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能な制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法を提供することを目的とする。
 本発明の少なくとも一実施形態に係る制御装置は、
 搬送ラインに沿って搬送される金属帯を案内するためのサイドガイド装置を制御するための制御装置であって、
 前記サイドガイド装置は、
  前記搬送ラインの両側に設けられる一対のガイド部と、
  前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部と、
を含み、
 前記駆動部に指令信号を与えるように構成された制御部を備え、
 前記制御部は、前記一対のガイド部の間の前記幅方向における距離が前記金属帯の幅よりも広く維持されたままで、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させるための第1指令信号を前記駆動部に与えるように構成される。
 また、本発明の少なくとも一実施形態に係る制御ユニットは、
 前記一対のガイド部の少なくとも一方の前記幅方向における位置を検出するためのガイド部位置検出部と、
 前記ガイド部位置検出部により検出された前記位置に基づいて前記第1指令信号を生成するように構成された上述の制御装置と、
を備える。
 また、本発明の少なくとも一実施形態に係るサイドガイド装置は、
 前記搬送ラインの両側に設けられる一対のガイド部と、
 前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部と、
 前記駆動部に前記第1指令信号を与えるように構成された上述の制御装置と、
を備える。
 また、本発明の少なくとも一実施形態に係る圧延設備は、
 搬送ラインに沿って搬送される金属帯を圧延するための圧延機と、
 前記金属帯を案内するように構成された上述のサイドガイド装置と、
を備える。
 また、本発明の少なくとも一実施形態に係る制御方法は、
 搬送ラインに沿って搬送される金属帯を案内するためのサイドガイド装置を制御するための制御方法であって、
 前記サイドガイド装置は、
  前記搬送ラインの両側に設けられる一対のガイド部と、
  前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部と、
を含み、
 前記一対のガイド部の間の前記幅方向における距離を前記金属帯の幅よりも広く維持したままで、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させる。
 本発明の少なくとも一実施形態によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能な制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法が提供される。
一実施形態に係る制御装置が適用される圧延設備の概略構成図である。 図1に示す圧延設備の一部の平面視における図である。 一実施形態に係る駆動部の概略図である。 一実施形態に係る制御装置の概略図である。 一実施形態に係るサイドガイド装置の制御方法のフローチャートの一例である。 一実施形態に係る制御方法の実行時におけるガイド部の動きを示す時系列の模式図である。 一実施形態に係る制御方法を適用したときのガイド部の幅方向における位置の時間変化を示すグラフである。 一実施形態に係る制御方法を適用したときのガイド部の幅方向における位置の時間変化を示すグラフである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
(圧延設備及びサイドガイド装置の構成)
 図1は、一実施形態に係る制御装置が適用される圧延設備の概略構成図である。図2は、図1に示す圧延設備の一部の平面視における図である。図1に示すように、圧延設備100は、搬送ラインに沿って搬送される金属帯Sを圧延するための圧延機2と、金属帯Sの搬送ラインに沿った移動を案内するように構成されたサイドガイド装置20と、を備える。なお、図1及び図2中の符号Stは金属帯Sの先端を示し、図2中の符号CLは金属帯Sの搬送ラインの中心を示す。
 圧延機2は、金属帯Sの両面側に設けられる一対のワークロール4,4を含む。図1に示すように、圧延機2は、一対のワークロール4,4を支持するための一対のバックアップロール6,6を含んでもよい。また、圧延機2は、一対のワークロール4,4に荷重を加えて一対のワークロール4,4の間の金属帯Sを圧下するための圧下装置(油圧シリンダ等;不図示)を備えている。
 圧延機2は、巻出機8から巻出される金属帯Sを圧延するように構成される。圧延機2で圧延された金属帯Sは、巻取機14で巻き取られるようになっている。図示するように、巻出機8と圧延機2との間、及び、圧延機2と巻取機14との間には、搬送ロール10,12がそれぞれ設けられていてもよい。
 サイドガイド装置20は、金属帯Sの搬送ラインの両側に対面して設けられる一対のガイド部22A,22Bと、一対のガイド部22A,22Bを駆動するための駆動部30と、駆動部30を制御するための制御装置70と、を備える。ここで、図3は、一実施形態に係る駆動部30の概略図であり、図4は、一実施形態に係る制御装置70の概略図である。
 図1~図3に示すように、一対のガイド部22A,22Bは、圧延される金属帯Sの幅方向(以下、単に幅方向ともいう。)にて該金属帯Sの両側のうち一方である第1側に設けられるガイド部22Aと、他方である第2側に設けられるガイド部22Bと、を含む。一対のガイド部22A,22Bは、搬送ラインに沿って延びるとともに金属帯Sの幅方向の端部に面するように設けられるガイド面23A,23Bをそれぞれ有する。金属帯Sの幅方向における一対のガイド部22A,22Bの間の距離Wa(即ち、幅方向におけるガイド面23Aとガイド面23Bとの距離;図2参照)は、圧延される金属帯Sの幅Ws(図2参照)よりも若干大きくなるように設定される。金属帯Sの搬送方向の移動は、該ガイド面23A,23Bによって大きな蛇行が発生しないように案内される。
 駆動部30は、一対のガイド部22A,22Bを金属帯Sの幅方向に沿って動かすように構成される。
 図2及び図3に示すように、一実施形態では、駆動部30は、一対のガイド部22A,22Bを金属帯Sの幅方向に沿ってそれぞれ動かすための一対のシリンダ32A,32Bを含む。一対のシリンダ32A,32Bには、流体源38からの流体(例えば油又は空気等)が作動流体として供給されるようになっている。
 図3に示すように、一対のシリンダ32A,32Bは、金属帯Sの幅方向に沿って延在するように設けられる。シリンダ32A,32Bの内部には、シリンダ32A,32Bの軸方向(即ち金属帯Sの幅方向)に沿って摺動可能なピストン34A,34Bが設けられ、該ピストン34A,34Bによって、シリンダ32A,32Bの内部空間が2つの部屋に分けられている。ピストン34A,34Bは、ロッド36A,36Bをそれぞれ介してガイド部22A,22Bに接続されている。シリンダ32A,32Bの2つの部屋への流体の供給及び該2つの部屋からの流体の排出を調節することにより、シリンダ32A,32Bの軸方向(即ち金属帯Sの幅方向)におけるピストン34A,34Bの位置の調節が可能であり、すなわち、該軸方向(即ち金属帯Sの幅方向)における一対のガイド部22A,22Bの位置の調節が可能である。
 シリンダ32A,32Bの2つの部屋のうち、金属帯Sの幅方向における第1側に位置する部屋は、第1ライン46A,46Bが接続されており、該第1ライン46A,46Bを介して流体の供給及び排出が行われる。シリンダ32A,32Bの2つの部屋のうち、金属帯Sの幅方向における第2側に位置する部屋は、第2ライン48A,48Bが接続されており、該第2ライン48A,48Bを介して流体の供給及び排出が行われる。
 流体源38は、流体を貯留するための貯留部40を含み、貯留部40からの流体が供給ライン42を介してピストン34A,34Bの2つの部屋の一方に供給されるとともに、ピストン34A,34Bの2つの部屋の他方から排出された流体が返送ライン44を介して貯留部40に返送されるようになっている。なお、供給ライン42には、貯留部40からの流体を昇圧するためのポンプ41が設けられている。
 一実施形態では、駆動部30は、一対のガイド部22A,22Bの幅方向における移動方向をそれぞれ切り替えるための第1切替部50を含む。
 図3に示すように、第1切替部50は、一対のシリンダ32A,32Bと流体源38との間に設けられ、流体源38と一対のシリンダ32A,32Bの間における流体の流れを制御するための第1バルブ51を含んでもよい。
 図3に示す例示的な実施形態では、第1バルブ51は、供給ライン42に設けられた電磁弁である。図示する第1バルブ51は、Aポート、Bポート、Pポート及びTポートを含む4つのポートを有している。
 Pポート及びTポートは、供給ライン42及び返送ライン44にそれぞれ接続される。Aポートは、図示する例では後述する第2バルブ53に設けられる分岐部を介して、シリンダ32Aに接続される第1ライン46A又は第2ライン48Aの一方、及び、シリンダ32Bに接続される第1ライン46B又は第2ライン48Bの一方に接続される。Bポートは、図示する例では後述する第2バルブ53に設けられる分岐部を介して、シリンダ32Aに接続される第1ライン46A又は第2ライン48Aの他方、及び、シリンダ32Bに接続される第1ライン46B又は第2ライン48Bの他方に接続される。
 したがって、第1バルブ51に供給される駆動電流のオン/オフを変更すると、第1バルブ51のポジションが変化してP/TポートとA/Bポートとの接続状態が切り替わり、流体源38からの流体の供給先がAポートとBポートとの間で切り替わる。すなわち、流体源38からの流体の供給先が、シリンダ32Aに接続される第1ライン46Aと第2ライン48Aとの間で切り替わるとともに、シリンダ32Bに接続される第1ライン46Bと第2ライン48Bとの間で切り替わるため、シリンダ32A,32Bの軸方向におけるピストン34A,34B及びガイド部22A,22Bの移動方向が切り替わる。よって、第1バルブに供給される駆動電流のオン/オフを繰り返し変更してP/TポートとA/Bポートとの接続状態を繰り返し切り替えることで、一対のガイド部22A,22Bを金属帯Sの幅方向にて往復移動させることができる。
 また、一実施形態では、駆動部30は、一対のガイド部22A,22Bの動作モードを、一対のガイド部が幅方向にて同一方向に動く同一方向移動モードと、一対のガイド部22A,22Bが幅方向にて互いに反対方向に動く反対方向移動モードと、の間で切り替えるための第2切替部52を含む。
 図3に示すように、第2切替部52は、一対のシリンダ32A,32Bと第1バルブ51との間に設けられ、第1バルブ51と一対のシリンダ32A,32Bとの間における流体の流れを制御するための第2バルブ53を含んでもよい。
 図3に示す例示的な実施形態では、第2バルブ53は、第1バルブ51のAポートに接続されるライン及びBポートに接続されるライン上に設けられる電磁弁である。
 図3に示す第2バルブ53は、第1バルブ51のAポート又はBポートからの流体を分岐させる分岐部54と、シリンダ32A,32BからAポート又はBポートに向かう流体を合流される合流部55を含む。
 分岐部54及び合流部55は、第1バルブのA/Bポートと、シリンダ32A,32Bの各2つの部屋のうち、幅方向にて同一側に位置する部屋に接続されるライン(例えば、シリンダ32A,32Bの各2つの部屋のうち、第1側に位置する部屋に接続される第1ライン46A及び46B)、又は、幅方向にて反対側に位置する部屋に接続されるライン(例えば、シリンダ32Aの2つの部屋のうち、第1側に位置する部屋に接続される第1ライン46A、及び、シリンダ32Bの2つの部屋の内、第2側に位置する部屋に接続される第2ライン48B)と、を連通させるように構成される。
 前者の場合、シリンダ32A,32Bのピストン34A,34B及び一対のガイド部22A,22Bは、幅方向にて同一方向に動く(すなわち、一対のガイド部22A,22Bは、第1側から第2側に向かって、又は第2側から第1側に向かって同時に動く)。後者の場合、シリンダ32A,32Bのピストン34A,34B及び一対のガイド部22A,22Bは、幅方向にて反対方向に動く(すなわち、一対のガイド部22A,22Bが互いに近接する方向又は互いに離間する方向に動く)。
 そして、第2バルブ53に供給される駆動電流のオン/オフを変更すると、第2バルブ53のポジションが変化し、第1バルブのA/Bポートと、第1ライン46A,46B及び第2ライン48A,48Bとの接続状態が切り替わるようになっている。これにより、一対のガイド部22A,22Bが幅方向にて同一方向に動く同一方向動作モードと、一対のガイド部22A,22Bが幅方向にて反対方向に動く同一方向動作モードとの間で、サイドガイド装置の動作モードが切り替わる。
 上述の同一方向移動モードでは、一対のガイド部22A,22Bが幅方向にて同一方向に移動するように往復移動させることができる。また、上述の反対方向移動モードでは、一対のガイド部22A,22Bが互いに近づく方向又は離間する方向に移動するので、一対のガイド部22A,22B間の幅方向における距離を変更することができる。
 図2及び図3に示すように、サイドガイド装置20は、金属帯Sの幅方向における一対のガイド部22A,22Bの少なくとも一方の位置を検出するためのガイド部位置検出部62を含んでもよい。ガイド部位置検出部62は、金属帯Sの幅方向におけるガイド部位置検出部62とガイド部22A,22Bの一方との間の距離L3(図2参照)を検出するように構成されていてもよい。図2及び図3に示す例示的な実施形態では、ガイド部位置検出部62は、一対のガイド部22A,22Bのうち、金属帯Sの幅方向における第1側に設けられるガイド部22Aの位置(具体的には、幅方向におけるガイド部位置検出部62とガイド部22Aとの間の距離)を検出するように構成されている。ガイド部位置検出部62による検出結果を示す信号は、制御装置70に送られるようになっている。
 図2に示すように、サイドガイド装置20は、金属帯Sの搬送方向において一対のガイド部22A,22Bよりも上流側に設けられ、金属帯Sの先端Stを検出するための先端検出部64を含んでもよい。先端検出部64は、金属帯Sの幅方向におけるエッジ位置を検出可能なエッジ位置検出器を含んでもよい。先端検出部64による検出結果を示す信号は、制御装置70に送られるようになっている。
 図4に示すように、制御装置70は、駆動部30に指令信号を与えるための制御部72を備えている。また、制御装置70は、駆動部30に与えられる指令信号を生成するための指令信号生成部74、及び/又は、金属帯Sの先端Stが一対のガイド部22A,22Bの間に進入したことを判定するための判定部76を備えていてもよい。
 制御部72は、一対のガイド部22A,22Bの間の幅方向における距離Wa(図1参照)が金属帯Sの幅Wsよりも広く維持されたままで、金属帯Sの中心と搬送ラインの中心CLとが一致した場合の幅方向における金属帯Sの延在範囲の外側の領域内で一対のガイド部22A,22Bを幅方向に沿って往復移動させるための第1指令信号を駆動部30に与えるように構成される。
 制御部72は、上述の第1指令信号として、一対のガイド部22A,22Bの幅方向における移動方向を切替えるための方向切替指令信号を繰り返し第1切替部50(第1バルブ51等)に与えるように構成されていてもよい。第1切替部50が上述の第1バルブ51を含む場合、方向切替指令信号は、第1バルブ51への励磁電流の供給及び供給停止を切替えるための信号(即ち、第1バルブ51のポジションを、PポートとAポート、TポートとBポートがそれぞれ接続されたポジション(図3に示す第1バルブ51のポジション)と、PポートとBポート、TポートとAポートがそれぞれ接続されたポジションと、の間で切替えるための信号)を含む。方向切替指令信号を繰り返し第1バルブ51に与えることにより、第1バルブ51のポジションが上述の2つのポジションの間で繰り返し切り替わるので、一対のシリンダ32A,32Bのピストン34A,34B及び一対のガイド部22A,22Bが幅方向において繰り返し往復移動することになる。
 あるいは、図3に示す例示的な実施形態のように、駆動部30が第1切替部50及び第2切替部52を含む場合、制御部72は、上述の第1指令信号として、一対のガイド部22A,22Bを同一方向移動モードで動作させるための同一方向指令信号を第2切替部52(第2バルブ53等)に与えるとともに、一対のガイド部22A,22Bの幅方向における移動方向を切替えるための方向切替指令信号を繰り返し第1切替部50(第1バルブ51等)に与えるように構成されていてもよい。第2切替部52が第2バルブ53を含む場合、同一方向指令信号を第2バルブ53に与えることにより、第2バルブ53のポジションは、一対のシリンダ32A,32Bのピストン34A,34B及び一対のガイド部22A,22Bが同一方向に動くポジション(図3に示す第2バルブ53のポジション)となる。
 幾つかの実施形態では、制御部72は、後述の判定部76によって金属帯Sの先端Stが一対のガイド部に進入したと判定されたら、一対のガイド部22A,22Bの間の距離を狭めるための第2指令信号を駆動部30に与え、その後、上述の第1指令信号を駆動部30に与えるように構成される。
 制御部72は、上述の第2指令信号として、一対のガイド部22A,22Bを反対方向移動モードで動作させるための反対方向指令信号を第2切替部52に与えるとともに、一対のガイド部22A,22Bの間の距離が減少するように方向切替指令信号を前記第1切替部に与えるように構成される。
 図3に示す例示的な実施形態では、反対方向指令信号を第2バルブ53(第2切替部52)に与えることにより、第2バルブ53のポジションは、一対のシリンダ32A,32Bのピストン34A,34B及び一対のガイド部22A,22Bが互いに反対方向に動くポジションとなる。また、ガイド部22A,22Bの間の距離を減少させるための方向切替指令信号を第1バルブ51(第1切替部50)に与えることにより、第1バルブ51のポジションは、一対のシリンダ32A,32Bのそれぞれの2つの部屋のうち、幅方向における外側に位置する部屋(すなわち、第1側のシリンダ32Aの2つの部屋のうち第1側の部屋、及び、第2側のシリンダ32Bの2つの部屋のうち第2側の部屋)に流体源38からの流体を供給するためのポジションとなる。
 指令信号生成部74は、上述の第1指令信号及び/又は第2指令信号を生成するように構成される。
 指令信号生成部74は、一対のガイド部22A,22Bの少なくとも一方の幅方向における位置に基づいて、上述の第1指令信号を生成するように構成されてもよい。指令信号生成部74は、ガイド部位置検出部62の検出結果に基づいて、上述の第1指令信号を生成するように構成されてもよい。
 判定部76は、金属帯Sの先端Stが一対のガイド部22A,22Bの間に進入したことを判定するように構成される。判定部76は、先端検出部64の検出結果に基づいて、金属帯Sの先端Stが一対のガイド部22A,22Bの間に進入したことを判定するように構成されてもよい。判定部76は、例えば、先端検出部64で金属帯Sの先端Stが検出されたタイミングと、金属帯Sの搬送速度と、搬送方向における先端検出部64と一対のガイド部22A,22Bとの距離L1(図1参照)から、金属帯Sの先端Stが一対のガイド部22A,22Bの間に進入するタイミングを計算し、この計算結果に基づいて、金属帯Sの先端Stが一対のガイド部22A,22Bの間に進入したことを判定するようになっていてもよい。
 制御装置70は、プロセッサ(CPU等)、主記憶装置(メモリデバイス;RAM等)、補助記憶装置及びインターフェース等を備えた計算機を含む。制御装置70は、インターフェースを介して、ガイド部位置検出部62及び/又は先端検出部64からの信号を受け取るようになっている。プロセッサは、このようにして受け取った信号を処理するように構成される。また、プロセッサは、主記憶装置に展開されるプログラムを処理するように構成される。これにより、上述の制御部72、指令信号生成部74及び判定部76の機能が実現される。
 制御装置70での処理内容は、プロセッサにより実行されるプログラムとして実装される。プログラムは、例えば補助記憶装置に記憶されていてもよい。プログラム実行時には、これらのプログラムは主記憶装置に展開される。プロセッサは、主記憶装置からプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。
 上述の制御装置70は、ガイド部位置検出部62とともに、幾つかの実施形態に係る制御ユニット60を構成する。この制御ユニット60を既存の設備(圧延設備等)に適用することで、以下に説明するサイドガイド装置の制御フローを実行することができる。
(サイドガイド装置の制御フロー)
 次に、幾つかの実施形態に係るサイドガイド装置の制御方法について説明する。以下においては、上述した制御装置70を用いて上述のサイドガイド装置20を制御する場合について説明するが、幾つかの実施形態では、以下に説明する制御方法の一部又は全部を他の装置又は手動で行ってもよい。
 図5は、一実施形態に係るサイドガイド装置の制御方法のフローチャートの一例である。図6は、一実施形態に係る制御方法の実行時における、一対のガイド部22A,22Bの動きを示す時系列の模式図である。
 一実施形態では、まず、巻出機8で金属帯Sの巻き出しを開始後、金属帯Sの先端Stが一対のガイド部22A,22Bに到達する前は、制御部72は、金属帯Sの幅方向における一対のガイド部22A,22B間の距離(以下、ガイド部間距離)をWs+α(ただしWsは金属帯Sの幅である。)として、待機する(S2;図6の(A)に示す状態)。このとき、一対のガイド部22A,22Bのガイド面23A,23Bと搬送ラインの中心CLとの間のそれぞれの距離は約α/2で概ね等しい。
 次に、判定部76は、金属帯Sの先端Stが一対のガイド部22A,22Bの間に進入したか否かを判定する(S4)。金属帯の先端Stが一対のガイド部22A,22Bの間に進入していない間は(ステップS4でNo)、ガイド部間距離をWs+αのままで維持する。
一方、金属帯の先端Stが一対のガイド部22A,22Bの間に進入したと判定されたら(ステップS4でYes)、制御部72は、ガイド部間距離をWs+βに狭める(S6;図6の(B)に示す状態)。このとき、一対のガイド部22A,22Bのガイド面23A,23Bと搬送ラインの中心CLとの間のそれぞれの距離は約β/2で概ね等しい。
 ステップS6では、制御部72は、ガイド部間距離を狭めるための第2指令信号を駆動部30に与える。より具体的には、制御部72は、第2指令信号として、一対のガイド部22A,22Bを反対方向移動モードで動作させるための反対方向指令信号を第2バルブ53(第2切替部52)に与えるとともに、ガイド部間距離が減少するように方向切替指令信号を第1バルブ(第1切替部50)に与える。
 また、ステップS6では、制御部72は、ガイド部位置検出部62の検出結果に基づいて、ガイド部間距離がWs+βとなるまで、方向切替信号を第1切替部50に与える。
 なお、ガイド部位置検出部62とガイド部22Aとの幅方向における距離L3と、ガイド部22Aのガイド面23Aの幅方向における位置は所定の関係を有するので、ガイド部位置検出部62の検出結果に基づいて、ガイド部間距離を算出することができる。
 例えば、ガイド部位置検出部62とガイド部22Aとの距離がL3であるときに、ガイド面23Aと搬送ラインの中心CLとの距離が(Ws+β)/2であること(図6の(B)参照)が既知であれば、ガイド部22Aと22Bとの中心位置が搬送ラインの中心CLと一致していることを前提として、一対のガイド部間距離(即ち、ガイド面23Aとガイド面23Bとの間の距離)がWs+βであると算出することができる。
 次に、ガイド部間距離がWs+βとなったら、制御部72は、金属帯Sの搬送中に、ガイド部間距離がWs+β(金属帯Sの幅よりも広い値)に維持したままで、金属帯Sの中心と搬送ラインの中心CLとが一致した場合の幅方向における金属帯Sの延在範囲の外側の領域内で一対のガイド部22A,22Bを幅方向に沿って往復移動させるための第1指令信号を駆動部30に与える。これにより、一対のガイド部22A,22Bは、ガイド部間距離をWs+βに維持したままで、幅方向に沿って往復移動する(S8)。即ち、図6における(C)の状態から(D)の状態への移行と、(D)の状態から(C)の状態への移行を繰り返す。
 上述の制御方法では、金属帯Sの搬送中に上述の第1指令信号を駆動部30に与えることにより、金属帯Sの幅方向における一対のガイド部間の距離を金属帯Sの幅よりも広く維持しながら一対のガイド部22A,22Bを往復させることができる。これにより、金属帯Sが幅方向のどちらかに蛇行したとしても、金属帯Sをガイド部22A又は22Bで搬送ラインの中心CLに押し戻すことができる。よって、薄い金属帯Sであっても座屈するリスクを低減しながら、自動的に金属帯Sの幅方向の中心を搬送ラインの中心CLに合わせること(金属帯のセンタリング)が可能である。したがって、比較的薄い金属帯Sであっても、搬送しながら、座屈を抑制しつつセンタリングをすることができる。また、上述の制御方法では、金属帯Sの幅方向における一対のガイド部間の距離が金属帯Sの幅よりも広いままで一対のガイド部を往復させることにより、金属帯Sの板端位置に依らずに金属帯Sのセンタリングをすることができる。よって、金属帯Sの板端位置に応じて一対のガイド部22A,22Bの位置を調整する場合に比べて、装置構成がシンプルになる。
 よって、上述の制御方法によれば、比較的薄い金属帯Sであっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
 上述のステップS8では、一対のガイド部22A,22Bの少なくとも一方の幅方向における位置(即ちガイド部位置検出部62の検出結果)に基づいて、一対のガイド部22A,22Bを往復移動させるようにしてもよい。
 例えば、ステップS8では、幅方向における許容範囲Ra(図6参照)に一対のガイド部22A,22Bのガイド面23A,23Bが入らないように、ガイド部位置検出部62の検出結果に基づき、第1指令信号(方向切替指令信号)を生成して第1切替部に与えるようにしてもよい。ここで、許容範囲Raは、金属帯Sの板幅Wsに基づき定まる値であり、図6に示す例では、Ws+2γの長さを有する。
 より具体的には、一対のガイド部22A,22Bが幅方向における第1側から第2側に向かって移動するとき、ガイド部位置検出部62の検出結果(ガイド部位置検出部62と板端との距離)に基づき算出される、ガイド部22Aのガイド面23Aと上述の許容範囲Raとの間の幅方向における距離がゼロになったら(即ち図6の(C)の状態になったら)、第1指令信号(方向切替指令信号)を第1切替部50に与えて(即ち第1バルブ51のポジションを切替えて)、一対のガイド部22A,22Bを、幅方向における第2側から第1側に向かって移動させる。
 同様に、一対のガイド部22A,22Bが幅方向における第2側から第1側に向かって移動するとき、ガイド部位置検出部62の検出結果(ガイド部位置検出部62と板端との距離)に基づき算出される、ガイド部22Aのガイド面23Aと上述の許容範囲Raとの間の幅方向における距離が+β-2γに等しくなったら(即ち図6の(D)の状態になったら)、第1指令信号(方向切替指令信号)を第1切替部50に与えて(即ち第1バルブ51のポジションを切替えて)、一対のガイド部22A,22Bを、幅方向における第1側から第2側に向かって移動させる。
 これらの動作の繰り返しにより、許容範囲Raに一対のガイド部22A,22Bのガイド面23A,23Bが入らないように、一対のガイド部22A,22Bを幅方向にて繰り返し往復移動させることができる。
 幾つかの実施形態では、ステップS8では、一対のガイド部22A,22Bの両方を幅方向にて同一方向に動かしながら、一対のガイド部22A,22Bを幅方向にて繰り返し往復移動させるようにしてもよい。
 また、幾つかの実施形態では、一対のガイド部22A,22B間の距離を規定距離に維持しながら、一対のガイド部22A,22Bを幅方向にて繰り返し往復移動させるようにしてもよい。
 このように、一対のガイド部22A,22Bを、同一方向に動かしながら、あるいは、ガイド部間距離を規定距離に維持しながら、幅方向にて繰り返し往復移動させることにより、簡素な構成で、薄い金属帯であっても座屈するリスクを低減しながら、金属帯を適切にセンタリングすることができる。
 図7及び図8は、一実施形態に係る制御方法を適用したときの、ガイド部22Aのガイド面23Aの幅方向における位置の時間変化を示すグラフである。
 図7及び図8に示す例では、時刻t0にて、金属帯Sの先端Stが一対のガイド部22A,22Bの間に進入したと判定され、このときのガイド部間距離はWs+αであり(図6参照)、ガイド面23Aの幅方向における位置は(Ws+α)/2である(図6における(A)の状態)。その後、時刻t1でガイド部間距離がWs+βまで狭められ(図6における(B)の状態)、それから、一対のガイド部22A,22Bは幅方向において往復移動する。一対のガイド部22A、22Bが往復移動している間において、一対のガイド部22A,22Bが最も第2側に位置するときのガイド面23Aの位置がX1であり(図6における(C)の状態)、一対のガイド部22A,22Bが最も第1側に位置するときのガイド面23Aの位置がX2である(図6における(D)の状態)。
 一実施形態では、図7に示すように、一対のガイド部22A、22Bを往復移動させている間、規定時間Tの長さの時間、一対のガイド部22A,22Bの位置を、X1又はX2で一定に維持してもよい。この場合、上述の規定時間Tの長さは、圧延速度(金属帯Sの搬送速度)に応じて変化させてもよい。例えば、圧延速度が速いほど、上述の規定時間T1を短くするようにしてもよい。
 あるいは、上述の規定時間Tは、材料の進行に従って、可変にしてもよい。例えば図8に示すように、金属帯Sの先端Stがガイド部22A,22Bを通過した直後(即ち、圧延機の通板及び圧延開始直後)は、上述の規定時間Tを比較的長いT1に設定し、材料がある程度進行したら、上述の規定時間Tをより短いT2に設定するようにしてもよい。
 また、上述の規定時間Tは、搬送方向におけるガイド部22A,22Bとワークロール4(圧延機2)との距離L2(図1参照)に応じて変更してもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本発明の少なくとも一実施形態に係る制御装置(70)は、
 搬送ラインに沿って搬送される金属帯(S)を案内するためのサイドガイド装置(20)を制御するための制御装置であって、
 前記サイドガイド装置は、
  前記搬送ラインの両側に設けられる一対のガイド部(22A,22B)と、
  前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部(30)と、
を含み、
 前記駆動部に指令信号を与えるように構成された制御部(72)を備え、
 前記制御部は、前記一対のガイド部の間の前記幅方向における距離が前記金属帯の幅よりも広く維持されたままで、前記金属帯の中心と前記搬送ラインの中心(CL)とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させるための第1指令信号を前記駆動部に与えるように構成される。
 上記(1)の構成では、金属帯の搬送中に上述の第1指令信号を駆動部に与えることにより、金属帯の幅方向(以下、単に幅方向ともいう。)における一対のガイド部間の距離を金属帯の幅よりも広く維持しながら一対のガイド部を往復させることができる。これにより、薄い金属帯であっても座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせること(金属帯のセンタリング)が可能である。したがって、比較的薄い金属帯であっても、搬送しながら、座屈を抑制しつつセンタリングをすることができる。また、上記(1)の構成では、金属帯の幅方向における一対のガイド部間の距離が金属帯の幅よりも広いままで一対のガイド部を往復させることにより、金属帯の板端位置に依らずに金属帯のセンタリングをすることができる。よって、金属帯の板端位置に応じて一対のガイド部の位置を調整する場合に比べて、装置構成がシンプルになる。
 よって、上記(1)の構成によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記制御装置は、
 前記一対のガイド部の少なくとも一方の前記幅方向における位置に基づいて、前記第1指令信号を生成するように構成された指令信号生成部(74)を備える。
 上記(2)の構成によれば、一対のガイド部の少なくとも一方の幅方向における位置に基づいて、一対のガイド部を幅方向に沿って往復移動されるための第1指令信号が生成される。このように生成される第1指令信号に基づき、金属帯の搬送中に、一対のガイド部を、金属帯の幅方向における所定領域(金属帯の延在範囲の外側の領域)内を往復させることができ、これにより、金属帯の板端位置に依らずに金属帯のセンタリングをすることができる。よって、金属帯の板端位置に応じて一対のガイド部の位置を調整する場合に比べて、装置構成がシンプルになる。よって、上記(2)の構成によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記制御部は、前記一対のガイド部の両方を前記幅方向にて同一方向に動かし、かつ、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させるための第1指令信号を前記駆動部に与えるように構成される。
 上記(3)の構成によれば、金属帯の搬送中に上述の第1指令信号を駆動部に与えることにより、金属帯の中心と搬送ラインの中心とが一致した場合の幅方向における金属帯の延在範囲の外側の領域内で、一対のガイド部を幅方向において同一方向に動かして往復移動させることができる。これにより、薄い金属帯であっても座屈するリスクを低減しながら、金属帯を適切にセンタリングすることができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 前記制御部は、前記一対のガイド部の間の前記幅方向における距離が規定距離に維持されたままで、前記領域内で前記一対のガイド部を前記幅方向に沿って往復移動させるための前記第1指令信号を前記駆動部に与えるように構成される。
 上記(4)の構成によれば、金属帯の搬送中に上述の第1指令信号を駆動部に与えることにより、一対のガイド部の間の幅方向における距離を規定距離に維持したままで、一対のガイド部を幅方向に沿って往復移動させることができる。これにより、薄い金属帯であっても座屈するリスクを低減しながら、金属帯を適切にセンタリングすることができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記制御装置は、
 前記金属帯の先端が前記一対のガイド部の間に進入したことを判定するための判定部(76)を備え、
 前記制御部は、前記金属帯の先端が前記一対のガイド部に進入したと判定されたら前記ガイド部間の距離を狭めるための第2指令信号を前記駆動部に与え、その後、前記第1指令信号を前記駆動部に与えるように構成される。
 上記(5)の構成によれば、金属帯の先端が一対のガイド部の間に進入してから、一対のガイド部間の距離を狭め、それから一対のガイド部を幅方向にて往復移動させる。これにより、金属帯のガイド部への進入時に金属帯の幅方向の端部がガイド部に接触するのを効果的に抑制しながら、金属帯を適切にセンタリングすることができる。
(6)本発明の少なくとも一実施形態に係る制御ユニット(60)は、
 前記一対のガイド部の少なくとも一方の前記幅方向における位置を検出するためのガイド部位置検出部(62)と、
 前記ガイド部位置検出部により検出された前記位置に基づいて前記第1指令信号を生成するように構成された上記(1)乃至(5)の何れか一項に記載の制御装置と、
を備える。
 上記(6)の構成によれば、ガイド部位置検出部によって検出される一対のガイド部の少なくとも一方の幅方向における位置に基づいて、一対のガイド部を幅方向に沿って往復移動されるための第1指令信号が生成される。このように生成される第1指令信号に基づき、金属帯の搬送中に、一対のガイド部を、金属帯の幅方向における所定領域(金属帯の延在範囲の外側の領域)内を往復させることができ、これにより、金属帯の板端位置に依らずに金属帯のセンタリングをすることができる。よって、金属帯の板端位置に応じて一対のガイド部の位置を調整する場合に比べて、装置構成がシンプルになる。よって、上記(6)の構成によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
(7)本発明の少なくとも一実施形態に係るサイドガイド装置(20)は、
 前記搬送ラインの両側に設けられる一対のガイド部(22A,22B)と、
 前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部(30)と、
 前記駆動部に前記第1指令信号を与えるように構成された上記(1)乃至(5)の何れか一項に記載の制御装置と、
を備える。
 上記(7)の構成では、金属帯の搬送中に上述の第1指令信号を駆動部に与えることにより、金属帯の幅方向における一対のガイド部間の距離を金属帯の幅よりも広く維持しながら一対のガイド部を往復させることができる。これにより、薄い金属帯であっても座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせること(金属帯のセンタリング)が可能である。したがって、比較的薄い金属帯であっても、搬送しながら、座屈を抑制しつつセンタリングをすることができる。また、上記(7)の構成では、金属帯の幅方向における一対のガイド部間の距離が金属帯の幅よりも広いままで一対のガイド部を往復させることにより、金属帯の板端位置に依らずに金属帯のセンタリングをすることができる。よって、金属帯の板端位置に応じて一対のガイド部の位置を調整する場合に比べて、装置構成がシンプルになる。
 よって、上記(7)の構成によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
(8)幾つかの実施形態では、上記(7)の構成において、
 前記駆動部は、前記一対のガイド部の前記幅方向における移動方向をそれぞれ切り替えるための第1切替部(50)を含み、
 前記制御装置は、前記第1指令信号として、前記一対のガイド部の前記幅方向における移動方向をそれぞれ切替えるための方向切替指令信号を繰り返し前記第1切替部に与えるように構成される。
 上記(8)の構成によれば、一対のガイド部の幅方向における移動方向をそれぞれ切り替えるための方向切替指令信号を繰り返し第1切替部に与えるようにしたので、一対のガイド部を幅方向において往復移動させることができる。これにより、薄い金属帯であっても、座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせることができる。
(9)幾つかの実施形態では、上記(8)の構成において、
 前記一対のガイド部は、前記搬送ラインに沿って延びるとともに前記金属帯の前記幅方向の端部に面するように設けられるガイド面(23A,23B)をそれぞれ有し、
 前記制御装置は、前記一対のガイド部の少なくとも一方の前記幅方向における位置に基づいて、前記金属帯の板幅に基づき定まる前記幅方向の許容範囲(Ra)に前記一対のガイド部の前記ガイド面が入らないように、前記方向切替指令信号を前記第1切替部に与えるように構成される。
 上記(9)の構成によれば、一対のガイド部の少なくとも一方の幅方向における位置に基づいて、金属帯の板幅に基づき定まる幅方向の許容範囲に一対のガイド部のガイド面が入らないように方向切替指令信号を繰り返し第1切替部に与えるようにしたので、一対のガイド部を、金属帯の幅方向における所定領域(上述の許容範囲の外側の領域)内を往復移動させることができる。これにより、薄い金属帯であっても、座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせることができる。
(10)幾つかの実施形態では、上記(8)又は(9)の構成において、
 前記駆動部は、前記一対のガイド部を前記金属帯の幅方向に沿ってそれぞれ動かすための一対のシリンダ(32A,32B)を含み、
 前記第1切替部は、前記一対のシリンダと、前記一対のシリンダを作動させるための流体の流体源(38)との間に設けられ、前記流体源と前記一対のシリンダの間における前記流体の流れを制御するための第1バルブ(51)を含む。
 上記(10)の構成によれば、一対のガイド部を幅方向に沿ってそれぞれ動かすための一対のシリンダと該一対のシリンダを作動させるための流体の流体源との間における流体の流れを制御するための第1バルブ(第1切替部)に上述の方向切替指令信号を繰り返し与えるようにしたので、一対のガイド部を幅方向において往復移動させることができる。これにより、薄い金属帯であっても、座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせることができる。
(11)幾つかの実施形態では、上記(8)乃至(10)の何れかの構成において、
 前記駆動部は、前記一対のガイド部の動作モードを、前記一対のガイド部が前記幅方向にて同一方向に動く同一方向移動モードと、前記一対のガイド部が前記幅方向にて反対方向に動く反対方向移動モードと、の間で切り替えるための第2切替部(52)を含み、
 前記制御装置は、前記第1指令信号として、前記一対のガイド部を前記同一方向移動モードで動作させるための同一方向指令信号を前記第2切替部に与えるとともに、前記方向切替指令信号を繰り返し前記第1切替部に与えるように構成される。
 上記(11)の構成によれば、一対のガイド部の動作モードを同一方向移動モードと反対方向移動モードとの間で切り替えるため第2切替部に対して同一方向指令信号を与えるとともに、上述の方向切替指令信号を繰り返し第1切替部に与えるようにしたので、一対のガイド部を幅方向において同一方向に動かしながら往復移動させることができる。これにより、薄い金属帯であっても、座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせることができる。
(12)幾つかの実施形態では、上記(11)の構成において、
 前記制御装置は、前記金属帯の先端が前記一対のガイド部の間に進入したことを判定するための判定部(72)を含み、
 前記制御装置は、前記金属帯の先端が前記一対のガイド部に進入したと判定されたら前記ガイド部間の距離を狭めるための第2指令信号を前記駆動部に与え、その後、前記第1指令信号を前記駆動部に与えるように構成され、
 前記制御装置は、前記第2指令信号として、前記一対のガイド部を前記反対方向移動モードで動作させるための反対方向指令信号を前記第2切替部に与えるとともに、前記ガイド部間の前記距離が減少するように前記方向切替指令信号を前記第1切替部に与えるように構成される。
 上記(12)の構成によれば、金属帯の先端が一対のガイド部に進入したと判定されたら、第2指令信号として、反対方向指令信号を第2切替部に与えるとともに、一対のガイド部間の距離が減少するように方向切替指令信号を前記第1切替部に与え、その後、第1指令信号として、同一方向指令信号を第2切替部に与えるとともに方向切替指令信号を繰り返し前記第1切替部に与える。よって、金属帯の先端が一対のガイド部の間に進入してから、第2指令信号により一対のガイド部間の距離を狭め、その後、第1指令信号により一対のガイド部を幅方向にて往復移動させることができる。これにより、金属帯のガイド部への進入時に金属帯の幅方向の端部がガイド部に接触するのを効果的に抑制しながら、金属帯を適切にセンタリングすることができる。
(13)幾つかの実施形態では、上記(11)又は(12)の構成において、
 前記駆動部は、前記一対のガイド部を前記金属帯の幅方向に沿ってそれぞれ動かすための一対のシリンダ(32A,32B)を含み、
 前記第1切替部(50)は、前記一対のシリンダと、前記一対のシリンダを作動させるための流体の流体源との間に設けられ、前記流体源と前記一対のシリンダの間における前記流体の流れを制御するための第1バルブ(51)を含み、
 前記第2切替部(52)は、前記一対のシリンダと、前記第1バルブとの間に設けられ、前記第1バルブと前記一対のシリンダとの間における前記流体の流れを制御するための第2バルブ(53)を含む。
 上記(13)の構成では、駆動部は、一対のガイド部を幅方向に沿ってそれぞれ動かすための一対のシリンダと該一対のシリンダを作動させるための流体の流体源との間における流体の流れを制御するための第1バルブ(第1切替部)、及び、第1バルブと一対のシリンダとの間における上述の流体の流れを制御するための第2バルブ(第2切替部)を含む。
 よって、第1バルブ及び第2バルブに対し、第1指令信号としての同一方向指令信号及び方向切替指令信号を与えることにより、一対のガイド部を幅方向において同一方向に動かしながら往復移動させることができる。これにより、薄い金属帯であっても、座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせることができる。したがって、上記(13)の構成によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
 あるいは、第1バルブ及び第2バルブに対し、第2指令信号としての反対方向指令信号及び方向切替指令信号を与えることにより、一対のガイド部を幅方向において反対方向に動かすことができる。よって、金属帯の先端が一対のガイド部の間に進入したときに第2指令信号を一対のガイド部間の距離を狭めるように駆動部を動作させることができる。これにより、金属帯のガイド部への進入時に金属帯の幅方向の端部がガイド部に接触するのを効果的に抑制することができる。
(14)本発明の少なくとも一実施形態に係る圧延設備(100)は、
 搬送ラインに沿って搬送される金属帯を圧延するための圧延機(2)と、
 前記金属帯を案内するように構成された上記(7)乃至(13)の何れか一項に記載のサイドガイド装置(20)と、
を備える。
 上記(14)の構成では、金属帯の搬送中に上述の第1指令信号を駆動部に与えることにより、金属帯の幅方向における一対のガイド部間の距離を金属帯の幅よりも広く維持しながら一対のガイド部を往復させることができる。これにより、薄い金属帯であっても座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせること(金属帯のセンタリング)が可能である。したがって、比較的薄い金属帯であっても、搬送しながら、座屈を抑制しつつセンタリングをすることができる。また、上記(14)の構成では、金属帯の幅方向における一対のガイド部間の距離が金属帯の幅よりも広いままで一対のガイド部を往復させることにより、金属帯の板端位置に依らずに金属帯のセンタリングをすることができる。よって、金属帯の板端位置に応じて一対のガイド部の位置を調整する場合に比べて、装置構成がシンプルになる。
 よって、上記(14)の構成によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
(15)本発明の少なくとも一実施形態に係る制御方法は、
 搬送ラインに沿って搬送される金属帯を案内するためのサイドガイド装置(20)を制御するための制御方法であって、
 前記サイドガイド装置は、
  前記搬送ラインの両側に設けられる一対のガイド部(22A,22B)と、
  前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部(30)と、
を含み、
 前記一対のガイド部の間の前記幅方向における距離を前記金属帯の幅よりも広く維持したままで、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させる(S8)。
 上記(15)の方法では、一対のガイド部間の距離を金属帯の幅よりも広く維持しながら一対のガイド部を往復させる。これにより、金属帯の搬送中に、薄い金属帯であっても座屈するリスクを低減しながら、自動的に金属帯の幅方向の中心を搬送ラインの中心に合わせること(金属帯のセンタリング)が可能である。したがって、比較的薄い金属帯であっても、搬送しながら、座屈を抑制しつつセンタリングをすることができる。また、上記(15)の方法では、金属帯の幅方向における一対のガイド部間の距離が金属帯の幅よりも広いままで一対のガイド部を往復させることにより、金属帯の板端位置に依らずに金属帯のセンタリングをすることができる。よって、金属帯の板端位置に応じて一対のガイド部の位置を調整する場合に比べて、装置構成がシンプルになる。
 よって、上記(15)の方法によれば、比較的薄い金属帯であっても、簡素な構成で、搬送しながらセンタリングすることが可能である。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
2   圧延機
4   ワークロール
6   バックアップロール
8   巻出機
10  搬送ロール
12  搬送ロール
14  巻取機
20  サイドガイド装置
22A ガイド部
22B ガイド部
23A ガイド面
23B ガイド面
30  駆動部
32A シリンダ
32B シリンダ
34A ピストン
34B ピストン
36A ロッド
36B ロッド
38  流体源
40  貯留部
41  ポンプ
42  供給ライン
44  返送ライン
46A 第1ライン
46B 第1ライン
48A 第2ライン
48B 第2ライン
50  第1切替部
51  第1バルブ
52  第2切替部
53  第2バルブ
54  分岐部
55  合流部
60  制御ユニット
62  ガイド部位置検出部
64  先端検出部
70  制御装置
72  制御部
74  指令信号生成部
76  判定部
100 圧延設備
CL  搬送ラインの中心
Ra  許容範囲
S   金属帯
St  先端

Claims (15)

  1.  搬送ラインに沿って搬送される金属帯を案内するためのサイドガイド装置を制御するための制御装置であって、
     前記サイドガイド装置は、
      前記搬送ラインの両側に設けられる一対のガイド部と、
      前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部と、
    を含み、
     前記駆動部に指令信号を与えるように構成された制御部を備え、
     前記制御部は、前記一対のガイド部の間の前記幅方向における距離が前記金属帯の幅よりも広く維持されたままで、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させるための第1指令信号を前記駆動部に与えるように構成された
    制御装置。
  2.  前記一対のガイド部の少なくとも一方の前記幅方向における位置に基づいて、前記第1指令信号を生成するように構成された指令信号生成部を備える
    請求項1に記載の制御装置。
  3.  前記制御部は、前記一対のガイド部の両方を前記幅方向にて同一方向に動かし、かつ、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させるための第1指令信号を前記駆動部に与えるように構成された
    請求項1又は2に記載の制御装置。
  4.  前記制御部は、前記一対のガイド部の間の前記幅方向における距離が規定距離に維持されたままで、前記一対のガイド部を前記幅方向に沿って往復移動させるための前記第1指令信号を前記駆動部に与えるように構成された
    請求項1又は2に記載の制御装置。
  5.  前記金属帯の先端が前記一対のガイド部の間に進入したことを判定するための判定部を備え、
     前記制御部は、前記金属帯の先端が前記一対のガイド部に進入したと判定されたら前記ガイド部間の距離を狭めるための第2指令信号を前記駆動部に与え、その後、前記第1指令信号を前記駆動部に与えるように構成された
    請求項1又は2に記載の制御装置。
  6.  前記一対のガイド部の少なくとも一方の前記幅方向における位置を検出するためのガイド部位置検出部と、
     前記ガイド部位置検出部により検出された前記位置に基づいて前記第1指令信号を生成するように構成された請求項1又は2に記載の制御装置と、
    を備える制御ユニット。
  7.  前記搬送ラインの両側に設けられる一対のガイド部と、
     前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部と、
     前記駆動部に前記第1指令信号を与えるように構成された請求項1又は2の何れか一項に記載の制御装置と、
    を備えるサイドガイド装置。
  8.  前記駆動部は、前記一対のガイド部の前記幅方向における移動方向をそれぞれ切り替えるための第1切替部を含み、
     前記制御装置は、前記第1指令信号として、前記一対のガイド部の前記幅方向における移動方向をそれぞれ切替えるための方向切替指令信号を繰り返し前記第1切替部に与えるように構成された
    請求項7に記載のサイドガイド装置。
  9.  前記一対のガイド部は、前記搬送ラインに沿って延びるとともに前記金属帯の前記幅方向の端部に面するように設けられるガイド面をそれぞれ有し、
     前記制御装置は、前記一対のガイド部の少なくとも一方の前記幅方向における位置に基づいて、前記金属帯の板幅に基づき定まる前記幅方向の許容範囲に前記一対のガイド部の前記ガイド面が入らないように、前記方向切替指令信号を前記第1切替部に与えるように構成された
    請求項8に記載のサイドガイド装置。
  10.  前記駆動部は、前記一対のガイド部を前記金属帯の幅方向に沿ってそれぞれ動かすための一対のシリンダを含み、
     前記第1切替部は、前記一対のシリンダと、前記一対のシリンダを作動させるための流体の流体源との間に設けられ、前記流体源と前記一対のシリンダの間における前記流体の流れを制御するための第1バルブを含む
    請求項8に記載のサイドガイド装置。
  11.  前記駆動部は、前記一対のガイド部の動作モードを、前記一対のガイド部が前記幅方向にて同一方向に動く同一方向移動モードと、前記一対のガイド部が前記幅方向にて反対方向に動く反対方向移動モードと、の間で切り替えるための第2切替部を含み、
     前記制御装置は、前記第1指令信号として、前記一対のガイド部を前記同一方向移動モードで動作させるための同一方向指令信号を前記第2切替部に与えるとともに、前記方向切替指令信号を前記第1切替部に与えるように構成された
    請求項8に記載のサイドガイド装置。
  12.  前記制御装置は、前記金属帯の先端が前記一対のガイド部の間に進入したことを判定するための判定部を含み、
     前記制御装置は、前記金属帯の先端が前記一対のガイド部に進入したと判定されたら前記ガイド部間の距離を狭めるための第2指令信号を前記駆動部に与え、その後、前記第1指令信号を前記駆動部に与えるように構成され、
     前記制御装置は、前記第2指令信号として、前記一対のガイド部を前記反対方向移動モードで動作させるための反対方向指令信号を前記第2切替部に与えるとともに、前記ガイド部間の前記距離が減少するように前記方向切替指令信号を繰り返し前記第1切替部に与えるように構成された
    請求項11に記載のサイドガイド装置。
  13.  前記駆動部は、前記一対のガイド部を前記金属帯の幅方向に沿ってそれぞれ動かすための一対のシリンダを含み、
     前記第1切替部は、前記一対のシリンダと、前記一対のシリンダを作動させるための流体の流体源との間に設けられ、前記流体源と前記一対のシリンダの間における前記流体の流れを制御するための第1バルブを含み、
     前記第2切替部は、前記一対のシリンダと、前記第1バルブとの間に設けられ、前記第1バルブと前記一対のシリンダとの間における前記流体の流れを制御するための第2バルブを含む
    請求項11に記載のサイドガイド装置。
  14.  搬送ラインに沿って搬送される金属帯を圧延するための圧延機と、
     前記金属帯を案内するように構成された請求項7に記載のサイドガイド装置と、
    を備える圧延設備。
  15.  搬送ラインに沿って搬送される金属帯を案内するためのサイドガイド装置を制御するための制御方法であって、
     前記サイドガイド装置は、
      前記搬送ラインの両側に設けられる一対のガイド部と、
      前記一対のガイド部を前記金属帯の幅方向に沿って動かすための駆動部と、
    を含み、
     前記一対のガイド部の間の前記幅方向における距離を前記金属帯の幅よりも広く維持したままで、前記金属帯の中心と前記搬送ラインの中心とが一致した場合の前記幅方向における前記金属帯の延在範囲の外側の領域内で前記一対のガイド部を前記幅方向に沿って往復移動させる
    制御方法。
PCT/JP2022/037376 2022-10-06 2022-10-06 制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法 WO2024075233A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037376 WO2024075233A1 (ja) 2022-10-06 2022-10-06 制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037376 WO2024075233A1 (ja) 2022-10-06 2022-10-06 制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法

Publications (1)

Publication Number Publication Date
WO2024075233A1 true WO2024075233A1 (ja) 2024-04-11

Family

ID=90607870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037376 WO2024075233A1 (ja) 2022-10-06 2022-10-06 制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法

Country Status (1)

Country Link
WO (1) WO2024075233A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246325A (ja) * 1993-02-26 1994-09-06 Hitachi Ltd 可動サイドガイド装置
JP2012045609A (ja) * 2010-08-30 2012-03-08 Jfe Steel Corp サイドガイドの設備及び金属ストリップのガイド方法
JP2017154164A (ja) * 2016-03-03 2017-09-07 Jfeスチール株式会社 幅圧下装置および幅圧下装置のサイドガイド位置制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06246325A (ja) * 1993-02-26 1994-09-06 Hitachi Ltd 可動サイドガイド装置
JP2012045609A (ja) * 2010-08-30 2012-03-08 Jfe Steel Corp サイドガイドの設備及び金属ストリップのガイド方法
JP2017154164A (ja) * 2016-03-03 2017-09-07 Jfeスチール株式会社 幅圧下装置および幅圧下装置のサイドガイド位置制御方法

Similar Documents

Publication Publication Date Title
US5284284A (en) Method for controlling side guide means
JP6693769B2 (ja) ロールフィーダ、およびコイル材搬送方法
US20120267415A1 (en) Method for controlling side guides of a metal strip
US6604663B2 (en) Control method of hydraulic pinch roll and control unit thereof
WO2024075233A1 (ja) 制御装置、制御ユニット、サイドガイド装置、圧延設備及び制御方法
JPH07102399B2 (ja) 帯板のサイドガイド方法及びサイドガイド装置
GB2276107A (en) Method of winding a strip of material
WO2020026740A1 (ja) 搬送装置の制御方法及び搬送装置
WO2021005777A1 (ja) 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備
KR101434967B1 (ko) 압연기 윤활 제어 장치 및 방법
JP7290139B2 (ja) 鋼帯の巻取り方法及び巻取り設備
JP7020445B2 (ja) 巻取装置の尾端停止位置制御方法、尾端停止位置制御装置及び巻取装置
US6588245B2 (en) Roll gap control for coiler
CN114007771B (zh) 轧制装置的控制装置以及轧制设备及轧制装置的运转方法
RU2769552C1 (ru) Способ и устройство для определения бокового контура полосы или положения кромок полосы движущейся металлической полосы
JPH0852514A (ja) ピンチロール装置
JP6299682B2 (ja) 金属ストリップの蛇行制御方法及び蛇行制御装置
JP2909711B2 (ja) コイル巻取装置
JP2000053285A (ja) 巻取ロール回転移送時の分離装置
KR20200080133A (ko) 유체압 구동 장치 및 유량 제어 밸브의 구동 방법
WO2020255792A1 (ja) 搬送装置の制御方法及び搬送装置
JP2024076828A (ja) ワークロール開閉装置
JP7480766B2 (ja) 鋼帯尾端部の巻取装置及び方法並びに鋼帯の連続処理設備
JP7538418B2 (ja) ボビンの供給装置
JP2012183578A (ja) 冷間圧延機の板厚制御方法及び板厚制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961420

Country of ref document: EP

Kind code of ref document: A1