WO2024074053A1 - 一种基于切削体积的数控加工刀具寿命评价方法 - Google Patents

一种基于切削体积的数控加工刀具寿命评价方法 Download PDF

Info

Publication number
WO2024074053A1
WO2024074053A1 PCT/CN2023/100694 CN2023100694W WO2024074053A1 WO 2024074053 A1 WO2024074053 A1 WO 2024074053A1 CN 2023100694 W CN2023100694 W CN 2023100694W WO 2024074053 A1 WO2024074053 A1 WO 2024074053A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
cutting
instantaneous
machining
life
Prior art date
Application number
PCT/CN2023/100694
Other languages
English (en)
French (fr)
Inventor
高鑫
赵中刚
宋戈
黄思思
秦枭品
李卫东
王伟
Original Assignee
成都飞机工业(集团)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都飞机工业(集团)有限责任公司 filed Critical 成都飞机工业(集团)有限责任公司
Publication of WO2024074053A1 publication Critical patent/WO2024074053A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36291Cutting, machining conditions by empirical equation, like tool life

Definitions

  • the invention relates to the technical field of cutting processing and tool technology, in particular to a method for evaluating the life of a numerical control machining tool based on cutting volume.
  • the tool In CNC machining, the tool is one of the key factors in the entire machining system and directly affects the quality of part machining. Tool life is an important indicator for estimating tool performance. In the flexible and automated machining mode, automatic tool change is an important basis for achieving no manual intervention in the machining process, and accurate tool life estimation is the prerequisite for automatic tool change.
  • tool life is usually characterized by time.
  • the technical solution published in the patent application with patent number "ZL201910983283.9" and patent name "A method for determining tool life” uses time to estimate tool life and is used to guide automatic tool change during titanium alloy processing;
  • Characterizing tool life by time can provide important support for the application of CNC machining tools, but tool life is closely related to machining technology and cutting parameters. When the same tool is used to process the same feature with different cutting parameters, there are significant differences in tool life. Therefore, only using cutting time to characterize tool life cannot fully consider the impact of machining technology on tool life, cannot accurately characterize tool life, and has little significance in guiding the use and replacement of tools.
  • the purpose of the present invention is to provide a CNC machining tool life evaluation method based on cutting volume.
  • the cutting volume correction coefficient is set according to the cutting parameters of the different machining types performed by the tool, and the instantaneous cutting parameter integration of the tool is used to solve the cutting volume, and the tool life is characterized by the volume of the removed material under the machining type; the influence of the actual cutting parameters on the tool life is fully considered, and the function of accurately characterizing the tool life is realized. It can reflect the influence of different machining processes on the tool life, accurately characterize the tool life applied to different machining processes, and is of great significance for guiding the use and replacement of tools in actual production.
  • the present invention provides a method for evaluating the life of a CNC machining tool based on cutting volume, which specifically comprises the following steps:
  • Step S1 determining a processing type, obtaining standard cutting parameters of the processing type, and calculating a standard cutting force according to the standard cutting parameters;
  • Step S2 Obtain instantaneous cutting parameters during tool processing, and calculate the instantaneous cutting speed according to the instantaneous cutting parameters. force;
  • Step S3 taking the ratio of the instantaneous cutting force to the standard cutting force as the instantaneous cutting volume correction coefficient ⁇ ′ F ;
  • Step S4 Obtaining the instantaneous equivalent cutting depth s E , the instantaneous equivalent cutting width w E , the instantaneous feed speed v′, and the instantaneous feed acceleration a′ during tool machining;
  • Step S5 Obtain tool working time T
  • Step S6 Calculate the tool life V according to the instantaneous cutting volume correction coefficient ⁇ ′ F , the instantaneous equivalent cutting depth s E , the instantaneous equivalent cutting width w E , the instantaneous feed speed v′, the instantaneous feed acceleration a′, and the tool working time T.
  • the calculation formula of the tool life V is:
  • the cutting parameters include cutting depth, cutting width, feed speed, and rotation speed.
  • the duration of each processing type F of the tool is the tool working time T, and the tool needs to go through n times of processing type F from a new state to a scrapped state, then the calculation formula of the total tool life V is:
  • Step S41 Create a plane P perpendicular to the tool feed direction through the tool axis;
  • Step S42 creating a projection of the contact profile between the tool and the structural component on the plane P along the tool feed direction, with the maximum length of the projection in the tool axis direction being the instantaneous equivalent cutting depth s E .
  • the present invention provides a computer-readable medium having computer program instructions stored thereon, which, when executed, can be operated to implement the above-mentioned CNC machining tool life evaluation method based on cutting volume.
  • the present invention also provides an electronic device, including a processor and a memory, wherein the memory stores computer program instructions, and when the computer program instructions are executed by the processor, the processor executes the above-mentioned CNC machining tool life evaluation method based on cutting volume.
  • FIG1 is a schematic diagram of tool paths for machining titanium alloy aircraft structural parts and webs
  • FIG. 2 is a schematic diagram of a plane P created through the tool axis according to the present invention.
  • Figure numerals 1, structural part; 2, tool; 21, tool axis; 3, projection; 4, plane P.
  • FIG1 shows a schematic diagram of a tool 2 located on the cutting path of the tool path cutting the structural member 1, and a plane P4 perpendicular to the feed direction of the tool 2 is created through the tool axis 21 of the tool 2; a projection 3 of the contact contour with the structural member 1 is created on the plane P4 along the feed direction of the tool 2, and the maximum length of the projection 3 in the direction of the tool axis is the instantaneous equivalent cutting depth s E , and the ratio of the area of the projection 3 to the instantaneous equivalent cutting depth s E is the equivalent cutting width w E .
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a method for evaluating the life of a CNC machining tool based on cutting volume, which specifically includes the following steps:
  • Step S1 determining a processing type F, obtaining standard cutting parameters of the processing type F, and calculating a standard cutting force according to the standard cutting parameters;
  • Step S2 acquiring instantaneous cutting parameters during tool machining, and calculating instantaneous cutting force according to the instantaneous cutting parameters;
  • Step S3 taking the ratio of the instantaneous cutting force to the standard cutting force as the instantaneous cutting volume correction coefficient ⁇ ′ F ;
  • Step S4 Obtaining the instantaneous equivalent cutting depth s E , the instantaneous equivalent cutting width w E , the instantaneous feed speed v′, and the instantaneous feed acceleration a′ during tool machining;
  • Step S5 Obtain tool working time T
  • Step S6 Calculate the tool life V according to the instantaneous cutting volume correction coefficient ⁇ ′ F , the instantaneous equivalent cutting depth s E , the instantaneous equivalent cutting width w E , the instantaneous feed speed v′, the instantaneous feed acceleration a′, and the tool working time T.
  • the calculation formula of the tool life V is:
  • the cutting parameters include cutting depth, cutting width, feed speed, and rotation speed.
  • the time length of each processing type F processing by the tool is The tool working time is T, and the tool needs to go through n times of processing type F from a new state to a scrapped state, then the calculation formula for the total tool life V is:
  • Step S41 Create a plane P perpendicular to the tool feed direction through the tool axis;
  • Step S42 Create a projection of the contact profile between the tool and the structural component on the plane P along the tool feed direction, with the maximum length of the projection in the tool axis direction being the instantaneous equivalent cutting depth sE.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment provides a computer-readable medium on which computer program instructions are stored.
  • the computer program instructions When executed, they can be operated to implement the above-mentioned CNC machining tool life evaluation method based on cutting volume.
  • this embodiment also provides an electronic device, including a processor and a memory, wherein the memory stores computer program instructions, and when the computer program instructions are executed by the processor, the processor executes the above-mentioned CNC machining tool life evaluation method based on cutting volume.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment uses the machining of the groove web of a titanium alloy aircraft structure as shown in FIG1 as an actual application object to demonstrate a CNC machining tool life evaluation method based on cutting volume provided in Embodiment 1;
  • the machine tool, tool and corresponding standard cutting parameters for processing the belly plate of this part are shown in Table 1 below; the maximum acceleration a of the selected AB swing angle vertical machine tool is 0.5g.
  • the instantaneous cutting parameters in the machining process are obtained: instantaneous equivalent cutting depth s E , instantaneous equivalent cutting width w E , instantaneous feed speed v′, and instantaneous feed acceleration a′; and the instantaneous cutting force of the machining tool is calculated according to the cutting force empirical formula, and then the cutting volume correction coefficient ⁇ ′ 1 in the formula is solved, and the life of the "D20*40*80 R3N5" solid carbide tool is solved by the integral function to be 2698.2cm 3 .
  • "D20*40*80 R3N5" means that the solid carbide tool is a five-tooth cavity milling cutter with a shank length of 20mm, a tool length of 40mm, a total length of 80mm, and a blade radius of 3mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Milling Processes (AREA)
  • Numerical Control (AREA)

Abstract

一种基于切削体积的数控加工刀具寿命评价方法,根据刀具(2)所进行的不同加工类型的切削参数设定切削体积修正系数、刀具瞬时切削参数积分来求解切削体积,以此种加工类型下切除材料的体积来表征刀具(2)寿命;充分考虑了实际切削参数对刀具(2)使用寿命的影响,相比于传统采用时间表征刀具寿命的方法更加准确,能够帮助加工中心针对自身所进行的加工类型准确控制换刀周期。

Description

一种基于切削体积的数控加工刀具寿命评价方法 技术领域
本发明涉及切削加工及刀具技术领域,具体的说,是一种基于切削体积的数控加工刀具寿命评价方法。
背景技术
在数控加工中,刀具是整个加工系统中的关键性因素之一,直接影响零件加工质量。刀具寿命时估测刀具性能的重要指标,在柔性自动化的加工模式下,刀具自动换刀是实现加工过程无人工干预的重要基础,而刀具寿命估测准确是实现自动换刀的前提。
传统方法中,通常以时间来表征刀具寿命,如专利号为“ZL201910983283.9”,专利名称为“一种刀具寿命确定方法”的专利申请公布的技术方案中便是以时间来估测刀具寿命,并用于指导钛合金加工过程中的自动换刀;
以时间来表征刀具寿命可为数控加工刀具应用提供重要支撑,但刀具寿命与加工工艺及切削参数紧密相关。同一把刀具加工相同特征采用不同的切削参数加工时,刀具寿命存在着显著差异,因此,仅仅用切削时间来表征刀具寿命,无法充分地考虑到加工工艺对刀具寿命的影响,不能准确地表征刀具寿命,对指导刀具的使用更换意义不大。
因此,亟需一种能够充分考虑加工工艺对刀具寿命的影响,并准确地表征刀具寿命的新的估测方法。
发明内容
本发明的目的在于提供一种基于切削体积的数控加工刀具寿命评价方法,根据刀具所进行的不同加工类型的切削参数设定切削体积修正系数、刀具瞬时切削参数积分来求解切削体积,以该加工类型下切除材料的体积来表征刀具寿命;充分考虑了实际切削参数对刀具使用寿命的影响,实现准确表征刀具寿命的功能,能够反映出不同加工工艺对刀具寿命的影响,准确表征应用于不同加工工艺情形下的刀具寿命,在实际生产中指导刀具的使用更换具有重要意义。
本发明通过下述技术方案实现:
首先,本发明提供了一种基于切削体积的数控加工刀具寿命评价方法,具体包括以下步骤:
步骤S1:确定加工类型,获取所述加工类型的标准切削参数,并根据所述标准切削参数计算出标准切削力;
步骤S2:获取刀具加工过程中的瞬时切削参数,并根据所述瞬时切削参数计算出瞬时切削 力;
步骤S3:以所述瞬时切削力与所述标准切削力的比值,作为瞬时切削体积修正系数σ′F
步骤S4:获取刀具加工过程中的瞬时等效切深sE、瞬时等效切宽wE、瞬时进给速度v′、瞬时进给加速度a′;
步骤S5:获取刀具工作时间T;
步骤S6:根据所述瞬时切削体积修正系数σ′F、瞬时等效切深sE、瞬时等效切宽wE、瞬时进给速度v′、瞬时进给加速度a′、刀具工作时间T,计算得到刀具寿命V,所述刀具寿命式V的计算公式为:
为了更好地实现本发明,进一步地,所述切削参数包括切深、切宽、进给速度、转速。
为了更好地实现本发明,进一步地,所述刀具每次进行加工类型F加工的时长为刀具工作时间T,且所述刀具从全新状态到报废状态需要经过n次加工类型F的加工,则总刀具寿命V的计算公式为:
为了更好地实现本发明,进一步地,所述瞬时等效切深sE的获取方法如以下步骤:
步骤S41:过刀具轴线,创建与刀具进给方向垂直的平面P;
步骤S42:沿刀具进给方向在平面P上创建刀具与结构件的接触轮廓的投影,以所述投影在所述刀具轴线方向上的最大长度为瞬时等效切深sE
为了更进一步地实现本发明,进一步地,所述瞬时等效切宽wE的获取方法如以下步骤:
步骤S43:计算所述投影的面积S,所述瞬时等效切宽wE为所述投影的面积S与所述瞬时等效切深sE的比值,即wE=S/sE
其次,本发明提供了一种计算机可读介质,其上存储有计算机程序指令,所述计机程序指令被执行时,可操作来实现上述的一种基于切削体积的数控加工刀具寿命评价方法。
最后,本发明还提供了一种电子设备,包括处理器和存储器,所述存储器上储运有计算机程序指令,所述计算机程序指令在被所述处理器运行时使得所述处理器执行上述的一种基于切削体积的数控加工刀具寿命评价方法。
附图说明
下面将结合附图对技术方案进行清楚、完整地描述,显然所描述的实施例是本发明一部分实施例,而不是全部的实施例;
图1为钛合金飞机结构件及腹板加工的刀轨示意图;
图2为本发明过刀具轴线创建的平面P的示意图。
附图标记:1、结构件;2、刀具;21、刀具轴线;3、投影;4、平面P。
具体实施方式
以下结合实施例的具体实施方式,对本发明创造的上述内容再做进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段作出的各种替换或变更,均应包括在本发明的范围内。
以下实施例的实施背景:结构件1上进行加工时形成刀轨如图1展示,其中位于结构件1中的环绕状线条表示刀具的铣削工作轨迹,伸出结构件1的竖直未闭合线条为刀具的入刀轨迹;图2展示位于刀轨的切削路径上的刀具2对结构件1进行切削时的示意图,过刀具2的刀具轴线21创建与刀具2进给方向垂直的平面P4;沿着刀具2进给方向在平面P4上创建与结构件1接触轮廓的投影3,投影3在刀具轴线方向上最大长度为瞬时等效切深sE、投影3面积与瞬时等效切深sE比值为等效切宽wE
实施例1:
本实施例提供了一种基于切削体积的数控加工刀具寿命评价方法,具体包括以下步骤:
步骤S1:确定加工类型F,获取所述加工类型F的标准切削参数,并根据所述标准切削参数计算出标准切削力;
步骤S2:获取刀具加工过程中的瞬时切削参数,并根据所述瞬时切削参数计算出瞬时切削力;
步骤S3:以所述瞬时切削力与所述标准切削力的比值,作为瞬时切削体积修正系数σ′F
步骤S4:获取刀具加工过程中的瞬时等效切深sE、瞬时等效切宽wE、瞬时进给速度v′、瞬时进给加速度a′;
步骤S5:获取刀具工作时间T;
步骤S6:根据所述瞬时切削体积修正系数σ′F、瞬时等效切深sE、瞬时等效切宽wE、瞬时进给速度v′、瞬时进给加速度a′、刀具工作时间T,计算得到刀具寿命V,所述刀具寿命式V的计算公式为:
为了更好地实现本实施例,进一步地,所述切削参数包括切深、切宽、进给速度、转速。
为了更好地实现本实施例,进一步地,所述刀具每次进行加工类型F加工的时长为 刀具工作时间T,且所述刀具从全新状态到报废状态需要经过n次加工类型F的加工,则总刀具寿命V的计算公式为:
为了更好地实现本实施例,进一步地,如图2所示,所述瞬时等效切深sE的获取方法如以下步骤:
步骤S41:过刀具轴线,创建与刀具进给方向垂直的平面P;
步骤S42:沿刀具进给方向在平面P上创建刀具与结构件的接触轮廓的投影,以所述投影在所述刀具轴线方向上的最大长度为瞬时等效切深sE。
为了更进一步地实现本实施例,进一步地,所述瞬时等效切宽wE的获取方法如以下步骤:
步骤S43:计算所述投影的面积S,所述瞬时等效切宽wE为所述投影的面积S与所述瞬时等效切深sE的比值,即wE=S/sE
实施例2:
本实施例提供了一种计算机可读介质,其上存储有计算机程序指令,所述计机程序指令被执行时,可操作来实现上述的一种基于切削体积的数控加工刀具寿命评价方法。
此外,本实施例还提供了一种电子设备,包括处理器和存储器,所述存储器上储运有计算机程序指令,所述计算机程序指令在被所述处理器运行时使得所述处理器执行上述的一种基于切削体积的数控加工刀具寿命评价方法。
本实施例的其他部分与上述实施例1相同,故不再赘述。
实施例3:
本实施例以如图1所示钛合金飞机结构件槽腹板加工为实际应用对象演示说明实施例1中提供的一种基于切削体积的数控加工刀具寿命评价方法;
该零件腹板加工选用机床、刀具及对应标准切削参数如下表1所示;选用的AB摆角立式机床最大加速度a=0.5g。
表1
使用同一把加工刀具对如图1中所示的结构件,加工6件后,刀具磨损严重不再满足使用要求,每件结构件的加工时长为3h25min,采用下式计算刀具寿命,
对于该数控加工刀具寿命计算公式,由于加工类型只有腹板加工,故式中n=1;因加工6件,每件加工时间相同,则刀具寿命可由下式进行计算,
根据设定的腹板加工切削参数及机床加减速性能,得到加工过程中的瞬时切削参数:瞬时等效切深sE、瞬时等效切宽wE、瞬时进给速度v′、瞬时进给加速度a′;并根据切削力经验公式计算加工刀具瞬时切削力,进而求解公式中切削体积修正系数σ′1,采用积分函数求解“D20*40*80 R3N5”整体硬质合金刀具的寿命为2698.2cm3。其中“D20*40*80 R3N5”表示该整体硬质合金刀为刀柄长20mm、刀长40mm、全长80mm、刃半径3mm的五齿型腔铣刀。
通过上述过程得到“D20*40*80 R3N5”整体硬质合金刀具,可为该型号刀具的后续 使用提供依据,应用在加工中心上时,可根据切削体积量,精确把握合适的换刀时间,最大化充分使用每一把刀具,并避免因刀具磨损过度继续加工导致的加工精度不达标。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (5)

  1. 一种基于切削体积的数控加工刀具寿命评价方法,其特征在于,具体包括以下步骤:
    步骤S1:确定加工类型,获取所述加工类型的标准切削参数,并根据所述标准切削参数计算出标准切削力;
    步骤S2:获取刀具加工过程中的瞬时切削参数,并根据所述瞬时切削参数计算出瞬时切削力;
    步骤S3:以所述瞬时切削力与所述标准切削力的比值,作为瞬时切削体积修正系数σ′F
    步骤S4:获取刀具加工过程中的瞬时等效切深sE、瞬时等效切宽wE、瞬时进给速度v′、瞬时进给加速度a′;
    步骤S5:获取刀具工作时间T;
    步骤S6:根据所述瞬时切削体积修正系数σ′F、瞬时等效切深sE、瞬时等效切宽wE、瞬时进给速度v′、瞬时进给加速度a′、刀具工作时间T,计算得到刀具寿命V,所述刀具寿命式V的计算公式为:
  2. 根据权利要求1所述的一种基于切削体积的数控加工刀具寿命评价方法,其特征在于:所述切削参数包括切深、切宽、进给速度、转速。
  3. 根据权利要求1所述的一种基于切削体积的数控加工刀具寿命评价方法,其特征在于:所述刀具每次进行加工类型F加工的时长为刀具工作时间T,且所述刀具从全新状态到报废状态需要经过n次加工类型F的加工,则总刀具寿命V的计算公式为:
  4. 根据权利要求1所述的一种基于切削体积的数控加工刀具寿命评价方法,其特征在于:所述瞬时等效切深sE的获取方法如以下步骤:
    步骤S41:过刀具轴线,创建与刀具进给方向垂直的平面P;
    步骤S42:沿刀具进给方向在平面P上创建刀具与结构件的接触轮廓的投影,以所述投影在 所述刀具轴线方向上的最大长度为瞬时等效切深sE
  5. 根据权利要求4所述的一种基于切削体积的数控加工刀具寿命评价方法,其特征在于:所述瞬时等效切宽wE的获取方法如以下步骤:
    步骤S43:计算所述投影的面积S,所述瞬时等效切宽wE为所述投影的面积S与所述瞬时等效切深sE的比值。
PCT/CN2023/100694 2022-10-08 2023-06-16 一种基于切削体积的数控加工刀具寿命评价方法 WO2024074053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211219868.1 2022-10-08
CN202211219868.1A CN115291564B (zh) 2022-10-08 2022-10-08 一种基于切削体积的数控加工刀具寿命评价方法

Publications (1)

Publication Number Publication Date
WO2024074053A1 true WO2024074053A1 (zh) 2024-04-11

Family

ID=83833163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100694 WO2024074053A1 (zh) 2022-10-08 2023-06-16 一种基于切削体积的数控加工刀具寿命评价方法

Country Status (2)

Country Link
CN (1) CN115291564B (zh)
WO (1) WO2024074053A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291564B (zh) * 2022-10-08 2023-01-10 成都飞机工业(集团)有限责任公司 一种基于切削体积的数控加工刀具寿命评价方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170364056A1 (en) * 2016-06-20 2017-12-21 Dmg Mori Co., Ltd. Machining Management Apparatus
CN107976956A (zh) * 2017-11-22 2018-05-01 沈阳机床股份有限公司 数控机床的多目标切削数据生成算法及切割参数优化方法
JP2018086712A (ja) * 2016-11-30 2018-06-07 株式会社日立製作所 工具摩耗予測装置およびその方法
CN111890124A (zh) * 2019-05-05 2020-11-06 深圳市玄羽科技有限公司 刀具在线监测系统及方法
KR20220061340A (ko) * 2020-11-05 2022-05-13 한국생산기술연구원 절삭 공구의 가용 잔여 시간 예측 방법
CN115291564A (zh) * 2022-10-08 2022-11-04 成都飞机工业(集团)有限责任公司 一种基于切削体积的数控加工刀具寿命评价方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351029A (en) * 1979-12-05 1982-09-21 Westinghouse Electric Corp. Tool life monitoring and tracking apparatus
JP4495681B2 (ja) * 2006-02-23 2010-07-07 株式会社日立製作所 安定限界切込み量算出プログラム及び算出方法
AU2013315356B2 (en) * 2012-09-14 2014-12-18 3D Image Automation Pty Ltd Reclaimer 3D volume rate controller
CN102902855B (zh) * 2012-09-28 2016-05-25 沈阳化工大学 一种用仿真技术优选陶瓷刀具切削参数的方法
JP6011353B2 (ja) * 2013-01-17 2016-10-19 日立金属株式会社 加工条件予測装置および加工条件予測方法
CN105069300A (zh) * 2015-08-17 2015-11-18 东北大学 一种基于随机过程的刀具的动态可靠性及失效率方法
CN106934172B (zh) * 2017-03-24 2019-12-17 大连理工大学 一种碳纤维复合材料的多刃铣削去除率计算方法
JP6473772B2 (ja) * 2017-03-24 2019-02-20 Dmg森精機株式会社 加工条件設定方法及び加工条件設定装置
JP6517867B2 (ja) * 2017-03-31 2019-05-22 ファナック株式会社 数値制御装置
CN107335847B (zh) * 2017-06-21 2019-01-29 华中科技大学 一种切削效能约束刀具姿态的加工方法
CN109158616B (zh) * 2018-08-20 2020-01-07 河南科技大学 一种等体积切除率中凸变椭圆活塞加工方法
CN109605101A (zh) * 2018-12-12 2019-04-12 成都飞机工业(集团)有限责任公司 一种基于刀具寿命应用模式的安全换刀方法
CN109877650B (zh) * 2019-04-15 2021-01-29 重庆大学 一种棒料剪切刀具寿命预测方法
CN110744358B (zh) * 2019-10-16 2020-10-16 中国矿业大学 一种刀具寿命的确定方法
CN111558849B (zh) * 2020-05-11 2021-10-22 内蒙古工业大学 盘铣刀加工参数优化方法及装置、电子设备及存储介质
CN111563301A (zh) * 2020-05-14 2020-08-21 北京工业大学 一种薄壁件铣削加工参数优化方法
KR102403509B1 (ko) * 2020-10-31 2022-05-31 한국생산기술연구원 암석절삭 공구의 마모 성능평가를 위한 중공형 시편을 이용한 가속수명시험 방법
CN112496680B (zh) * 2020-11-18 2022-07-29 北京卫星制造厂有限公司 一种高体分铝基碳化硅螺纹孔复合加工方法
CN113869625A (zh) * 2021-06-11 2021-12-31 江西昌河航空工业有限公司 一种刀具优选评估模型及方法
CN114536104B (zh) * 2022-03-25 2022-12-13 成都飞机工业(集团)有限责任公司 一种刀具寿命动态预测方法
CN114925462B (zh) * 2022-04-11 2023-04-18 西北工业大学 一种基于切削力与刚度关联演变的薄壁件加工变形预测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170364056A1 (en) * 2016-06-20 2017-12-21 Dmg Mori Co., Ltd. Machining Management Apparatus
JP2018086712A (ja) * 2016-11-30 2018-06-07 株式会社日立製作所 工具摩耗予測装置およびその方法
CN107976956A (zh) * 2017-11-22 2018-05-01 沈阳机床股份有限公司 数控机床的多目标切削数据生成算法及切割参数优化方法
CN111890124A (zh) * 2019-05-05 2020-11-06 深圳市玄羽科技有限公司 刀具在线监测系统及方法
KR20220061340A (ko) * 2020-11-05 2022-05-13 한국생산기술연구원 절삭 공구의 가용 잔여 시간 예측 방법
CN115291564A (zh) * 2022-10-08 2022-11-04 成都飞机工业(集团)有限责任公司 一种基于切削体积的数控加工刀具寿命评价方法

Also Published As

Publication number Publication date
CN115291564B (zh) 2023-01-10
CN115291564A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024074053A1 (zh) 一种基于切削体积的数控加工刀具寿命评价方法
US11338446B2 (en) Machining robot and machining method
CN107728577B (zh) 基于薄壁曲面加工变形的瞬时切削量规划方法
US10788807B2 (en) Method for compensating milling cutter deflection
JP2016536672A (ja) 製造設計のチェックを実施するための方法
JP7158195B2 (ja) 工具摩耗判定装置
CN105537657B (zh) 一种数控加工耳片式槽口的方法
CN108145164B (zh) 一种增减材制造过程中切削加工时机的选取方法
KR20190111908A (ko) 절단 인서트를 가공하기 위한 방법 및 절단 인서트를 가공하기 위한 상응하는 장치
CN104801935B (zh) 飞机铝合金异型座舱加工方法
JPH0947942A (ja) Nc工作機械の制御方法および装置
CN104536385A (zh) 一种数控机床加工程序的修正方法
CN108196510A (zh) 针对多刀具机床的刀具切换控制方法
TW202001460A (zh) 智慧型調整系統及其方法
CN108555530A (zh) 一种内曲面的加工方法
CN107457418A (zh) 一种柴油机缸盖阀座孔加工机床的改造方法及其应用
JP6679599B2 (ja) 機械部品の製造方法、機械部品の製造装置、回転対称面の加工方法、記録媒体およびプログラム
CN110110414B (zh) 薄壁叶片加工误差补偿几何建模方法
CN101768985B (zh) 绞吸挖泥船的绞刀座的定位安装方法
JP6734361B2 (ja) 機械部品の製造方法、機械部品の製造装置、回転対称面の加工方法、記録媒体およびプログラム
JP3247501B2 (ja) 刃付けされる工具の使用方法
CN102990307B (zh) 车体侧墙加工方法
CN111222083A (zh) 一种基于刀具磨损的车削时工件表面粗糙度计算方法
CN112212816B (zh) 基于数控平台的刀具磨损修复方法
CN208067743U (zh) 一种机夹复合刀具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874247

Country of ref document: EP

Kind code of ref document: A1