WO2024071909A1 - 광학 필름 및 이를 포함하는 표시장치 - Google Patents

광학 필름 및 이를 포함하는 표시장치 Download PDF

Info

Publication number
WO2024071909A1
WO2024071909A1 PCT/KR2023/014665 KR2023014665W WO2024071909A1 WO 2024071909 A1 WO2024071909 A1 WO 2024071909A1 KR 2023014665 W KR2023014665 W KR 2023014665W WO 2024071909 A1 WO2024071909 A1 WO 2024071909A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
bis
toughness
strain
dianhydride
Prior art date
Application number
PCT/KR2023/014665
Other languages
English (en)
French (fr)
Inventor
최민희
박효준
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230126644A external-priority patent/KR20240044350A/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2024071909A1 publication Critical patent/WO2024071909A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices

Definitions

  • the present invention relates to an optical film and a display device including the same, and in particular, to an optical film with a low toughness deformation index and excellent weather resistance.
  • optical films instead of glass as cover windows.
  • an optical film In order for an optical film to be used as a cover window of a display device, it is necessary to have excellent mechanical properties as well as excellent optical properties.
  • the optical film needs to have excellent strength, hardness, wear resistance, and flexibility properties.
  • Fillers may vary depending on the physical properties required for the optical film.
  • One embodiment of the present invention seeks to provide an optical film including a fibrous filler dispersed in a light-transmissive substrate.
  • Another embodiment of the present invention seeks to provide an optical film with excellent driving toughness by including a fibrous filler dispersed in a light-transmissive substrate.
  • Another embodiment of the present invention seeks to provide an optical film having excellent driving toughness strain index by including a fibrous filler dispersed in a light-transmitting substrate.
  • Another embodiment of the present invention seeks to provide an optical film having an excellent driving elastic limit by including a fibrous filler dispersed in a light-transmissive substrate.
  • Another embodiment of the present invention seeks to provide a cover window substrate including the optical film.
  • Another embodiment of the present invention seeks to provide a display device including the optical film.
  • An optical film according to an embodiment of the present invention includes a light-transmitting substrate and a filler dispersed in the light-transmitting substrate, and the filler has a fiber shape and may have a driving toughness strain index of 10.5% or less.
  • the first driving toughness is the driving toughness measured after treatment under room temperature and humidity conditions
  • the room temperature and humidity treatment is a condition in which the optical film is left for 1 hour at a temperature of 25°C ⁇ 3°C and humidity of 30% ⁇ 5%,
  • the second driving toughness is the driving toughness measured after treatment under high temperature and high humidity conditions
  • the high temperature and high humidity condition treatment is a condition of leaving the optical film for 1 hour at a temperature of 60°C ⁇ 3°C and humidity of 90% ⁇ 5%,
  • the driving toughness is measured by measuring strain against stress for the optical film using a dynamic mechanical analyzer (DMA), and measuring strain-stress with the strain of the optical film as the x-axis and the stress as the y-axis. After obtaining the strain-stress curve, it is defined as the product of the area occupied by the section with a strain rate of 1.6% or less in the strain-stress curve and the length of the specimen.
  • DMA dynamic mechanical analyzer
  • the optical film according to an embodiment of the present invention may have a first driving toughness of 240 MPa ⁇ mm or more.
  • the optical film according to an embodiment of the present invention may have a second driving toughness of 217 MPa ⁇ mm or more.
  • the optical film according to an embodiment of the present invention may have a first driving elastic limit of 155 MPa ⁇ mm or more.
  • the first driving elastic limit is calculated according to Equation 2 below.
  • First actuation elastic limit first actuation toughness / first actuation toughness strain
  • the value of the first driving toughness strain is 1.6%.
  • the optical film according to an embodiment of the present invention may have a second driving elastic limit of 140 MPa ⁇ mm or more.
  • Equation 3 the second driving elastic limit
  • Second actuation elastic limit second actuation toughness / second actuation toughness strain
  • the value of the second driving toughness strain is 1.6%.
  • the filler may include at least one of glass fiber, aluminum-based fiber, and fluoride fiber.
  • the filler may include at least one of aluminum oxide hydroxide, SiO 2 , Al 2 O 3 , polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF).
  • aluminum oxide hydroxide SiO 2 , Al 2 O 3
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the light-transmitting substrate includes a diamine monomer; and at least one of a dianhydride compound and a dicarbonyl compound.
  • the light-transmitting substrate may include at least one of an imide repeating unit and an amide repeating unit.
  • the diamine monomers include bistrifluoromethyl benzidine (2,2'-bis(trifluoromethyl)benzidine, TFDB), oxydianiline (4,4'-Oxydianiline, ODA), and para-phenylene diamine.
  • the dianhydride compound is biphenyl tetracarboxylic dianhydride (3,3,4,4-Biphenyltetracarboxylic dianhydride, BPDA), 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride Hydrogen (6FDA), 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride (TDA), Pyro Melitic acid dianhydride (1,2,4,5-benzene tetracarboxylic dianhydride, pyromellicticacid dianhydride, PMDA), benzophenone tetracarboxylic dianhydride (3,3,4,4-Benzophenone tetracarboxylic dianhydride, BTDA), oxy Diphthalic dianhydride (4,4-Oxydiphthalic dianhydride, OD
  • the dicarbonyl compounds include Terephthaloyl Chloride (TPC), Phthaloyl Chloride, Isophthaloyl chloride (IPC), and 4,4'-Biphenyldicarbonyl Chloride, DPDOC), 4,4'-Oxybis(benzoyl Chloride), OBBOC), Naphthalene-2,3-dicarbonyl dichloride, cyclohexane dicarbonyl dichloride (1,4- Cyclohexanedicabonyldichloride (CHDOC) may be included.
  • TPC Terephthaloyl Chloride
  • Phthaloyl Chloride Phthaloyl Chloride
  • IPC Isophthaloyl chloride
  • DPDOC 4,4'-Biphenyldicarbonyl Chloride
  • OBBOC 4,4'-Oxybis(benzoyl Chloride)
  • Naphthalene-2,3-dicarbonyl dichloride cyclohex
  • the molar ratio of the dianhydride compound and the dicarbonyl compound may range from 5:95 to 40:60.
  • a cover window substrate according to another embodiment of the present invention may include the optical film.
  • a cover window substrate includes a light-transmitting sheet and a coating layer on the light-transmitting sheet, and the light-transmitting sheet may include the optical film.
  • the cover window substrate according to another embodiment of the present invention may further include a primer layer disposed between the light-transmissive sheet and the coating layer.
  • Another embodiment of the present invention provides a display device including a display panel and the optical film disposed on the display panel.
  • the filler included in the optical film has a fiber shape and can entangle the polymer chains constituting the light-transmissive substrate.
  • the optical film can have excellent mechanical strength, especially excellent actuation toughness and actuation toughness strain index.
  • it may have excellent driving elasticity limit and driving elasticity limit index.
  • an optical film containing a fibrous filler may have excellent mechanical properties in addition to excellent optical properties.
  • the optical film according to an embodiment of the present invention has excellent optical and mechanical properties and can be usefully used as a cover window of a display device.
  • FIG. 1 is a schematic diagram of an optical film according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a cover window substrate according to another embodiment of the present invention.
  • Figure 3 is a schematic diagram of a cover window substrate according to another embodiment of the present invention.
  • Figure 4 is a cross-sectional view of a portion of a display device according to another embodiment of the present invention.
  • Figure 5 is an enlarged cross-sectional view of portion "P" in Figure 4.
  • Figure 6 is an outline diagram of a display device according to another embodiment of the present invention.
  • Figure 7 is a strain-stress curve after treatment under room temperature and humidity conditions for Examples 1 and 2 and Comparative Example 1.
  • Figure 8 is a strain-stress curve after treatment under high temperature and high humidity conditions for Examples 1 and 2 and Comparative Example 1.
  • Figure 9 is a strain-stress curve after treatment under room temperature and humidity conditions for Examples 3 and 4 and Comparative Example 2.
  • Figure 10 is a strain-stress curve after treatment under high temperature and high humidity conditions for Examples 3 and 4 and Comparative Example 2.
  • Figure 11 is a strain-stress curve after treatment under room temperature and humidity conditions for Examples 5 and 6 and Comparative Example 3.
  • Figure 12 is a strain-stress curve after treatment under high temperature and high humidity conditions for Examples 5 and 6 and Comparative Example 3.
  • Spatially relative terms such as “below, beneath,” “lower,” “above,” and “upper” refer to one element or component as shown in the drawing. It can be used to easily describe the correlation with other elements or components. Spatially relative terms should be understood as terms that include different directions of the element during use or operation in addition to the direction shown in the drawings. For example, if an element shown in the drawings is turned over, an element described as “below” or “beneath” another element may be placed “above” the other element. Accordingly, the illustrative term “down” may include both downward and upward directions. Likewise, the illustrative terms “up” or “on” can include both up and down directions.
  • first, second, etc. are used to describe various components, these components are not limited by these terms. These terms are merely used to distinguish one component from another. Accordingly, the first component mentioned below may also be the second component within the technical spirit of the present invention.
  • At least one should be understood to include all possible combinations from one or more related items.
  • “at least one of the first, second, and third items” means each of the first, second, or third items, as well as two of the first, second, and third items. It can mean a combination of all items that can be presented from more than one.
  • FIG. 1 is a schematic diagram of an optical film 100 according to an embodiment of the present invention.
  • a film having light transparency is called an optical film 100.
  • the optical film 100 includes a light-transmitting substrate 110 and a filler 120 dispersed in the light-transmitting substrate.
  • the light-transmissive substrate 110 has light transparency.
  • the light-transmissive substrate 110 may have flexible characteristics.
  • the light-transmitting substrate 110 may have bending characteristics, folding characteristics, or rollable characteristics.
  • the optical film 100 according to an embodiment of the present invention has light transparency and may have bending characteristics, folding characteristics, or rollable characteristics.
  • Physical properties that can confirm the reliability of materials with flexible characteristics include mechanical properties such as strength, hardness, strain rate, and elastic modulus.
  • the mechanical properties of a material indicate the degree of response of the material to external actions. For example, it refers to the relationship between external force and the resulting deformation of the material.
  • the stress relaxation behavior can be evaluated using a universal tensile tester (UTM) or a dynamic mechanical analyzer (DMA).
  • the light-transmissive substrate 110 may include at least one of an imide repeating unit and an amide repeating unit.
  • the light-transmissive substrate 110 may be manufactured from monomer components including, for example, dianhydride and diamine.
  • the light-transmissive substrate 110 may include an imide repeating unit formed by dianhydride and diamine.
  • the light-transmitting substrate 110 is not limited thereto, and the light-transmitting substrate 110 may be manufactured from monomer components containing a dicarbonyl compound in addition to dianhydride and diamine. You can.
  • the light-transmissive substrate 110 according to an embodiment of the present invention may have an imide repeating unit and an amide repeating unit.
  • the light-transmitting substrate 110 having an imide repeating unit and an amide repeating unit includes, for example, polyamide-imide resin.
  • the light-transmissive substrate 110 may include a polyimide-based polymer.
  • polyimide-based polymers include polyimide polymers and polyamide-imide polymers.
  • the light-transmissive substrate 110 according to an embodiment of the present invention may be made of, for example, polyamide-imide polymer resin.
  • the light-transmissive substrate 110 may be formed from a polymerizable composition.
  • the polymerizable composition according to an embodiment of the present invention may include a diamine-based monomer.
  • the diamine monomer is, for example, bis trifluoromethyl benzidine (2,2'-bis(trifluoromethyl)benzidine, TFDB), oxydianiline (4,4'-Oxydianiline, ODA) , p-phenylene diamine (para-phenylene diamine, pPDA), m-phenylene diamine (meta-phenylene diamine, mPDA), p-methylene diamine (para-Methylene Diamine, pMDA), m-methylene diamine (meta-Methylene) Diamine, mMDA), bis aminophenoxy benzene (1,3-bis(3-aminophenoxy) benzene, 133APB), bis aminophenoxy benzene (1,3-bis(4-aminophenoxy) benzene, 134APB), bis aminophenoxy Cyphenyl hexafluoropropane (2,2'-bis[4(4-aminophenoxy)
  • the polymerizable composition according to an embodiment of the present invention may include at least one of a dianhydride compound and a dicarbonyl compound.
  • the dianhydride compound is, for example, biphenyl tetracarboxylic dianhydride (3,3,4,4-Biphenyltetracarboxylic dianhydride, BPDA), 2,2-bis (3, 4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2 -dicarboxylic anhydride (TDA), pyromellitic acid dianhydride (1,2,4,5-benzene tetracarboxylic dianhydride, pyromellitic acid dianhydride, PMDA), benzophenone tetracarboxylic dianhydride (3,3, 4,4-Benzophenone tetracarboxylic dianhydride, BTDA), 4,4-Oxydiphthalic dianhydride (ODPA)
  • ODPA 4,4
  • the dicarbonyl compound is, for example, terephthaloyl chloride (TPC), phthaloyl chloride, isophthaloyl chloride (IPC), Biphenyldicarbonyl Chloride (DPDOC), 4,4'-Oxybis(benzoyl Chloride), OBBOC, Naphthalene-2,3-dicarbonyl dichloride , and may include at least one of cyclohexane dicarbonyl dichloride (1,4-Cyclohexanedicabonyldichloride, CHDOC). However, it is not limited to this.
  • the total equivalent weight of the dianhydride compound and the dicarbonyl compound and the equivalent weight of the diamine monomer may be substantially the same.
  • the polymerizable composition according to an embodiment of the present invention may contain 60 mol% or more of dicarbonyl compound relative to the total number of moles of dianhydride compound and dicarbonyl compound in order to secure excellent mechanical properties.
  • the molar ratio of the dianhydride compound and the dicarbonyl compound may be in the range of 5:95 to 40:60.
  • the filler 120 may have a fiber shape.
  • Fiber may, for example, refer to a material whose length is significantly longer than its diameter.
  • Fiber can refer to a thin, long, thread-like material.
  • Fiber may refer to a material with a linear structure. Fiber can also mean a long, bendable material.
  • a shape with a length greater than the diameter is referred to as a fiber shape.
  • the fiber shape may also be referred to as a filament shape.
  • the length of the pillar 120 may be more than twice the diameter.
  • the filler 120 has a fiber shape and can intertwine the polymer chains constituting the light-transmissive substrate 110.
  • the stability and arrangement characteristics of the polymer chains are improved, the mechanical properties of the light-transmissive substrate 110 can be improved, and the mechanical properties of the optical film 100 can also be improved.
  • filler 120 There is no particular limitation on the type of filler 120. If it has a fiber shape, it can be used as the filler 120 according to an embodiment of the present invention without limitation to its type.
  • the filler 120 may be inorganic or organic.
  • the filler 120 may include at least one of inorganic fibers, organic fibers, and organic-inorganic composite fibers.
  • the filler 120 may have a fiber shape.
  • the filler 120 may have a single-stranded fiber shape, a multi-stranded fiber shape, or a shape in which multiple strands are arranged in the form of branches on one central strand. You can have it.
  • the filler 120 may include at least one of glass fiber, aluminum-based fiber, and fluoride fiber.
  • Glass fibers may include SiO 2 . Glass fiber may further contain other components in addition to SiO 2 .
  • Aluminum-based fibers may include alumina hydrate (aluminum oxide hydroxide) or Al 2 O 3 . Aluminum-based fibers may further contain other components in addition to alumina hydrate (aluminum oxide hydroxide) or Al 2 O 3 .
  • the fluorine fiber may include at least one of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF). Fluorine fibers may contain other ingredients in addition to PTFE and PVDF.
  • the filler 120 may include at least one of aluminum oxide hydroxide, SiO 2 , Al 2 O 3 , polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF).
  • aluminum oxide hydroxide SiO 2 , Al 2 O 3
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • the filler 120 may be surface treated.
  • fibers surface-treated with an organic compound group having an alkoxy group may be used as the filler 120.
  • the aluminum-based fiber may include either aluminum oxide hydroxide or Al 2 O 3 .
  • Aluminum oxide hydroxide is also called Boehmite and can be expressed as ⁇ -AlO(OH). More specifically, alumina hydroxide may include a structure represented by any of the following formulas 1, 2, and 3.
  • n ranges from 50 to 10,000
  • m ranges from 50 to 10,000
  • p ranges from 100 to 20,000.
  • the filler 120 may include a structure represented by any of the following Chemical Formulas 4, 5, and 6.
  • Chemical Formula 1 may be expressed, for example, by Chemical Formula 4 below.
  • Formula 4 below corresponds to the case where n is 5 in Formula 1.
  • Formula 2 may be expressed, for example, by Formula 5 below.
  • Formula 5 below corresponds to the case where m is 4 in Formula 2.
  • Chemical Formula 3 may be expressed, for example, by Chemical Formula 6 below.
  • Formula 6 below corresponds to the case where p is 3 in Formula 3.
  • Al 2 O 3 may have a unit structure represented by the following Chemical Formula 7.
  • SiO 2 may have a unit structure represented by the following formula (8).
  • the filler 120 may have a diameter of 2 nm to 10 nm and a length of 200 nm to 4,000 nm.
  • the diameter and length of the pillar 120 can be measured by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the diameter of the filler 120 is less than 2 nm, the stability of the filler 120 may be reduced, and the filler 120 may break or break, contaminating the optical film 100 and increasing the haze of the optical film 100. It can be. If the diameter of the filler 120 exceeds 10 nm, it may be difficult for the filler 120 to have a fiber shape, the function of weaving polymer chains together may be reduced, and the light transmittance of the optical film 100 may be reduced. .
  • the length of the filler 120 is less than 200 nm, the function of the filler 120 to weave the polymer chains together may not be sufficiently exercised. If the length of the filler 120 exceeds 4,000 nm, the dispersibility of the filler 120 may decrease, and as a result, agglomeration of the filler 120 may occur within the light-transmissive matrix 110. Accordingly, the light transmittance of the optical film 100 may decrease and haze may increase, and the optical properties of the optical film 100 may deteriorate.
  • the length of the filler 120 may be adjusted by growth conditions of the filler 120 or post-processing of the filler 120. For example, when growing the filler 120, the length of the filler 120 can be appropriately adjusted through temperature control. Additionally, ultrasonic waves or other energy may be applied to the filler 120 grown to a certain length so that the filler 120 is cut to an appropriate length.
  • the filler 120 when the filler 120 is added, appropriate light scattering occurs by the filler 120, so that the optical properties of the optical film 100 can be improved.
  • an increase in tensile properties can be obtained by the filler 120. Because of this, greater force is required to stretch the optical film 100 to the same length. Accordingly, the mechanical properties of the optical film 100 can be improved.
  • the content of the filler 120 is excessive, the yield point of the optical film 100 may be lowered, and the elasticity of the optical film 100 may be insufficient. If the content of the filler 120 is small, the improvement in the mechanical properties of the optical film 100 may be minimal.
  • the content of the filler 120 included in the optical film 100 may be adjusted to an appropriate range.
  • the filler 120 may be added in an amount of 2 to 20 wt% of the solid content of the polymerizable composition. Specifically, the filler 120 may be added in an amount of 3 to 15 wt% of the solid content of the polymerizable composition. More specifically, the filler 120 may be added in an amount of 3 to 10 wt% of the solid content of the polymerizable composition.
  • the mechanical properties of the optical film 100 can be improved by adjusting the content of the filler 120 and improving the dispersion method.
  • the driving toughness and elastic limit of the optical film 100 may be improved.
  • the mechanical properties of the optical film 100 may not be significantly deteriorated even after treatment under high temperature and high humidity conditions. Therefore, by adjusting the content of the filler 120 and improving the dispersion method, weather resistance and long-term stability as well as mechanical properties of the optical film 100 can be improved.
  • the optical film 100 according to an embodiment of the present invention may have excellent driving toughness.
  • Driving toughness can be defined as the product of the area of the elastic region in the strain-stress curve and the length (mm) of the optical film 100 specimen.
  • a high actuation toughness indicates that the elastic zone is wide and that the force required to deform the specimen until plastic deformation occurs is large.
  • the optical film 100 specimen may be manufactured with a length (L) x width (W) x thickness (T) of 5 mm x 2 mm x 0.05 mm.
  • the unit of actuation toughness is defined as MPa ⁇ mm.
  • the part where the stress shows a constant increase as the strain increases and the slope is almost constant corresponds to the elastic region, and the deformation of the material within this region corresponds to elastic deformation.
  • the section where rapid changes in slope and curve shape occur is the plastic region, and it can be seen that plastic deformation has begun to occur as dislocations occur in the internal structure of the material.
  • Figure 6 is an outline diagram of a display device 600 according to another embodiment of the present invention. More specifically, Figure 6 is a schematic side view of a foldable display device in a folded state.
  • a display device 600 may include an optical film 100 and a case 601 according to an embodiment of the present invention.
  • the display device 600 may be a device that can be bent or folded, such as a foldable display device.
  • R means the radius of curvature.
  • the optical film 100 when the display device 600 including the optical film 100 according to an embodiment of the present invention is folded, the optical film 100 has a thickness of, for example, 50 ⁇ m. It can be bent by a radius of curvature (R) of 1.5 mm. Additionally, a space 701 may be formed between the curved optical films 100 .
  • R radius of curvature
  • the strain (%) of the outermost layer of the optical film 100 is 1.6%. Accordingly, the driving toughness of the optical film 100 can be obtained based on the strain rate of 1.6% of the outermost layer of the optical film 100.
  • the driving toughness measures the strain relative to the stress of the optical film 100 using a dynamic mechanical analyzer (DMA), and the strain of the optical film 100 is measured on the x-axis and the stress is measured on the y-axis.
  • DMA dynamic mechanical analyzer
  • the section in the strain-stress curve with a strain rate of 1.6% or less is defined as the product of the area occupied by the specimen length and the length of the specimen.
  • the optical film 100 can be disposed on the display device 600 and used under various environmental conditions for a long period of time. Deformation may occur in the optical film 100 when it is repeatedly folded and unfolded under various environmental conditions. To prevent this deformation, it is necessary to maintain elasticity under deformation or stress conditions.
  • the ability to maintain driving toughness may be evaluated after the optical film 100 is treated under adverse conditions, for example, high temperature and high humidity conditions.
  • the optical film 100 can be manufactured so that there is a small difference in driving toughness after treatment under room temperature and humidity conditions and in driving toughness after treatment at high temperature and high humidity.
  • the optical film 100 according to an embodiment of the present invention may have a first driving toughness of 240 MPa ⁇ mm or more.
  • the first driving toughness refers to the driving toughness measured after treatment under room temperature and humidity conditions.
  • the room temperature and humidity condition treatment refers to the condition of leaving the optical film 100 at a temperature of 25°C ⁇ 3°C and humidity of 30% ⁇ 5% for 1 hour.
  • the optical film 100 may not be able to resist external force well under room temperature and humidity conditions, and deformation may occur.
  • the folded part when used as a cover window for a foldable device, the folded part may be deformed and visibility may be reduced when repeatedly folded and unfolded for a long period of time.
  • external force such as pressing, a mark is easily left even by a mild stimulus of 1H pencil hardness level, and may not be restored over time.
  • the optical film 100 according to an embodiment of the present invention may have a second driving toughness of 217 MPa ⁇ mm or more.
  • the second driving toughness refers to the driving toughness measured after treatment under high temperature and high humidity conditions.
  • the high-temperature, high-humidity condition treatment means leaving the optical film for 1 hour at a temperature of 60°C ⁇ 3°C and a humidity of 90% ⁇ 5%.
  • the optical film 100 may not be able to resist external force well under high temperature and high humidity conditions, and deformation may occur.
  • the folded area may be deformed and visibility may be reduced.
  • the optical film 100 may have a driving toughness strain index of 10.5% or less.
  • the driving toughness deformation index indicates the change in the driving toughness (second driving toughness) of the optical film after treatment at high temperature and humidity compared to the driving toughness (first driving toughness) of the optical film after treatment at room temperature and humidity.
  • a small driving toughness deformation index indicates that the optical film has excellent mechanical properties at high temperature and high humidity.
  • the driving toughness strain index is calculated according to Equation 1 below.
  • the unit of actuation toughness strain index is defined as %.
  • actuation toughness strain index exceeds 10.5%, the stress decreases significantly as temperature and humidity rise, so it may be difficult to apply it to a foldable device.
  • the optical film 100 may have a first driving elastic limit of 155 MPa ⁇ mm or more.
  • the driving elastic limit represents the force required at 1% deformation by dividing the force required until a certain deformation of the material occurs by the strain rate. For example, a large driving elastic limit can be seen as indicating excellent toughness and strength of the film.
  • the unit of the driving elastic limit is defined as MPa ⁇ mm.
  • the first driving elastic limit is calculated according to Equation 2 below.
  • First actuation elastic limit first actuation toughness / first actuation toughness strain
  • the first driving toughness strain is 1.6%.
  • the reason it is limited to 1.6% is because it refers to the strain rate of the outermost layer of the film when the radius of curvature (R) of a 50 ⁇ m thick film is 1.5mm.
  • the first driving elastic limit is less than 155 MPa ⁇ mm, this can be seen as meaning that the optical film 100 is easily deformed due to low resistance to external force.
  • the optical film 100 may have a second driving elastic limit of 140 MPa ⁇ mm or more.
  • the second driving elastic limit is calculated according to Equation 3 below.
  • Second actuation elastic limit second actuation toughness / second actuation toughness strain
  • the second driving toughness strain is 1.6%.
  • the reason it is limited to 1.6% is because it refers to the strain rate of the outermost layer of the film when the radius of curvature (R) of a 50 ⁇ m thick film is 1.5mm.
  • the second driving elastic limit is less than 140 MPa ⁇ mm, this can be seen as indicating that the optical film 100 is easily deformed by external force at high temperature and high humidity.
  • the optical film 100 may have a modulus of 7.5 GPa or more.
  • the modulus of the optical film 100 according to an embodiment of the present invention can be measured using a universal tensile tester according to the ASTM D885 method after preparing an optical film sample of 10 mm x 100 mm in size.
  • a universal tensile tester according to the ASTM D885 method after preparing an optical film sample of 10 mm x 100 mm in size.
  • Instron's MODEL 5967 can be used as a universal tensile tester.
  • the filler 120 has a fiber shape and can interweave the polymer chains constituting the light-transmissive matrix 110. As a result, the stability and arrangement characteristics of the polymer chains are improved and the intermolecular attraction is increased, so that the optical film 100 can have a large modulus of 7.5 GPa or more.
  • the optical film 100 may have a modulus of 8.0 GPa or more, and may have a modulus of 9.0 GPa or more.
  • the optical film 100 of the light-transmissive substrate 110 may have a thickness sufficient to protect the display panel.
  • the light-transmissive substrate 110 may have a thickness of 10 to 100 ⁇ m.
  • the thickness of the light-transmissive substrate 110 may be the same as the thickness of the optical film 100.
  • Figure 2 is a schematic diagram of a cover window substrate 200 according to another embodiment of the present invention.
  • a cover window substrate 200 according to another embodiment of the present invention may include an optical film 100 according to an embodiment of the present invention.
  • the cover window substrate 200 may further include a coating layer 130 on the light transmissive sheet in order to strengthen the surface properties of the light transmissive sheet and the cover window substrate 200.
  • the light-transmissive sheet may include an optical film 100 according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a cover window substrate 300 according to another embodiment of the present invention.
  • the cover window substrate 300 includes a primer layer 140 disposed between the light-transmissive sheet and the coating layer 130 in order to improve the adhesion between the light-transmissive sheet and the coating layer 130. It may further include.
  • FIG. 4 is a cross-sectional view of a portion of the display device 400 according to another embodiment of the present invention
  • FIG. 5 is an enlarged cross-sectional view of portion “P” of FIG. 4 .
  • a display device 400 includes a display panel 501 and an optical film 100 on the display panel 501.
  • the display panel 501 includes a substrate 510, a thin film transistor (TFT) on the substrate 510, and an organic light emitting element 570 connected to the thin film transistor (TFT).
  • the organic light emitting device 570 includes a first electrode 571, an organic light emitting layer 572 on the first electrode 571, and a second electrode 573 on the organic light emitting layer 572.
  • the display device 400 disclosed in FIGS. 4 and 5 is, for example, an organic light emitting display device.
  • Substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of plastic such as polyimide resin or optical film. Although not shown, a buffer layer may be disposed on the substrate 510.
  • a thin film transistor is disposed on the substrate 510.
  • the thin film transistor (TFT) includes a semiconductor layer 520, a gate electrode 530 that is insulated from the semiconductor layer 520 and overlaps at least a portion of the semiconductor layer 520, a source electrode 541 connected to the semiconductor layer 520, and It includes a drain electrode 542 spaced apart from the source electrode 541 and connected to the semiconductor layer 520.
  • a gate insulating film 535 is disposed between the gate electrode 530 and the semiconductor layer 520.
  • An interlayer insulating film 551 may be disposed on the gate electrode 530, and a source electrode 541 and a drain electrode 542 may be disposed on the interlayer insulating film 551.
  • the planarization film 552 is disposed on the thin film transistor (TFT) to planarize the top of the thin film transistor (TFT).
  • the first electrode 571 is disposed on the planarization film 552.
  • the first electrode 571 is connected to the thin film transistor (TFT) through a contact hole provided in the planarization film 552.
  • the bank layer 580 is disposed on a portion of the first electrode 571 and the planarization film 552 to define a pixel area or a light emitting area.
  • the bank layer 580 may be arranged in a matrix structure in the boundary area between a plurality of pixels, so that the pixel area may be defined by the bank layer 580.
  • the organic light emitting layer 572 is disposed on the first electrode 571.
  • the organic light emitting layer 572 may also be disposed on the bank layer 580.
  • the organic light-emitting layer 572 may include one light-emitting layer or two light-emitting layers stacked top and bottom. This organic light-emitting layer 572 may emit light having any one of red, green, and blue colors, and may also emit white light.
  • the second electrode 573 is disposed on the organic light emitting layer 572.
  • the organic light emitting device 270 may be formed by stacking the first electrode 571, the organic light emitting layer 572, and the second electrode 573.
  • each pixel may include a color filter to filter the white light emitted from the organic emission layer 572 by wavelength.
  • a color filter is formed on the path of light.
  • a thin film encapsulation layer 590 may be disposed on the second electrode 573.
  • the thin film encapsulation layer 590 may include at least one organic layer and at least one inorganic layer, and at least one organic layer and at least one inorganic layer may be alternately disposed.
  • the optical film 100 may be disposed on the display panel 501 having the laminated structure described above.
  • the optical film 100 may include a light-transmissive matrix 110 and a filler 120 dispersed in the light-transmissive matrix 110.
  • cover window substrates 200 and 300 may be disposed on the display panel 501 having the laminated structure described above.
  • the cover window substrates 200 and 300 may include an optical film 100 according to an embodiment of the present invention.
  • the method of manufacturing the optical film 100 includes the steps of preparing a first mixed solution by first dispersing the filler 120 in a polymerizable composition for forming a light-transmissive substrate 110, and the first mixed solution. It may include manufacturing a cast film by casting.
  • a polyimide-based resin solution may be used as a polymerizable composition for forming the light-transmitting substrate 110.
  • the method of manufacturing the optical film 100 includes manufacturing polyimide-based resin powder, dissolving the polyimide-based resin powder in a first solvent to prepare a polyimide-based resin solution. It may include a manufacturing step, dispersing the filler 120 in a second solvent to prepare a filler dispersion, and mixing the filler dispersion and a polyimide-based resin solution to prepare a first mixed solution.
  • DMAc N,N-Dimethylacetamide
  • DMAc N,N-Dimethylacetamide
  • MEK methyl ethyl ketone
  • one embodiment of the present invention is not limited to this, and other solvents known as the first solvent and the second solvent may be used.
  • the fibrous filler 120 for example, the fibrous filler 120 with a high aspect ratio, has a long length compared to the diameter, and may easily cause entanglement or aggregation within the light-transmissive matrix. Therefore, the filler 120 requires excellent dispersibility in the first mixed solution.
  • to improve the dispersibility of the filler 120 for example, toluene sulfonic acid (PTSA) may be used as an additive.
  • PTSA toluene sulfonic acid
  • the embodiment of the present invention is not limited to this, and other known additives may be used to improve the dispersibility of the filler 120.
  • the pH of the first mixed solution may be adjusted.
  • the pH of the first mixed solution may be adjusted to a range of 5 to 7. Accordingly, agglomeration or agglomeration of the filler 120 can be prevented.
  • the first mixed solution may be cast, dried, and heat treated to form the optical film 100.
  • a film formed by casting the first mixed solution may be referred to as a cast film, and a film manufactured by drying and heat treating the cast film may be referred to as the optical film 100.
  • Cast film can be said to be an uncured film.
  • casting may be performed by bar coating.
  • the orientation direction and degree of orientation of the filler 120 can be varied by adjusting the pressure applied to the cast film formed by casting.
  • convection can be prevented during the drying and heat treatment process of the cast film formed by casting, so that the filler 120 can be oriented in a certain direction.
  • the orientation of the filler 120 may decrease. Therefore, the cast film can be allowed to dry slowly to prevent convection. For example, drying of the cast film may be carried out while increasing the temperature from 80°C to 120°C at a temperature increase rate of 1°C/1 minute (1 degree/1 minute). When dried above a certain level, the orientation of the filler 120 may be fixed.
  • the temperature of the reaction tank was lowered to 7°C or lower, and 118.77 g of terephthaloyl chloride (TPC) and propylene oxide (PO) were added.
  • TPC terephthaloyl chloride
  • PO propylene oxide
  • the solid content of the polyimide-based polymerizable composition was obtained.
  • the solid content of the polyimide-based polymerizable composition prepared here is the solid content of the polyamide-imide polymerizable composition. The yield was over 80%.
  • the filler 120 is a fibrous alumina hydrate containing the structure of Chemical Formula 1.
  • the pH is 8 or higher.
  • a weak acid such as acetic acid is added to the liquid polyimide resin solution and the pH of the liquid polyimide resin solution is adjusted to be in the range of 5 to 7. .
  • the liquid polyimide-based resin solution prepared in this way is a polyimide-based resin solution in which the fibrous filler 120 is dispersed.
  • a casting substrate is used for casting.
  • a glass substrate stainless steel (SUS) substrate, Teflon substrate, etc. may be used.
  • a glass substrate may be used as a casting substrate.
  • the obtained polyimide resin solution was applied to a glass substrate and casted.
  • the polyimide resin solution was applied to the substrate (glass substrate) and then casted while pressing a force of 30 N or more in the direction perpendicular to the glass substrate. As a result, a cast film was produced.
  • a film was manufactured by placing it in a hot air oven at 80°C and slowly drying it to 120°C at a rate of 1°C/min for about 40 minutes, and the produced film was placed on a glass substrate. It was peeled off and fixed to the frame with pins.
  • the frame on which the film was fixed was placed in a vacuum oven and slowly heated from 100°C to 280°C for 2 hours, then slowly cooled and separated from the frame to obtain an optical film.
  • the optical film was again heat treated at 250°C for 5 minutes.
  • a 50 ⁇ m thick optical film 100 including a light-transmitting substrate 110 and an alumina-based filler 120 dispersed in the light-transmitting substrate was completed.
  • an optical film 100 was manufactured in the same manner as Example 1, and these were referred to as Examples 2 to 8, respectively.
  • an optical film 100 was manufactured in the same manner as Example 1 except for the addition of filler, and these were referred to as Comparative Examples 1 to 3, respectively.
  • Example 1 100 27 - 12 61 alumina hydrate (Formula 1) 5 Example 2 100 27 - 12 61 alumina hydrate (Formula 1) 10 Example 3 100 - 17 17 66 alumina hydrate (Formula 1) 7 Example 4 100 - 17 17 66 alumina hydrate (Formula 1) 10 Example 5 100 - 26.25 12.5 61.25 alumina hydrate (Formula 1) 3 Example 6 100 - 26.25 12.5 61.25 alumina hydrate (Formula 1) 5 Example 7 100 27 - 12 61 alumina hydrate (Formula 2) 5 Example 8 100 27 - 12 61 alumina hydrate (Formula 3) 5 Comparative Example 1 100 27 - 12 61 Not added - Comparative Example 2 100 - 17 17 66 Not added - Comparative Example 3 100 - 26.25 12.5
  • Alumina hydrate (Formula 1, 2, 3) filler 4 nm in diameter and 1500 nm in length.
  • strain-stress curves of the optical films manufactured according to Examples 1 to 8 and Comparative Examples 1 to 3 were measured using a Dynamic Mechanical Analysis (DMA) model DMA850 from TA Instruments.
  • DMA Dynamic Mechanical Analysis
  • the point where the stress pattern changes rapidly was taken as the yield point. Specifically, the point at which stress begins to decrease or remain constant despite an increase in strain rate was set as the yield point.
  • the unit of yield point is defined as %.
  • the area of the strain-stress curve was calculated three times based on the strain rate of 1.6%, and the average value multiplied by the length of the specimen was taken as the driving toughness.
  • the unit of driving toughness is defined as MPa ⁇ mm.
  • the first driving toughness is the area obtained based on the strain rate of 1.6% in the strain-stress curve obtained after treatment at room temperature and high humidity conditions
  • the second driving toughness is the area obtained based on the strain rate 1.6% in the strain-stress curve obtained after treatment under high temperature and high humidity conditions. This is the area calculated based on the time of day.
  • the degree of driving toughness deformation according to changes in temperature and humidity of the optical films manufactured according to Examples 1 to 8 and Comparative Examples 1 to 3 was defined as the driving toughness deformation index, and was calculated according to Equation 1 below.
  • the unit of the actuation toughness strain index is defined as %.
  • the first and second actuation toughness strains are 1.6%. The reason it is limited to 1.6% is because it refers to the strain rate of the outermost layer of the film when the radius of curvature of a 50 ⁇ m thick film is 1.5R.
  • the above values were obtained three times, the average value was obtained, and this was used as the driving elasticity limit.
  • the unit of the driving elastic limit is defined as MPa ⁇ mm.
  • the first driving elastic limit and the second driving elastic limit were calculated according to Equations 2 and 3 below.
  • First actuation elastic limit first actuation toughness / first actuation toughness strain
  • the first driving elasticity limit is measured after processing the optical film specimen under room temperature and humidity conditions,
  • Second actuation elastic limit second actuation toughness / second actuation toughness strain
  • the second driving elastic limit is measured after treating the optical film specimen under high temperature and high humidity conditions.
  • the modulus of each of the optical films manufactured according to Examples 1 to 8 and Comparative Examples 1 to 3 was measured using an Instron universal tensile tester (MODEL 5967).
  • the coating direction is called MD
  • the direction perpendicular to the coating is called TD
  • the MD direction modulus of the optical film is measured.
  • Example 1 2.52 2.95 255 242 5.3 160 151 8.0
  • Example 2 1.86 2.69 333 319 4.1 208 199 9.3
  • Example 3 1.74 2.11 418 376 10.0 261 235 8.4
  • Example 4 1.31 1.71 459 424 7.7 287 265 9.3
  • Example 5 1.61 1.96 371 332 10.4 232 208 7.5
  • Example 6 1.09 1.36 451 418 7.2 282 261 8.4
  • Example 7 2.41 2.52 232 244 5.4 145 153 7.8
  • Example 8 2.74 2.69 233 239 2.7 145 149 10.0 Comparative Example 1 3.14 3.94 239 93.5 60.9 150 58.4 5.9 Comparative Example 2 2.45 2.24 370 294 20.5 232 184 6.0 Comparative Example 3 1.80 2.41 330 284 14.1 206 177 6.5
  • the optical film 100 according to an embodiment of the present invention has excellent driving toughness, excellent driving toughness strain index, excellent driving elastic limit, and excellent driving elastic limit index, and has excellent mechanical properties. It can be confirmed that it has .
  • Optical film 110 Light transmissive substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명의 일 실시예는, 광투과성 기재 및 상기 광투과성 기재에 분산된 필러를 포함하고, 상기 필러는 섬유 형상을 가지며, 10.5% 이하의 구동 인성 변형 지수를 갖는 광학 필름 및 이러한 광학 필름을 포함하는 표시장치를 제공한다.

Description

광학 필름 및 이를 포함하는 표시장치
본 발명은 광학 필름 및 이를 포함하는 표시장치에 대한 것으로, 특히, 인성 변형 지수가 낮고 내후성이 우수한 광학 필름에 대한 것이다.
최근, 표시장치의 박형화, 경량화, 플렉서블화로 인하여, 커버 윈도우로 유리 대신 광학 필름을 사용하는 것이 검토되고 있다. 광학 필름이 표시장치의 커버 윈도우로 사용되기 위해서는, 우수한 광학특성과 함께 우수한 기계적 특성을 가지는 것이 필요하다. 예를 들어, 광학 필름이 우수한 강도와 경도, 내마모성, 굴곡성 등의 특성을 가질 필요가 있다.
다양한 특성이 요구되는 광학 필름에 목적하는 물성을 부여하기 위하여, 필러가 첨가되기도 한다. 필러는 광학 필름에서 요구되는 물성에 따라 달라질 수 있다.
본 발명의 일 실시예는, 광투과성 기재 내에 분산되어 있는 섬유 형상의 필러를 포함하는, 광학 필름을 제공하고자 한다.
본 발명의 다른 일 실시예는, 광투과성 기재 내에 분산되어 있는 섬유 형상의 필러를 포함함으로써, 우수한 구동 인성을 갖는 광학 필름을 제공하고자 한다.
본 발명의 다른 일 실시예는, 광투과성 기재 내에 분산되어 있는 섬유 형상의 필러를 포함함으로써, 우수한 구동 인성 변형 지수를 갖는 광학 필름을 제공하고자 한다.
본 발명의 다른 일 실시예는, 광투과성 기재 내에 분산되어 있는 섬유 형상의 필러를 포함함으로써, 우수한 구동 탄성 한계를 갖는 광학 필름을 제공하고자 한다.
본 발명의 또 다른 일 실시예는, 상기 광학 필름을 포함하는 커버 윈도우 기판을 제공하고자 한다.
본 발명의 또 다른 일 실시예는, 상기 광학 필름을 포함하는 표시장치를 제공하고자 한다.
본 발명의 일 실시예에 따른 광학 필름은, 광투과성 기재 및 상기 광투과성 기재에 분산된 필러를 포함하고, 상기 필러는 섬유 형상을 가지며, 10.5% 이하의 구동 인성 변형 지수를 가질 수 있다.
여기서, 구동 인성 변형 지수는 하기 식 1에 따라 계산되며,
[식 1]
Figure PCTKR2023014665-appb-img-000001
상기 제1 구동 인성은 상온 상습 조건 처리 후 측정된 구동 인성이고,
상기 상온 상습 조건 처리는 온도 25℃±3℃ 및 습도 30%±5%에서 상기 광학 필름을 1시간 동안 방치하는 조건이고,
상기 제2 구동 인성은 고온 고습 조건 처리 후 측정된 구동 인성이고,
상기 고온 고습 조건 처리는 온도 60℃±3℃ 및 습도 90%±5%에서 상기 광학 필름을 1시간 방치하는 조건이며,
상기 구동 인성은 동적기계분석기(DMA)를 사용하여 상기 광학 필름에 대하여 응력에 대한 변형률을 측정하고, 상기 광학 필름의 변형률(strain)을 x축, 응력(stress)을 y축으로 하여 변형률-응력 곡선(Strain-Stress Curve)을 구한 뒤, 상기 변형률-응력 곡선에서 변형률 1.6%이하인 구간이 차지하는 면적과 시편 길이의 곱으로 정의된다.
본 발명의 일 실시예에 따른 광학 필름은, 240 MPa·mm 이상의 제1 구동 인성을 가질 수 있다.
본 발명의 일 실시예에 따른 광학 필름은, 217 MPa·mm 이상의 제2 구동 인성을 가질 수 있다.
본 발명의 일 실시예에 따른 광학 필름은, 155 MPa·mm 이상의 제1 구동 탄성 한계를 가질 수 있다.
여기서, 상기 제1 구동 탄성 한계는 하기 식 2에 따라 계산된다.
[식 2]
제1 구동 탄성 한계 = 제1 구동 인성 / 제1 구동 인성 변형률
상기 제1 구동 인성 변형률의 값은 1.6%이다.
본 발명의 일 실시예에 따른 광학 필름은, 140 MPa·mm 이상의 제2 구동 탄성 한계를 가질 수 있다.
여기서, 상기 제2 구동 탄성 한계는 하기 식 3에 따라 계산된다.
[식 3]
제2 구동 탄성 한계 = 제2 구동 인성 / 제2 구동 인성 변형률
상기 제2 구동 인성 변형률의 값은 1.6%이다.
본 발명의 일 실시예에 따르면, 상기 필러는 유리 섬유(Glass fiber), 알루미늄계 섬유(Aluminum-based fiber) 및 불소 섬유(fluoride fiber) 중 적어도 하나를 포함할 수 있다.
상기 필러는 알루미나 수화물(aluminum oxide hydroxide), SiO2, Al2O3, PTFE(Polytetrafluoroethylene) 및 PVDF(Polyvinylidene Fluoride) 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 광투과성 기재는 디아민 모노머; 및 디안하이드라이드 화합물 및 디카르보닐 화합물 중 적어도 하나;를 포함하는 중합성 조성물로부터 형성될 수 있다.
상기 광투과성 기재는 이미드 반복단위 및 아마이드 반복단위 중 적어도 하나를 포함할 수 있다.
상기 디아민 모노머는 비스 트리플루오로메틸 벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFDB), 옥시디아닐린(4,4'-Oxydianiline, ODA), p-페닐렌디아민(para-phenylene diamine, pPDA), m-페닐렌디아민(meta-phenylene diamine, mPDA), p-메틸렌디아민(para-Methylene Diamine, pMDA), m-메틸렌디아민(meta-Methylene Diamine, mMDA), 비스 아미노페녹시 벤젠(1,3-bis(3-aminophenoxy) benzene, 133APB), 비스 아미노페녹시 벤젠(1,3-bis(4-aminophenoxy) benzene, 134APB), 비스 아미노 페녹시 페닐 헥사플루오로프로판 (2,2'-bis[4(4-aminophenoxy)phenyl] hexafluoropropane, 4BDAF), 비스 아미노페닐 헥사플루오로 프로판(2,2'-bis(3-aminophenyl)hexafluoropropane, 33-6F), 비스 아미노페닐 헥사플루오로 프로판(2,2'-bis(4-aminophenyl)hexafluoropropane, 44-6F), 비스 아미노페닐술폰(bis(4-aminophenyl)sulfone, 4DDS), 비스 아미노페닐술폰(bis(3-aminophenyl)sulfone, 3DDS), 사이클로헥산디아민(1,3-Cyclohexanediamine, 13CHD), 사이클로헥산 디아민(1,4-Cyclohexanediamine, 14CHD), 비스 아미노 페녹시 페닐프로판(2,2-Bis[4-(4-aminophenoxy)-phenyl]propane, 6HMDA), 비스 아미노하이드록시 페닐 헥사플로오로프로판2,2-Bis(3-amino-4-hydroxy-phenyl)-hexafluoropropane, DBOH), 비스 아미노페녹시 디페닐 술폰(4,4'-Bis(3-amino phenoxy) diphenyl sulfone, DBSDA) 중 적어도 하나를 포함할 수 있다.
상기 디안하이드라이드 화합물은 비페닐 테트라카르복실릭 디안하이드라이드 (3,3,4,4-Biphenyltetracarboxylic dianhydride, BPDA), 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 4-(2,5-디옥소테트라하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(1,2,4,5-benzene tetracarboxylic dianhydride, pyromellicticacid dianhydride, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드 (3,3,4,4-Benzophenone tetracarboxylic dianhydride, BTDA), 옥시디프탈릭 디안하이드라이드 (4,4-Oxydiphthalic dianhydride, ODPA), 비스카르복시페닐디메틸 실란 디안하이드라이드(Bis(3,4dicarboxyphenyl)dimethyl-silane dianhydride, SiDA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(4,4-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride, BDSDA), 술포닐 디프탈릭안하이드라이드(Sulfonyldiphthalic anhydride, SO2DPA), 사이클로부탄 테트라카르복실릭 디안하이드라이드(Cyclobutane-1,2,3,4- tetracarboxylic dianhydride, CBDA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드(4,4'-(4,4'-Isopropylidenediphenoxy) bis(phthalic anhydride), 6HBDA) 중 적어도 하나를 포함할 수 있다.
상기 디카르보닐 화합물은 테레프탈로일 클로라이드(Terephthaloyl Chloride, TPC), 프탈로일 클로라이드(Phthaloyl Chloride), 아이소프탈로일 클로라이드(Isophthaloyl chloride, IPC), 바이페닐디카보닐 클로라이드(4,4'-Biphenyldicarbonyl Chloride, DPDOC), 옥시비스벤조일 클로라이드(4,4'-Oxybis(benzoyl Chloride), OBBOC) 나프탈렌 디카보닐 디클로라이드(Naphthalene-2,3-dicarbonyl dichloride), 사이클로헥산 디카보닐디클로라이드(1,4-Cyclohexanedicabonyldichloride, CHDOC) 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 디안하이드라이드 화합물과 상기 디카르보닐 화합물의 몰비는 5:95 내지 40:60의 범위일 수 있다.
본 발명의 다른 일 실시예에 따른 커버 윈도우 기판은, 상기 광학 필름을 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 커버 윈도우 기판은, 광투과성 시트 및 상기 광투과성 시트 상의 코팅층을 포함하고, 상기 광투과성 시트는 상기 광학 필름을 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 커버 윈도우 기판은, 상기 광투과성 시트와 상기 코팅층 사이에 배치된 프라이머층을 더 포함할 수 있다.
본 발명의 또 다른 일 실시예는, 표시패널 및 상기 표시패널 상에 배치된 상기 광학 필름을 포함하는 표시장치를 제공한다.
본 발명의 일 실시예에 따르면, 광학 필름에 포함된 필러가 섬유 형상을 가져, 광투과성 기재를 구성하는 고분자 체인을 얽어 맬 수 있다. 그 결과, 광학 필름이 우수한 기계적 강도를 가질 수 있는데, 특히 우수한 구동 인성 및 구동 인성 변형 지수를 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 우수한 구동 탄성 한계 및 구동 탄성 한계 지수를 가질 수 있다.
본 발명의 일 실시예에 따라, 섬유 형상의 필러를 포함하는 광학 필름은 우수한 광학적 특성에 더하여 우수한 기계적 특성을 가질 수 있다. 본 발명의 일 실시예에 따른 광학 필름은 우수한 광학적 특성 및 기계적 특성을 가져, 표시장치의 커버 윈도우로 유용하게 사용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 광학 필름의 개략도이다.
도 2는 본 발명의 다른 일 실시예에 따른 커버 윈도우 기판의 개략도이다.
도 3은 본 발명의 또 다른 일 실시예에 따른 커버 윈도우 기판의 개략도이다.
도 4는 본 발명의 또 다른 일 실시예에 따른 표시장치의 일부에 대한 단면도이다.
도 5는 도 4의 "P" 부분에 대한 확대 단면도이다.
도 6은 본 발명의 또 다른 일 실시예에 따른 표시장치의 외형도이다.
도 7은 실시예 1, 2 및 비교예 1에 대한 상온 상습 조건 처리 후 변형률-응력 곡선이다.
도 8은 실시예 1, 2 및 비교예 1에 대한 고온 고습 조건 처리 후 변형률-응력 곡선이다.
도 9는 실시예 3, 4 및 비교예 2에 대한 상온 상습 조건 처리 후 변형률-응력 곡선이다.
도 10은 실시예 3, 4 및 비교예 2에 대한 고온 고습 조건 처리 후 변형률-응력 곡선이다.
도 11은 실시예 5, 6 및 비교예 3에 대한 상온 상습 조건 처리 후 변형률-응력 곡선이다.
도 12는 실시예 5, 6 및 비교예 3에 대한 고온 고습 조건 처리 후 변형률-응력 곡선이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 아래에서 설명되는 실시예들은 본 발명의 명확한 이해를 돕기 위한 예시적 목적으로 제시되는 것일 뿐, 본 발명의 범위를 제한하지 않는다.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 구성 요소는 동일 참조 부호로 지칭될 수 있다. 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명은 생략된다.
본 명세서에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이라는 표현이 사용되지 않는 이상, 다른 부분이 추가될 수 있다. 구성 요소가 단수로 표현된 경우, 특별히 명시적인 기재 사항이 없는 한 복수를 포함한다. 또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
공간적으로 상대적인 용어인 "아래(below, beneath)", "하부 (lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)" 또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓일 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 마찬가지로, 예시적인 용어인 "위" 또는 "상"은 위와 아래의 방향을 모두 포함할 수 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제3 항목 중 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미할 수 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 광학 필름(100)의 개략도이다. 본 발명의 일 실시예에 따르면, 광투과성을 갖는 필름을 광학 필름(100)이라고 한다.
발명의 일 실시예에 따른 광학 필름(100)은 광투과성 기재(110) 및 광투과성 기재에 분산된 필러(120)를 포함한다.
본 발명의 일 실시예에 따른 광투과성 기재(110)는 광투과성을 갖는다. 본 발명의 일 실시예에 따르면, 광투과성 기재(110)는 플렉서블 특성을 가질 수 있다. 예를 들어, 광투과성 기재(110)는 벤딩(bending) 특성, 폴딩(folding) 특성 또는 롤러블(rollable) 특성을 가질 수 있다. 그 결과, 본 발명의 일 실시예에 따른 광학 필름(100)은 광투과성을 가지며, 벤딩(bending) 특성, 폴딩(folding) 특성 또는 롤러블(rollable) 특성을 가질 수 있다.
플렉서블 특성을 가진 소재의 신뢰성을 확인할 수 있는 물성으로는 강도, 경도, 변형률, 탄성계수 등의 기계적 물성을 들 수 있다. 소재의 기계적 물성이란, 외부 작용에 대한 소재의 반응 정도를 나타낸다. 예를 들어, 외력과 이에 따른 소재의 변형 사이의 관계를 의미한다. 외력에 따른 소재의 변형 관계를 확인하기 위하여 예를 들어, 만능인장시험기(UTM) 또는 동적기계분석기(DMA)를 활용해 응력 완화 거동을 평가할 수 있다.
본 발명의 일 실시예에 따르면, 광투과성 기재(110)는 이미드 반복단위 및 아마이드 반복단위 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따른 광투과성 기재(110)는, 예를 들어, 디안하이드라이드 및 디아민을 포함하는 모노머 성분들로부터 제조될 수 있다. 구체적으로, 광투과성 기재(110)는 디안하이드라이드와 디아민에 의하여 형성된 이미드 반복 단위를 포함할 수 있다.
그러나, 본 발명의 일 실시예에 따른 광투과성 기재(110)가 이에 한정되는 것은 아니며, 광투과성 기재(110)는 디안하이드라이드 및 디아민에 더하여 디카르보닐 화합물을 포함하는 모노머 성분들로부터 제조될 수 있다. 본 발명의 일 실시예에 따른 광투과성 기재(110)는 이미드 반복단위와 아마이드 반복단위를 가질 수 있다. 이미드 반복단위와 아마이드 반복단위를 갖는 광투과성 기재(110)로, 예를 들어, 폴리아마이드-이미드 수지가 있다.
본 발명의 일 실시예에 따르면, 광투과성 기재(110)는 폴리이미드계 고분자를 포함할 수 있다. 폴리이미드계 고분자의 예로, 폴리이미드 고분자, 폴리아마이드-이미드 고분자 등이 있다. 본 발명의 일 실시예에 따른 광투과성 기재(110)는, 예를 들어, 폴리아마이드-이미드계 고분자 수지로 만들어질 수 있다.
본 발명의 일 실시예에 따르면, 광투과성 기재(110)는 중합성 조성물로부터 형성될 수 있다.
본 발명의 일 실시예에 따른 중합성 조성물은 디아민계 모노머를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 디아민 모노머는 예를 들어, 비스 트리플루오로메틸 벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFDB), 옥시디아닐린(4,4'-Oxydianiline, ODA), p-페닐렌디아민(para-phenylene diamine, pPDA), m-페닐렌디아민(meta-phenylene diamine, mPDA), p-메틸렌디아민(para-Methylene Diamine, pMDA), m-메틸렌디아민(meta-Methylene Diamine, mMDA), 비스 아미노페녹시 벤젠(1,3-bis(3-aminophenoxy) benzene, 133APB), 비스 아미노페녹시 벤젠(1,3-bis(4-aminophenoxy) benzene, 134APB), 비스 아미노 페녹시 페닐 헥사플루오로프로판 (2,2'-bis[4(4-aminophenoxy)phenyl] hexafluoropropane, 4BDAF), 비스 아미노페닐 헥사플루오로 프로판(2,2'-bis(3-aminophenyl)hexafluoropropane, 33-6F), 비스 아미노페닐 헥사플루오로 프로판(2,2'-bis(4-aminophenyl)hexafluoropropane, 44-6F), 비스 아미노페닐술폰(bis(4-aminophenyl)sulfone, 4DDS), 비스 아미노페닐술폰(bis(3-aminophenyl)sulfone, 3DDS), 사이클로헥산디아민(1,3-Cyclohexanediamine, 13CHD), 사이클로헥산 디아민(1,4-Cyclohexanediamine, 14CHD), 비스 아미노 페녹시 페닐프로판(2,2-Bis[4-(4-aminophenoxy)-phenyl]propane, 6HMDA), 비스 아미노하이드록시 페닐 헥사플로오로프로판2,2-Bis(3-amino-4-hydroxy-phenyl)-hexafluoropropane, DBOH), 비스 아미노페녹시 디페닐 술폰(4,4'-Bis(3-amino phenoxy) diphenyl sulfone, DBSDA) 중 적어도 하나를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 중합성 조성물은 디안하이드라이드 화합물 및 디카르보닐 화합물 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 디안하이드라이드 화합물은 예를 들어, 비페닐 테트라카르복실릭 디안하이드라이드 (3,3,4,4-Biphenyltetracarboxylic dianhydride, BPDA), 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 4-(2,5-디옥소테트라하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(1,2,4,5-benzene tetracarboxylic dianhydride, pyromellicticacid dianhydride, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드 (3,3,4,4-Benzophenone tetracarboxylic dianhydride, BTDA), 옥시디프탈릭 디안하이드라이드 (4,4-Oxydiphthalic dianhydride, ODPA), 비스카르복시페닐디메틸 실란 디안하이드라이드(Bis(3,4dicarboxyphenyl)dimethyl-silane dianhydride, SiDA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(4,4-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride, BDSDA), 술포닐 디프탈릭안하이드라이드(Sulfonyldiphthalic anhydride, SO2DPA), 사이클로부탄 테트라카르복실릭 디안하이드라이드(Cyclobutane-1,2,3,4- tetracarboxylic dianhydride, CBDA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드(4,4'-(4,4'-Isopropylidenediphenoxy) bis(phthalic anhydride), 6HBDA) 중 적어도 하나를 포함할 수 있다. 다만, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 디카르보닐 화합물은 예를 들어, 테레프탈로일 클로라이드(Terephthaloyl Chloride, TPC), 프탈로일 클로라이드(Phthaloyl Chloride), 아이소프탈로일 클로라이드(Isophthaloyl chloride, IPC), 바이페닐디카보닐 클로라이드(4,4'-Biphenyldicarbonyl Chloride, DPDOC), 옥시비스벤조일 클로라이드(4,4'-Oxybis(benzoyl Chloride), OBBOC) 나프탈렌 디카보닐 디클로라이드(Naphthalene-2,3-dicarbonyl dichloride), 사이클로헥산 디카보닐디클로라이드(1,4-Cyclohexanedicabonyldichloride, CHDOC) 중 적어도 하나를 포함할 수 있다. 다만 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 디안하이드라이드 화합물 및 디카르보닐 화합물의 전체 당량과 디아민 모노머의 당량은 실질적으로 동일할 수 있다.
본 발명의 일 실시예에 따른 중합성 조성물은, 우수한 기계적 특성 확보를 위해 디안하이드라이드 화합물 및 디카르보닐 화합물 전체 몰수 대비 60몰% 이상의 디카르보닐 화합물을 포함할 수 있다.
예를 들어, 디안하이드라이드 화합물과 상기 디카르보닐 화합물의 몰비가 5:95 내지 40:60의 범위일 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)는 섬유 형상을 가질 수 있다. 섬유는 예를 들어, 직경보다 길이가 현저하게 긴 물질을 의미할 수 있다. 섬유는 가늘고 긴 실 모양의 물질을 의미할 수 있다. 섬유는 선 구조를 갖는 물질을 의미할 수 있다. 섬유는 길이가 길고 구부릴 수 있는 물질을 의미할 수도 있다.
이하, 직경 보다 길이가 큰 형상을 섬유 형상이라고 한다. 섬유 형상을 필라멘트 형상이라고 할 수도 있다. 본 발명의 일 실시예에 따르면, 필러(120)의 길이는 직경 보다 2배 이상 더 클 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)는 섬유 형상을 가져, 광투과성 기재(110)를 구성하는 고분자 사슬들을 서로 엮을 수 있다. 그 결과, 고분자 사슬들의 안정성 및 배열 특성이 향상되어, 광투과성 기재(110)의 기계적 특성이 향상될 수 있고, 광학 필름(100)의 기계적 특성 역시 향상될 수 있다.
필러(120)의 종류에 특별한 제한이 있는 것은 아니다. 섬유 형상을 갖는다면, 그 종류에 제한없이 본 발명의 일 실시예에 따른 필러(120)로 사용될 수 있다. 필러(120)는 무기물일수도 있고 유기물일수도 있다. 필러(120)는 무기 섬유, 유기 섬유 및 유기-무기 복합 섬유 중 적어도 하나를 포함할 수 있다.
보다 구체적으로, 필러(120)는 섬유 형상을 가질 수 있다. 예를 들어, 필러(120)는 한 가닥으로 된 섬유 형상을 가질 수도 있고, 여러 가닥으로 된 섬유 형상을 가질 수도 있고, 하나의 중심 가닥에 여러 개의 가닥이 가지(branch) 형태로 배치된 형상을 가질 수도 있다.
본 발명의 일 실시예에 따르면, 필러(120)는, 유리 섬유(Glass fiber), 알루미늄계 섬유(Aluminum-based fiber) 및 불소 섬유(Fluoride fiber) 중 적어도 하나를 포함할 수 있다.
유리 섬유는 SiO2를 포함할 수 있다. 유리 섬유는 SiO2 외에 다른 성분을 더 포함할 수 있다. 알루미늄계 섬유는 알루미나 수화물(aluminum oxide hydroxide) 또는 Al2O3를 포함할 수 있다. 알루미늄계 섬유는 알루미나 수화물(aluminum oxide hydroxide) 또는 Al2O3 외에 다른 성분을 더 포함할 수 있다. 불소 섬유는 PTFE(Polytetrafluoroethylene) 및 PVDF(Polyvinylidene Fluoride) 중 적어도 하나를 포함할 수 있다. 불소 섬유는 PTFE와 PVDF 외에 다른 성분을 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)는, 알루미나 수화물(aluminum oxide hydroxide), SiO2, Al2O3, PTFE (Polytetrafluoroethylene) 및 PVDF(Polyvinylidene Fluoride) 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)는 표면 처리될 수 있다. 예를 들어, 알콕시기를 갖는 유기 화합물기에 의하여 표면 처리된 섬유가 필러(120)로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 알루미늄계 섬유(Aluminum-based fiber)는 알루미나 수화물(aluminum oxide hydroxide) 또는 Al2O3 중 어느 하나를 포함할 수 있다. 알루미나 수화물(aluminum oxide hydroxide)은 보헤마이트(Boehmite)라고도 하며, γ-AlO(OH)로 표현될 수 있다. 보다 구체적으로, 알루미나 수화물(aluminum oxide hydroxide)은 하기 화학식 1, 2 및 3 중 어느 하나로 표현되는 구조를 포함할 수 있다.
[화학식 1]
Figure PCTKR2023014665-appb-img-000002
[화학식 2]
Figure PCTKR2023014665-appb-img-000003
[화학식 3]
Figure PCTKR2023014665-appb-img-000004
여기서, 상기 n은 50 내지 10,000 범위이고, 상기 m은 50 내지 10,000 범위이고, 상기 p는 100 내지 20,000 범위이다.
필러(120)의 구조에 대한 이해를 돕기 위해, 화학식 1, 2 및 3의 구조를 확장하면, 필러(120)는 하기 화학식 4, 5 및 6 중 어느 하나로 표현되는 구조를 포함할 수 있다.
화학식 1로 표현되는 구조는, 예를 들어, 하기 화학식 4로 표현될 수 있다. 하기 화학식 4는 화학식 1에서 n이 5인 경우에 대응된다.
[화학식 4]
Figure PCTKR2023014665-appb-img-000005
화학식 2로 표현되는 구조는, 예를 들어, 하기 화학식 5로 표현될 수 있다. 하기 화학식 5은 화학식 2에서 m이 4인 경우에 대응된다.
[화학식 5]
Figure PCTKR2023014665-appb-img-000006
화학식 3으로 표현되는 구조는, 예를 들어, 하기 화학식 6으로 표현될 수 있다. 하기 화학식 6은 화학식 3에서 p가 3인 경우에 대응된다.
[화학식 6]
Figure PCTKR2023014665-appb-img-000007
상기 화학식 4 내지 6에서 "*"은 결합 위치를 나타낸다.
본 발명의 일 실시예에 따르면, Al2O3는 하기 화학식 7로 표현되는 단위 구조를 가질 수 있다.
[화학식 7]
Figure PCTKR2023014665-appb-img-000008
본 발명의 일 실시예에 따르면, SiO2는 하기 화학식 8로 표현되는 단위 구조를 가질 수 있다.
[화학식 8]
Figure PCTKR2023014665-appb-img-000009
본 발명의 일 실시예에 따르면, 필러(120)는 2nm 내지 10nm의 직경 및 200nm 내지 4,000nm의 길이를 가질 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)의 직경 및 길이는 투과전자현미경(TEM)에 의하여 측정될 수 있다.
필러(120)의 직경이 2nm 미만인 경우, 필러(120)의 안정성이 저하될 수 있고, 필러(120)가 끊기거나 부스러져, 광학 필름(100)을 오염시켜 광학 필름(100)의 헤이즈가 증가될 수 있다. 필러(120)의 직경이 10nm를 초과하는 경우, 필러(120)가 섬유 형상을 가지기 어렵거나, 고분자 체인들을 서로 엮는 기능이 저하될 수 있고, 광학 필름(100)의 광투과도가 감소될 수 있다.
필러(120)의 길이가 200nm 미만인 경우, 필러(120)가 고분자 체인들을 서로 엮는 기능이 충분히 발휘되지 않을 수 있다. 필러(120)의 길이가 4,000nm를 초과하는 경우, 필러(120)의 분산성이 저하될 수 있고, 그 결과, 광투과성 매트릭스(110) 내에서 필러(120)의 응집이 발생될 수 있다. 그에 따라, 광학 필름(100)의 광투과율이 저하되고 헤이즈가 증가될 수 있으며, 광학 필름(100)의 광학적 특성이 저하될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)의 길이는 필러(120)의 성장 조건 또는 필러(120)에 대한 후처리에 의하여 조절될 수 있다. 예를 들어, 필러(120) 성장시 온도 조절을 통해 필러(120)의 길이를 적절하게 조절할 수 있다. 또한, 일정 길이만큼 성장된 필러(120)에 초음파 또는 다른 에너지가 인가되어, 필러(120)가 적절한 길이로 절단되도록 할 수도 있다.
본 발명의 일 실시예에 따르면, 필러(120)가 첨가되는 경우, 필러(120)에 의해 적절한 광 산란이 발생하여 광학 필름(100)의 광학 특성이 향상될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)가 첨가되는 경우, 필러(120)에 의해 인장 특성의 상승 효과를 얻을 수 있다. 이로 인해, 광학 필름(100)을 동일한 길이만큼 연신하는데 더 큰 힘이 필요하게 된다. 따라서, 광학 필름(100)의 기계적 물성이 향상될 수 있다.
다만, 필러(120)의 함량이 과량인 경우, 광학 필름(100)의 항복점이 낮아져, 광학 필름(100)의 탄성이 부족해질 수 있다. 필러(120)의 함량이 미량인 경우, 광학 필름(100)의 기계적 물성의 향상이 미미할 수 있다.
따라서, 광학 필름(100)의 적절한 강도 및 탄성을 위하여, 광학 필름(100)에 포함된 필러(120)의 함량이 적절한 범위로 조절될 수 있다.
예를 들어, 필러(120)는 중합성 조성물 고형분의 2 내지 20wt%로 투입될 수 있다. 구체적으로, 필러(120)는 중합성 조성물 고형분의 3 내지 15wt%로 투입될 수 있다. 보다 구체적으로, 필러(120)는 중합성 조성물 고형분의 3 내지 10wt%로 투입될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)의 함량을 조정하고 분산 방법을 개량하여, 광학 필름(100)의 기계적 물성을 향상시킬 수 있다. 예를 들어, 광학 필름(100)의 구동 인성 및 탄성 한계가 향상될 수 있다. 또한, 고온 및 고습 조건 처리 후에도 광학 필름(100)의 기계적 물성이 거의 저하되지 않을 수 있다. 따라서, 필러(120)의 함량을 조정하고 분산 방법을 개량하면, 광학 필름(100)의 기계적 물성과 함께, 내후성 및 장기안정성을 향상시킬 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 우수한 구동 인성을 가질 수 있다.
구동 인성이란, 변형률-응력 곡선(Strain-Stress Curve)에서의 탄성 영역의 면적과 광학 필름(100) 시편 길이(mm)의 곱으로 정의될 수 있다. 예를 들어, 구동 인성이 크다는 것은 탄성 구간이 넓어 소성 변형이 생길 때까지 시편을 변형시키는데 필요한 힘이 크다는 것을 나타낸다. 광학 필름(100) 시편은 예를 들어, 길이(L) x 폭(W) x 두께(T)가 5mm x 2mm x 0.05mm로 제조될 수 있다. 구동 인성의 단위는 MPa·mm로 정의된다.
변형률-응력 곡선에서 변형률 증가에 따른 응력이 일정한 증가를 보여 기울기가 거의 일정한 부분은 탄성 영역에 해당하며, 이 구간 내에서의 소재의 변형은 탄성 변형에 해당한다. 그러나, 기울기와 곡선 형태의 급격한 변화가 생기는 구간은 소성 영역으로, 소재 내부 구조에 전위(dislocation)가 발생하면서 소성 변형이 일어나기 시작한 것으로 볼 수 있다.
도 6은 본 발명의 또 다른 일 실시예에 따른 표시장치(600)의 외형도이다. 보다 구체적으로, 도 6은 폴더블 표시장치(Foldable display device)의 접힌 상태에 대한 개략적인 측면도이다.
도 6에 따르면, 본 발명의 또 다른 일 실시예에 따른 표시장치(600)는 본 발명의 일 실시예에 따른 광학 필름(100) 및 케이스(601)를 포함할 수 있다. 표시장치(600)는 예를 들어, 폴더블 표시장치(Foldable display device)와 같이 휘거나 접을 수 있는 기기일 수 있다. 또한, R은 곡률 반지름을 의미한다.
도 6과 같이, 본 발명의 일 실시예에 따른 광학 필름(100)을 포함하는 표시장치(600)가 폴딩(Folding)되는 경우, 광학 필름(100)은 예를 들어, 50㎛ 두께를 기준으로 1.5mm의 곡률 반지름(R)만큼 휘어질 수 있다. 또한, 휘어진 광학 필름(100) 사이에 공간(701)이 형성될 수도 있다.
본 발명의 일 실시예에 따른 광학 필름(100)이 50㎛ 두께를 기준으로 1.5mm의 곡률 반지름(R)만큼 휘어질 경우, 광학 필름(100) 최외각의 변형률(%)은 1.6%이다. 따라서, 광학 필름(100)의 구동 인성은 광학 필름(100) 최외각의 변형률 1.6%를 기준으로 하여 구할 수 있다.
보다 구체적으로, 구동 인성은 동적기계분석기(DMA)를 사용하여 광학 필름(100)의 응력에 대한 변형률을 측정하고, 광학 필름(100)의 변형률(strain)을 x축, 응력(stress)를 y축으로 하여 변형률-응력 곡선(Strain-Stress Curve)을 구한 뒤, 상기 변형률-응력 곡선에서 변형률 1.6% 이하인 구간이 차지하는 면적과 시편 길이의 곱으로 정의된다.
본 발명의 또 다른 일 실시예에 따르면, 광학 필름(100)은 표시 장치(600)에 배치되어 장기간 다양한 환경 조건에서 사용될 수 있다. 다양한 환경 조건에서 접었다 폈다를 반복할 때 광학 필름(100)에 변형이 발생할 수 있다. 이러한 변형을 방지하기 위해, 변형 또는 응력 조건에서 탄성 유지가 필요하다.
광학 필름(100)의 탄성 유지 능력을 평가하기 위해, 광학 필름(100)을 악조건 처리 예를 들어, 고온 고습 조건 처리 후 구동 인성 유지 능력을 평가할 수 있다.
본 발명의 일 실시예에 따르면, 상온 상습 조건 처리 후 구동 인성 및 고온 고습 처리 후 구동 인성의 차이가 적도록 광학 필름(100)이 제조될 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 240 MPa·mm 이상의 제1 구동 인성을 가질 수 있다.
상기 제1 구동 인성은 상온 상습 조건 처리 후 측정된 구동 인성을 의미한다.
상기 상온 상습 조건 처리는 온도 25℃±3℃ 및 습도 30%±5%에서 상기 광학 필름(100)을 1시간 동안 방치하는 조건을 의미한다.
제1 구동 인성이 240 MPa·mm 미만인 경우, 상온 상습 조건에서 광학 필름(100)이 외력에 잘 저항하지 못하여 변형이 생길 수 있다. 예를 들어, 폴더블 기기의 커버 윈도우로 사용될 경우, 장기간 접었다 폈다를 반복하며 사용시 접힌 부분에 변형이 생겨 시인성이 떨어질 수 있다. 또한, 눌림과 같은 외부 힘을 받았을 때 연필경도 1H 수준의 약한 자극에도 쉽게 자국이 남고, 시간이 지나도 복원되지 않을 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 217 MPa·mm 이상의 제2 구동 인성을 가질 수 있다.
상기 제2 구동 인성은 고온 고습 조건 처리 후 측정된 구동 인성을 의미한다.
상기 고온 고습 조건 처리는 온도 60℃±3℃ 및 습도 90%±5%에서 상기 광학 필름을 1시간 방치하는 조건을 의미한다.
제2 구동 인성이 217 MPa·mm 미만인 경우, 고온 고습 조건에서 광학 필름(100)이 외력에 잘 저항하지 못하여 변형이 일어날 수 있다. 예를 들어, 폴더블 기기의 커버 윈도우로 사용될 경우, 고화질 영상 등을 시청함에 따라 기기의 온도가 고온이 된 상태에서 접었다 폈다를 반복하게 되면, 접은 부위에 변형이 생겨 시인성이 떨어질 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 10.5% 이하의 구동 인성 변형 지수를 가질 수 있다.
상기 구동 인성 변형 지수란, 상온 상습 처리 후 광학 필름의 구동 인성(제1 구동 인성) 대비 고온 고습 처리 후 광학 필름의 구동 인성(제2 구동 인성)이 얼마나 변하였는지를 나타낸 것이다. 예를 들어, 구동 인성 변형 지수가 작다는 것은 고온 고습에서 광학 필름의 기계적 물성이 우수함을 나타내는 것이다.
상기 구동 인성 변형 지수는 하기 식 1에 따라 계산된다. 구동 인성 변형 지수의 단위는 %로 정의된다.
[식 1]
Figure PCTKR2023014665-appb-img-000010
구동 인성 변형 지수가 10.5% 초과인 경우, 온도 및 습도의 상승에 따라 응력이 크게 감소하게 되므로, 폴더블 기기에 적용하기 어려울 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 155 MPa·mm 이상의 제1 구동 탄성 한계를 가질 수 있다.
상기 구동 탄성 한계란, 소재가 일정한 변형이 일어날 때까지 필요한 힘을 변형률로 나눔으로써 1% 변형 시 필요한 힘을 나타낸다. 예를 들어, 구동 탄성 한계가 크다는 것은, 필름의 질김이나 강도가 우수함을 나타내는 것으로 볼 수 있다. 구동 탄성 한계의 단위는 MPa·mm로 정의된다.
상기 제1 구동 탄성 한계는 하기 식 2에 따라 계산된다.
[식 2]
제1 구동 탄성 한계 = 제1 구동 인성 / 제1 구동 인성 변형률
상기 제1 구동 인성 변형률은 1.6%이다. 1.6%로 한정한 이유는 50㎛ 두께 필름의 곡률 반지름(R)이 1.5mm인 경우에 필름 최외각의 변형률을 의미하기 때문이다.
제1 구동 탄성 한계가 155 MPa·mm 미만인 경우, 외력에 대한 저항이 낮아 광학 필름(100)이 쉽게 변형됨을 의미하는 것으로 볼 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 140 MPa·mm 이상의 제2 구동 탄성 한계를 가질 수 있다.
상기 제2 구동 탄성 한계는 하기 식 3에 따라 계산된다.
[식 3]
제2 구동 탄성 한계 = 제2 구동 인성 / 제2 구동 인성 변형률
상기 제2 구동 인성 변형률은 1.6%이다. 1.6%로 한정한 이유는 50㎛ 두께 필름의 곡률 반지름(R)이 1.5mm인 경우에 필름 최외각의 변형률을 의미하기 때문이다.
제2 구동 탄성 한계가 140 MPa·mm 미만인 경우, 광학 필름(100)이 고온 및 고습에서 외력에 의한 변형이 쉽게 일어남을 나타내는 것으로 볼 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 7.5 GPa 이상의 모듈러스(modulus)를 가질 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)의 모듈러스는 10mm x 100mm 크기의 광학 필름 샘플을 준비한 뒤, ASTM D885 방법에 따라 만능인장시험기를 이용하여 측정될 수 있다. 만능인장시험기로 예를 들어, 인스트론社의 MODEL 5967가 사용될 수 있다.
일반적으로, 고분자 수지로 이루어진 필름은 6.0 GPa 이상의 모듈러스(modulus)를 가지기 어렵다고 알려져 있다. 그러나, 본 발명의 일 실시예에 따르면, 필러(120)는 섬유 형상을 가져, 광투과성 매트릭스(110)를 구성하는 고분자 체인들을 서로 엮을 수 있다. 그 결과, 고분자 체인들의 안정성 및 배열 특성이 향상되고 분자간 인력이 증가하여, 광학 필름(100)이 7.5 GPa 이상의 큰 모듈러스(modulus)를 가질 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 광학 필름(100)은 8.0 GPa 이상의 모듈러스를 가질 수 있고, 9.0 GPa 이상의 모듈러스를 가질 수도 있다.
본 발명의 일 실시예에 따른 광투과성 기재(110)는, 광학 필름(100)이 표시패널을 보호하기에 충분한 정도의 두께를 가질 수 있다. 예를 들어, 광투과성 기재(110)는 10 내지 100㎛의 두께를 가질 수 있다. 광투과성 기재(110)의 두께는 광학 필름(100)의 두께와 동일할 수 있다.
도 2는 본 발명의 다른 일 실시예에 따른 커버 윈도우 기판(200)의 개략도이다.
본 발명의 다른 일 실시예에 따른 커버 윈도우 기판(200)은 본 발명의 일 실시예에 따른 광학 필름(100)을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 커버 윈도우 기판(200)은, 광투과성 시트 및 커버 윈도우 기판(200)의 표면 특성 강화를 위해, 광투과성 시트 상의 코팅층(130)을 더 포함할 수 있다. 광투과성 시트는 본 발명의 일 실시예에 따른 광학 필름(100)을 포함할 수 있다.
도 3은 본 발명의 또 다른 일 실시예에 따른 커버 윈도우 기판(300)의 개략도이다.
본 발명의 또 다른 일 실시예에 따른 커버 윈도우 기판(300)는 광투과성 시트와 코팅층(130) 사이의 접착력을 향상시키기 위해, 광투과성 시트와 코팅층(130) 사이에 배치된 프라이머층(140)을 더 포함할 수 있다.
이하, 도 4 및 도 5를 참조하여, 본 발명의 일 실시예에 따른 광학 필름(100)이 사용된 표시장치(400)에 대하여 설명한다.
도 4는 본 발명의 또 다른 일 실시예에 따른 표시장치(400)의 일부에 대한 단면도이고, 도 5는 도 4의 "P" 부분에 대한 확대 단면도이다.
도 4를 참조하면, 본 발명의 다른 일 실시예에 따른 표시장치(400)는 표시패널(501) 및 표시패널(501) 상의 광학 필름(100)을 포함한다.
도 4 및 도 5를 참조하면, 표시패널(501)은 기판(510), 기판(510) 상의 박막 트랜지스터(TFT) 및 박막 트랜지스터(TFT)와 연결된 유기 발광 소자(570)를 포함한다. 유기 발광 소자(570)는 제1 전극(571), 제1 전극(571) 상의 유기 발광층(572) 및 유기 발광층(572) 상의 제2 전극(573)을 포함한다. 도 4 및 도 5에 개시된 표시장치(400)는, 예를 들어, 유기발광 표시장치이다.
기판(510)은 유리 또는 플라스틱으로 만들어질 수 있다. 구체적으로, 기판(510)은 폴리이미드계 수지 또는 광학 필름과 같은 플라스틱으로 만들어질 수 있다. 도시되지 않았지만, 기판(510) 상에 버퍼층이 배치될 수 있다.
박막 트랜지스터(TFT)는 기판(510) 상에 배치된다. 박막 트랜지스터(TFT)는 반도체층(520), 반도체층(520)과 절연되어 반도체층(520)의 적어도 일부와 중첩하는 게이트 전극(530), 반도체층(520)과 연결된 소스 전극(541) 및 소스 전극(541)과 이격되어 반도체층(520)과 연결된 드레인 전극(542)을 포함한다.
도 5를 참조하면, 게이트 전극(530)과 반도체층(520) 사이에 게이트 절연막(535)이 배치된다. 게이트 전극(530) 상에 층간 절연막(551)이 배치되고, 층간 절연막(551) 상에 소스 전극(541) 및 드레인 전극(542)이 배치될 수 있다.
평탄화막(552)은 박막 트랜지스터(TFT) 상에 배치되어 박막 트랜지스터(TFT)의 상부를 평탄화시킨다.
제1 전극(571)은 평탄화막(552) 상에 배치된다. 제1 전극(571)은 평탄화막(552)에 구비된 콘택홀을 통해 박막 트랜지스터(TFT)와 연결된다.
뱅크층(580)은 제1 전극(571)의 일부 및 평탄화막(552) 상에 배치되어 화소 영역 또는 발광 영역을 정의한다. 예를 들어, 뱅크층(580)이 복수의 화소들 사이의 경계 영역에 매트릭스 구조로 배치됨으로써, 뱅크층(580)에 의해 화소 영역이 정의될 수 있다.
유기 발광층(572)은 제1 전극(571) 상에 배치된다. 유기 발광층(572)은 뱅크층(580) 상에도 배치될 수 있다. 유기 발광층(572)은 하나의 발광층을 포함할 수도 있고, 상하로 적층된 2개의 발광층을 포함할 수도 있다. 이러한 유기 발광층(572)에서는 적색, 녹색 및 청색 중 어느 하나의 색을 갖는 광이 방출될 수 있으며, 백색(White) 광이 방출될 수도 있다.
제2 전극(573)은 유기 발광층(572) 상에 배치된다.
제1 전극(571), 유기 발광층(572) 및 제2 전극(573)이 적층되어 유기 발광 소자(270)가 이루어질 수 있다.
도시되지 않았지만, 유기 발광층(572)이 백색(White) 광을 발광하는 경우, 개별 화소는 유기 발광층(572)에서 방출되는 백색(White) 광을 파장 별로 필터링하기 위한 컬러 필터를 포함할 수 있다. 컬러 필터는 광의 이동경로 상에 형성된다.
제2 전극(573) 상에 박막 봉지층(590)이 배치될 수 있다. 박막 봉지층(590)은 적어도 하나의 유기막 및 적어도 하나의 무기막을 포함할 수 있으며, 적어도 하나의 유기막 및 적어도 하나의 무기막이 교호적으로 배치될 수 있다.
이상 설명된 적층 구조를 갖는 표시패널(501) 상에 본 발명의 일 실시예에 따른 광학 필름(100)이 배치될 수 있다. 광학 필름(100)은 광투과성 매트릭스(110) 및 광투과성 매트릭스(110)에 분산된 필러(120)를 포함할 수 있다.
또한, 이상 설명된 적층 구조를 갖는 표시패널(501) 상에 커버 윈도우 기판(200, 300)이 배치될 수 있다. 커버 윈도우 기판(200, 300)은 본 발명의 일 실시예에 따른 광학 필름(100)을 포함할 수 있다.
이하, 본 발명의 일 실시예에 따른 광학 필름(100)의 제조방법을 설명한다.
본 발명의 일 실시예에 따른 광학 필름(100)의 제조방법은 광투과성 기재(110) 형성용 중합성 조성물에 필러(120)를 1차 분산시켜 제1 혼합액을 제조하는 단계 및 제1 혼합액을 캐스팅하여 캐스트 필름을 제조하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 광투과성 기재(110) 형성용 중합성 조성물로 폴리이미드계 수지 용액이 사용될 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 광학 필름(100)의 제조방법은, 폴리이미드계 수지 분말을 제조하는 단계, 폴리이미드계 수지 분말을 제1 용매에 용해시켜 폴리이미드계 수지 용액을 제조하는 단계, 필러(120)를 제2 용매에 분산시켜 필러 분산액을 제조하는 단계, 필러 분산액과 폴리이미드계 수지 용액을 혼합하여 제1 혼합액을 제조하는 단계를 포함할 수 있다.
제1 용매로 DMAc(N,N-Dimethylacetamide)가 사용될 수 있다. 제2 용매로 DMAc(N,N-Dimethylacetamide) 또는 메틸에틸케톤(Methyl Ethyl Ketone, MEK)이 사용될 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 제1 용매 및 제2 용매로 공지된 다른 용매가 사용될 수도 있다.
섬유 형상의 필러(120), 예를 들어, 종횡비가 큰 섬유 형상의 필러(120)는 직경 대비 긴 길이를 가져, 광투과성 매트릭스 내에서 엉킴 또는 응집이 발생되기 쉬울 수 있다. 따라서, 필러(120)는 제1 혼합액 내에서 우수한 분산성을 필요로 한다.
본 발명의 일 실시예에 따르면, 필러(120)의 분산성을 향상시키기 위해 예를 들어, 톨루엔 설폰산(p-Toluene sulfonic acid, PTSA)이 첨가제로 사용될 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 필러(120)의 분산성을 향상시키기 위해 공지된 다른 첨가제가 사용될 수도 있다.
본 발명의 일 실시예에 따르면, 필러(120)의 분산성을 향상시키기 위하여, 제1 혼합액의 pH가 조정될 수 있다. 예를 들어, 제1 혼합액의 pH는 5 내지 7의 범위로 조정될 수 있다. 그에 따라 필러(120)의 응집 또는 뭉침 현상이 방지될 수 있다.
다음, 제1 혼합액을 캐스팅하고, 건조 및 열처리하여 광학 필름(100)을 형성할 수 있다. 본 발명의 일 실시예에 따르면, 제1 혼합액의 캐스팅에 의하여 형성된 필름을 캐스트 필름이라 하고, 캐스트 필름의 건조 및 열처리에 의하여 제조된 필름을 광학 필름(100)이라고 할 수 있다. 캐스트 필름은 미경화 필름이라고 할 수 있다.
필러(120)의 배향성을 향상시키기 위하여, 바(bar) 코팅에 의하여 캐스팅이 진행될 수 있다.
본 발명의 일 실시예에 따르면, 캐스팅에 의하여 형성된 캐스트 필름에 가해지는 압력을 조절하여, 필러(120)의 배향 방향 및 배향 정도가 달라지도록 할 수 있다.
또한, 캐스팅에 의하여 형성된 캐스트 필름의 건조 및 열처리 과정에 대류를 방지하여, 필러(120)가 일정한 방향으로 배향되도록 할 수 있다.
구체적으로, 열을 이용하여 캐스트 필름을 건조할 때, 내부에 대류가 발생하면 필러(120)의 배향성이 저하될 수 있다. 따라서, 대류를 방지하기 위해 캐스트 필름이 천천히 건조되도록 할 수 있다. 예를 들어, 80℃ 내지 120℃까지 1℃/1minute (1도/1분)의 승온 속도로 승온하면서 캐스트 필름에 대한 건조가 진행될 수 있다. 일정 수준 이상 건조가 되면 필러(120)의 배향성이 고정될 수 있다.
이하, 예시적인 제조예 및 실시예를 참조하여 본 발명을 보다 구체적으로 설명한다. 그러나, 이하 설명되는 제조예나 실시예에 의하여 본 발명이 한정되는 것은 아니다.
<제조예: 폴리이미드계 중합성 조성물의 고형분 제조>
4구의 이중자켓 반응조에 비스 트리플루오로메틸 벤지딘(TFDB) 320.23g을 디메틸아세트아마이드(DMAc)에 녹인다. 이후, 비페닐 테트라카르복실릭 디안하이드라이드(BPDA) 79.44g을 투입하고 반응조의 온도를 25℃로 유지하여 2시간 동안 교반시켜 반응을 진행시켰다. 반응이 완료되면 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA) 53.31g을 넣고 반응조의 온도를 25℃로 유지하여 1시간 동안 교반시켜 반응을 진행시켰다.
이후, 반응조의 온도를 7℃이하로 낮춘 뒤, 테레프탈로일 클로라이드(TPC) 118.77g과 프로필렌옥사이드(PO)를 투입한다. 반응조의 온도를 7℃로 유지하여 1시간 동안 교반시킨 뒤, 상온으로 온도를 높이고 24시간 방치시켰다.
중합 반응이 종료된 뒤, 얻어진 중합체 용액에 피리딘 67.87 g, 아세틱 안하이드라이드 87.62 g을 투입하고 80℃로 승온키셔 1시간동안 교반하였다. 이를 다시 상온으로 식히고, 얻어진 중합성 조성물 용액에 메탄올 20L를 첨가하여 고형분을 침전시키고, 침전된 고형분을 여과하고 분쇄한 후, 다시 메탄올 2L로 세정한 후, 100℃에서 진공으로 6시간 건조하여 분말 상태의 폴리이미드계 중합성 조성물의 고형분을 얻었다. 여기서 제조된 폴리이미드계 중합성 조성물의 고형분은 폴리아마이드-이미드 중합성 조성물의 고형분이다. 수율은 80% 이상이었다.
<실시예 1>
4구의 이중자켓 반응조를 질소 분위기로 유지하면서 반응조의 온도를 5℃로 유지하기 위한 서큘레이터를 연결한 뒤, 반응조에 525.17 g의 DMAc(제1 용매) 및 투입한 폴리이미드계 수지 분말 총 중량을 100 중량부로하여 필러(120)를 5 중량부 채운 후, 일정시간 교반하였다. 이후, 제조예에서 제조된 폴리이미드계 중합성 조성물의 고형분 분말을 85.97 g 투입한 후, 용해될 때까지 교반하여 액상의 폴리이미드계 수지 용액을 제조하였다. 여기서, 필러(120)는 화학식 1의 구조를 포함하는 섬유 형상의 알루미나 수화물이다.
액상의 폴리이미드계 수지 용액을 제조한 직후 pH를 측정하면 pH가 8 이상이다. 필러(120)의 배열 특성을 향상시키기 위하여, 아세트산(acetic acid)과 같은 약산을 액상의 폴리이미드계 수지 용액에 투입하여 액상의 폴리이미드계 수지 용액의 pH가 5~7의 범위가 되도록 조절한다. 이와 같이 제조된 액상의 폴리이미드계 수지 용액은 섬유 형상의 필러(120)가 분산된 폴리이미드계 수지 용액이다.
얻어진 폴리이미드계 수지 용액을 캐스팅하였다. 캐스팅을 위해 캐스팅 기판이 사용된다. 캐스팅 기판의 종류에 특별한 제한이 있는 것은 아니다. 캐스팅 기판으로, 유리 기판, 스테인레스(SUS) 기판, 테프론 기판 등이 사용될 수 있다. 본 발명의 일 실시예에 따르면, 캐스팅 기판으로 유리 기판이 사용될 수 있다.
구체적으로, 얻어진 폴리이미드계 수지 용액을 유리 기판에 도포하여 캐스팅을 하였다. 필러(120)의 배향성을 향상시키기 위하여, 폴리이미드계 수지 용액을 기재(유리 기판)에 도포 한 후, 30N 이상의 힘을 유리 기판에 수직인 방향으로 누르면서 캐스팅하였다. 그 결과, 캐스트 필름이 제조되었다.
캐스트 필름의 건조 과정에서 필러(120)의 배향성을 유지하기 위해 80℃의 열풍 오븐에 넣고 1℃/분의 속도로 120℃까지 약 40분간 천천히 건조하여 필름을 제조하고, 제조된 필름을 유리 기판에서 박리하여 프레임에 핀으로 고정하였다.
필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 280℃까지 2시간 동안 천천히 가열한 후, 서서히 냉각해 프레임으로부터 분리하여 광학 필름을 수득하였다. 다시 광학 필름을 250℃에서 5분 동안 열처리하였다.
그 결과, 광투과성 기재(110) 및 광투과성 기재에 분산된 알루미나계 필러(120)를 포함하는, 50㎛ 두께의 광학 필름(100)이 완성되었다.
<실시예 2 내지 8>
표 1의 조건에 따라, 실시예 1과 동일한 방법으로 광학 필름(100)을 제조하고 이를 각각 실시예 2 내지 8이라 하였다.
<비교예 1 내지 3>
표 1의 조건에 따라, 필러의 첨가를 제외하고 실시예 1과 동일한 방법으로 광학 필름(100)을 제조하고 이를 각각 비교예 1 내지 3으로 하였다.
구분 디아민 모노머 디안하이드라이드
화합물
디카르보닐
화합물
필러의 종류 필러의
함량
TFDB BPDA CBDA 6FDA TPC
실시예 1 100 27 - 12 61 알루미나 수화물
(화학식 1)
5
실시예 2 100 27 - 12 61 알루미나 수화물
(화학식 1)
10
실시예 3 100 - 17 17 66 알루미나 수화물
(화학식 1)
7
실시예 4 100 - 17 17 66 알루미나 수화물
(화학식 1)
10
실시예 5 100 - 26.25 12.5 61.25 알루미나 수화물
(화학식 1)
3
실시예 6 100 - 26.25 12.5 61.25 알루미나 수화물
(화학식 1)
5
실시예 7 100 27 - 12 61 알루미나 수화물
(화학식 2)
5
실시예 8 100 27 - 12 61 알루미나 수화물
(화학식 3)
5
비교예 1 100 27 - 12 61 미첨가 -
비교예 2 100 - 17 17 66 미첨가 -
비교예 3 100 - 26.25 12.5 61.25 미첨가
알루미나 수화물(화학식 1, 2, 3) 필러: 직경 4nm 및 길이 1500nm
<측정 방법>
실시예 1 내지 8 및 비교예 1 내지 3에 따라 제조된 광학 필름에 대하여 다음과 같은 측정을 실행하였다. 또한, 실시예 1 내지 6 및 비교예 1 내지 3의 변형률-응력 곡선을 도 7 내지 12에 도시하였다.
(1) 변형률-응력 곡선(Strain-Stress Curve) 측정
TA instrument社의 동적기계분석기(Dynamic Mechanical Analysis, DMA) 모델 DMA850을 이용하여 실시예 1 내지 8 및 비교예 1 내지 3에 따라 제조된 광학 필름의 변형률-응력 곡선을 각각 측정하였다.
- 측정 환경 제어를 위해 RH Chamber(항온항습기)를 연결해 측정
- 측정 시편: 길이(L) x 폭(W) x 두께(T) = 5mm x 2mm x 0.05mm
- 상온 상습 조건 처리: 온도 25℃±3℃ 및 습도 30%±5%에서 광학 필름 시편을 1시간 동안 방치하는 조건
- 고온 고습 조건 처리: 온도 60℃±3℃ 및 습도 90%±5%에서 광학 필름 시편을 1시간 방치하는 조건
- 실시예 1 내지 8 및 비교예 1 내지 3에 따라 제조된 광학 필름 각각의 시편을 Film tension clamp에 거치하고, Oscillation Test 중 strain sweep method를 사용하여 측정
(2) 항복점 측정
상기 (1)에서 측정한 광학 필름의 변형률-응력 곡선에서, 응력 양상이 급격히 달라지는 지점을 항복점으로 하였다. 구체적으로 변형률 증가에도 응력이 감소 또는 일정하게 유지되기 시작하는 지점을 항복점으로 하였다. 항복점의 단위는 %로 정의한다.
- 제1 항복점: 상온 상습 조건 처리 후 변형률-응력 곡선에서의 항복점
- 제2 항복점: 고온 고습 조건 처리 후 변형률-응력 곡선에서의 항복점
(3) 제1 구동 인성 및 제2 구동 인성 측정
상기 (1)에서 측정한 변형률-응력 곡선에서 변형률 1.6%일 때를 기준으로 하여, 변형률-응력 곡선의 면적을 3회 구한 뒤, 그 평균값에 시편의 길이를 곱한 값을 구동 인성으로 하였다. 구동 인성의 단위는 MPa·mm로 정의한다.
제1 구동 인성은 상온 상습 조건 처리 후 구해진 변형률-응력 곡선에서의 변형률 1.6%일 때를 기준으로 하여 구한 면적이고, 제2 구동 인성은 고온 고습 조건 처리 후 구해진 변형률-응력 곡선에서의 변형률 1.6%일 때를 기준으로 하여 구한 면적이다.
(4) 구동 인성 변형 지수 계산
실시예 1 내지 8 및 비교예 1 내지 3에 따라 제조된 광학 필름의 온도 및 습도 변화에 따른 구동 인성 변형 정도를 구동 인성 변형 지수로 하였으며, 하기 식 1에 따라 계산되었다. 구동 인성 변형 지수의 단위는 %로 정의한다.
[식 1]
Figure PCTKR2023014665-appb-img-000011
(5) 제1 구동 탄성 한계 및 제2 구동 탄성 한계 측정
상기 (1)에서 측정한 변형률-응력 곡선에서 변형률이 1.6%일 때를 기준으로 하여, 변형률-응력 곡선의 면적을 구동 인성으로 하였고, 이를 구동 인성 변형률로 나눈 값을 구동 탄성 한계로 하여, 그 값을 계산하였다. 제1 및 제2 구동 인성 변형률은 1.6%이다. 1.6%로 한정한 이유는 50㎛ 두께 필름의 곡률 반지름이 1.5R인 경우에 필름 최외각의 변형률을 의미하기 때문이다.
상기 값을 3회 구해 평균값을 얻어 이를 구동 탄성 한계로 하였다. 구동 탄성 한계의 단위는 MPa·mm로 정의한다.
제1 구동 탄성 한계 및 제2 구동 탄성 한계를 하기 식 2 및 3에 따라 계산하였다.
[식 2]
제1 구동 탄성 한계 = 제1 구동 인성 / 제1 구동 인성 변형률
제1 구동 탄성 한계는 광학 필름 시편을 상온 상습 조건 처리 후 측정한 것이고,
[식 3]
제2 구동 탄성 한계 = 제2 구동 인성 / 제2 구동 인성 변형률
제2 구동 탄성 한계는 광학 필름 시편을 고온 고습 조건 처리 후 측정한 것이다.
(6) 모듈러스(modulus) 측정
ASTM D885 방법에 따라, 인스트론사의 만능인장시험기(MODEL 5967)를 이용하여 실시예 1 내지 8, 비교예 1 내지 3에 따라 제조된 광학 필름 각각의 모듈러스(modulus)를 측정하였다.
- Road Cell 30KN, Grip 250N.
- 시편 크기 10mm X 100mm, 인장속도 25mm/min
- 코팅하는 방향으로 배향성이 생기기 때문에, 코팅 방향은 MD, 코팅 직교 방향은 TD라고 칭하며, 광학 필름의 MD 방향 모듈러스(Modulus)를 측정
- 모듈러스 단위: GPa
물성 측정결과는 다음 표 2와 같다.
구분 제1
항복점
제2
항복점
제1
구동
인성
제2
구동
인성
구동 인성
변형 지수
제1 구동
탄성 한계
제2 구동
탄성 한계
모듈러스
(GPa)
실시예 1 2.52 2.95 255 242 5.3 160 151 8.0
실시예 2 1.86 2.69 333 319 4.1 208 199 9.3
실시예 3 1.74 2.11 418 376 10.0 261 235 8.4
실시예 4 1.31 1.71 459 424 7.7 287 265 9.3
실시예 5 1.61 1.96 371 332 10.4 232 208 7.5
실시예 6 1.09 1.36 451 418 7.2 282 261 8.4
실시예 7 2.41 2.52 232 244 5.4 145 153 7.8
실시예 8 2.74 2.69 233 239 2.7 145 149 10.0
비교예 1 3.14 3.94 239 93.5 60.9 150 58.4 5.9
비교예 2 2.45 2.24 370 294 20.5 232 184 6.0
비교예 3 1.80 2.41 330 284 14.1 206 177 6.5
표 2의 측정결과에 개시된 바와 같이, 본 발명의 실시예에 따른 광학 필름(100)은, 우수한 구동 인성, 우수한 구동 인성 변형 지수, 우수한 구동 탄성 한계 및 우수한 구동 탄성 한계 지수를 가져, 우수한 기계적 물성을 가지는 것을 확인할 수 있다.
[부호의 설명]
100: 광학 필름 110: 광투과성 기재
120: 필러 130: 코팅층
140: 프라이머층 200, 300: 커버 윈도우 기판
400, 600: 표시장치 501: 표시패널

Claims (17)

  1. 광투과성 기재; 및
    상기 광투과성 기재에 분산된 필러;를 포함하고,
    상기 필러는 섬유 형상을 가지며,
    10.5% 이하의 구동 인성 변형 지수를 갖는, 광학 필름:
    여기서, 구동 인성 변형 지수는 하기 식 1에 따라 계산되고,
    [식 1]
    Figure PCTKR2023014665-appb-img-000012
    상기 제1 구동 인성은 상온 상습 조건 처리 후 측정된 구동 인성이고,
    상기 상온 상습 조건 처리는 온도 25℃±3℃ 및 습도 30%±5%에서 상기 광학 필름을 1시간 동안 방치하는 조건이고,
    상기 제2 구동 인성은 고온 고습 조건 처리 후 측정된 구동 인성이고,
    상기 고온 고습 조건 처리는 온도 60℃±3℃ 및 습도 90%±5%에서 상기 광학 필름을 1시간 방치하는 조건이며,
    상기 구동 인성은 동적기계분석기(DMA)를 사용하여 상기 광학 필름의 응력에 대한 변형률을 측정하고, 상기 광학 필름의 변형률(strain)을 x축, 응력(stress)을 y축으로 하여 변형률-응력 곡선(Strain-Stress Curve)을 구한 뒤, 상기 변형률-응력 곡선에서 변형률 1.6%이하인 구간이 차지하는 면적과 시편 길이의 곱으로 정의된다.
  2. 제1항에 있어서,
    240 MPa·mm 이상의 제1 구동 인성을 갖는, 광학 필름.
  3. 제1항에 있어서,
    217 MPa·mm 이상의 제2 구동 인성을 갖는, 광학 필름.
  4. 제2항에 있어서,
    155 MPa·mm 이상의 제1 구동 탄성 한계를 갖는, 광학 필름:
    여기서, 상기 제1 구동 탄성 한계는 하기 식 2에 따라 계산되고,
    [식 2]
    제1 구동 탄성 한계 = 제1 구동 인성 / 제1 구동 인성 변형률
    상기 제1 구동 인성 변형률의 값은 1.6%이다.
  5. 제3항에 있어서,
    140 MPa·mm 이상의 제2 구동 탄성 한계를 갖는, 광학 필름:
    여기서, 상기 제2 구동 탄성 한계는 하기 식 3에 따라 계산되고,
    [식 3]
    제2 구동 탄성 한계 = 제2 구동 인성 / 제2 구동 인성 변형률
    상기 제2 구동 인성 변형률의 값은 1.6%이다.
  6. 제1항에 있어서,
    상기 필러는, 유리 섬유(Glass fiber), 알루미늄계 섬유(Aluminum-based fiber) 및 불소 섬유(Fluoride fiber) 중 적어도 하나를 포함하는, 광학 필름.
  7. 제1항에 있어서,
    상기 필러는, 알루미나 수화물(aluminum oxide hydroxide), SiO2, Al2O3, PTFE(Polytetrafluoroethylene) 및 PVDF(Polyvinylidene Fluoride) 중 적어도 하나를 포함하는, 광학 필름.
  8. 제1항에 있어서,
    상기 광투과성 기재는
    디아민 모노머; 및
    디안하이드라이드 화합물 및 디카르보닐 화합물 중 적어도 하나;
    를 포함하는 중합성 조성물로부터 형성된, 광학 필름.
  9. 제8항에 있어서,
    상기 광투과성 기재는 이미드 반복단위 및 아마이드 반복단위 중 적어도 하나를 포함하는, 광학 필름.
  10. 제8항에 있어서,
    상기 디아민 모노머는 비스 트리플루오로메틸 벤지딘(2,2'-bis(trifluoromethyl)benzidine, TFDB), 옥시디아닐린(4,4'-Oxydianiline, ODA), p-페닐렌디아민(para-phenylene diamine, pPDA), m-페닐렌디아민(meta-phenylene diamine, mPDA), p-메틸렌디아민(para-Methylene Diamine, pMDA), m-메틸렌디아민(meta-Methylene Diamine, mMDA), 비스 아미노페녹시 벤젠(1,3-bis(3-aminophenoxy) benzene, 133APB), 비스 아미노페녹시 벤젠(1,3-bis(4-aminophenoxy) benzene, 134APB), 비스 아미노 페녹시 페닐 헥사플루오로프로판 (2,2'-bis[4(4-aminophenoxy)phenyl] hexafluoropropane, 4BDAF), 비스 아미노페닐 헥사플루오로 프로판(2,2'-bis(3-aminophenyl)hexafluoropropane, 33-6F), 비스 아미노페닐 헥사플루오로 프로판(2,2'-bis(4-aminophenyl)hexafluoropropane, 44-6F), 비스 아미노페닐술폰(bis(4-aminophenyl)sulfone, 4DDS), 비스 아미노페닐술폰(bis(3-aminophenyl)sulfone, 3DDS), 사이클로헥산디아민(1,3-Cyclohexanediamine, 13CHD), 사이클로헥산 디아민(1,4-Cyclohexanediamine, 14CHD), 비스 아미노 페녹시 페닐프로판(2,2-Bis[4-(4-aminophenoxy)-phenyl]propane, 6HMDA), 비스 아미노하이드록시 페닐 헥사플로오로프로판2,2-Bis(3-amino-4-hydroxy-phenyl)-hexafluoropropane, DBOH), 비스 아미노페녹시 디페닐 술폰(4,4'-Bis(3-amino phenoxy) diphenyl sulfone, DBSDA) 중 적어도 하나를 포함하는, 광학 필름.
  11. 제8항에 있어서,
    상기 디안하이드라이드 화합물은 비페닐 테트라카르복실릭 디안하이드라이드 (3,3,4,4-Biphenyltetracarboxylic dianhydride, BPDA), 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA), 4-(2,5-디옥소테트라하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭안하이드라이드(TDA), 피로멜리틱산 디안하이드라이드(1,2,4,5-benzene tetracarboxylic dianhydride, pyromellicticacid dianhydride, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드 (3,3,4,4-Benzophenone tetracarboxylic dianhydride, BTDA), 옥시디프탈릭 디안하이드라이드 (4,4-Oxydiphthalic dianhydride, ODPA), 비스카르복시페닐디메틸 실란 디안하이드라이드(Bis(3,4dicarboxyphenyl)dimethyl-silane dianhydride, SiDA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(4,4-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride, BDSDA), 술포닐 디프탈릭안하이드라이드(Sulfonyldiphthalic anhydride, SO2DPA), 사이클로부탄 테트라카르복실릭 디안하이드라이드(Cyclobutane-1,2,3,4- tetracarboxylic dianhydride, CBDA), 이소프로필리덴이페녹시 비스 프탈릭안하이드라이드(4,4'-(4,4'-Isopropylidenediphenoxy) bis(phthalic anhydride), 6HBDA) 중 적어도 하나를 포함하는, 광학 필름.
  12. 제8항에 있어서,
    상기 디카르보닐 화합물은 테레프탈로일 클로라이드(Terephthaloyl Chloride, TPC), 프탈로일 클로라이드(Phthaloyl Chloride), 아이소프탈로일 클로라이드(Isophthaloyl chloride, IPC), 바이페닐디카보닐 클로라이드(4,4'-Biphenyldicarbonyl Chloride, DPDOC), 옥시비스벤조일 클로라이드(4,4'-Oxybis(benzoyl Chloride), OBBOC) 나프탈렌 디카보닐 디클로라이드(Naphthalene-2,3-dicarbonyl dichloride), 사이클로헥산 디카보닐디클로라이드(1,4-Cyclohexanedicabonyldichloride, CHDOC) 중 적어도 하나를 포함하는, 광학 필름.
  13. 제8항에 있어서,
    상기 디안하이드라이드 화합물과 상기 디카르보닐 화합물의 몰비는 5:95 내지 40:60의 범위인, 광학 필름.
  14. 제1항 내지 제13항 중 어느 한 항의 광학 필름;을 포함하는,
    커버 윈도우 기판.
  15. 광투과성 시트; 및
    상기 광투과성 시트 상의 코팅층;을 포함하고,
    상기 광투과성 시트는 제1항 내지 제13항 중 어느 한 항의 광학 필름;을 포함하는,
    커버 윈도우 기판.
  16. 제15항에 있어서,
    상기 광투과성 시트와 상기 코팅층 사이에 배치된 프라이머층을 더 포함하는,
    커버 윈도우 기판.
  17. 표시패널; 및
    상기 표시패널 상에 배치된, 제1항 내지 제13항 중 어느 한 항의 광학 필름;
    을 포함하는, 표시장치.
PCT/KR2023/014665 2022-09-28 2023-09-25 광학 필름 및 이를 포함하는 표시장치 WO2024071909A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0123417 2022-09-28
KR20220123417 2022-09-28
KR10-2023-0126644 2023-09-21
KR1020230126644A KR20240044350A (ko) 2022-09-28 2023-09-21 광학 필름 및 이를 포함하는 표시장치

Publications (1)

Publication Number Publication Date
WO2024071909A1 true WO2024071909A1 (ko) 2024-04-04

Family

ID=90478734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014665 WO2024071909A1 (ko) 2022-09-28 2023-09-25 광학 필름 및 이를 포함하는 표시장치

Country Status (1)

Country Link
WO (1) WO2024071909A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070279741A1 (en) * 2004-03-23 2007-12-06 Nitto Denko Corporation Polarizing Plate, Optical Film and Image Display
KR20090064421A (ko) * 2006-09-29 2009-06-18 다이니폰 인사츠 가부시키가이샤 광학 기능 필름
KR20170001297A (ko) * 2015-06-26 2017-01-04 동우 화인켐 주식회사 적층 필름 및 이를 포함하는 화상 표시 장치
KR101801471B1 (ko) * 2016-06-23 2017-11-24 동우 화인켐 주식회사 하드코팅 필름 및 이를 이용한 화상표시장치
WO2022010253A1 (ko) * 2020-07-10 2022-01-13 코오롱인더스트리 주식회사 광투과성 필름, 그 제조방법 및 이를 포함하는 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070279741A1 (en) * 2004-03-23 2007-12-06 Nitto Denko Corporation Polarizing Plate, Optical Film and Image Display
KR20090064421A (ko) * 2006-09-29 2009-06-18 다이니폰 인사츠 가부시키가이샤 광학 기능 필름
KR20170001297A (ko) * 2015-06-26 2017-01-04 동우 화인켐 주식회사 적층 필름 및 이를 포함하는 화상 표시 장치
KR101801471B1 (ko) * 2016-06-23 2017-11-24 동우 화인켐 주식회사 하드코팅 필름 및 이를 이용한 화상표시장치
WO2022010253A1 (ko) * 2020-07-10 2022-01-13 코오롱인더스트리 주식회사 광투과성 필름, 그 제조방법 및 이를 포함하는 표시장치

Similar Documents

Publication Publication Date Title
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2014168402A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2019088454A1 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2010002182A9 (en) Plastic substrate and device including the same
WO2019093669A2 (ko) 초박막 블랙 폴리이미드 필름 및 이의 제조방법
WO2019054616A1 (ko) 폴리이미드 공중합체 및 이를 이용한 폴리이미드 필름
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2020111399A1 (ko) 입경이 상이한 2 이상의 필러를 포함하는 폴리이미드 필름 및 이를 포함하는 전자장치
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2021060752A1 (ko) 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법
WO2019143000A1 (ko) 2 종 이상의 필러를 포함하는 고열전도성 폴리이미드 필름
WO2024071909A1 (ko) 광학 필름 및 이를 포함하는 표시장치
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2018147606A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020209625A1 (ko) 폴리아미드-이미드 블록 공중합체, 이의 제조방법 및 이를 포함하는 폴리아미드-이미드 필름
WO2022145890A1 (ko) 광학 특성이 개선된 광학 필름, 이를 포함하는 표시장치 및 이의 제조방법
WO2023286954A1 (ko) 폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23873026

Country of ref document: EP

Kind code of ref document: A1