WO2023286954A1 - 폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치 - Google Patents

폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치 Download PDF

Info

Publication number
WO2023286954A1
WO2023286954A1 PCT/KR2021/019823 KR2021019823W WO2023286954A1 WO 2023286954 A1 WO2023286954 A1 WO 2023286954A1 KR 2021019823 W KR2021019823 W KR 2021019823W WO 2023286954 A1 WO2023286954 A1 WO 2023286954A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
based compound
repeating unit
diamine
bis
Prior art date
Application number
PCT/KR2021/019823
Other languages
English (en)
French (fr)
Inventor
정학기
박효준
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210186219A external-priority patent/KR102699705B1/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2023575504A priority Critical patent/JP2024529230A/ja
Priority to EP21950296.0A priority patent/EP4324870A1/en
Priority to CN202180100358.XA priority patent/CN117616072A/zh
Priority to US18/560,376 priority patent/US20240255676A1/en
Publication of WO2023286954A1 publication Critical patent/WO2023286954A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to an optical film including a polymer resin having excellent folding performance and a display device including the same.
  • an optical film instead of glass as a cover window is under review.
  • it In order for an optical film to be used as a cover window of a display device, it must have excellent optical and mechanical properties, and must also have excellent folding properties in order to be folded.
  • polyimide (PI)-based resins have excellent insolubility, chemical resistance, heat resistance, radiation resistance, and low-temperature characteristics, and are used in automobile materials, aviation materials, spacecraft materials, insulation coatings, insulation films, and protective films. there is.
  • polyamide-imide-based resins in which amide repeating units are added to polyimide-based resins have been developed, and films manufactured using polyamide-imide-based resins have optical properties, insolubility, chemical resistance, heat resistance, and radiation resistance. And mechanical properties such as low-temperature properties are excellent, and at the same time, folding properties are excellent.
  • the amide repeating unit may be prepared by polymerization of a diamine-based compound and a dicarbonyl-based compound.
  • TFDB 2,2'-bis(trifluoromethyl)benzidine
  • dicarbonyl-based due to the rigid structure of TFDB, dicarbonyl-based During polymerization with the compound, there is a problem that the polymerization reaction does not occur sufficiently because the dicarbonyl-based compound is gelated.
  • One embodiment of the present invention is to provide an optical film including a polymer resin having excellent folding properties.
  • one embodiment of the present invention is to provide an optical film excellent in optical properties and mechanical properties.
  • An embodiment of the present invention provides an optical film that includes a polymer resin, has a yellowness of 3.0 or less, and has a folding performance parameter calculated by Equation 1 below of 1.5 GPa or less.
  • Equation 1 R is the radius of curvature of the optical film at the center line of folding when folded, is 0.5 mm, d is the thickness of the optical film, the unit of thickness is ⁇ m, and E' is the elastic strain calculated by Equation 2 below is the exponent
  • Equation 2 only numbers are substituted for the radius of curvature and the thickness, excluding units.
  • Equation 2 E is the modulus of the optical film, the unit of the modulus is GPa, and v is the Poisson's ratio of the optical film.
  • the elastic strain index (E′) calculated by Equation 2 may be 5.5 or more.
  • the polymer resin may include an imide repeating unit and an amide repeating unit.
  • the amide repeating unit may be included in a ratio of 80% or more with respect to the number of the imide repeating unit and the number of the amide repeating unit.
  • the imide repeating unit may include a first repeating unit and a second repeating unit.
  • the amide repeating unit may include a third repeating unit and a fourth repeating unit.
  • the first repeating unit is an imide repeating unit obtained by polymerization of a first diamine-based compound and a first dianhydride-based compound
  • the second repeating unit is a polymerization reaction between a second diamine-based compound and a second dianhydride-based compound. It may be a reacted imide repeating unit.
  • the third repeating unit is an amide repeating unit in which a first diamine-based compound and a first dicarbonyl-based compound are polymerized
  • the fourth repeating unit is an amide repeating unit in which a second diamine-based compound and a second dicarbonyl-based compound are polymerized. It may be a repeating unit.
  • the first diamine-based compound may be 2,2'-bis (trifluoromethyl) benzidine (TFDB).
  • the second diamine-based compound is a diamine-based compound containing at least one functional group selected from the group consisting of a sulfonyl group, a carbonyl group, a methylene group, a propylene group, and a halogen element.
  • a sulfonyl group a carbonyl group, a methylene group, a propylene group, and a halogen element.
  • the second diamine-based compound is bis (3-aminophenyl) sulfone (Bis (3-aminophenyl) sulfone, 3DDS), bis (4-aminophenyl) sulfone (Bis (4-aminophenyl) sulfone, 4DDS), 2, 2-bis (3-aminophenyl) hexafluoropropane (2,2-Bis (3-aminophenyl) hexafluoropropane, 3,3'-6F), 2,2-bis (4-aminophenyl) hexafluoropropane ( 2,2-Bis(4-aminophenyl)hexafluoropropane, 4,4'-6F), 4,4'-Methylenedianiline (MDA), 3,3'-diaminobenzophenone (3 ,3'-Diaminobenzophenone), 4,4'-diaminobenzophenone, and tetrachloridebenzidine (CI
  • a mole ratio of the first diamine-based compound and the second diamine-based compound subjected to polymerization may be 95:5 to 50:50.
  • the polymer resin may have a weight-average molecular weight (Mw) of 200,000 to 500,000.
  • Another embodiment of the present invention the display panel; and an optical film according to any one of claims 1 to 13 disposed on the display panel.
  • it is intended to provide an optical film having excellent folding characteristics.
  • the optical film according to another embodiment of the present invention has excellent optical and mechanical properties, when used as a cover window of a display device, it can effectively protect the display surface of the display device.
  • FIG. 1 is a cross-sectional view of an optical film showing a change in length when the optical film is folded.
  • FIG. 2 is a cross-sectional view of a portion of a display device according to another exemplary embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of portion “P” in FIG. 2 .
  • spatially relative terms “below, beneath”, “lower”, “above”, “upper”, etc. refer to one element or component as shown in the drawing. It can be used to easily describe the correlation between and other elements or components. Spatially relative terms should be understood as terms that include different orientations of elements in use or operation in addition to the directions shown in the figures. For example, when flipping elements shown in the figures, elements described as “below” or “beneath” other elements may be placed “above” the other elements. Thus, the exemplary term “below” may include directions of both below and above. Likewise, the exemplary terms “above” or “above” can include both directions of up and down.
  • first, second, etc. are used to describe various components, these components are not limited by these terms. These terms are only used to distinguish one component from another. Therefore, the first component mentioned below may also be the second component within the technical spirit of the present invention.
  • At least one should be understood to include all possible combinations from one or more related items.
  • at least one of the first item, the second item, and the third item means not only the first item, the second item, or the third item, but also two of the first item, the second item, and the third item. It may mean a combination of all items that can be presented from one or more.
  • An optical film according to an embodiment of the present invention provides an optical film.
  • An optical film according to an embodiment of the present invention includes a polymer resin.
  • the polymer resin may be included in various shapes and forms, such as a powder form in a film, a form dissolved in a solution, and a matrix form solidified after dissolution in a solution, and the resin surface containing the same repeating unit as in the present invention may have any shape or form. And all can be seen as the same as the polymer resin of the present invention.
  • the polymer resin may be present in a matrix form in which a polymer resin solution is applied and then dried and solidified in the film.
  • the folding performance parameter of the optical film calculated by Equation 1 below is 1.5 GPa or less.
  • Equation 1 R is the radius of curvature of the optical film at the center line of folding when folded, is 0.5 mm, d is the thickness of the optical film, the unit of thickness is ⁇ m, and E' is the elastic strain calculated by Equation 2 below is the exponent
  • the thickness of the optical film can be measured using an electronic micrometer, for example, Anritsu Electronic Micrometer.
  • the radius of curvature of the optical film can be measured by using a bending repeater, for example, YUASA's DLDM111LHA, after folding in the device, and checking the gap between the inner folds with a gap gauge.
  • YUASA's DLDM111LHA a bending repeater
  • Equation 2 E is the modulus of the optical film, the unit of the modulus is GPa, and v is the Poisson's ratio of the optical film.
  • the modulus of the optical film can be measured under the following conditions using a universal testing machine (eg, INSTRON) according to the standard ASTM D882.
  • a universal testing machine eg, INSTRON
  • the Poisson's ratio of an optical film is the ratio of the lateral strain to the axial strain of a specimen subjected to an axial load, and can be measured by a video extensometer according to the standard ASTM E-132. Specifically, it can be measured under the following conditions using a universal testing machine (for example, Instron 3367 from Instron).
  • FIG. 1 is a cross-sectional view of an optical film showing a change in length when the optical film is folded.
  • 1 is just one example for showing a change in length of an optical film when folded, and the change in length when folded may have a different shape for each optical film. Therefore, the present invention is not limited thereto.
  • the folding performance parameter of the optical film When the folding performance parameter of the optical film is 1.5 GPa or less, resistance generated during folding is reduced, and thus excellent folding performance may be exhibited and no folding marks may be generated.
  • the folding performance is excellent and no folding marks are generated.
  • the radius of curvature (R) in the "folding performance parameter” is 0.5 mm, and when the "folding performance parameter" is 1.5 GPa or less, no folding marks occur even when folding with the radius of curvature (R) of 0.5 mm, and excellent folding performance can have
  • mechanical changes of the film may occur when the optical film is folded.
  • the folding marks are, for example, the film is bent, or the surface of the film is unevenly wrinkled, or a transparent film. It means that there is a phenomenon in which white turbidity occurs.
  • a difference in length before and after folding may occur, or a change in mechanical and optical properties of the optical film, such as a difference in light transmittance, may be included.
  • the distance between two points (a, b) of the inner diameter and the distance between two points (c, d) of the outer diameter are the same.
  • the two points a and b of the folding inner diameter of the optical film are deformed into a' and b' by the compressive stress during folding, and the two points c and d of the folding outer diameter are It is deformed into c' and d' by tensile stress. Due to the compressive stress of the folding inner diameter, the distance between a' and b' is smaller than the distance between a and b, and the distance between c' and d' of the folding outer diameter is increased than the distance between c and d.
  • the radius of curvature (R1) of the inner diameter of folding is "Rd/2" with respect to the center line (M) of the optical film
  • the radius of curvature (R2) of the outer diameter of folding is "R+” with respect to the center line (M) of the optical film. d/2".
  • the calculated distance (L 1 ) between a' and b' is ⁇ (Rd/2)
  • the distance (L 2 ) between c' and d' is ⁇ ( R+d/2).
  • Compressive stress and tensile stress are proportional to the magnitude of the deformed length.
  • Folding performance of the optical film may be improved as the forces applied to the outer and inner diameters are reduced. Therefore, the smaller the value of d/2R of the optical film is, the more advantageous it is for folding. Specifically, when d / 2R is 0.08 or less, the folding performance of the optical film is excellent, so no folding marks are generated, and when it exceeds 0.08, excessive pressure is applied during folding, and folding marks may occur after folding. .
  • the folding performance parameter of the optical film is proportional to the elastic strain index (E'). As the elastic strain index (E') increases, the folding performance of the optical film improves, and as the elastic strain index (E') decreases, the folding performance of the optical film decreases.
  • the optical film may have an elastic strain index (E') of 5.5 GPa or more calculated by Equation 2 above.
  • E' elastic strain index
  • the folding performance of the optical film can be improved by adjusting the modulus and Poisson's ratio of the optical film as well as the thickness and radius of curvature of the film. As the modulus and Poisson's ratio of the optical film increase, resistance to deformation of the optical film increases during folding. For example, even if the thickness of the optical film increases, when the modulus of the optical film increases, folding performance may be improved.
  • the folding performance deteriorates, making it unsuitable for use as a cover window of a flexible display device. Further, even when the Poisson's ratio of the optical film increases, the folding performance can be improved, and conversely, when the Poisson's ratio of the optical film decreases, the folding performance deteriorates.
  • the optical film may have a yellow index (Y.I.) of 3.0 or less. Yellowness can be measured using a spectrophotometer (CM-3700D, KONICA MINOLTA) according to the standard ASTM E313.
  • CM-3700D spectrophotometer
  • KONICA MINOLTA KONICA MINOLTA
  • the optical film may include a polymer resin.
  • the optical film may have a folding performance parameter of 1.5 GPa or less by adjusting the components and content of the repeating unit of the polymer resin. In addition, by increasing the degree of polymerization of the polymer resin, it is possible to reduce folding performance parameters and improve folding performance.
  • the polymer resin may include at least one of an imide repeating unit and an amide repeating unit.
  • the polymer resin may include an imide repeating unit or an amide repeating unit, or may include both an imide repeating unit and an amide repeating unit.
  • the polymer resin may be at least one of a polyimide-based resin, a polyamide-based resin, and a polyamide-imide-based resin.
  • the imide repeating unit of the polymer resin may be prepared from monomer components including a diamine-based compound and a dianhydride-based compound.
  • An imide repeating unit may be formed by polymerizing a diamine-based compound and a dianhydride-based compound to form amic acid, and imidating the amic acid again.
  • the amide repeating unit may be prepared by a polymer polymerization reaction from monomer components including a diamine-based compound and a dicarbonyl-based compound.
  • the specific structure of the imide repeating unit and the amide repeating unit may vary depending on the reacting monomer.
  • the polymer resin according to an embodiment of the present invention is not limited thereto.
  • the polymer resin according to an embodiment of the present invention may be prepared from monomer components further including other compounds in addition to the diamine-based compound, the dianhydride-based compound, and the dicarbonyl-based compound. Therefore, the polymer resin according to an embodiment of the present invention may further have other repeating units in addition to the imide repeating unit and the amide repeating unit.
  • An optical film according to an embodiment of the present invention may include at least one of a polyimide-based resin, a polyamide resin-based resin, and a polyamide-imide-based resin.
  • the optical film may be any one of a polyimide-based film, a polyamide-based film, and a polyamide-imide-based film.
  • an embodiment of the present invention is not limited thereto, and any film having light transmission may be an optical film according to an embodiment of the present invention.
  • the polymer resin may include amide repeating units at a ratio of 80% or more to the total number of imide repeating units and amide repeating units.
  • the number of amide repeating units may be included in a ratio of 95% or more to the total number of imide and amide repeating units. More preferably, it may be included in a ratio of 98% or more.
  • the polymer resin contains amide repeating units at a ratio of 80% or more with respect to the number of imide and amide repeating units
  • mechanical properties may be improved while maintaining optical properties of the film when manufacturing an optical film using the polymer resin.
  • the folding performance of the optical film can be remarkably improved. That is, by including more amide repeating units than imide repeating units, a colorless and transparent film having excellent insolubility, chemical resistance, heat resistance, radiation resistance and low-temperature characteristics, and excellent folding performance can be prepared.
  • the present invention can reduce and prevent gelation of dicarbonyl-based compounds by conducting a polymerization reaction using two or more types of diamine-based compounds.
  • the imide repeating unit may include a first repeating unit and a second repeating unit.
  • the imide repeating unit is formed by polymerization of a diamine-based compound and a dianhydride-based compound
  • the first repeating unit is an imide repeating unit obtained by polymerization of a first diamine-based compound and a first dianhydride-based compound
  • the second repeating unit is an imide repeating unit obtained by polymerization of the second diamine-based compound and the second dianhydride-based compound.
  • the polymer resin of the present invention includes repeating units derived from at least two or more diamine-based compounds, including a first diamine-based compound and a second diamine-based compound.
  • the first diamine-based compound may be 2,2'-bis (trifluoromethyl) benzidine (TFDB).
  • the second diamine-based compound may include other aromatic diamine-based compounds other than TFDB.
  • the imide repeating unit and amide repeating unit of the present invention are TFDB; and aromatic diamine-based compounds other than TFDB;
  • TFDB 2,2'-Bis(trifluoromethyl)benzidine
  • TFDB 2,2'-bis(trifluoromethyl)benzidine
  • a polymerization reaction proceeds quickly when reacted with a dicarbonyl-based compound. Due to the rapid polymerization reaction, only a part of the dicarbonyl-based compound reacts with the diamine-based compound, and other dicarbonyl-based compounds do not undergo a polymerization reaction and gelation may occur. Gelation of the dicarbonyl-based compound may decrease the polymerization degree of the resin and deteriorate the optical properties of the film. Therefore, it is difficult to prepare a polymer resin containing a large amount of amide repeating units by adding only 2,2'-bis(trifluoromethyl)benzidine (TFDB). In the present invention, gelation of the dicarbonyl-based compound can be prevented and the polymerization degree of the polymer can be improved by using the second diamine-based compound.
  • the second diamine-based compound includes an aromatic diamine-based compound.
  • aromatic diamine-based compound refers to a diamine-based compound in which an amino group is directly bonded to an aromatic ring, and may include an aliphatic group or other substituents in a part of its structure.
  • the aromatic ring may be a single ring or a bonded ring in which single rings are directly or heteroatom-linked, or a condensed ring.
  • the aromatic ring may include, for example, a benzene ring, a biphenyl ring, a naphthalene ring, an anthracene ring, and a fluorene ring, but is not limited thereto.
  • the second diamine-based compound may be represented by Formula 1 below.
  • a 1 represents a divalent aromatic organic group.
  • An aromatic organic group refers to an organic group in which pi electrons are delocalized by forming a ring by alternating single bonds and double bonds.
  • a 1 includes a divalent aromatic organic group having 4 to 40 carbon atoms.
  • a hydrogen atom in the aromatic organic group included in Formula 1 may be substituted with a halogen element, a hydrocarbon group, or a hydrocarbon group substituted with a halogen element.
  • the hydrocarbon group substituted with a hydrogen atom or the hydrocarbon group substituted with a halogen element may have 1 to 8 carbon atoms.
  • hydrogen contained in A 1 may be substituted with -F, -CH 3 , -CF 3 , and the like.
  • An optical film prepared using a diamine-based compound in which hydrogen atoms are substituted with fluorine-substituted hydrocarbon groups may have excellent light transmittance and excellent processing characteristics.
  • a 1 of Formula 1 may include, for example, a structure represented by any one of the following structural formulas.
  • * represents a binding position.
  • X may independently be any one of a single bond, O, S, SO 2 , CO, CH 2 , C(CH 3 ) 2 and C(CF 3 ) 2 .
  • the binding position of X to each ring is not particularly limited, the binding position of X may be, for example, a meta or para position to each ring.
  • the second diamine-based compound is one selected from the group consisting of a sulfonyl group, a carbonyl group, a methylene group, a propylene group, and a halogen element. It may contain more than one functional group.
  • a sulfonyl group, a carbonyl group, a methylene group, a propylene group, and a halogen substituent play a role in controlling the movement of electrons in a compound.
  • the ionization energy of the second diamine-based compound may be controlled by including at least one substituent selected from among a sulfonyl group, a carbonyl group, a methylene group, a propylene group, and a halogen element. Accordingly, the reactivity and reaction rate of the polymerization reaction with the dicarbonyl-based compound can be appropriately controlled.
  • the second diamine-based compound is bis (3-aminophenyl) sulfone (Bis (3-aminophenyl) sulfone, 3DDS), bis (4-aminophenyl) sulfone (Bis (4-aminophenyl) )sulfone, 4DDS), 2,2-bis(3-aminophenyl)hexafluoropropane (2,2-Bis(3-aminophenyl)hexafluoropropane, 3,3'-6F), 2,2-bis(4- Aminophenyl)hexafluoropropane (2,2-Bis(4-aminophenyl)hexafluoropropane, 4,4'-6F), 4,4'-Methylenedianiline (MDA), 3,3 At least one selected from the group consisting of '-diaminobenzophenone (3,3'-Diaminobenzophenone), 4,4'-dia
  • the first dianhydride-based compound and the second dianhydride-based compound may each independently be represented by Chemical Formula 2 below.
  • the first dianhydride-based compound and the second dianhydride-based compound may be identical to each other or may be different compounds.
  • the present invention is not limited thereto.
  • a 2 represents a tetravalent organic group.
  • a 2 may include a tetravalent organic group having 4 to 40 carbon atoms.
  • a hydrogen atom in the organic group included in Formula 2 may be substituted by a halogen element, a hydrocarbon group, or a halogen-substituted hydrocarbon group.
  • the hydrogen atom and the substituted hydrocarbon group or the halogen-substituted hydrocarbon group may have 1 to 8 carbon atoms.
  • a 2 of Formula 2 may include, for example, a structure represented by any one of the following structural formulas.
  • * represents a binding position.
  • Z may be independently any one of a single bond, O, S, SO 2 , CO, (CH 2 )n, (C(CH3) 2 )n and (C(CF3) 2 )n, and n may be an integer from 1 to 5.
  • the binding position of Z to each ring is not particularly limited, the binding position of Z may be, for example, a meta or para position to each ring.
  • the first dianhydride-based compound and the second dianhydride-based compound are each independently 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride ( 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), biphenyl tetracarboxylic dianhydride (BPDA), naphthalene tetracarboxylic dianhydride (NTDA) , diphenyl sulfone tetracarboxylic dianhydride (DSDA), 4-(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene- 1,2-dicarboxylic anhydride (4-(2,5-Oxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic Anhydride (4-(2,5-
  • An optical film according to an embodiment of the present invention may include several dianhydride-based compounds.
  • An optical film prepared using a dianhydride-based compound in which hydrogen atoms are substituted with fluorine-substituted hydrocarbon groups may have excellent light transmittance and excellent processing characteristics.
  • the amide repeating unit may include a third repeating unit and a fourth repeating unit.
  • the amide repeating unit is formed by polymerization of a diamine-based compound and a dicarbonyl-based compound
  • the third repeating unit is an amide repeating unit obtained by polymerization of a first diamine-based compound and a first dicarbonyl-based compound
  • the fourth repeating unit is It is an amide repeating unit in which the second diamine-based compound and the second dicarbonyl-based compound are polymerized.
  • the first dicarbonyl-based compound and the second dicarbonyl-based compound may each independently be represented by Chemical Formula 3 below.
  • the first dicarbonyl-based compound and the second dicarbonyl-based compound may be identical to each other or may be different compounds.
  • the present invention is not limited thereto.
  • a 3 represents a divalent organic group.
  • a 3 may include a divalent organic group having 4 to 40 carbon atoms.
  • a hydrogen atom in the organic group included in Formula 3 may be substituted by a halogen element, a hydrocarbon group, or a fluorine-substituted hydrocarbon group.
  • the hydrogen atom-substituted hydrocarbon group or the fluorine-substituted hydrocarbon group may have 1 to 8 carbon atoms.
  • hydrogen contained in A 3 may be substituted with -F, -CH 3 , -CF 3 and the like.
  • a 3 of Formula 3 may include, for example, a structure represented by any one of the following structural formulas.
  • * represents a binding position.
  • Y may independently be any one of a single bond, O, S, SO 2 , CO, CH 2 , C(CH 3 ) 2 and C(CF 3 ) 2 .
  • the binding position of Y and each ring is not particularly limited, the binding position of Y may be, for example, a meta or para position with respect to each ring.
  • the first dicarbonyl-based compound and the second dicarbonyl-based compound are each independently terephthaloyl chloride (TPC), isophthaloyl dichloride (IPC), Composed of phenyl dicarbonyl chloride (BPDC), 4,4'-oxybis benzoyl chloride (OBBC) and naphthalene dicarbonyl dichloride (NTDC) It may include any one or more selected from the group.
  • TPC terephthaloyl chloride
  • IPC isophthaloyl dichloride
  • BPDC phenyl dicarbonyl chloride
  • OBBC 4,4'-oxybis benzoyl chloride
  • NTDC naphthalene dicarbonyl dichloride
  • the ratio of the number of the first repeating unit and the third repeating unit to the number of the second repeating unit and the fourth repeating unit may be 95:5 to 50:50.
  • Both the first repeating unit and the third repeating unit are repeating units in which the first diamine-based compound participates in the polymerization reaction
  • the second repeating unit and the fourth repeating unit are both repeating units in which the second diamine-based compound participates in the polymerization reaction. Accordingly, the molar ratio between the first diamine-based compound and the second diamine-based compound participating in the polymerization is 95:5 to 50:50.
  • the ratio of the number of the first repeating unit and the third repeating unit to the number of the second repeating unit and the fourth repeating unit is greater than 95:5
  • the number of the first repeating unit and the third repeating unit is greater than that derived from TFDB and a dicarbonyl-based compound
  • the haze of the film may increase with an increase in the repeating unit ratio.
  • the number of the second repeating unit and the fourth repeating unit is greater than 50:50, heat resistance and strength of the film may be deteriorated.
  • the polymer resin according to an embodiment of the present invention may include a first repeating unit represented by Chemical Formula 4 and a second repeating unit represented by Chemical Formula 5 below.
  • a 2 included in Formula 4 is as already described.
  • a 1 and A 2 included in Formula 5 are as already described.
  • the polymer resin according to an embodiment of the present invention may include a third repeating unit represented by Chemical Formula 6 and a fourth repeating unit represented by Chemical Formula 7 below.
  • a 3 included in Formula 6 is as already described.
  • a 1 and A 3 included in Chemical Formula 7 are as described above.
  • the weight-average molecular weight (Mw) of the polymer resin of the present invention may be 200,000 to 500,000.
  • the weight average molecular weight of the polymer resin can be measured under the following conditions using GPC (Alliance e2695/2414 RID, waters).
  • the degree of polymerization of a polymer resin containing a large amount of amide repeating units is low because dicarbonyl-based compounds are gelated due to a fast reaction rate with diamine-based compounds, particularly TFDB.
  • the weight average molecular weight is proportional to the degree of polymerization, and when the degree of polymerization decreases, the weight average molecular weight of the polymer resin also decreases.
  • the weight average molecular weight of the polymer resin is less than 200,000, the degree of polymerization decreases and the number of end groups of the polymer chain increases, resulting in deterioration in physical properties of the polymer resin.
  • the polymer resin controls the weight average molecular weight by managing the polymerization viscosity during polymerization.
  • the weight average molecular weight of the resin exceeds 500,000, the polymerization viscosity is very high and the flowability of the reaction solution is lowered, making it difficult to control and process.
  • a large amount of solvent is required, which is disadvantageous in terms of the process.
  • the optical film has a light transmissive property.
  • the optical film has a flexible property.
  • the optical film has bending characteristics, folding characteristics, and rollable characteristics.
  • Optical films may have excellent mechanical and optical properties.
  • the optical film may have a thickness sufficient to protect the display panel.
  • the optical film may have a thickness of 10 to 100 ⁇ m.
  • the optical film based on the thickness of 50 ⁇ m, may have an average light transmittance of 88% or more in the visible ray region measured by a UV spectrophotometer.
  • the average light transmittance of the optical film can be measured at a wavelength of 360 to 740 nm using a spectrophotometer (CM-3700D, KONICA MINOLTA).
  • the optical film may have a haze of 0.5% or less based on a thickness of 50 ⁇ m.
  • the haze of the optical film was measured 5 times according to ASTM D1003 using MURAKAMI's haze meter (model name: HM-150) by cutting the manufactured optical film into 50 mm ⁇ 50 mm, and taking the average value as the haze of the optical film. can do.
  • FIG. 2 is a cross-sectional view of a part of a display device 200 according to another exemplary embodiment of the present invention
  • FIG. 3 is an enlarged cross-sectional view of part “P” in FIG. 2 .
  • a display device 200 includes a display panel 501 and an optical film 100 on the display panel 501 .
  • the display panel 501 includes a substrate 510, a thin film transistor (TFT) on the substrate 510, and an organic light emitting element 570 connected to the thin film transistor (TFT).
  • the organic light emitting device 570 includes a first electrode 571 , an organic light emitting layer 572 on the first electrode 571 , and a second electrode 573 on the organic light emitting layer 572 .
  • the display device 200 shown in FIGS. 2 and 3 is an organic light emitting display device.
  • Substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of plastic such as a polymer resin or an optical film. Although not shown, a buffer layer may be disposed on the substrate 510 .
  • a thin film transistor is disposed on the substrate 510 .
  • the thin film transistor (TFT) includes a semiconductor layer 520, a gate electrode 530 insulated from the semiconductor layer 520 and overlapping at least a portion of the semiconductor layer 520, a source electrode 541 connected to the semiconductor layer 520, and A drain electrode 542 spaced apart from the source electrode 541 and connected to the semiconductor layer 520 is included.
  • a gate insulating layer 535 is disposed between the gate electrode 530 and the semiconductor layer 520 .
  • An interlayer insulating layer 551 may be disposed on the gate electrode 530 , and a source electrode 541 and a source electrode 541 may be disposed on the interlayer insulating layer 551 .
  • the planarization layer 552 is disposed on the thin film transistor TFT to planarize an upper portion of the thin film transistor TFT.
  • the first electrode 571 is disposed on the planarization layer 552 .
  • the first electrode 571 is connected to the thin film transistor TFT through a contact hole provided in the planarization layer 552 .
  • the bank layer 580 is disposed on a portion of the first electrode 571 and the planarization layer 552 to define a pixel area or light emitting area. For example, since the bank layer 580 is arranged in a matrix structure in a boundary area between a plurality of pixels, a pixel area may be defined by the bank layer 580 .
  • An organic emission layer 572 is disposed on the first electrode 571 .
  • the organic emission layer 572 may also be disposed on the bank layer 580 .
  • the organic light emitting layer 572 may include one light emitting layer or may include two light emitting layers stacked one above the other. Light having one of red, green, and blue colors may be emitted from the organic emission layer 572, and white light may also be emitted.
  • the second electrode 573 is disposed on the organic light emitting layer 572 .
  • the organic light emitting element 270 may be formed by stacking the first electrode 571 , the organic light emitting layer 572 , and the second electrode 573 .
  • each pixel may include a color filter for filtering white light emitted from the organic light emitting layer 572 for each wavelength.
  • a color filter is formed on the light movement path.
  • a thin film encapsulation layer 590 may be disposed on the second electrode 573 .
  • the thin film encapsulation layer 590 may include at least one organic layer and at least one inorganic layer, and at least one organic layer and at least one inorganic layer may be alternately disposed.
  • the optical film 100 is disposed on the display panel 501 having the above-described laminated structure.
  • the optical film manufacturing method of the present invention includes preparing a polymer resin; preparing a polymer resin solution by dissolving the polymer resin in a solvent; and preparing an optical film using the polymer resin solution.
  • the step of preparing the polymer resin may be obtained by polymerizing monomers for forming the polymer resin.
  • the polymer resin is a first diamine-based compound, a second diamine-based compound, a first dianhydride-based compound, a second dianhydride-based compound, a first dicarbonyl-based compound and a second It can be prepared from monomer components including dicarbonyl-based compounds.
  • the present invention is not limited by the order and method of adding monomers, but, for example, the first and second dianhydride-based compounds and the first and second diamine-based compounds are added to a solution in which the first and second diamine-based compounds are dissolved.
  • a polymerization reaction may be performed by sequentially adding rebornyl-based compounds.
  • the first diamine-based compound, the first and second dianhydride-based compounds, the second diamine-based compound, and the first and second dicarbonyl-based compounds may be added in this order, and the second A polymerization reaction may be performed by adding the diamine-based compound, the first and second dianhydride-based compounds, the first diamine-based compound, and the first and second dicarbonyl-based compounds in that order.
  • the polymer resin is a polymer polymerization reaction and imidation of monomers including the first diamine-based compound, the second diamine-based compound, the first and second dianhydride-based compounds, and the first and second dicarbonyl-based compounds.
  • An imide repeating unit may be prepared by a polymer polymerization reaction and imidation of monomers including the first and second diamine-based compounds and the first and second dianhydride-based compounds.
  • an amide repeating unit may be prepared by a polymer polymerization reaction of monomers including the first and second diamine-based compounds and the first and second dicarbonyl-based compounds.
  • the polymer resin according to another embodiment of the present invention may have an imide repeating unit and an amide repeating unit.
  • the imide repeating unit and the amide repeating unit may be separately prepared and then copolymerized, or the imide repeating unit may be prepared first and then a dicarbonyl-based compound may be further added to prepare the amide repeating unit. After the first preparation, a dianhydride-based compound may be further added to prepare the imide repeating unit.
  • the polymer resin of the present invention is not limited by the order in which repeating units are prepared (the order in which monomers are added).
  • the first and second dicarbonyl-based compounds are based on the molar amount of the sum of the first and second dianhydride-based compounds and the first and second dicarbonyl-based compounds. It may be added in an amount of 80 mol% or more. Accordingly, the polymer resin of the present application contains amide repeating units at a ratio of 80% or more.
  • the first and second dicarbonyl-based compounds are added in an amount of 95 mol% or more based on the total molar amount of the first and second dianhydride-based compounds and the first and second dicarbonyl-based compounds. It may be, more preferably, it may be added in an amount of 98 mol% or more.
  • the first diamine-based compound is 2,2'-bis (trifluoromethyl) benzidine (2,2'-Bis (trifluoromethyl) benzidine, TFDB).
  • the second diamine-based compound includes an aromatic diamine-based compound.
  • 2,2'-bis (trifluoromethyl) benzidine (2,2'-Bis (trifluoromethyl) benzidine, TFDB) may be used as the first diamine-based compound, and the second diamine-based compound of Formula 1 described above Aromatic diamine-based compounds may be used, and the compounds of Formula 2 described above may be used as the first and second dianhydride-based compounds.
  • the first and second dicarbonyl-based compounds the above-described compounds represented by Formula 3 may be used.
  • the aromatic diamine-based compound of the second diamine-based compound is a sulfonyl group, a carbonyl group, a methylene group, a propylene group, and a halogen element. It may contain one or more functional groups selected from the group consisting of
  • the aromatic diamine-based compound of the second diamine-based compound is bis (3-aminophenyl) sulfone (3DDS) or bis (4-aminophenyl) sulfone.
  • the addition ratio of the first diamine-based compound and the second diamine-based compound may be 95:5 to 50:50.
  • the solvent in the step of preparing the polymer resin solution is, for example, dimethylacetamide (DMAc, N,N-dimethylacetamide), dimethylformamide (DMF, N,N-dimethylformamide ), methylpyrrolidone (NMP, 1-methyl-2-pyrrolidinone), m-cresol, tetrahydrofuran (THF), chloroform, methyl ethyl ketone (MEK ), etc., and mixtures thereof may be used.
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • NMP N,N-dimethylformamide
  • NMP methylpyrrolidone
  • m-cresol methylpyrrolidone
  • THF tetrahydrofuran
  • MEK methyl ethyl ketone
  • the resulting polymer resin solution was cast.
  • a casting substrate is used for casting.
  • the type of casting substrate is not particularly limited.
  • As the casting substrate a glass substrate, a stainless (SUS) substrate, a Teflon substrate, or the like may be used.
  • an organic substrate may be used as a casting substrate.
  • the obtained polymer resin solution was applied to a glass substrate, cast, and dried in hot air at 80 ° C for 20 minutes and at 120 ° C for 20 minutes to prepare a film, and then the prepared film was peeled from the glass substrate and placed in a frame. fixed with a pin.
  • the frame on which the film was fixed was placed in an oven and dried with isothermal air for 10 minutes at 270 ° C. As a result, an optical film with a thickness of 50 ⁇ m was completed.
  • Example 2 In the same manner as in Example 1, only the addition amount of the first diamine-based compound, the type and addition amount of the second diamine-based compound, the addition amount of the dianhydride-based compound, and the type and addition amount of the dicarbonyl-based compound were changed to Examples 2 to 14 An optical film of was prepared.
  • Example 1 the amount of the first diamine-based compound, the type and amount of the second diamine-based compound, the amount of the dianhydride-based compound, and the type and amount of the dicarbonyl-based compound are shown in Table 1 below.
  • the resulting polymer resin solution was cast.
  • a casting substrate is used for casting.
  • the type of casting substrate is not particularly limited.
  • As the casting substrate a glass substrate, a stainless (SUS) substrate, a Teflon substrate, or the like may be used.
  • an organic substrate may be used as a casting substrate.
  • the obtained polymer resin solution was applied to a glass substrate, cast, and dried in hot air at 80 ° C for 20 minutes and at 120 ° C for 20 minutes to prepare a film, and then the prepared film was peeled from the glass substrate and placed in a frame. fixed with a pin.
  • the frame on which the film was fixed was placed in an oven and dried with isothermal air for 10 minutes at 270 ° C. As a result, an optical film with a thickness of 50 ⁇ m was completed.
  • the optical films of Comparative Examples 5 and 6 were prepared by varying the addition amount of the first diamine-based compound, the addition amount of the second diamine-based compound, the addition amount of the dianhydride-based compound, and the addition amount of the dicarbonyl-based compound. manufactured.
  • the addition amount of the first diamine-based compound, the addition amount of the second diamine-based compound, the addition amount of the dianhydride-based compound, and the addition amount of the dicarbonyl-based compound in Comparative Examples 5 and 6 are shown in Table 1 below.
  • TFDB 2,2'-Bis(trifluoromethyl)benzidine
  • 3DDS Bis(3-aminophenyl)sulfone
  • CBDA Cyclobutane-1,2,3,4-tetracarboxylic dianhydride
  • Weight average molecular weight of polymer resin Using GPC (Alliance e2695/2414 RID, waters), the weight average molecular weight of polymer resin was measured under the following conditions.
  • Modulus According to the standard ASTM D882, it was measured using a universal tensile tester (eg, INSTRON Co.) under the following conditions.
  • Poisson's ratio The Poisson's ratio of the optical film was measured by a video extensometer according to the standard ASTM E-132. Specifically, it was measured under the following conditions using a universal testing machine (for example, Instron 3367 from Instron).
  • Elastic strain index (E') The elastic strain index (E') of the optical film can be calculated by the following formula 2.
  • Yellowness was measured using a spectrophotometer (CM-3700D, KONICA MINOLTA) according to the standard ASTM E313.
  • Folding performance parameter of the optical film can be calculated by Equation 1 below.
  • Equation 1 R is the radius of curvature of the optical film at the folding center line during folding, the unit of the radius of curvature is mm, d is the thickness of the optical film, the unit of thickness is ⁇ m, and E' is the elastic strain index .
  • Equation 1 only numbers are substituted for the radius of curvature and the thickness, excluding units.
  • Optical transmittance (%) Using a spectrophotometer (CM-3700D, KONICA MINOLTA), average optical transmittance was measured at a wavelength of 360 to 740 nm.
  • Haze The manufactured optical film was cut into 50 mm ⁇ 50 mm and measured 5 times according to ASTM D1003 using a haze meter (model name: HM-150) manufactured by MURAKAMI, and the average value was determined as the haze value.
  • Folding marks A 100 mm X 50 mm sample randomly obtained from the optical film was subjected to a bending test centered on one bending axis.
  • a 100 mm X 50 mm sample was repeatedly bent 200,000 times at a speed of 60 rpm with a radius of curvature of 2.0 mm (diameter 4.0 mm) at 25 o C/50 RH% using a bending repetition evaluation machine (YUASA, DLDM111LHA). After the test, the occurrence of folding traces was analyzed around the bending axis.
  • an analysis method may be required to further clarify the contrast (shading) of the fold marks.
  • it can be performed using a film foreign material inspection method as an imaging method.
  • Various inspection methods such as reflection type, scattering type, and transmission type can be used to detect defects or pressed marks that are difficult to catch with the naked eye or CCD camera as much as possible, and foreign substances of the same color as the material.
  • it is a device.
  • a specific example is an inspection device + control unit (controller box: converts laser data received through the inspection device into image data) + dedicated PC (image PC: a PC registered with a dedicated application, which can be connected to the control unit (controller box) and process images PC)
  • control unit control unit
  • image PC a PC registered with a dedicated application
  • analysis/evaluation may be performed by using a known program that sets measurement/evaluation conditions, converts to an image file, and then analyzes brightness, saturation, reflectivity, etc. of the image/photo, but is not limited thereto.
  • Example 1 330,000 0.5 0.34 6.9 7.802 0.7430
  • Example 2 347,000 0.5 0.34 6.7 7.576 0.7215
  • Example 3 320,000 0.5 0.34 7.2 8.141 0.7753
  • Example 4 310,000 0.5 0.34 6.6 7.463 1.1056
  • Example 5 302,000 0.5 0.33 6.4 7.182 0.6840
  • Example 6 305,000 0.5 0.33 6.6 7.407 0.7054
  • Example 7 310,000 0.5 0.33 6.7 7.519 0.7161
  • Example 8 297,000 0.5 0.33 6.5 7.294 0.6947
  • Example 9 270,000 0.5 0.33 6.3 7.070 0.6733
  • Example 10 250,000 0.5 0.35 6.7 7.635 0.7272
  • Example 11 240,000 0.5 0.35 6.5 7.407 0.7055
  • Example 12 220,000 0.5 0.34 6.1 6.897 0.6569
  • Example 13 235,000 0.5 0.34 6.5 7.350 0.7000
  • Example 14 295,000 0.5 0.34 6.5 7.350 0.7000
  • Example 14 295,000
  • Examples 1 to 14 of the present invention have a high weight average molecular weight, and are excellent in yellowness, light transmittance and haze.
  • all of Examples 1 to 14 of the present invention had folding performance parameters of 1.5 GPa or less, and elastic strain exponents (E') of 5.5 GPa or more, and no folding traces were generated even after the bending test.
  • Comparative Example 1 it was impossible to manufacture a film due to gelation of the dicarbonyl-based compound.
  • Comparative Example 2 the weight average molecular weight of the resin was low, and yellowness and haze were high, so it could be confirmed that visibility was low.
  • Comparative Example 2 had a folding performance parameter of 1.5 GPa or less, but an elastic strain index (E') of less than 5.5 GPa, and slight folding traces occurred after the bending test.
  • E' elastic strain index
  • Comparative Example 3 the weight average molecular weight of the resin was large, but the yellowness and haze were remarkably high, and the light transmittance was remarkably low.
  • Comparative Example 3 had a folding performance parameter of 1.5 GPa or less, but an elastic strain index (E') of less than 5.5 GPa, and slight folding traces occurred after the bending test.
  • Comparative Example 4 had high yellowness and haze, low light transmittance, a folding performance parameter exceeding 1.5 GPa, and severe folding marks after a bending test. It can be seen that Comparative Example 5 has high yellowness and haze and low light transmittance, resulting in poor visibility.
  • Comparative Example 5 had a folding performance parameter of 1.5 GPa or less, but an elastic strain index (E') of less than 5.5 GPa, and slight folding traces occurred after the bending test.
  • Comparative Example 6 it can be seen that the weight average molecular weight of the resin was low, yellowness and haze were high, and light transmittance was low, resulting in poor visibility. In addition, Comparative Example 6 had a folding performance parameter of 1.5 GPa or less, but an elastic strain index (E') of less than 5.5 GPa, and slight folding traces occurred after the bending test.
  • E' elastic strain index

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은, 고분자 수지를 포함하고, 황색도가 3.0 이하이며, 폴딩 성능 파라미터가 1.5 GPa 이하인, 광학 필름 및 이러한 광학 필름을 포함하는 표시장치를 제공한다.

Description

폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치
본 발명은 폴딩 성능이 우수한 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치에 대한 것이다.
최근, 표시장치의 박형화, 경량화, 플렉서블화로 인하여, 커버 윈도우로 유리 대신 광학 필름을 사용하는 것이 검토되고 있다. 광학 필름이 표시장치의 커버 윈도우로 사용되기 위해서는, 우수한 광학적 특성 및 기계적 특성을 가져야 하고, 폴딩이 되기 위해 폴딩 특성 역시 우수해야 한다.
따라서, 광학 특성이 우수하면서 불용성, 내화학성, 내열성, 내방사선성, 저온특성 및 폴딩 특성 등과 같은 기계적 특성이 우수한 필름을 개발하는 것이 필요하다.
광학 필름 중 대표적으로 폴리이미드(PI)계 수지는 불용성, 내화학성, 내열성, 내방사선성 및 저온특성 등이 우수하여, 자동차 재료, 항공소재, 우주선 소재, 절연코팅제, 절연막, 보호필름 등으로 사용되고 있다.
최근에는 폴리이미드계 수지에 아마이드 반복단위를 추가한 폴리아마이드-이미드계 수지가 개발되고 있으며, 폴리아마이드-이미드계 수지를 이용하여 제조된 필름은 광학 특성 및 불용성, 내화학성, 내열성, 내방사선성 및 저온특성 등의 기계적 특성이 우수하면서 동시에 폴딩 특성이 우수하다.
아마이드 반복단위는 디아민계 화합물 및 디카르보닐계 화합물의 중합에 의해 제조될 수 있다. 그러나, 디아민으로, 예를 들어 2,2'-비스(트리플루오로메틸)벤지딘 (2,2'-Bis(trifluoromethyl)benzidine, TFDB)을 사용하는 경우, TFDB의 강직한 구조로 인하여 디카르보닐계 화합물과의 중합 시에 디카르보닐계 화합물이 겔(Gel)화 되어 중합 반응이 충분하게 일어나지 않는다는 문제점이 있다.
따라서, 디카르보닐계 화합물을 첨가하더라도 중합도가 우수한 폴리아마이드-이미드계 수지를 개발할 필요가 있다.
본 발명의 일 실시예는, 폴딩 특성이 우수한 고분자 수지를 포함하는 광학 필름을 제공하고자 한다.
또한, 본 발명의 일 실시예는, 광학 특성 및 기계적 특성이 우수한 광학 필름을 제공하고자 한다.
본 발명의 일 실시예는, 고분자 수지를 포함하고, 황색도가 3.0 이하이며, 하기 식 1로 산출되는 폴딩 성능 파라미터가 1.5 GPa 이하인,광학 필름을 제공한다.
[식 1]
Figure PCTKR2021019823-appb-I000001
상기 식 1에서, R은 폴딩 시 폴딩 중심선에서의 광학 필름의 곡률 반경으로, 0.5 mm이고, d는 광학 필름의 두께로, 두께의 단위는 ㎛이며, E'는 하기 식 2로 산출되는 탄성변형 지수이다. 다만, 상기 식 1에서, 곡률 반경 및 두께는 단위를 제외하고, 숫자만 대입한다.
[식 2]
탄성변형 지수(E') = E/(1-v2)
상기 식 2에서, E는 광학 필름의 모듈러스(modulus)이고, 모듈러스의 단위는 GPa이며, v는 광학 필름의 푸아송비(Poisson's ratio)이다.
상기 식 2로 산출되는 탄성변형 지수(E')는 5.5 이상일 수 있다.
상기 고분자 수지는 이미드 반복단위 및 아마이드 반복단위를 포함할 수 있다.
상기 아마이드 반복단위는, 상기 이미드 반복단위 및 상기 아마이드 반복단위의 개수에 대하여 80% 이상의 비율로 포함될 수 있다.
상기 이미드 반복단위는 제1 반복단위 및 제2 반복단위를 포함할 수 있다.
상기 아마이드 반복단위는 제3 반복단위 및 제4 반복단위를 포함할 수 있다.
상기 제1 반복단위는 제1 디아민계 화합물과 제1 디안하이드라이드계 화합물이 중합 반응한 이미드 반복단위이고, 상기 제2 반복단위는 제2 디아민계 화합물과 제2 디안하이드라이드계 화합물이 중합 반응한 이미드 반복단위일 수 있다.
상기 제3 반복단위는 제1 디아민계 화합물과 제1 디카르보닐계 화합물이 중합 반응한 아마이드 반복단위이고, 상기 제4 반복단위는 제2 디아민계 화합물과 제2 디카르보닐계 화합물이 중합 반응한 아마이드 반복단위일 수 있다.
상기 제1 디아민계 화합물은, 2,2'-비스(트리플루오로메틸)벤지딘 (2,2'-Bis(trifluoromethyl)benzidine, TFDB)일 수 있다.
상기 제2 디아민계 화합물은, 설포닐기(sulfonyl), 카르보닐기(Carbonyl), 메틸렌기(Methylene), 프로필렌기(Propylene) 및 할로겐원소(Halogen)로 구성된 군에서 선택된 1종 이상의 작용기를 포함하는 디아민계 화합물일 수 있다.
상기 제2 디아민계 화합물은, 비스(3-아미노페닐)술폰 (Bis(3-aminophenyl)sulfone, 3DDS), 비스(4-아미노페닐)술폰 (Bis(4-aminophenyl)sulfone, 4DDS), 2,2-비스(3-아미노페닐)헥사플루오로프로판 (2,2-Bis(3-aminophenyl)hexafluoropropane, 3,3'-6F), 2,2-비스(4-아미노페닐)헥사플루오로프로판 (2,2-Bis(4-aminophenyl)hexafluoropropane, 4,4'-6F), 4,4'-메틸렌디아닐린 (4,4'-Methylenedianiline, MDA), 3,3'-디아미노벤조페논 (3,3'-Diaminobenzophenone), 4,4'-디아미노벤조페논 (4,4'-Diaminobenzophenone) 및 테트라클로라이드벤지딘 (Tetrachloridebenzidine, CIBZ)로 이루어진 군에서 선택된 적어도 어느 하나를 포함할 수 있다.
중합 반응한 제1 디아민계 화합물과 제2 디아민계 화합물의 몰 비율은 95:5 내지 50:50일 수 있다.
상기 고분자 수지는, 200,000 내지 500,000의 중량평균 분자량(weight-average molecular weight, Mw)을 가질 수 있다.
본 발명의 또 다른 일 실시예는, 표시패널; 및 상기 표시패널 상에 배치된, 제1항 내지 제13항 중 어느 한 항의 광학 필름;을 포함하는 표시장치를 제공한다.
본 발명의 일 실시예에 따르면, 폴딩 특성이 우수한 광학 필름을 제공하고자 한다.
본 발명의 다른 일 실시예에 따른 광학 필름은 우수한 광학적 특성 및 기계적 특성을 가지므로, 표시 장치의 커버 윈도우로 사용되는 경우, 표시 장치의 표시 면을 효과적으로 보호할 수 있다.
도 1은 광학 필름의 폴딩 시 길이 변화를 나타내는 광학 필름의 단면도이다.
도 2는 본 발명의 다른 일 실시예에 따른 표시장치의 일부에 대한 단면도이다.
도 3은 도 2의 "P" 부분에 대한 확대 단면도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 아래에서 설명되는 실시예들은 본 발명의 명확한 이해를 돕기 위한 예시적 목적으로 제시되는 것일 뿐, 본 발명의 범위를 제한하지 않는다.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 구성 요소는 동일 참조 부호로 지칭될 수 있다. 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명은 생략된다.
본 명세서에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이라는 표현이 사용되지 않는 이상, 다른 부분이 추가될 수 있다. 구성 요소가 단수로 표현된 경우, 특별히 명시적인 기재 사항이 없는 한 복수를 포함한다. 또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
공간적으로 상대적인 용어인 "아래(below, beneath)", "하부 (lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해 되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)" 또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 마찬가지로, 예시적인 용어인 "위" 또는 "상"은 위와 아래의 방향을 모두 포함할 수 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제3 항목 중 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미할 수 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시될 수도 있다.
본 발명의 일 실시예는 광학 필름을 제공한다. 본 발명의 일 실시예에 따른 광학 필름은 고분자 수지를 포함한다.
고분자 수지는 필름에 교형분 분말 형태, 용액에 용해되어 있는 형태, 용액에 용해 후 고체화한 매트릭스 형태 등 다양한 모양 및 형태로 포함될 수 있고, 본 발명과 동일한 반복단위를 포함하는 수지면 모양 및 형태를 불문하고 모두 본 발명의 고분자 수지와 동일한 것으로 볼 수 있다. 다만, 일반적으로 필름 내에서 고분자 수지는 고분자 수지 용액을 도포 후 건조하여 고체화한 매트릭스 형태로 존재할 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름은, 하기 식 1로 산출되는 광학 필름의 폴딩 성능 파라미터가 1.5 GPa 이하이다.
[식 1]
Figure PCTKR2021019823-appb-I000002
상기 식 1에서, R은 폴딩 시 폴딩 중심선에서의 광학 필름의 곡률 반경으로, 0.5 mm이고, d는 광학 필름의 두께로, 두께의 단위는 ㎛이며, E'는 하기 식 2로 산출되는 탄성변형 지수이다. 광학 필름의 두께는 전자 마이크로미터(Electronic Micrometer), 예를 들어, 안리쓰(Anritsu)社의 전자 마이크로미터(Electronic Micrometer)를 이용하여 측정할 수 있다. 광학 필름의 곡률 반경은 굴곡반복평가기, 예를 들어, YUASA社의 DLDM111LHA를 이용하여 기기 내에서 폴딩 후 내부 접힘부의 간격을 갭 게이지로 확인하여 측정할 수 있다. 다만, 상기 식 1에서, 곡률 반경 및 두께는 단위를 제외하고, 숫자만 대입한다.
[식 2]
탄성변형 지수(E') = E/(1-v2)
상기 식 2에서, E는 광학 필름의 모듈러스(modulus)이고, 모듈러스의 단위는 GPa이며, v는 광학 필름의 푸아송비(Poisson's ratio)이다.
광학 필름의 모듈러스는 표준규격 ASTM D882에 따라, 만능재료시험기(예를 들어, INSTRON社)를 이용하여 하기의 조건으로 측정할 수 있다.
-25oC/50RH%
-Road Cell 30KN, Grip 250N.
-시편 크기 10 X 50mm, 인장속도 25mm/min
광학 필름의 푸아송비는 축방향의 하중을 받은 시편의 축변형률에 대한 측면 변형률의 비로서, 표준규격 ASTM E-132에 따라 비접촉식(Video extensometer)으로 측정할 수 있다. 구체적으로, 만능재료시험기(예를 들어, Instron社의 Instron 3367)를 이용하여 하기의 조건으로 측정할 수 있다.
- 시험 속도: 10mm/min
- (25±2)oC/(45±5)%RH
본 발명의 폴딩 성능 파라미터는 도면을 참조하여 보다 상세하게 설명한다. 도 1은 광학 필름의 폴딩 시 길이 변화를 나타내는 광학 필름의 단면도이다. 도 1은 광학 필름의 폴딩 시 길이 변화를 보여주기 위한 하나의 예시에 불과하고, 폴딩 시 길이 변화는 광학 필름마다 다른 형태를 가질 수 있다. 따라서, 본 발명이 이에 한정되는 것은 아니다.
광학 필름은 폴딩 성능 파라미터가 1.5 GPa 이하인 경우, 폴딩 시 발생하는 저항력이 작아지므로, 우수한 폴딩 성능을 발휘할 수 있고, 폴딩 흔적이 발생하지 않을 수 있다. 곡률 반경(R)이 작으면 작을수록 폴딩 흔적의 발생이 증가하는데, "폴딩 성능 파라미터"가 1.5 GPa 이하인 경우에는, 폴딩 성능이 우수하여, 폴딩 흔적이 발생하지 않는다. 특히, "폴딩 성능 파라미터"에서 곡률 반경(R)은 0.5 mm로서, "폴딩 성능 파라미터"가 1.5 GPa 이하인 경우, 곡률 반경(R)이 0.5 mm로 폴딩 시에도 폴딩 흔적이 발생하지 않고 우수한 폴딩 성능을 가질 수 있다.
구체적으로, 광학 필름이 폴딩 시에 필름의 기계적 변화가 발생할 수 있는데, 본 발명에서 폴딩 흔적은, 예를 들어, 필름이 절곡되거나, 또는, 필름의 표면이 고르지 않게 주름이 발생하거나, 또는 투명한 필름에 하얗게 백탁이 발생하는 현상이 있는 것을 말한다. 또한, 주름 발생 또는 백탁현상 외에도, 폴딩 전후에 따른 길이 차이가 발생할 수 있고, 또는 광투과성 차이 등과 같은 광학 필름의 기계적, 광학적 물성의 변화까지 포함할 수 있다.
광학 필름이 폴딩 시, 필름에는 스트레스(stress)가 가해진다. 이때, 폴딩 방향에 따라, 광학 필름의 폴딩 안쪽 면(이하 "내경"이라 함)에는 압축 응력(compressive stress)이 가해지고, 반대 면인 폴딩 바깥 면(이하 "외경"이라 함)에는 인장 응력(tensile stress)이 가해진다. 그에 따라, 광학 필름의 폴딩 내경은 압축 변형(compressive strain)이 발생하고, 폴딩 외경은 인장 변형(tensile strain)이 발생한다.
구체적으로, 도 1에 도시된 바와 같이, 폴딩 전에는 폴딩 내경의 두 지점(a, b)간의 거리와 외경의 두 지점(c, d)간의 거리는 동일하다. 그러나, 광학 필름을 폴딩 시, 광학 필름의 폴딩 내경의 a 및 b, 두 지점은 폴딩 시의 압축응력에 의하여 a', b'로 변형되고, 폴딩 외경의 c 및 d, 두 지점은 폴딩 시의 인장 응력에 의하여 c', d'로 변형된다. 폴딩 내경의 압축응력에 의하여, a' 및 b'사이의 거리는 a 및 b 사이의 거리보다 감소하고, 폴딩 외경의 c' 및 d'의 거리는 c 및 d 사이의 거리보다 증가한다. 이때, 폴딩 내경의 곡률 반경(R1)은 광학 필름의 중심선(M)을 기준으로 "R-d/2"이고, 폴딩 외경의 곡률 반경(R2)은 광학 필름의 중심선(M)을 기준으로 "R+d/2"이다. 폴딩 내경 및 폴딩 외경의 곡률반경을 기초로, 산출한 a' 및 b'사이의 거리(L1)는 π(R-d/2)이고, c' 및 d'사이의 거리(L2)는 π(R+d/2)이다.
압축 응력 및 인장 응력은 변형된 길이의 크기에 비례한다. 외경의 변화된 길이는 +π(d/2)이고, 내경의 변화된 길이는 -π(d/2)이다. 따라서, 내경에 가해지는 힘(stress)은 d/2R(=[π(d/2)]/πR)에 비례하고, 외경에 가해지는 힘(stress)은 d/2R에 비례한다. 외경 및 내경에 가해지는 힘이 작을수록 광학 필름의 폴딩 성능은 향상될 수 있다. 따라서, 광학필름의 d/2R의 값이 작아질수록 폴딩에 유리하다. 구체적으로, d/2R가 0.08 이하인 경우에, 광학 필름의 폴딩 성능이 우수하여, 폴딩 흔적이 발생하지 않으며, 0.08을 초과하는 경우에는 폴딩 시 과도한 압력이 가해지고, 폴딩 후에 폴딩 흔적이 발생할 수 있다.
또한, 광학 필름의 폴딩 성능 파라미터는 탄성변형 지수(E')에 비례한다. 탄성변형 지수(E')가 커질수록 광학 필름의 폴딩 성능은 향상되며, 탄성변형 지수(E')가 작아질수록 광학 필름의 폴딩 성능은 감소한다.
본 발명의 일 실시예에 따르면, 광학 필름은 상기 식 2로 산출되는 탄성변형 지수(E')가 5.5 GPa 이상일 수 있다. 광학 필름의 폴딩 성능은 필름의 두께 및 곡률반경뿐만 아니라, 광학 필름의 모듈러스 및 푸아송비를 조절함으로써 향상될 수 있다. 광학 필름의 모듈러스 및 푸아송비가 증가할수록 폴딩 시 광학 필름의 변형에 대한 저항력이 증가한다. 가령, 광학 필름의 두께가 증가하더라도, 광학 필름의 모듈러스가 증가하는 경우, 폴딩 성능이 향상될 수 있다. 반면에, 광학 필름의 두께가 감소하더라도, 광학 필름의 모듈러스 역시 감소하는 경우, 폴딩 성능이 저하되어, 플렉서블 표시장치의 커버 윈도우로 사용하기에 부적합하다. 또한, 광학 필름의 푸아송비가 증가하는 경우에도, 폴딩 성능이 향상될 수 있고, 반대로, 광학 필름의 푸아송비가 감소하는 경우, 폴딩 성능이 저하된다.
본 발명의 일 실시예에 따르면, 광학 필름은 3.0 이하의 황색도(Y.I., yellow index)를 가질 수 있다. 황색도는 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여 측정할 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름은 고분자 수지를 포함할 수 있다.
광학 필름은, 고분자 수지의 반복단위의 성분 및 함량을 조절함으로써, 1.5 GPa 이하의 폴딩 성능 파라미터를 가질 수 있다. 또한, 고분자 수지의 중합도를 향상시킴으로써, 폴딩 성능 파라미터를 감소시키고, 폴딩 성능을 향상시킬 수 있다.
고분자 수지는 이미드(imide) 반복단위 및 아마이드(amide) 반복단위 중 적어도 하나를 포함할 수 있다. 예를 들어, 고분자 수지는 이미드 반복단위 또는 아마이드 반복단위를 포함할 수 있으며, 이미드 반복단위 및 아마이드 반복단위를 모두 포함할 수도 있다. 고분자 수지는, 폴리이미드계 수지, 폴리아마이드계 수지 및 폴리아마이드-이미드계 수지 중 적어도 하나일 수 있다.
본 발명에서 고분자 수지의 이미드 반복단위는 디아민(diamine)계 화합물과 디안하이드라이드(dianhydride)계 화합물를 포함하는 모노머 성분들로부터 제조될 수 있다. 디아민계 화합물과 디안하이드라이드계 화합물을 고분자 중합 반응(polymerization)하여 아미드산(amic acid)을 형성하고, 아미드산을 다시 이미드화하여 이미드 반복단위가 형성될 수 있다. 또한, 아마이드 반복단위는 디아민계 화합물과 디카르보닐(dicarbonyl)계 화합물을 포함하는 모노머 성분들로부터 고분자 중합 반응하여 제조될 수 있다. 이미드 반복단위와 아마이드 반복단위의 구체적인 구조는 반응하는 모노머에 따라 달라질 수 있다.
그러나, 본 발명의 일 실시예에 따른 고분자 수지가 이에 한정되는 것은 아니다. 본 발명의 일 실시예에 따른 고분자 수지는 디아민계 화합물, 디안하이드라이드계 화합물 및 디카르보닐계 화합물에 더하여 다른 화합물을 더 포함하는 모노머 성분들로부터 제조될 수 있다. 따라서, 본 발명의 일 실시예에 따른 고분자 수지는 이미드 반복단위 및 아마이드 반복단위 외에 다른 반복단위를 더 가질 수도 있다.
본 발명의 일 실시예에 따른 광학 필름은 폴리이미드계 수지, 폴리아마이드 수지계 및 폴리아마이드-이미드계 수지 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름은 폴리이미드계 필름, 폴리아마이드계 필름 및 폴리아마이드-이미드계 필름 중 어느 하나일 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 광투과성을 갖는 필름이라면 본 발명의 일 실시예에 따른 광학 필름이 될 수 있다.
본 발명의 일 실시예에 따르면, 고분자 수지는, 이미드 반복단위 및 아마이드 반복단위의 전체 개수에 대하여, 80% 이상의 비율로 아마이드 반복단위를 포함할 수 있다. 바람직하게, 아마이드 반복단위의 수는 이미드 및 아마이드 반복단위의 전체 개수에 대하여 95% 이상의 비율로 포함할 수 있다. 더욱 바람직하게, 98% 이상의 비율로 포함할 수 있다.
고분자 수지가 아마이드 반복단위를 이미드 및 아마이드 반복단위의 수에 대하여 80% 이상의 비율로 포함하는 경우, 고분자 수지로 광학 필름 제조 시 필름의 광학 특성이 유지되면서 기계적 특성이 향상될 수 있다. 특히, 광학 필름의 폴딩 성능이 현저히 향상될 수 있다. 즉, 아마이드 반복단위를 이미드 반복단위보다 다량 포함함으로써 무색 투명하면서 불용성, 내화학성, 내열성, 내방사선성 및 저온특성 등이 우수하고, 폴딩 성능이 이 우수한 필름을 제조할 수 있다.
다만, 아마이드 반복단위를 다량 포함하기 위하여 다량의 디카르보닐계 화합물을 첨가하는 경우, 디카르보닐계 화합물이 겔화되어 충분한 중합 반응이 일어나지 않는다는 문제점이 있다.
본 발명은, 2종 이상의 디아민계 화합물을 이용하여 중합 반응을 함으로써, 디카르보닐계 화합물의 겔화를 저하 및 방지시킬 수 있다.
본 발명의 일 실시예에 따르면, 이미드 반복단위는 제1 반복단위 및 제2 반복단위를 포함할 수 있다.
이미드 반복단위는 디아민계 화합물 및 디안하이드라이드계 화합물이 중합 반응하여 형성된 것으로, 제1 반복단위는 제1 디아민계 화합물과 제1 디안하이드라이드계 화합물이 중합 반응한 이미드 반복단위이고, 제2 반복단위는 제2 디아민계 화합물과 제2 디안하이드라이드계 화합물이 중합 반응한 이미드 반복단위이다. 본 발명의 고분자 수지는 제1 디아민계 화합물 및 제2 디아민계 화합물을 포함하여, 적어도 2종 이상의 디아민계 화합물로부터 유래된 반복단위들을 포함한다.
구체적으로, 본 발명의 일 실시예에 따르면, 제1 디아민계 화합물은 2,2'-비스(트리플루오로메틸)벤지딘 (2,2'-Bis(trifluoromethyl)benzidine, TFDB)일 수 있다. 본 발명의 일 실시예에 따르면, 제2 디아민계 화합물은 TFDB 외 다른 방향족 디아민계 화합물을 포함할 수 있다. 본 발명의 이미드 반복단위와 아마이드 반복단위는 TFDB; 및 TFDB를 외 다른 방향족 디아민계 화합물;로부터 유래될 수 있다.
2,2'-비스(트리플루오로메틸)벤지딘(2,2'-Bis(trifluoromethyl)benzidine, TFDB)은 특유의 직선형의 강직한 구조를 가지고 있기 때문에, TFDB으로부터 유래된 반복단위를 포함하는 경우 필름의 불용성, 내화학성, 내열성, 내방사선성 및 저온특성 등의 기계적 물성 향상 효과가 우수하다.
다만, 2,2'-비스(트리플루오로메틸)벤지딘(TFDB)의 강직한 구조 때문에 디카르보닐계 화합물과 반응 시 빠르게 중합반응이 진행된다. 빠른 중합 반응으로 인하여, 일부의 디카르보닐계 화합물만이 디아민계 화합물과 반응하고, 다른 디카르보닐계 화합물은 중합 반응하지 못하고 겔화(gelation)가 발생할 수 있다. 디카르보닐계 화합물의 겔화는 수지의 중합도를 저하시키고, 필름의 광학 물성을 저해할 수 있다. 따라서, 2,2'-비스(트리플루오로메틸)벤지딘(TFDB)만 첨가하여 다량의 아마이드 반복단위를 포함하는 고분자 수지를 제조하는 것은 어려움이 있다. 본 발명은 제2 디아민계 화합물을 이용하여, 디카르보닐계 화합물의 겔화를 방지하고, 중합체의 중합도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 제2 디아민계 화합물은 방향족 디아민계 화합물을 포함한다.
본 발명의 일 실시예에서, "방향족 디아민계 화합물"은 아미노기가 방향족 고리에 직접 결합되어 있는 디아민계 화합물을 의미하며, 그 구조의 일부에 지방족기 또는 기타의 치환기를 포함할 수도 있다. 방향족 고리는, 단일 고리 또는 단일 고리가 직접 또는 헤테로원자로 연결된 결합 고리어도 되고 축합 고리이어도 된다. 방향족 고리는, 예를 들어, 벤젠 고리, 비페닐 고리, 나프탈렌 고리, 안트라센 고리 및 플루오렌 고리를 포함할 수 있으며, 이들에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 제2 디아민계 화합물은 하기 화학식 1로 표현될 수 있다.
[화학식 1]
Figure PCTKR2021019823-appb-I000003
화학식 1에서, A1은 2가의 방향족 유기기를 나타낸다. 방향족 유기기란 단일 결합과 이중 결합이 교대로 연결되어 고리를 형성함으로써 파이 전자가 비편재화된 유기기를 말한다. 예를 들어, A1은 탄소수 4 내지 40의 2가의 방향족 유기기를 포함한다. 화학식 1에 포함된 방향족 유기기 중의 수소 원자는 할로겐 원소, 탄화수소기, 또는 할로겐 원소로 치환된 탄화수소기에 의해 치환될 수 있다. 수소 원자와 치환된 탄화수소기 또는 할로겐 원소로 치환된 탄화수소기의 탄소수는 1 내지 8일 수 있다. 예를 들어, A1에 포함된 수소는 -F, -CH3, -CF3 등으로 치환될 수 있다.
수소 원자가 불소 치환된 탄화수소기에 의해 치환된 디아민계 화합물을 사용하여 제조된 광학 필름은 우수한 광투과성을 가지며, 우수한 가공 특성을 가질 수 있다.
화학식 1의 A1은, 예를 들어, 하기의 구조식들 중 어느 하나로 표현되는 구조를 포함할 수 있다.
Figure PCTKR2021019823-appb-I000004
상기 구조식에서 *은 결합 위치를 나타낸다. 상기 구조식에서 X는 독립적으로 단일 결합, O, S, SO2, CO, CH2, C(CH3)2 및 C(CF3)2 중 어느 하나일 수 있다. X와 각 환에 대한 결합 위치가 특별히 한정되는 것은 아니지만, X의 결합 위치는, 예를 들어, 각 환에 대해 메타 또는 파라 위치일 수 있다.
본 발명의 일 실시예에 따르면, 제2 디아민계 화합물은 설포닐기(sulfonyl), 카르보닐기(Carbonyl), 메틸렌기(Methylene), 프로필렌기(Propylene) 및 할로겐원소(Halogen)로 구성된 군에서 선택된 1 종 이상의 작용기를 포함할 수 있다.
설포닐기(sulfonyl), 카르보닐기(Carbonyl), 메틸렌기(Methylene), 프로필렌기(Propylene) 및 할로겐원소(Halogen) 치환기는 화합물 내의 전자의 이동을 조절하는 역할을 한다. 따라서, 제2 디아민계 화합물은 설포닐기, 카르보닐기(Carbonyl), 메틸렌기(Methylene), 프로필렌기(Propylene) 및 할로겐원소(Halogen) 중 적어도 하나의 치환기를 포함함으로써 이온화 에너지가 조절될 수 있다. 그에 따라, 디카르보닐계 화합물과의 중합 반응의 반응성 및 반응 속도를 적절히 조절할 수 있다.
본 발명의 일 실시예에 따르면, 제2 디아민계 화합물은, 비스(3-아미노페닐)술폰 (Bis(3-aminophenyl)sulfone, 3DDS), 비스(4-아미노페닐)술폰 (Bis(4-aminophenyl)sulfone, 4DDS), 2,2-비스(3-아미노페닐)헥사플루오로프로판 (2,2-Bis(3-aminophenyl)hexafluoropropane, 3,3'-6F), 2,2-비스(4-아미노페닐)헥사플루오로프로판 (2,2-Bis(4-aminophenyl)hexafluoropropane, 4,4'-6F), 4,4'-메틸렌디아닐린 (4,4'-Methylenedianiline, MDA), 3,3'-디아미노벤조페논 (3,3'-Diaminobenzophenone), 4,4'-디아미노벤조페논 (4,4'-Diaminobenzophenone) 및 테트라클로라이드벤지딘 (Tetrachloridebenzidine, CIBZ)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 제1 디안하이드라이드계 화합물 및 제2 디안하이드라이드계 화합물은 각각 독립적으로 하기 화학식 2로 표현될 수 있다. 제1 디안하이드라이드계 화합물과 제2 디안하이드라이드계 화합물은 서로 동일할 수도 있고, 서로 다른 화합물일 수 있다. 본 발명이 이에 한정되는 것은 아니다.
[화학식 2]
Figure PCTKR2021019823-appb-I000005
화학식 2에서, A2는 4가의 유기기를 나타낸다. 예를 들어, A2는 탄소수 4 내지 40의 4가의 유기기를 포함할 수 있다. 화학식 2에 포함된 유기기 중의 수소 원자는 할로겐 원소, 탄화수소기 또는 할로겐 치환된 탄화수소기에 의해 치환될 수 있다. 여기서, 수소 원자와 치환된 탄화수소기 또는 할로겐 치환된 탄화수소기의 탄소수는 1 내지 8일 수 있다.
화학식 2의 A2는, 예를 들어, 하기의 구조식들 중 어느 하나로 표현되는 구조를 포함할 수 있다.
Figure PCTKR2021019823-appb-I000006
상기 구조식에서 *은 결합 위치를 나타낸다. 상기 구조식에서 Z는 독립적으로 단일 결합, O, S, SO2, CO, (CH2)n, (C(CH3)2)n 및 (C(CF3)2)n 중 어느 하나일 수 있고, n은 1 내지 5인 정수일 수 있다. Z와 각 환에 대한 결합 위치가 특별히 한정되는 것은 아니지만, Z의 결합 위치는, 예를 들어, 각 환에 대해 메타 또는 파라 위치일 수 있다.
본 발명의 일 실시예에 따르면, 제1 디안하이드라이드계 화합물 및 제2 디안하이드라이드계 화합물은 각각 독립적으로 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드 (2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 6FDA), 비페닐 테트라카르복실릭 디안하이드라이드 (biphenyl tetracarboxylic dianhydride, BPDA), 나프탈렌테트라카르복실릭 디안하이드라이드(naphthalene tetracarboxylic dianhydride, NTDA), 디페닐설폰테트라카르복실릭 디안하이드라이드(diphenyl sulfone tetracarboxylic dianhydride, DSDA), 4-(2,5-디옥소테트라하이드로푸란-3-일)-1,2,3,4-테트라하이드로나프탈렌-1,2-디카르복실릭안하이드라이드(4-(2,5-Oxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic Anhydride, TDA), 피로멜리틱산 디안하이드라이드(Pyromellitic dianhydride, PMDA), 벤조페논 테트라카르복실릭 디안하이드라이드(benzophenone tetracarboxylic dianhydride, BTDA), 옥시디프탈릭 디안하이드라이드(oxydiphthalic anhydride, ODPA), 비스 카르복시페닐디메틸 실란 디안하이드라이드(bis(carboxyphenyl)dimethyl silane dianhydride, SiDA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(bis(dicarboxyphenoxy)diphenyl sulfide dianhydride, BDSDA), 술포닐디프탈릭안하이드라이드(Sulfonyldiphthalic anhydride, SO2DPA) 및 이소프로필리덴디페녹시 비스 프탈릭안하이드라이드(isopropylidenediphenoxy bis phthalic anhydride, BPADA)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 따른 광학 필름은 수개의 디안하이드라이드계 화합물을 포함할 수 있다.
수소 원자가 불소 치환된 탄화수소기에 의해 치환된 디안하이드라이드계 화합물을 사용하여 제조된 광학 필름은 우수한 광투과성을 가지며, 우수한 가공 특성을 가질 수 있다.
본 발명의 일 실시예에 따르면, 아마이드 반복단위는 제3 반복단위 및 제4 반복단위를 포함할 수 있다.
아마이드 반복단위는 디아민계 화합물 및 디카르보닐계 화합물이 중합 반응하여 형성된 것으로, 제3 반복단위는 제1 디아민계 화합물과 제1 디카르보닐계 화합물이 중합 반응한 아마이드 반복단위이고, 제4 반복단위는 제2 디아민계 화합물과 제2 디카르보닐계 화합물이 중합 반응한 아마이드 반복단위이다.
본 발명의 일 실시예에 따르면, 제1 디카르보닐계 화합물 및 제2 디카르보닐계 화합물은 각각 독립적으로 하기 화학식 3으로 표현될 수 있다. 제1 디카르보닐계 화합물과 제2 디카르보닐계 화합물은 서로 동일할 수도 있고, 서로 다른 화합물일 수 있다. 본 발명이 이에 한정되는 것은 아니다.
[화학식 3]
Figure PCTKR2021019823-appb-I000007
화학식 3에서, A3는 2가의 유기기를 나타낸다. 예를 들어, A3는 탄소수 4 내지 40의 2가의 유기기를 포함할 수 있다. 화학식 3에 포함된 유기기 중의 수소 원자는 할로겐 원소, 탄화수소기 또는 불소 치환된 탄화수소기에 의해 치환될 수 있다. 여기서, 수소 원자가 치환된 탄화수소기 또는 불소 치환된 탄화수소기의 탄소수는 1 내지 8일 수 있다. 예를 들어, A3에 포함된 수소는 -F, -CH3, -CF3 등으로 치환될 수 있다.
화학식 3의 A3은, 예를 들어, 하기의 구조식들 중 어느 하나로 표현되는 구조를 포함할 수 있다.
Figure PCTKR2021019823-appb-I000008
상기 구조식에서 *은 결합 위치를 나타낸다. 상기 구조식에서 Y는 독립적으로 단일 결합, O, S, SO2, CO, CH2, C(CH3)2 및 C(CF3)2 중 어느 하나일 수 있다. Y와 각 환에 대한 결합 위치가 특별히 한정되는 것은 아니지만, Y의 결합 위치는, 예를 들어, 각 환에 대해 메타 또는 파라 위치일 수 있다.
본 발명의 일 실시예에 따르면, 제1 디카르보닐계 화합물 및 제2 디카르보닐계 화합물은 각각 독립적으로 테레프탈로일 클로라이드 (Terephthaloyl Chloride, TPC), 이소프탈로일 디클로라이드(isophthaloyl dichloride, IPC), 비페닐 디카르보닐 클로라이드(Biphenyl dicarbonyl Chloride, BPDC), 4,4'-옥시비스벤조일 클로라이드(4,4'-oxybis benzoyl chloride, OBBC) 및 나프탈렌 디카르보닐 디클로라이드(naphthalene dicarbonyl dichloride, NTDC)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 제1 반복단위 및 제3 반복단위 개수와 제2 반복단위 및 제4 반복단위 개수의 비율은 95:5 내지 50:50일 수 있다. 제1 반복단위 및 제3 반복단위는 모두 제1 디아민계 화합물이 중합반응에 참여한 반복단위이고, 제2 반복단위 및 제4 반복단위는 모두 제2 디아민계 화합물이 중합반응에 참여한 반복단위이다. 따라서, 중합 반응에 참여한 제1 디아민계 화합물과 제2 디아민계 화합물의 몰 비율(molar ratio)이 95:5 내지 50:50이다.
제1 반복단위 및 제3 반복단위 개수와 제2 반복단위 및 제4 반복단위 개수의 비율이 95:5 보다 제1 반복단위 및 제3 반복단위 개수가 많은 경우, TFDB와 디카르보닐계 화합물로부터 유래되는 반복단위 비율의 증가로 필름의 헤이즈가 증가할 수 있다. 반면에 50:50 보다 제2 반복단위 및 제4 반복단위 개수가 많은 경우, 필름의 내열 특성 및 강도가 저하할 수 있다.
본 발명의 일 실시예에 따른 고분자 수지는, 하기 화학식 4로 표현되는 제1 반복단위 및 하기 화학식 5로 표현되는 제2 반복단위를 포함할 수 있다.
[화학식 4]
Figure PCTKR2021019823-appb-I000009
화학식 4에 포함된 A2는 이미 설명된 바와 같다.
[화학식 5]
Figure PCTKR2021019823-appb-I000010
화학식 5에 포함된 A1과 A2는 이미 설명된 바와 같다.
본 발명의 일 실시예에 따른 고분자 수지는, 하기 화학식 6으로 표현되는 제3 반복단위 및 하기 화학식 7로 표현되는 제4 반복단위를 포함할 수 있다.
[화학식 6]
Figure PCTKR2021019823-appb-I000011
화학식 6에 포함된 A3는 이미 설명된 바와 같다.
[화학식 7]
Figure PCTKR2021019823-appb-I000012
화학식 7에 포함된 A1과 A3는 이미 설명된 바와 같다.
본 발명의 일 실시예에 따르면, 본 발명의 고분자 수지의 중량평균 분자량(weight-average molecular weight, Mw)은 200,000 내지 500,000 일 수 있다.
고분자 수지의 중량평균 분자량은, GPC(Alliance e2695/2414 RID, waters)를 이용하여, 하기의 조건에서 측정할 수 있다.
디텍터: 2414 RID, waters
이동상: 10mM LiBr in DMAc
샘플농도: 0.25(w/w)% in DMAc
컬럼 및 디텍터 온도: 50℃
Flow Rate: 1.0ml/min
디카르보닐계 화합물은 디아민계 화합물, 특히 TFDB와의 빠른 반응 속도로 인한 겔화 때문에 다량의 아마이드 반복단위를 포함하는 고분자 수지의 중합도가 떨어진다. 중량평균 분자량은 중합도와 비례 관계로, 중합도가 감소하면 고분자 수지의 중량평균 분자량 역시 감소한다.
고분자 수지의 중량평균 분자량이 200,000 미만인 경우, 중합도가 감소하고, 고분자 사슬의 말단기 수는 증가하여, 고분자 수지의 물성이 저하하게 된다. 반면에 중량평균 분자량이 500,000를 초과하는 고분자 수지를 제조하는 것은 공정상 어려움이 있다. 고분자 수지는 중합 시 중합점도를 관리하여 중량평균 분자량을 조절하는데, 수지의 중량평균 분자량이 500,000를 초과하는 경우, 중합 점도가 매우 높아 반응액의 흐름성이 저하되므로 제어 및 처리가 어려우며, 또한, 고분자 수지를 재용해 시 용매가 대량으로 필요하기 때문에 공정상 불리하다.
본 발명의 일 실시예에 따르면, 광학 필름은 광투과성을 갖는다. 또한, 광학 필름은 플렉서블 특성을 갖는다. 예를 들어, 광학 필름은 벤딩(bending) 특성, 폴딩(folding) 특성 및 롤러블(rollable) 특성을 갖는다. 광학 필름은 우수한 기계적 특성 및 광학적 특성을 가질 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름은, 광학 필름이 표시패널을 보호하기 충분한 정도의 두께를 가질 수 있다. 예를 들어, 광학 필름은 10 내지 100㎛의 두께를 가질 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름은, 두께 50㎛를 기준으로, UV 분광광도계로 측정된 가시광선 영역에서 88% 이상의 평균 광투과도를 가질 수 있다.
광학 필름의 평균 광투과도는 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여, 파장 360~740nm 에서 측정할 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름은, 50㎛ 두께를 기준으로, 0.5% 이하의 헤이즈를 가질 수 있다.
광학 필름의 헤이즈는 제조된 광학 필름을 50㎜ Х 50㎜로 잘라 MURAKAMI社의 헤이즈 미터(모델명: HM-150) 장비를 이용하여 ASTM D1003에 따라 5회 측정하여 그 평균 값을 광학 필름의 헤이즈로 할 수 있다.
도 2는 본 발명의 또 다른 일 실시예에 따른 표시장치(200)의 일부에 대한 단면도이고, 도 3은 도 2의 "P" 부분에 대한 확대 단면도이다.
도 2를 참조하면, 본 발명의 다른 일 실시예에 따른 표시장치(200)는 표시패널(501) 및 표시패널(501) 상의 광학 필름(100)을 포함한다.
도 2 및 도 3을 참조하면, 표시패널(501)은 기판(510), 기판(510) 상의 박막 트랜지스터(TFT) 및 박막 트랜지스터(TFT)와 연결된 유기 발광 소자(570)를 포함한다. 유기 발광 소자(570)는 제1 전극(571), 제1 전극(571) 상의 유기 발광층(572) 및 유기 발광층(572) 상의 제2 전극(573)을 포함한다. 도 2 및 도 3에 개시된 표시장치(200)은 유기발광 표시장치이다.
기판(510)은 유리 또는 플라스틱으로 만들어질 수 있다. 구체적으로, 기판(510)은 고분자 수지 또는 광학 필름과 같은 플라스틱으로 만들어질 수 있다. 도시되지 않았지만, 기판(510) 상에 버퍼층이 배치될 수 있다.
박막 트랜지스터(TFT)는 기판(510) 상에 배치된다. 박막 트랜지스터(TFT)는 반도체층(520), 반도체층(520)과 절연되어 반도체층(520)의 적어도 일부와 중첩하는 게이트 전극(530), 반도체층(520)과 연결된 소스 전극(541) 및 소스 전극(541)과 이격되어 반도체층(520)과 연결된 드레인 전극(542)을 포함한다.
도 3을 참조하면, 게이트 전극(530)과 반도체층(520) 사이에 게이트 절연막(535)이 배치된다. 게이트 전극(530) 상에 층간 절연막(551)이 배치되고, 층간 절연막(551) 상에 소스 전극(541) 및 소스 전극(541)이 배치될 수 있다.
평탄화막(552)은 박막 트랜지스터(TFT) 상에 배치되어 박막 트랜지스터(TFT)의 상부를 평탄화시킨다.
제1 전극(571)은 평탄화막(552) 상에 배치된다. 제1 전극(571)은 평탄화막(552)에 구비된 콘택홀을 통해 박막 트랜지스터(TFT)와 연결된다.
뱅크층(580)은 제1 전극(571)의 일부 및 평탄화막(552) 상에 배치되어 화소 영역 또는 발광 영역을 정의한다. 예를 들어, 뱅크층(580)이 복수의 화소들 사이의 경계 영역에 매트릭스 구조로 배치됨으로써, 뱅크층(580)에 의해 화소 영역이 정의될 수 있다.
유기 발광층(572)은 제1 전극(571) 상에 배치된다. 유기 발광층(572)은 뱅크층(580) 상에도 배치될 수 있다. 유기 발광층(572)은 하나의 발광층을 포함할 수도 있고, 상하로 적층된 2개의 발광층을 포함할 수도 있다. 이러한 유기 발광층(572)에서는 적색, 녹색 및 청색 중 어느 하나의 색을 갖는 광이 방출될 수 있으며, 백색(White) 광이 방출될 수도 있다.
제2 전극(573)은 유기 발광층(572) 상에 배치된다.
제1 전극(571), 유기 발광층(572) 및 제2 전극(573)이 적층되어 유기 발광 소자(270)가 이루어질 수 있다.
도시되지 않았지만, 유기 발광층(572)이 백색(White) 광을 발광하는 경우, 개별 화소는 유기 발광층(572)에서 방출되는 백색(White) 광을 파장 별로 필터링하기 위한 컬러 필터를 포함할 수 있다. 컬러 필터는 광의 이동경로 상에 형성된다.
제2 전극(573) 상에 박막 봉지층(590)이 배치될 수 있다. 박막 봉지층(590)은 적어도 하나의 유기막 및 적어도 하나의 무기막을 포함할 수 있으며, 적어도 하나의 유기막 및 적어도 하나의 무기막이 교호적으로 배치될 수 있다.
이상 설명된 적층 구조를 갖는 표시패널(501) 상에 광학 필름(100)이 배치된다.
이하에서는, 본 발명의 다른 일 실시예에 따른 광학 필름의 제조방법을 간략하게 설명한다.
본 발명의 광학 필름 제조방법은, 고분자 수지를 준비하는 단계; 고분자 수지를 용매에 용해하여 고분자 수지 용액을 제조하는 단계; 및 상기 고분자 수지 용액을 이용하여 광학 필름을 제조하는 단계;를 포함한다.
고분자 수지를 준비하는 단계는, 고분자 수지를 형성하기 위한 모노머들을 고분자 중합 반응(polymeriazation)하여 얻을 수 있다.
본 발명의 다른 일 실시예에 따르면, 고분자 수지는 제1 디아민계 화합물, 제2 디아민계 화합물, 제1 디안하이드라이드계 화합물, 제2 디안하이드라이드계 화합물, 제1 디카르보닐계 화합물 및 제2 디카르보닐계 화합물을 포함하는 모노머 성분들로부터 제조될 수 있다. 본 발명은 모노머의 첨가 순서 및 방법에 의해 한정되지 않으나, 예를 들어, 제1 및 제2 디아민계 화합물이 용해되어 있는 용액에 제1 및 제2 디안하이드라이드계 화합물 및 제1 및 제2 디카르보닐계 화합물계 화합물을 순서대로 첨가하여 중합 반응 시킬 수 있다. 또는, 랜덤성을 제거하기 위해 제1 디아민계 화합물, 제1 및 제2 디안하이드라이드계 화합물, 제2 디아민계 화합물, 제1 및 제2 디카르보닐계 화합물, 순으로 첨가할 수도 있고, 제2 디아민계 화합물, 제1 및 제2 디안하이드라이드계 화합물, 제1 디아민계 화합물, 제1 및 제2 디카르보닐계 화합물 순으로 첨가하여 중합 반응 시킬 수도 있다.
보다 구체적으로, 고분자 수지는 제1 디아민계 화합물, 제2 디아민계 화합물, 제1 및 제2 디안하이드라이드계 화합물 및 제1 및 제2 디카르보닐계 화합물을 포함하는 모노머들의 고분자 중합 반응 및 이미드화에 의해 제조될 수 있다. 제1 및 제2 디아민계 화합물과 제1 및 제2 디안하이드라이드계 화합물을 포함하는 모노머들의 고분자 중합 반응 및 이미드화에 의해 이미드 반복단위가 제조될 수 있다. 또한, 제1 및 제2 디아민계 화합물과 제1 및 제2 디카르보닐계 화합물을 포함하는 모노머들의 고분자 중합 반응에 의해 아마이드 반복단위가 제조될 수 있다.
따라서, 본 발명의 다른 일 실시예에 따른 고분자 수지는 이미드 반복단위와 아마이드 반복단위를 가질 수 있다.
이미드 반복단위 및 아마이드 반복단위는 각각 별개로 제조한 뒤 공중합할 수도 있고, 이미드 반복단위를 먼저 제조한 후 아마이드 반복단위 제조를 위해 디카르보닐계 화합물을 더 첨가할 수도 있으며, 아마이드 반복단위를 먼저 제조한 후 이미드 반복단위 제조를 위해 디안하이드라이드계 화합물을 더 첨가할 수도 있다. 본 발명의 고분자 수지는 반복단위의 제조 순서(모노머의 첨가 순서)에 의해 한정되지 않는다.
본 발명의 다른 일 실시예에 따르면, 제1 및 제2 디카르보닐계 화합물은, 제1 및 제2 디안하이드라이드계 화합물과 제1 및 제2 디카르보닐계 화합물을 합한 몰(mol)량에 대하여 80 몰% 이상의 양으로 첨가될 수 있다. 그에 따라, 본원의 고분자 수지는, 80% 이상의 비율로 아마이드 반복단위를 포함하게 된다. 바람직하게, 제1 및 제2 디카르보닐계 화합물은, 제1 및 제2 디안하이드라이드계 화합물과 제1 및 제2 디카르보닐계 화합물을 합한 몰(mol)량에 대하여 95 몰% 이상의 양으로 첨가될 수도 있고, 더욱 바람직하게, 98 몰% 이상의 양으로 첨가될 수도 있다.
본 발명의 다른 일 실시예에 따르면, 제1 디아민계 화합물은 2,2'-비스(트리플루오로메틸)벤지딘 (2,2'-Bis(trifluoromethyl)benzidine, TFDB)이다.
본 발명의 다른 일 실시예에 따르면, 제2 디아민계 화합물은 방향족 디아민계 화합물을 포함한다. 이하, 중복을 피하기 위하여 이미 설명된 구성요소에 대한 설명은 생략된다.
제1 디아민계 화합물로 2,2'-비스(트리플루오로메틸)벤지딘 (2,2'-Bis(trifluoromethyl)benzidine, TFDB)이 사용될 수 있고, 제2 디아민계 화합물로 상기 설명된 화학식 1의 방향족 디아민계 화합물들이 사용될 수 있으며, 제1 및 제2 디안하이드라이드계 화합물로 상기 설명된 화학식 2의 화합물들이 사용될 수 있다. 제1 및 제2 디카르보닐계 화합물로 상기 설명된 화학식 3의 화합물들이 사용될 수 있다.
본 발명의 다른 일 실시예에 따르면, 제2 디아민계 화합물의 방향족 디아민계 화합물은 설포닐기(sulfonyl), 카르보닐기(Carbonyl), 메틸렌기(Methylene), 프로필렌기(Propylene) 및 할로겐원소(Halogen)로 구성된 군에서 선택된 1 종 이상의 작용기를 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면, 제2 디아민계 화합물의 방향족 디아민계 화합물은, 비스(3-아미노페닐)술폰 (Bis(3-aminophenyl)sulfone, 3DDS), 비스(4-아미노페닐)술폰 (Bis(4-aminophenyl)sulfone, 4DDS), 3,3'-6F (2,2-Bis(3-aminophenyl)hexafluoropropane), 4,4'-6F (2,2-Bis(4-aminophenyl)hexafluoropropane), MDA (4,4'-Methylenedianiline), 3,3'-CO (3-(Dimethylamino)benzophenone), 4,4'-CO (4-(Dimethylamino)benzophenone) 및 CIBZ (Tetrachloridebenzidine)로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면, 제1 디아민계 화합물과 제2 디아민계 화합물의 첨가량 비율은 95:5 내지 50:50 일 수 있다.
본 발명의 다른 일 실시예에 따르면, 고분자 수지 용액을 제조하는 단계에서의 용매는, 예를 들어, 디메틸아세트아마이드(DMAc, N,N-dimethylacetamide), 디메틸포름아마이드(DMF, N,N-dimethylformamide), 메틸피롤리돈(NMP, 1-methyl-2-pyrrolidinone), m-크레졸(m-cresol), 테트라하이드로퓨란(THF, tetrahydrofuran), 클로로포름(Chloroform), 메틸에틸케톤(Methyl Ethyl Ketone, MEK) 등의 비양자성 극성 유기 용매 (aprotic solvent) 및 이들의 혼합물이 사용될 수 있다.. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 공지된 다른 용매가 사용될 수도 있다.
이하, 예시적인 실시예를 참조하여 본 발명을 보다 구체적으로 설명한다. 그러나, 이하 설명되는 제조예나 실시예에 의하여 본 발명이 한정되는 것은 아니다.
<실시예 1>
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 500mL 반응기에 질소를 통과시키면서, DMAc(N,N-Dimethylacetamide) 313.34g을 채운 후, 반응기의 온도를 25 oC로 맞춘 후, 제1 디아민계 화합물로 TFDB 24.02g(0.075mol)을 용해하고, 제2 디아민계 화합물로 3DDS(Bis(3-aminophenyl)sulfone) 6.21g(0.025mol)을 추가로 용해하여 이 용액을 25 oC로 유지하였다. 디아민계 화합물이 용해된 후 여기에 6FDA 0.89g(0.002mol)을 첨가하고 2시간 동안 교반하여 6FDA를 완전히 용해시켰다. 반응기 온도를 10 oC로 내린 후 TPC(Terephthaloyl Chloride) 19.90g(0.098mol)을 첨가하고 1시간 동안 완전히 용해 및 반응 시킨 후 25 oC로 승온시켰다. 여기에 피리딘 0.35g, 아세틱 안하이드라이드 0.45g을 투입하여 80 oC에서 30분 교반 후, 과량의 메탄올을 적가하여 폴리아마이드-이미드계 파우더를 수득하였다. 파우더를 감압 필터하여 건조시킨 후 DMAc에 재용해시켜 고형분의 농도가 14 중량%인 고분자 수지 용액을 수득하였다.
얻어진 고분자 수지 용액을 캐스팅하였다. 캐스팅을 위해 캐스팅 기판이 사용된다. 캐스팅 기판의 종류에 특별한 제한이 있는 것은 아니다. 캐스팅 기판으로, 유리 기판, 스테인레스(SUS) 기판, 테프론 기판 등이 사용될 수 있다. 본 발명의 일 실시예에 따르면, 캐스팅 기판으로 유기 기판이 사용될 수 있다.
구체적으로, 얻어진 고분자 수지 용액을 유리 기판에 도포하여, 캐스팅하고 80 oC의 열풍으로 20분, 120 oC에서 20분 건조하여 필름을 제조한 후, 제조된 필름을 유리 기판에서 박리하여 프레임에 핀으로 고정하였다.
필름이 고정된 프레임을 오븐에 넣고 270 oC에서 등온 10분 열풍으로 건조하였다. 그 결과, 50㎛ 두께의 광학 필름이 완성되었다.
<실시예 2 내지 14>
실시예 1과 동일한 방법으로, 제1 디아민계 화합물의 첨가량, 제2 디아민계 화합물의 종류 및 첨가량, 디안하이드라이드계 화합물의 첨가량, 디카르보닐계 화합물의 종류 및 첨가량만 달리하여 실시예 2 내지 14의 광학 필름을 제조하였다.
실시예 1 내지 14의 구체적 제1 디아민계 화합물의 첨가량, 제2 디아민계 화합물의 종류 및 첨가량, 디안하이드라이드계 화합물의 첨가량, 디카르보닐계 화합물의 종류 및 첨가량은 하기 표 1과 같다.
<비교예 1 내지 3>
실시예 1과 동일한 방법으로, 제1 디아민계 화합물의 첨가량, 제2 디아민계 화합물의 첨가 여부, 종류 및 첨가량, 디안하이드라이드계 화합물의 첨가량, 디카르보닐계 화합물의 첨가량을 달리하여 비교예 1 내지 3의 광학 필름을 제조하였다.
비교예 1 내지 3의 구체적 제1 디아민계 화합물의 첨가량, 제2 디아민계 화합물의 첨가 여부, 종류 및 첨가량, 디안하이드라이드계 화합물의 첨가량, 디카르보닐계 화합물의 첨가량은 하기 표 1과 같다.
<비교예 4>
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 500mL 반응기에 질소를 통과시키면서, DMAc(N,N-Dimethylacetamide) 313.34g을 채운 후, 반응기의 온도를 25 oC로 맞춘 후, 제1 디아민계 화합물로 TFDB 28.8207g(0.090mol)을 용해하고, 제2 디아민계 화합물로 4DDS(Bis(4-aminophenyl)sulfone) 2.483g(0.010mol)을 추가로 용해하여 이 용액을 25 oC로 유지하였다. 디아민계 화합물이 용해된 후 여기에 CBDA(Cyclobutane-1,2,3,4-tetracarboxylic dianhydride) 5.8833g(0.030mol), 6FDA 2.2212g(0.005mol)을 첨가하고 2시간 동안 교반하여 CBDA 및 6FDA를 완전히 용해시켰다. 반응기 온도를 10 oC로 내린 후 TPC(Terephthaloyl Chloride) 13.1989g(0.065mol)을 첨가하고 1시간 동안 완전히 용해 및 반응 시킨 후 25 oC로 승온시켰다. 여기에 피리딘 0.35g, 아세틱 안하이드라이드 0.45g을 투입하여 80 oC에서 30분 교반 후, 과량의 메탄올을 적가하여 폴리아마이드-이미드계 파우더를 수득하였다. 파우더를 감압 필터하여 건조시킨 후 DMAc에 재용해시켜 고형분의 농도가 14 중량%인 고분자 수지 용액을 수득하였다.
얻어진 고분자 수지 용액을 캐스팅하였다. 캐스팅을 위해 캐스팅 기판이 사용된다. 캐스팅 기판의 종류에 특별한 제한이 있는 것은 아니다. 캐스팅 기판으로, 유리 기판, 스테인레스(SUS) 기판, 테프론 기판 등이 사용될 수 있다. 본 발명의 일 실시예에 따르면, 캐스팅 기판으로 유기 기판이 사용될 수 있다.
구체적으로, 얻어진 고분자 수지 용액을 유리 기판에 도포하여, 캐스팅하고 80 oC의 열풍으로 20분, 120 oC에서 20분 건조하여 필름을 제조한 후, 제조된 필름을 유리 기판에서 박리하여 프레임에 핀으로 고정하였다.
필름이 고정된 프레임을 오븐에 넣고 270 oC에서 등온 10분 열풍으로 건조하였다. 그 결과, 50㎛ 두께의 광학 필름이 완성되었다.
<비교예 5 및 6>
실시예 1과 동일한 방법으로, 제1 디아민계 화합물의 첨가량, 제2 디아민계 화합물의 첨가량, 디안하이드라이드계 화합물의 첨가량, 디카르보닐계 화합물의 첨가량을 달리하여 비교예 5 및 6의 광학 필름을 제조하였다.
비교예 5 및 6의 구체적 제1 디아민계 화합물의 첨가량, 제2 디아민계 화합물의 첨가량, 디안하이드라이드계 화합물의 첨가량, 디카르보닐계 화합물의 첨가량은 하기 표 1과 같다.
구분 제1 디아민계 화합물 및 첨가량
(몰%)
제2 디아민계 화합물 및 첨가량
(몰%)
디안하이드라이드계 화합물 및 첨가량
(몰%)
디카르보닐계 화합물 및 첨가량
(몰%)
필름 두께
(㎛)
실시예 1 TFDB: 75 3DDS: 25 6FDA: 2 TPC: 98 50
실시예 2 TFDB: 80 3DDS: 20 6FDA: 5 TPC: 95 50
실시예 3 TFDB: 75 3DDS: 25 6FDA: 5 TPC: 95 50
실시예 4 TFDB: 75 3DDS: 25 6FDA: 5 BPDC: 95 80
실시예 5 TFDB: 90 4DDS: 10 6FDA: 5 TPC: 95 50
실시예 6 TFDB: 85 4DDS: 15 6FDA: 5 TPC: 95 50
실시예 7 TFDB: 85 4DDS: 15 6FDA: 2 TPC: 98 50
실시예 8 TFDB: 90 4DDS: 10 6FDA: 10 TPC: 90 50
실시예 9 TFDB: 90 4DDS: 10 6FDA: 20 TPC: 80 50
실시예 10 TFDB: 75 3,3'-6F: 25 6FDA: 2 TPC: 98 50
실시예 11 TFDB: 90 4,4'-6F: 10 6FDA: 5 TPC: 95 50
실시예 12 TFDB: 50 3DDS: 50 6FDA: 20 TPC: 80 50
실시예 13 TFDB: 50 3DDS: 50 6FDA: 5 TPC: 95 50
실시예 14 TFDB: 95 4DDS: 5 6FDA: 5 TPC: 95 50
비교예 1 TFDB: 75 pPDA: 25 6FDA: 2 TPC: 98 제조 불가
비교예 2 TFDB: 90 8FODA: 10 6FDA: 5 TPC: 95 50
비교예 3 TFDB: 100 없음 6FDA: 5 TPC: 95 50
비교예 4 TFDB: 90 4DDS: 10 CBDA: 30, 6FDA: 5 TPC: 65 80
비교예 5 TFDB: 97 3DDS: 3 6FDA: 5 TPC: 95 50
비교예 6 TFDB: 45 3DDS: 55 6FDA: 5 TPC: 95 50
TFDB: 2,2'-Bis(trifluoromethyl)benzidine3DDS: Bis(3-aminophenyl)sulfone
4DDS: Bis(4-aminophenyl)sulfone
3,3'-6F: 2,2-Bis(3-aminophenyl)hexafluoropropane
4,4'-6F: 2,2-Bis(4-aminophenyl)hexafluoropropane
pPDA: para-Phenylene diamine
8FODA: Oxy-4,4'-bis(2,3,5,6-tetrafluoroaniline)
TPC: Terephthaloyl Chloride
BPDC: 4,4'-Biphenyl dicarbonyl Chloride
CBDA: Cyclobutane-1,2,3,4-tetracarboxylic dianhydride
<측정예>
실시예 1 내지 14 및 비교예 1 내지 6에서 제조된 고분자 수지 및 필름에 대하여 다음과 같은 측정을 실행하였다.
1) 고분자 수지의 중량평균 분자량: GPC(Alliance e2695/2414 RID, waters)를 이용하여, 하기의 조건에서 고분자 수지의 중량평균 분자량을 측정하였다.
디텍터: 2414 RID, waters
이동상: 10mM LiBr in DMAc
샘플농도: 0.25(w/w)% in DMAc
컬럼 및 디텍터 온도: 50℃
Flow Rate: 1.0ml/min
2) 모듈러스: 표준규격 ASTM D882에 따라, 만능인장시험기(예를 들어, INSTRON社)를 이용하여 하기의 조건으로 측정하였다.
-25oC/50RH%
-Road Cell 30KN, Grip 250N.
-시편 크기 10 X 50mm, 인장속도 25mm/min
3) 푸아송비: 광학 필름의 푸아송비는 표준규격 ASTM E-132에 따라 비접촉식(Video extensometer)으로 측정하였다. 구체적으로, 만능재료시험기(예를 들어, Instron社의 Instron 3367)를 이용하여 하기의 조건으로 측정하였다.
- 시험 속도: 10mm/min
- (25±2)oC/(45±5)%RH
4) 탄성변형 지수(E'): 광학 필름의 탄성변형 지수(E')는 하기 식 2로 산출할 수 있다.
[식 2]
탄성변형 지수(E') = E/(1-v2)
5) 황색도(Y.I.): 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여 황색도를 측정하였다.
6) 폴딩 성능 파라미터: 광학 필름의 폴딩 성능 파라미터는 하기 식 1로 산출할 수 있다.
[식 1]
Figure PCTKR2021019823-appb-I000013
상기 식 1에서, R은 폴딩 시 폴딩 중심선에서의 광학 필름의 곡률 반경으로, 곡률 반경의 단위는 mm이고, d는 광학 필름의 두께로, 두께의 단위는 ㎛이며, E'는 탄성변형 지수이다. 다만, 상기 식 1에서, 곡률 반경 및 두께는 단위를 제외하고, 숫자만 대입한다.
7) 광투과도(%): Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여, 파장 360~740nm 에서의 평균 광학투과도를 측정하였다.
8) 헤이즈: 제조된 광학 필름을 50㎜ Х 50㎜로 잘라 MURAKAMI社의 헤이즈 미터(모델명: HM-150) 장비를 이용하여 ASTM D1003에 따라 5회 측정하여 그 평균 값을 헤이즈 값으로 하였다.
9) 폴딩 흔적: 광학 필름으로부터 임의로 취득한 100mm X 50mm 샘플을 하나의 절곡축을 중심으로 절곡 시험하였다. 절곡 시험은 100mm X 50mm 샘플을 굴곡반복평가기(YUASA社, DLDM111LHA)를 이용하여, 25 oC/50RH%에서 곡률 반경 2.0mm(직경 4.0mm), 60rpm의 속도로 200,000회 반복해서 절곡하여 절곡 시험 후, 절곡축을 중심으로 폴딩 흔적의 발생 여부를 분석하였다.
이때, 접힘자국의 명암(음영) 등을 더욱 선명히 하기 위한 분석방법을 필요로 할 수 있다. 일례로, 이미지화 방법으로서 필름 이물 검사방법을 사용하여 수행할 수 있다. 가급적 CCD 카메라 또는 육안으로 잡기 힘든 결함이나 눌린 자국, E는 소재와 같은 색의 이물질을 검출하도록, 반사식, 산란식, 투과식 등 여러 가지 검사법을 사용할 수 있으며, 측정기기가 아닌 검사(즉 판정) 기기인 것이 바람직하다.
구체적인 예로는 검사장치 + 제어 유닛(컨트롤러 박스 : 검사장치를 통해 들어온 레이저 데이터를 이미지 데이터화함) + 전용 PC(화상 PC: 전용 어플리케이션이 등록된 PC로 제어유닛(컨트롤러 박스)와의 연결 및 화상 처리가능 PC)의 3가지로 구성 가능할 수 있다. 즉, 측정/평가 조건을 설정하고, 이미지 파일로 전환한 다음 이미지/사진의 명도, 채도, 반사도 등을 분석하는 공지된 프로그램을 활용하여 분석/평가를 진행할 수 있으나, 이에 한정하는 것은 아니다.
측정결과는 다음 표 2 및 표 3과 같다.
구분 수지의 중량평균 분자량 곡률반경
(R)
푸아송비 모듈러스 탄성변형 지수(E')
(GPa)
폴딩 성능 파라미터
(GPa)
실시예 1 330,000 0.5 0.34 6.9 7.802 0.7430
실시예 2 347,000 0.5 0.34 6.7 7.576 0.7215
실시예 3 320,000 0.5 0.34 7.2 8.141 0.7753
실시예 4 310,000 0.5 0.34 6.6 7.463 1.1056
실시예 5 302,000 0.5 0.33 6.4 7.182 0.6840
실시예 6 305,000 0.5 0.33 6.6 7.407 0.7054
실시예 7 310,000 0.5 0.33 6.7 7.519 0.7161
실시예 8 297,000 0.5 0.33 6.5 7.294 0.6947
실시예 9 270,000 0.5 0.33 6.3 7.070 0.6733
실시예 10 250,000 0.5 0.35 6.7 7.635 0.7272
실시예 11 240,000 0.5 0.35 6.5 7.407 0.7055
실시예 12 220,000 0.5 0.34 6.1 6.897 0.6569
실시예 13 235,000 0.5 0.34 6.5 7.350 0.7000
실시예 14 295,000 0.5 0.33 6.2 6.958 0.6622
비교예 1 측정 불가 측정 불가 측정 불가 측정 불가 측정 불가 측정 불가
비교예 2 120,000 0.5 0.33 4.8 5.387 0.5130
비교예 3 440,000 0.5 0.32 4.9 5.459 0.5199
비교예 4 380,000 0.5 0.31 9.2 10.178 1.505
비교예 5 270,000 0.5 0.33 4.75 5.33 0.507
비교예 6 185,000 0.5 0.34 4.1 4.636 0.4412
구분 황색도(Y.I.) 광투과도
(%)
헤이즈
(%)
폴딩 흔적
실시예 1 2.12 88.71 0.4 X
실시예 2 1.88 88.99 0.3 X
실시예 3 1.79 89.04 0.3 X
실시예 4 2.89 88.12 0.3 X
실시예 5 1.93 89.02 0.3 X
실시예 6 1.73 89.17 0.2 X
실시예 7 1.81 89.09 0.3 X
실시예 8 2.67 88.01 0.2 X
실시예 9 1.55 89.27 0.2 X
실시예 10 1.93 88.89 0.3 X
실시예 11 1.9 89.15 0.2 X
실시예 12 1.5 89.12 0.3 X
실시예 13 1.8 88.87 0.3 X
실시예 14 2.2 88.98 0.3 X
비교예 1 측정 불가 측정 불가 측정 불가 측정 불가
비교예 2 6.54 88.22 0.8
비교예 3 27.9 58.4 49.6
비교예 4 4.1 86.5 0.7 O
비교예 5 5.3 87 0.9
비교예 6 6.7 85 1.2
상기 표 2 및 3의 측정결과에 개시된 바와 같이, 본 발명의 실시예 1 내지 14는 높은 중량평균 분자량을 가지며, 황색도, 광투과도 및 헤이즈 모두 우수한 것을 확인할 수 있다. 또한, 본 발명의 실시예 1 내지 14는 폴딩 성능 파라미터가 모두 1.5 GPa 이하이고, 탄성변형 지수(E')가 5.5 GPa 이상으로, 절곡 시험 후에도 폴딩 흔적이 발생하지 않았다.
그러나, 비교예 1은 디카르보닐계 화합물의 겔화로 인하여 필름으로 제조가 불가능하였다. 비교예 2는 수지의 중량평균 분자량이 저조하였고, 황색도와 헤이즈가 높아서 시인성이 저조한 것을 확인할 수 있다. 또한, 비교예 2는 폴딩 성능 파라미터가 1.5 GPa 이하이지만, 탄성변형 지수(E')가 5.5 GPa 미만으로, 절곡 시험 후 약간의 폴딩 흔적이 발생하였다. 비교예 3은 수지의 중량평균 분자량은 크지만, 황색도 및 헤이즈가 현저히 높았으며, 광투과도가 현저히 떨어졌다. 또한, 비교예 3은 폴딩 성능 파라미터가 1.5 GPa 이하이지만, 탄성변형 지수(E')가 5.5 GPa 미만으로, 절곡 시험 후 약간의 폴딩 흔적이 발생하였다. 비교예 4는 황색도 및 헤이즈가 높았으며, 광투과도가 낮고, 폴딩 성능 파라미터가 1.5 GPa를 초과하였으며, 절곡 시험 후 폴딩 흔적이 심하게 발생하였다. 비교예 5는 황색도 및 헤이즈가 높고 광투과도가 낮아서 시인성이 저조한 것을 확인할 수 있다. 또한, 비교예 5는 폴딩 성능 파라미터가 1.5 GPa 이하이지만, 탄성변형 지수(E')가 5.5 GPa 미만으로, 절곡 시험 후 약간의 폴딩 흔적이 발생하였다. 비교예 6은 수지의 중량평균 분자량이 저조하였고, 황색도와 헤이즈가 높고 광투과도가 낮아서 시인성이 저조한 것을 확인할 수 있다. 또한, 비교예 6는 폴딩 성능 파라미터가 1.5 GPa 이하이지만, 탄성변형 지수(E')가 5.5 GPa 미만으로, 절곡 시험 후 약간의 폴딩 흔적이 발생하였다.
[부호의 설명]
100: 광학 필름
200: 표시장치
501: 표시패널

Claims (14)

  1. 고분자 수지를 포함하고,
    황색도가 3.0 이하이며,
    하기 식 1로 산출되는 폴딩 성능 파라미터가 1.5 GPa 이하인,
    광학 필름:
    [식 1]
    Figure PCTKR2021019823-appb-I000014
    상기 식 1에서, R은 폴딩 시 폴딩 중심선에서의 광학 필름의 곡률 반경으로, 0.5 mm이고, d는 광학 필름의 두께로, 두께의 단위는 ㎛이며, E'는 하기 식 2로 산출되는 탄성변형 지수이다. 다만, 상기 식 1에서, 곡률 반경 및 두께는 단위를 제외하고, 숫자만 대입한다.
    [식 2]
    탄성변형 지수(E') = E/(1-v2)
    상기 식 2에서, E는 광학 필름의 모듈러스(modulus)이고, 모듈러스의 단위는 GPa이며, v는 광학 필름의 푸아송비(Poisson's ratio)이다.
  2. 제1항에 있어서,
    상기 식 2로 산출되는 탄성변형 지수(E')는 5.5 이상인,
    광학 필름
  3. 제1항에 있어서,
    상기 고분자 수지는 이미드 반복단위 및 아마이드 반복단위를 포함하는,
    광학 필름.
  4. 제3항에 있어서,
    상기 아마이드 반복단위는, 상기 이미드 반복단위 및 상기 아마이드 반복단위의 개수에 대하여 80% 이상의 비율로 포함되는,
    광학 필름.
  5. 제3항에 있어서,
    상기 이미드 반복단위는 제1 반복단위 및 제2 반복단위를 포함하는,
    광학 필름.
  6. 제3항에 있어서,
    상기 아마이드 반복단위는 제3 반복단위 및 제4 반복단위를 포함하는,
    광학 필름.
  7. 제5항에 있어서,
    상기 제1 반복단위는 제1 디아민계 화합물과 제1 디안하이드라이드계 화합물이 중합 반응한 이미드 반복단위이고,
    상기 제2 반복단위는 제2 디아민계 화합물과 제2 디안하이드라이드계 화합물이 중합 반응한 이미드 반복단위인,
    광학 필름.
  8. 제6항에 있어서,
    상기 제3 반복단위는 제1 디아민계 화합물과 제1 디카르보닐계 화합물이 중합 반응한 아마이드 반복단위이고,
    상기 제4 반복단위는 제2 디아민계 화합물과 제2 디카르보닐계 화합물이 중합 반응한 아마이드 반복단위인,
    광학 필름.
  9. 제7항 또는 제8항에 있어서,
    상기 제1 디아민계 화합물은, 2,2'-비스(트리플루오로메틸)벤지딘 (2,2'-Bis(trifluoromethyl)benzidine, TFDB)인,
    광학 필름.
  10. 제7항 또는 제8항에 있어서,
    상기 제2 디아민계 화합물은, 설포닐기(sulfonyl), 카르보닐기(Carbonyl), 메틸렌기(Methylene), 프로필렌기(Propylene) 및 할로겐원소(Halogen)로 구성된 군에서 선택된 1종 이상의 작용기를 포함하는 디아민계 화합물인,
    광학 필름.
  11. 제7항 또는 제8항에 있어서,
    상기 제2 디아민계 화합물은, 비스(3-아미노페닐)술폰 (Bis(3-aminophenyl)sulfone, 3DDS), 비스(4-아미노페닐)술폰 (Bis(4-aminophenyl)sulfone, 4DDS), 2,2-비스(3-아미노페닐)헥사플루오로프로판 (2,2-Bis(3-aminophenyl)hexafluoropropane, 3,3'-6F), 2,2-비스(4-아미노페닐)헥사플루오로프로판 (2,2-Bis(4-aminophenyl)hexafluoropropane, 4,4'-6F), 4,4'-메틸렌디아닐린 (4,4'-Methylenedianiline, MDA), 3,3'-디아미노벤조페논 (3,3'-Diaminobenzophenone), 4,4'-디아미노벤조페논 (4,4'-Diaminobenzophenone) 및 테트라클로라이드벤지딘 (Tetrachloridebenzidine, CIBZ)로 이루어진 군에서 선택된 적어도 어느 하나를 포함하는,
    광학 필름.
  12. 제7항 또는 제8항에 있어서,
    중합 반응한 제1 디아민계 화합물과 제2 디아민계 화합물의 몰 비율은 95:5 내지 50:50인,
    광학 필름.
  13. 제1항에 있어서,
    상기 고분자 수지는, 200,000 내지 500,000의 중량평균 분자량(weight-average molecular weight, Mw)을 가지는,
    광학 필름.
  14. 표시패널; 및
    상기 표시패널 상에 배치된, 제1항 내지 제13항 중 어느 한 항의 광학 필름;
    을 포함하는, 표시장치.
PCT/KR2021/019823 2021-07-14 2021-12-24 폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치 WO2023286954A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023575504A JP2024529230A (ja) 2021-07-14 2021-12-24 折り畳み性能に優れた光学フィルム及びこれを含む表示装置
EP21950296.0A EP4324870A1 (en) 2021-07-14 2021-12-24 Optical film having excellent folding performance and display device comprising same
CN202180100358.XA CN117616072A (zh) 2021-07-14 2021-12-24 具有优异的折叠性能的光学膜和包括该光学膜的显示装置
US18/560,376 US20240255676A1 (en) 2021-07-14 2021-12-24 Optical film having excellent folding performance and display device comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0092397 2021-07-14
KR20210092397 2021-07-14
KR1020210186219A KR102699705B1 (ko) 2021-07-14 2021-12-23 폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치
KR10-2021-0186219 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023286954A1 true WO2023286954A1 (ko) 2023-01-19

Family

ID=84919361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019823 WO2023286954A1 (ko) 2021-07-14 2021-12-24 폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치

Country Status (5)

Country Link
US (1) US20240255676A1 (ko)
EP (1) EP4324870A1 (ko)
JP (1) JP2024529230A (ko)
TW (2) TW202334285A (ko)
WO (1) WO2023286954A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170023715A1 (en) * 2015-07-22 2017-01-26 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
KR20180112671A (ko) * 2017-04-04 2018-10-12 에스케이씨 주식회사 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
US20200147943A1 (en) * 2018-11-13 2020-05-14 Dupont Electronics, Inc. Multilayer Polymer Film
KR20210020395A (ko) * 2019-08-14 2021-02-24 에스케이씨 주식회사 폴리아마이드-이미드 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치
JP2021055096A (ja) * 2019-09-30 2021-04-08 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. ポリイミド系フィルムおよびこれを含むフレキシブルディスプレイパネル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170023715A1 (en) * 2015-07-22 2017-01-26 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
KR20180112671A (ko) * 2017-04-04 2018-10-12 에스케이씨 주식회사 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
US20200147943A1 (en) * 2018-11-13 2020-05-14 Dupont Electronics, Inc. Multilayer Polymer Film
KR20210020395A (ko) * 2019-08-14 2021-02-24 에스케이씨 주식회사 폴리아마이드-이미드 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치
JP2021055096A (ja) * 2019-09-30 2021-04-08 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. ポリイミド系フィルムおよびこれを含むフレキシブルディスプレイパネル

Also Published As

Publication number Publication date
EP4324870A1 (en) 2024-02-21
US20240255676A1 (en) 2024-08-01
JP2024529230A (ja) 2024-08-06
TW202302717A (zh) 2023-01-16
TW202334285A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2017111299A1 (ko) 접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2015183056A1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2014168400A1 (ko) 적층체 및 이를 이용하여 제조된 기판을 포함하는 소자
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2010002182A2 (en) Plastic substrate and device including the same
WO2018147602A1 (ko) 폴리아마이드-이미드 필름
WO2017209414A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2019054612A1 (ko) 폴리이미드 전구체 조성물 및 이를 이용한 폴리이미드 필름
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2020138645A1 (ko) 폴리아믹산 조성물, 및 이를 이용한 투명 폴리이미드 필름
WO2018080222A2 (ko) 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
WO2016140559A1 (ko) 광전소자의 플렉시블 기판용 폴리이미드 필름용 조성물
WO2020159174A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2021060752A1 (ko) 우수한 표면 평탄성을 갖는 폴리이미드계 필름 및 이의 제조방법
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2023286954A1 (ko) 폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치
WO2023286955A1 (ko) 선명도가 우수한 광학 필름 및 이를 포함하는 표시장치
WO2021194312A1 (ko) 폴딩 후 복원력이 우수한 광학 필름 및 이를 포함하는 표시장치
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022145890A1 (ko) 광학 특성이 개선된 광학 필름, 이를 포함하는 표시장치 및 이의 제조방법
WO2018147617A1 (ko) 폴리아마이드-이미드 필름 및 이의 제조방법
WO2020209625A1 (ko) 폴리아미드-이미드 블록 공중합체, 이의 제조방법 및 이를 포함하는 폴리아미드-이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18560376

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021950296

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021950296

Country of ref document: EP

Effective date: 20231117

ENP Entry into the national phase

Ref document number: 2023575504

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180100358.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE