WO2024071503A1 - 바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용 - Google Patents

바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용 Download PDF

Info

Publication number
WO2024071503A1
WO2024071503A1 PCT/KR2022/015544 KR2022015544W WO2024071503A1 WO 2024071503 A1 WO2024071503 A1 WO 2024071503A1 KR 2022015544 W KR2022015544 W KR 2022015544W WO 2024071503 A1 WO2024071503 A1 WO 2024071503A1
Authority
WO
WIPO (PCT)
Prior art keywords
gypsum
weight
manufacturing
biosulfur
minutes
Prior art date
Application number
PCT/KR2022/015544
Other languages
English (en)
French (fr)
Inventor
송효순
김영민
조성현
이평수
송명신
이웅걸
Original Assignee
에코바이오홀딩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코바이오홀딩스 주식회사 filed Critical 에코바이오홀딩스 주식회사
Priority to EP22938739.4A priority Critical patent/EP4371941A1/en
Publication of WO2024071503A1 publication Critical patent/WO2024071503A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements

Definitions

  • the present invention relates to a method for producing gypsum using an oxidation reaction with biosulfur and its use, and more specifically, to gypsum containing a high content of one or more of hemihydrate gypsum, dihydrate gypsum, and anhydrous gypsum using an oxidation reaction with biosulfur. It relates to the manufacturing method and use thereof.
  • Gypsum can be roughly divided into naturally occurring gypsum and artificially manufactured gypsum.
  • CaCO 3 is first precipitated as limestone by the evaporation of seawater, and then what is precipitated is gypsum, which is deposited in layers.
  • gypsum which is deposited in layers.
  • Gypsum is a sulfate mineral whose main ingredient is calcium sulfate (CaSO 4 ), and comes in the form of anhydrous gypsum (CaSO 4 ), dihydrate gypsum (CaSO 4 ⁇ 2H 2 O), and/or hemihydrate gypsum (CaSO 4 ⁇ 1/2H 2 O). exists as
  • waste sulfuric acid generated in general industrial production processes contains a lot of fluorine, and the gypsum produced simply by neutralization has a high content of fluorine and chemical impurities, making it unsuitable for use as a raw material for cement and gypsum board.
  • Gypsum plays a role in delaying the hydration of components with a rapid hydration reaction, such as 3CaO-Al 2 O 3 among cement components, and providing expansion properties to cement.
  • gypsum is often used as a grinding aid for solidified quenched crushed slag. The gypsum used at this time facilitates the pulverization of the solidified quenched granulated slag, improves the activity of the granulated blast furnace slag powder contained in slag cement, and plays a role in reducing shrinkage.
  • the present inventors continued research to meet the needs of the prior art, and as a result, when producing gypsum under specific conditions using biosulfur and oxidation reaction, the use of sulfuric acid was minimized to create environmentally friendly and stable hemihydrate gypsum, dihydrate gypsum, and / Or, the present invention was completed after confirming that high-quality gypsum with an anhydrous gypsum content of 70% by weight or more can be obtained.
  • the purpose of the present invention is to provide an environmentally friendly method for producing gypsum with a hemihydrate, dihydrate, and/or anhydrous gypsum content of 70% by weight or more using biosulfur and oxidation reaction.
  • Another object of the present invention is to provide gypsum containing 70% by weight or more of hemihydrate gypsum, dihydrate gypsum, and/or anhydrous gypsum produced by the above production method.
  • Another object of the present invention is to provide a composition for gypsum board containing the above gypsum.
  • Another object of the present invention is to provide an auxiliary material for grinding blast furnace slag containing the gypsum.
  • Another object of the present invention is to provide an admixture for cement containing the above gypsum.
  • Another object of the present invention is to provide slag cement containing the above gypsum.
  • Another object of the present invention is to provide a concrete composition containing the slag cement.
  • step ii) While stirring the mixture from step i) at 30 rpm or more, add 50 to 150 parts by weight of 5 to 15% aqueous sulfuric acid solution with respect to 100 parts by weight of the mixture, maintaining the pH in the range of 2 to 5 for 30 minutes to 2. performing a temporal oxidation reaction;
  • step iii) drying the reaction product from step ii) at 90 to 120° C. for 30 minutes or more.
  • 'gypsum' means containing at least 70% by weight, preferably at least 80% by weight, and most preferably at least 85% by weight, selected from the group consisting of hemihydrate gypsum, dihydrate gypsum, and anhydrous gypsum. do.
  • biosulfur refers to an aqueous suspension containing sulfur (S) produced through a biological sulfur conversion process.
  • S sulfur
  • biosulfur is hydrophilic and is a stable aqueous suspension in which sulfur is suspended with a particle size of 10 ⁇ m or less. Additionally, biosulfur has little toxicity and can be used without the legislation required for chemically produced sulfur.
  • biosulfur goes through a desulfurization process to remove hydrogen sulfide (H 2 S) contained in the gas to protect facilities and prevent air pollution. At this time, hydrogen sulfide (H 2 S) It is a by-product generated in the treatment process.
  • 'lime' may include limestone, slaked lime, quicklime, waste limestone, limestone sludge, and slaked lime sludge containing more than 40% by weight of CaO (calcium oxide).
  • the sulfur (S) contained in biosulfur reacts with the Ca contained in limestone to produce a CaS (calcium-sulfur) compound.
  • biosulfur is used having a sulfur content of 40% by weight or more, preferably 70% by weight or more. If the sulfur content in biosulfur is less than 40% by weight, CaS compounds are not produced well, ultimately lowering the yield of gypsum.
  • the calcium oxide component is less than 40% by weight, the production of CaS compounds is not complete, which ultimately lowers the production yield of gypsum, making it uneconomical.
  • the calcium oxide component is 45% by weight or more.
  • mixing is performed at a temperature of 90 to 150°C. If the temperature is less than 90°C, the sulfur contained in the biosulfur is not dissolved, and if it is above 150°C, it is not economical. A temperature of 100 to 120°C is preferred.
  • mixing is performed at 100 to 300 rpm for 30 minutes to 6 hours. If mixing at less than 100 rpm, CaS compounds cannot be sufficiently produced due to the formation of precipitates, and mixing at more than 300 rpm is economically undesirable. Preferably 150 to 200 rpm is appropriate. If the mixing time is less than 30 minutes, sufficient CaS compounds cannot be produced, and mixing for 6 hours is economically undesirable. Preferably 2 to 5 hours.
  • step i) While stirring the mixture from step i) at 30 rpm or more, add 50 to 150 parts by weight of 5 to 15% aqueous sulfuric acid solution with respect to 100 parts by weight of the mixture, maintain the pH in the range of 2 to 5, and oxidize for 30 minutes to 2 hours. Carry out the reaction.
  • the CaS compound is oxidized by sulfuric acid to produce gypsum containing a large amount of hemihydrate gypsum.
  • aqueous sulfuric acid solution it is preferable to use a 5 to 15% aqueous sulfuric acid solution. If the concentration of the sulfuric acid aqueous solution is less than 5%, the oxidation reaction is low and is not efficient, and if it is more than 15%, it is undesirable in terms of the manufacturing environment.
  • aqueous solution of sulfuric acid 50 to 150 parts by weight of a 5 to 15% aqueous solution of sulfuric acid is used. If it is less than 50 parts by weight, the oxidation reaction is weak and the production yield of hemihydrate gypsum is low, and if it exceeds 150 parts by weight, it is economically undesirable. .
  • 80 to 120 parts by weight of 5 to 15% aqueous sulfuric acid solution is used.
  • the pH is maintained in the range of 2 to 5. If the pH is less than 2, it may cause a decrease in the production of gypsum (hemihydrate gypsum) due to too strong acidity, and if the pH is more than 5, gypsum cannot be produced.
  • the pH range is 3 to 4.
  • mixing is performed for 30 minutes to 2 hours. If it is less than 30 minutes, sufficient oxidation reaction does not proceed, which reduces the production of gypsum (hemihydrate gypsum), and if it exceeds 2 hours, it is economically undesirable. Preferably, mixing is performed for 1 hour to 1 hour and 30 minutes.
  • an additional step of adding 20 to 100 parts by weight of a 5 to 15% aqueous sulfuric acid solution to 100 parts by weight of the reaction product (hemihydrate gypsum) from step ii) and mixing for 30 minutes to 2 hours while stirring at 30 rpm or more produces an anhydrous solution.
  • Gypsum containing a large amount of gypsum is produced.
  • reaction product from step ii) is dried at 90 to 120° C. for more than 30 minutes to obtain gypsum.
  • drying is carried out at 90 to 120 °C for more than 30 minutes. If the temperature is less than 90 °C, the produced gypsum has a lot of moisture and is difficult to use, and if it exceeds 120 °C, it is economically undesirable.
  • the drying temperature is 95 to 110° C., and the drying time is preferably 30 minutes or more.
  • the reaction product may be filtered to remove moisture and/or washed with water to remove any remaining sulfuric acid.
  • Filtration and washing can be performed by conventional methods in gypsum production.
  • the manufacturing method according to the present invention is environmentally friendly by minimizing the use of sulfuric acid and can produce high-quality gypsum containing more than 70% by weight of hemihydrate gypsum, dihydrate gypsum, and/or anhydrous gypsum (FIG. 2).
  • a gypsum containing 70% by weight or more of hemihydrate gypsum, dihydrate gypsum and/or anhydrous gypsum prepared by the above production method.
  • composition for gypsum board containing the above gypsum is provided.
  • an auxiliary material for grinding blast furnace slag containing the gypsum is provided.
  • the auxiliary material according to the present invention can be used in an amount of about 2 to 3% of the weight of blast furnace slag.
  • an admixture for cement containing the above gypsum is provided.
  • the admixture according to the present invention can be used in an amount of about 5 to 8% of the weight of cement.
  • a slag cement containing the above gypsum is provided.
  • a concrete composition containing the slag cement is provided.
  • the manufacturing method according to the present invention is environmentally friendly by minimizing the use of sulfuric acid and produces high-quality gypsum containing more than 70% by weight of hemihydrate gypsum, dihydrate gypsum, and/or anhydrous gypsum.
  • the manufacturing method according to the present invention utilizes bio-sulfur generated as a biogas by-product to solve environmental problems and at the same time has the effect of recycling waste resources that can be economically utilized.
  • the gypsum produced by the manufacturing method of the present invention has a high content of anhydrous gypsum, hemihydrate gypsum, and/or dihydrate gypsum, and because it uses biosulfur, it does not contain environmental pollutants such as heavy metal ions, so it is used as gypsum for gypsum board and blast furnace. It can be used as an auxiliary material for slag grinding, admixture for cement, gypsum for slag cement, etc.
  • the gypsum according to the present invention is a gypsum containing a high content of anhydrous gypsum, hemihydrate gypsum, and/or dihydrate gypsum, so it can be used in small amounts, so it has excellent economical additional effects and can replace natural gypsum for which there are no resources in Korea. There is also an import substitution effect.
  • FIG. 1 is a photograph of gypsum manufactured according to the present invention.
  • Figure 2 shows the X-ray quantitative analysis results of the gypsum of Example 1.
  • Example 1 Gypsum production using biosulfur and oxidation reaction
  • CaS was obtained by mixing 250 g of biosulfur (45% by weight of sulfur content; Ecobio Holdings Co., Ltd.), 350g of slaked lime (white light material) with a calcium oxide (CaO) content of 48% by weight or more, and 400g of water at 110°C and 150rpm for 4 hours. was created. After mixing was completed, while stirring the mixture slowly at 50 rpm, 800 g of 10% aqueous sulfuric acid solution was slowly added to 1,000 g of the mixture, and the oxidation reaction was allowed to proceed for 60 minutes while maintaining the pH at 3.4.
  • reaction product was compressed and filtered using a filter press to remove moisture, washed with water, and dried at 105°C for 60 minutes to obtain gypsum.
  • a photo of the resulting gypsum is shown in Figure 1. did.
  • the gypsum prepared in Example 1 was analyzed for the content of components such as gypsum using an X-ray quantitative component analysis device (Rigaku, D/Max-2500V), and the results are shown in Figure 2.
  • the gypsum manufactured according to the present invention contains 85.6% by weight of hemihydrate gypsum (CaSO 4 ⁇ 1/2H 2 O).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명에서는 바이오황과 산화반응을 이용하여 반수석고, 이수석고 및 무수석고 중 하나 이상을 고함량으로 함유하는 석고의 제조방법 및 이의 제조방법이 개시된다. 본 발명에 따른 제조방법은 황산의 사용을 최소화하여 친환경적이며 안정적인 반수석고, 이수석고 및/또는 무수석고를 70 중량% 이상 함유하는 고품질의 석고를 제조케한다. 또한 본 발명에 따른 제조방법은 바이오 가스 부산물로 발생하는 바이오황을 활용하여 환경문제의 해결과 동시에 경제적으로도 유용하게 활용할 수 있는 폐자원의 재활용 효과가 있다. 본 발명에 따른 석고는 무수석고, 반수석고 및/또는 이수석고의 함량이 높고 바이오황을 사용하기 때문에 중금속 이온 등 환경오염 물질이 함유되어있지 않아서, 석고보드용 석고, 고로슬래그 분쇄용 보조재, 시멘트용 혼화재, 슬래그 시멘트용 석고 등으로 사용될 수 있다.

Description

바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용
본 발명은 바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용에 관한 것으로, 더 상세하게는 바이오황과 산화반응을 이용하여 반수석고, 이수석고 및 무수석고 중 하나 이상을 고함량으로 함유하는 석고의 제조방법 및 이의 이용에 관한 것이다.
석고는 자연적으로 생성된 천연석고와 인공적으로 제조한 석고로 크게 나눌 수 있다. 천연석고는 대부분 바닷물의 증발에 의하여 CaCO3가 석회석으로 먼저 침전된 후 다음에 침전된 것이 석고로서 층상으로 퇴적된 것으로 우리나라에는 천연석고가 전혀 없어서 태국 등지에서 수입하여 사용하고 있는 실정이다.
석고는 황산칼슘(CaSO4)을 주성분으로 하는 황산염 광물로, 무수석고(CaSO4), 이수석고(CaSO4·2H2O) 및/또는 반수석고(CaSO4·1/2H2O)의 형태로 존재한다.
석고의 인공적 제조의 한 방법으로 다양한 공업 생산 공정에서 발생하는 폐황산을 칼슘 화합물(석회류)에 의해 중화처리(중화반응)하고, 그 부산물로 석고를 제조하는 방법이 널리 알려져 있다 (등록특허 10-0406392호). 그러나 일반적인 공업 생산 공정에서 발생하는 폐황산은 불소를 많이 함유하고 있어서, 단순히 중화 처리하는 것만으로는 제조한 석고 중에는 불소 및 화학적 불순물의 함유량이 높기 때문에 시멘트 원료 및 석고보드 원료로 사용하기 부적합하다.
이러한 문제점을 해결하기 위해, 폐황산 대신에 황산을 사용하여 석고를 제조하는 방법이 시도되었으나, 칼슘 화합물과 황산을 화학양론적으로 반응시키기 위해서는 유독한 다량의 황산이 사용되어야 해서 제조 환경이 친환경적이지 못하고 비용도 많이 소요되는 단점이 있었다.
한편 시멘트 업계에서는 석고를 시멘트에 대한 필수 혼화재로 활용하고 있다. 석고는 시멘트 구성 성분 중 3CaO-Al2O3 등 수화반응이 빠른 성분의 수화를 지연시키는 작용과 시멘트의 팽창성을 부여하는 역할을 한다. 또한 슬래그 시멘트를 제조하는 공정에서도 고형화된 급냉 수쇄 슬래그의 분쇄 조제로 석고를 많이 사용한다. 이때 사용되는 석고는 고형화된 급냉 수쇄 슬래그의 분쇄를 원활하게 하며, 슬래그 시멘트에 함유된 고로수재 슬래그 미분말의 활성도를 향상시키고 수축을 저감시키는 역할을 한다.
따라서 석고 제조방법에서의 상기와 같은 종래 기술의 문제점을 발생하지 않도록 황산의 사용량을 최소화면서도 반수석고, 이수석고 및/또는 무수석고의 함량이 높은 새로운 석고 제조방법의 개발이 시급히 요구되고 있는 실정이다.
이에 본 발명자들은 종래 기술의 요구에 부응하기 위한 연구를 지속한 결과, 바이오황과 산화반응을 사용하여 특정 조건으로 석고를 제조할 경우, 황산의 사용을 최소화하여 친환경적으로 안정적인 반수석고, 이수석고 및/또는 무수석고 함량이 70 중량% 이상인 고품질의 석고를 얻을 수 있다는 것을 확인하고 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은 바이오황과 산화반응을 사용하여 친환경적으로 반수석고, 이수석고 및/또는 무수석고 함량이 70 중량% 이상인 석고의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 제조방법에 의해 제조된 반수석고, 이수석고 및/또는 무수석고를 70 중량% 이상으로 함유하는 석고를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 석고를 포함하는 석고보드용 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 석고를 포함하는 고로슬래그 분쇄용 보조재를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 석고를 포함하는 시멘트용 혼화재를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 석고를 포함하는 슬래그 시멘트를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 슬래그 시멘트를 포함하는 콘크리트 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은
i) 바이오황 5 내지 30 중량%, 석회류 15 내지 40 중량% 및 물 30 내지 80 중량%를 90 내지 150 ℃에서 100 내지 300rpm으로 30분 내지 6시간 혼합하는 단계;
ii) 단계 i)로부터의 혼합물을 30rpm 이상으로 교반하면서, 상기 혼합물 100 중량부에 대하여 5~15% 황산수용액을 50 내지 150 중량부로 첨가하면서 pH를 2 내지 5의 범위로 유지하며 30분 내지 2시간 산화 반응을 수행하는 단계;
iii) 단계 ii)로부터의 반응생성물을 90 내지 120 ℃에서 30분 이상 건조하는 단계;를 포함하는 석고의 제조방법을 제공한다.
본 발명에서 '석고'는 반수석고, 이수석고 및 무수석고로 이루어지는 군에서 선택되는 하나 이상의 함량이 70 중량% 이상, 바람직하게는 80 중량% 이상, 가장 바람직하게는 85 중량% 이상 함유하는 것을 의미한다.
본 발명에서 '바이오황(biosulfur)'은 생물학적 황 전환 과정을 통하여 생산되는 황(S)을 포함하는 수상 현탁액을 의미한다. 바이오황은 화학적으로 생산된 황과 비교하면, 친수성이며, 10 ㎛ 이하의 입자크기로 황이 현탁되어 있는 안정한 수상 현탁액 상태이다. 또한 바이오황은 독성이 거의 없어 화학적으로 생산된 황에서 필요로 하는 법제화 없이 사용될 수 있다.
바이오황은 바이오가스 또는 천연가스 등을 연료로 활용되기 위해서는 설비 보호와 대기오염 방지를 위해 가스 중에 함유된 황화수소(H2S)를 제거하는 탈황과정을 거치게 되는데, 이때 황산화 미생물을 이용한 황화수소(H2S) 처리 공정에서 생성되는 부산물이다.
본 발명에서 '석회류'로는 CaO(산화칼슘) 성분을 40 중량% 이상 함유하고 있는 석회석, 소석회, 생석회, 폐석회석, 석회석 슬러지, 소석회 슬러지가 포함될 수 있다.
단계 i): CaS 화합물 생성 단계
바이오황 5 내지 30 중량%, 석회류 15 내지 40 중량% 및 물 30 내지 80 중량%를 90 내지 150 ℃에서 100 내지 300rpm으로 30분 내지 6시간 혼합한다.
상기와 같은 혼합에 의해 바이오황에 함유된 황(S)과 석회류에 포함된 Ca가 반응하여 CaS (칼슘-황) 화합물이 생성된다.
본 발명에서 바이오황은 함유되는 황의 함량이 40 중량% 이상인 것을 사용하며, 바람직하게는 70 중량% 이상인 것을 사용한다. 바이오황에서 황의 함량이 40 중량% 미만이면 CaS 화합물의 생성이 잘 이루어지지 않아 최종적으로 석고의 생성 수율이 낮아진다.
본 발명에서 '석회류'로는 CaO(산화칼슘) 성분이 40 중량% 이상인 것을 사용하는 것이 바람직하다. 산화칼슘 성분이 40 중량% 미만이면 CaS 화합물의 생성이 완전하게 이루어지지 않아 최종적으로 석고의 생성 수율이 낮아져 경제적이지 못하다. 바람직하게는 산화칼슘 성분이 45 중량% 이상이 좋다.
본 단계에서 혼합은 90 내지 150 ℃의 온도에서 수행되며, 90℃ 미만이면 바이오황에 함유된 황의 용해가 이루어지지 않고, 150℃ 이상은 경제적이지 못하다. 바람직하게는 100 내지 120℃의 온도가 좋다.
본 발명에서 혼합은 100 내지 300rpm으로 30분 내지 6시간 수행되는데, 100rpm 미만으로 혼합하면 침전물의 생성으로 충분하게 CaS 화합물을 생성할 수 없고, 300rpm 초과로 혼합하는 것은 경제적으로 바람직하지 못하다. 바람직하게는 150 내지 200rpm이 적당하다. 혼합 시간이 30분 미만이면 충분한 CaS 화합물이 생성될 수 없으며, 6시간 혼합은 경제적으로 바람직하지 못하다. 바람직하게는 2시간 내지 5시간이 좋다.
단계 ii): 산화 반응 단계
단계 i)로부터의 혼합물을 30rpm 이상으로 교반하면서, 상기 혼합물 100 중량부에 대하여 5~15% 황산수용액을 50 내지 150 중량부로 첨가하면서 pH를 2 내지 5의 범위로 유지하며 30분 내지 2시간 산화 반응을 수행한다.
상기와 같은 산화 반응에 의해 CaS 화합물이 황산에 의해 산화되어 반수석고가 다량으로 함유된 석고가 생성된다.
본 발명에서 5~15% 황산수용액을 사용하는 것이 바람직하다. 황산수용액 농도가 5% 미만이면 산화반응이 낮아져 효율적이지 못하며, 15% 초과인 경우 제조 환경상 바람직하지 못하다.
본 단계에서 5~15% 황산수용액은 50 내지 150 중량부로 사용하는데, 50 중량부 미만이면 산화반응이 미약하여 반수석고의 생성 수율이 낮아지는 단점이 있으며, 150 중량부 초과이면 경제적으로 바람직하지 못하다. 바람직하게는 5~15% 황산수용액은 80 내지 120 중량부로 사용하는 것이 좋다.
본 단계에서 5~15% 황산수용액을 상기 범위로 사용시 pH를 2 내지 5의 범위로 유지된다. pH를 2 미만로 하면 너무 강한 산성으로 인하여 석고(반수석고)의 생성 저하를 초래할 수 있으며, pH가 5 초과이면 석고가 생성되지 못한다. 바람직하게는 pH 3 내지 4의 범위가 적당하다.
본 단계에서 30분 내지 2시간 혼합하는데, 30분 미만이면 충분한 산화반응이 진행되지 못하여 석고(반수석고)의 생성이 저하되며 2시간 초과의 경우는 경제적으로 바람지하지 못하다. 바람직하게는 1 시간 내지 1시간 30분의 혼합이 좋다.
한편, 상기 단계 ii)로부터의 반응생성물 (반수석고) 100 중량부에 대하여 물 50 내지 150 중량부를 첨가하여 30rpm 이상으로 교반하면서 30분 내지 2시간 혼합하는 단계를 추가로 거치면 이수석고가 다량으로 함유된 석고가 생성된다.
또한 상기 단계 ii)로부터의 반응생성물 (반수석고) 100 중량부에 대하여 5~15% 황산수용액을 20 내지 100 중량부를 첨가하여 30rpm 이상으로 교반하면서 30분 내지 2시간 혼합하는 단계를 추가로 거치면 무수석고가 다량으로 함유된 석고가 생성된다.
단계 iii): 여과 및 건조 단계
단계 ii)로부터의 반응생성물을 90 내지 120 ℃에서 30분 이상 건조하여 석고를 얻는다.
본 단계에서 건조는 90 내지 120 ℃의 조건으로 30분 이상 진행하는데, 90℃ 미만이면 제조되는 석고에 수분이 많아 사용이 어려운 단점이 있으며, 120 ℃ 초과이면 경제적으로 바람직하지 못하다. 바람직하게는 건조 온도는 95 내지 110 ℃가 좋으며, 건조 시간은 30분 이상이 바람직하다.
선택적으로, 상기 반응생성물을 건조하기 전에, 반응생성물에서 수분을 제거하기 위해 여과 및/또는 잔류할 수 있는 황산을 제거하기 위해 수세를 수행할 수 있다.
여과 및 수세는 석고 제조시의 통상적인 방법에 의해 수행할 수 있다.
본 발명에 따른 제조방법은 황산의 사용을 최소화하여 친환경적이며 반수석고, 이수석고 및/또는 무수석고를 70 중량% 이상 함유하는 고품질의 석고를 제조할 수 있다 (도 2).
본 발명의 또 다른 목적에 따라서, 상기 제조방법에 의해 제조된 반수석고, 이수석고 및/또는 무수석고를 70 중량% 이상 함유하는 석고를 제공한다.
본 발명의 또 다른 목적에 따라서, 상기 석고를 포함하는 석고보드용 조성물을 제공한다.
본 발명의 또 다른 목적에 따라서, 상기 석고를 포함하는 고로슬래그 분쇄용 보조재를 제공한다. 본 발명에 따른 보조재는 고로슬래그 중량의 약 2~3 %로 사용될 수 있다.
본 발명의 또 다른 목적에 따라서, 상기 석고를 포함하는 시멘트용 혼화재를 제공한다. 본 발명에 따른 혼화재는 시멘트 중량의 약 5~8%로 사용될 수 있다.
본 발명의 또 다른 목적에 따라서, 상기 석고를 포함하는 슬래그 시멘트를 제공한다.
본 발명의 또 다른 목적에 따라서, 상기 슬래그 시멘트를 포함하는 콘크리트 조성물을 제공한다.
본 발명에 따른 제조방법은 황산의 사용을 최소화하여 친환경적이며 반수석고, 이수석고 및/또는 무수석고를 70 중량% 이상 함유하는 고품질의 석고를 제조케한다.
또한 본 발명에 따른 제조방법은 바이오 가스 부산물로 발생하는 바이오황을 활용하여 환경문제의 해결과 동시에 경제적으로도 유용하게 활용할 수 있는 폐자원의 재활용 효과도 있다.
본 발명의 제조방법에 의해 제조된 석고는 무수석고, 반수석고 및/또는 이수석고의 함량이 높고, 바이오황을 사용하기 때문에 중금속 이온 등 환경오염 물질이 함유되어있지 않아서, 석고보드용 석고, 고로슬래그 분쇄용 보조재, 시멘트용 혼화재, 슬래그 시멘트용 석고 등으로 사용될 수 있다.
또한 본 발명에 따른 석고는 무수석고, 반수석고 및/또는 이수석고를 고함량으로 포함하는 석고여서 적은 양으로 사용될 수 있어서 경제적인 부가효과도 우수하며, 국내에는 자원이 없는 천연석고를 대체할 수 있어 수입 대체 효과도 있다.
도 1은 본 발명에 따라 제조된 석고의 사진이다.
도 2는 실시예 1의 석고의 X-선 정량 분석결과이다.
다음의 실시예들에 의해 본 발명이 더 상세히 설명된다. 이들 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의해 제한되어서는 안된다.
실시예 1: 바이오황 및 산화반응을 이용한 석고 제조
바이오황 (황 성분 45 중량%; ㈜에코바이오홀딩스) 250 g과 산화칼슘(CaO)의 함량이 48 중량% 이상인 소석회(백광소재) 350g, 물 400g을 온도 110 ℃에서 150rpm으로 4시간 혼합하여 CaS가 생성되도록 하였다. 혼합 완료 후, 혼합물을 50rpm으로 서서히 교반하면서 혼합물 1,000g에 대하여 10% 황산수용액 800g을 서서히 투입하여 pH 3.4로 유지하면서 60분간 산화반응이 진행되도록 하였다. 반응 완료 후, 반응생성물을 필터프레스(filter press) 방식으로 압축 여과하여 수분을 제거하고 물로 세척한 후, 105 ℃에서 60분 동안 건조하여 석고를 얻었고, 그 결과 제조된 석고 사진을 도 1에 도시하였다.
시험예 1: 석고 함량 분석
실시예 1에서 제조된 석고에 대하여 X선 정량 성분분석 장치(Rigaku사, D/Max-2500V)를 이용하여 석고 등의 성분 함량을 분석하였고, 그 결과를 각각 도 2에 도시하였다.
도 2에 도시된 바에 의하면, 본 발명에 따라 제조된 석고에는 반수석고(CaSO4·1/2H2O)가 85.6 중량%으로 함유되어 있음을 확인할 수 있다.

Claims (13)

  1. 석고의 제조방법으로, 상기 방법은
    i) 바이오황 5 내지 30 중량%, 석회류 15 내지 40 중량% 및 물 30 내지 80 중량%를 90 내지 150 ℃에서 100 내지 300rpm으로 30분 내지 6시간 혼합하는 단계;
    ii) 단계 i)로부터의 혼합물을 30rpm 이상으로 교반하면서, 상기 혼합물 100 중량부에 대하여 5~15% 황산수용액을 50 내지 150 중량부로 첨가하면서 pH를 2 내지 5의 범위로 유지하며 30분 내지 2시간 산화 반응을 수행하는 단계;
    iii) 단계 ii)로부터의 반응생성물을 90 내지 120 ℃에서 30분 이상 건조하는 단계;를 포함하고,
    상기 바이오황은 가스 중에 함유된 황화수소(H2S)를 제거하는 탈황과정에서 생성되는 부산물로, 황(S)을 40 중량% 이상 함유하는 수상 현탁액인 것인 제조방법.
  2. 제1항에 있어서, 석회류는 산화칼슘(CaO)을 40 중량% 이상 함유하고 있는, 석회석, 소석회, 생석회, 폐석회석, 석회석 슬러지, 및 소석회 슬러지로 구성되는 군으로부터 선택되는 하나 이상인 것인 석고의 제조방법.
  3. 제 1항에 있어서, 단계 iii) 전에, 단계 ii)로부터의 반응생성물 100 중량부에 대하여 물 50 내지 150 중량부를 첨가하여 30rpm 이상으로 교반하면서 30분 내지 2시간 혼합하는 단계를 추가로 수행하는 것인 석고의 제조방법.
  4. 제 1항에 있어서, 단계 iii) 전에, 단계 ii)로부터의 반응생성물 100 중량부에 대하여 5~15% 황산수용액을 20 내지 100 중량부를 첨가하여 30rpm 이상으로 교반하면서 30분 내지 2시간 혼합하는 단계를 추가로 수행하는 것인 석고의 제조방법.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서, 상기 석고는 반수석고, 이수석고 및 무수석고로 이루어지는 군에서 선택되는 하나 이상의 함량이 70 중량% 이상인 것인 석고의 제조 방법.
  6. 제 1항 내지 제 4항 중 어느 한 항에 따라서 제조된 석고.
  7. 제 6항에 있어서, 상기 석고는 반수석고, 이수석고 및 무수석고로 이루어지는 군에서 선택되는 하나 이상을 70 중량% 이상 함유하는 것인 석고.
  8. 제 6항에 있어서, 상기 석고는 반수석고를 80 중량% 이상 함유하는 것인 석고.
  9. 제 6항에 따른 석고를 포함하는 석고보드용 조성물.
  10. 제 6항에 따른 석고를 포함하는 고로슬래그 분쇄용 보조재.
  11. 제 6항에 따른 석고를 포함하는 시멘트용 혼화재.
  12. 제 8항에 따른 석고를 포함하는 슬래그 시멘트.
  13. 제 12항에 따른 슬래그 시멘트를 포함하는 콘크리트 조성물.
PCT/KR2022/015544 2022-09-30 2022-10-14 바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용 WO2024071503A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22938739.4A EP4371941A1 (en) 2022-09-30 2022-10-14 Manufacturing method of gypsum by using biosulfur and oxidation reaction and uses of gypsum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220124824A KR102530614B1 (ko) 2022-09-30 2022-09-30 바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용
KR10-2022-0124824 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071503A1 true WO2024071503A1 (ko) 2024-04-04

Family

ID=86546578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015544 WO2024071503A1 (ko) 2022-09-30 2022-10-14 바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용

Country Status (3)

Country Link
EP (1) EP4371941A1 (ko)
KR (1) KR102530614B1 (ko)
WO (1) WO2024071503A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104238A (ko) * 2000-05-12 2001-11-24 스도 에이이치로 고순도 석고의 제조방법
KR100406392B1 (ko) 1998-12-11 2004-02-14 주식회사 포스코 제철소의부산물을이용한폐황산의중화처리및이중화처리과정에서발생하는침전물을석고로제조하는방법
KR101721169B1 (ko) * 2015-11-03 2017-03-29 현대오일뱅크 주식회사 탈황 부산물을 원료로 하는 석회유황합제 및 무수석고 제조방법
KR101962240B1 (ko) * 2018-05-30 2019-07-19 주식회사 케이스트 제강슬래그 또는 산화칼슘을 함유한 산업부산물을 주원료로 알칼리중화제를 제조하고 폐산을 건식법으로 중화하여 so3 함량 38%(중량기준) 이상의 화학석고를 제조하는 방법
KR102038327B1 (ko) * 2018-03-26 2019-10-30 신유근 황산폐수를 이용한 시멘트용 중화석고 제조방법
KR102213892B1 (ko) * 2019-12-12 2021-02-09 수도권매립지관리공사 매립가스 유래 바이오 황을 포함하는 유황콘크리트의 제조방법 및 이에 의해 제조되는 유황콘크리트 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520002A (en) * 1984-01-20 1985-05-28 Merichem Company Method for preparing elemental sulfur as a diffusion-resistant gas and methods for its use in making lime, sulfur dioxide and sulfuric acid from waste gypsum
AU2020330562A1 (en) * 2019-08-13 2022-03-03 Brimstone Energy Inc. Process to make calcium oxide or ordinary portland cement from calcium bearing rocks and minerals
JP7406994B2 (ja) * 2020-01-08 2023-12-28 Ube三菱セメント株式会社 セメント組成物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100406392B1 (ko) 1998-12-11 2004-02-14 주식회사 포스코 제철소의부산물을이용한폐황산의중화처리및이중화처리과정에서발생하는침전물을석고로제조하는방법
KR20010104238A (ko) * 2000-05-12 2001-11-24 스도 에이이치로 고순도 석고의 제조방법
KR101721169B1 (ko) * 2015-11-03 2017-03-29 현대오일뱅크 주식회사 탈황 부산물을 원료로 하는 석회유황합제 및 무수석고 제조방법
KR102038327B1 (ko) * 2018-03-26 2019-10-30 신유근 황산폐수를 이용한 시멘트용 중화석고 제조방법
KR101962240B1 (ko) * 2018-05-30 2019-07-19 주식회사 케이스트 제강슬래그 또는 산화칼슘을 함유한 산업부산물을 주원료로 알칼리중화제를 제조하고 폐산을 건식법으로 중화하여 so3 함량 38%(중량기준) 이상의 화학석고를 제조하는 방법
KR102213892B1 (ko) * 2019-12-12 2021-02-09 수도권매립지관리공사 매립가스 유래 바이오 황을 포함하는 유황콘크리트의 제조방법 및 이에 의해 제조되는 유황콘크리트 조성물

Also Published As

Publication number Publication date
KR102530614B9 (ko) 2023-11-13
EP4371941A1 (en) 2024-05-22
KR102530614B1 (ko) 2023-05-19

Similar Documents

Publication Publication Date Title
CN105417767B (zh) 一种从硫酸污酸废水中去除砷的方法
CN110436600B (zh) 一种赤泥与含铁废酸共同处置生产富钛渣和净水剂的方法
CN114804177A (zh) 一种工业固废电解锰渣矿化co2资源化利用的方法
WO2023068587A1 (ko) 바이오황을 이용한 석고 제조방법 및 그 이용
WO2024071503A1 (ko) 바이오황과 산화반응을 이용한 석고 제조방법 및 그 이용
EP0613391B1 (en) Immobilisation of metal contaminants from a liquid to a solid medium
WO2022186647A1 (ko) 온실가스 배출의 저감을 위한 탈황석고를 이용한 무기 화합물의 제조방법
CN101817651B (zh) 一种电石渣的资源化处理方法
CN113697834B (zh) 提钛渣制备弗里德尔盐的方法和弗里德尔盐
KR20040026383A (ko) 재강슬래그와 이산화탄소를 이용한 탄산칼슘 제조방법
JP3382202B2 (ja) フッ素不溶出性石膏組成物とその製造方法
US6645458B1 (en) Method for making an aqueous sodium chloride solution
JP4808873B2 (ja) フッ素を含有する排水の処理方法
JP2007137716A (ja) ゼオライトの製造方法
CN1031687A (zh) 一种以白云石为原料生产轻质碳酸镁的新方法
JPS6158239B2 (ko)
KR20200059639A (ko) 중조로 탈황 처리된 더스트를 이용한 석고 제조방법
KR102560657B1 (ko) 스테인리스스틸 소둔산세 폐황산 다단 중화처리의 슬러지 재활용 방법
JPS6219798B2 (ko)
US4237025A (en) Product comprising lime or limestone and Graham's salt or Mx Pn O.sub.(3N+1)
KR101163966B1 (ko) 습식 인산 제조시 발생되는 폐수를 이용한 비료의 제조방법
WO2023234608A1 (ko) 아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법
CN103608289A (zh) 使用钙离子净化残留物的方法
RU2192487C1 (ru) Способ вывода сульфат-ионов из растворов цинкового производства
WO2019045130A1 (ko) 인산암모늄 폐액을 이용한 고순도 인산이수소암모늄의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022938739

Country of ref document: EP

Effective date: 20231102

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938739

Country of ref document: EP

Kind code of ref document: A1