WO2023234608A1 - 아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법 - Google Patents

아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법 Download PDF

Info

Publication number
WO2023234608A1
WO2023234608A1 PCT/KR2023/006857 KR2023006857W WO2023234608A1 WO 2023234608 A1 WO2023234608 A1 WO 2023234608A1 KR 2023006857 W KR2023006857 W KR 2023006857W WO 2023234608 A1 WO2023234608 A1 WO 2023234608A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxide
washing
zinc
firing
water
Prior art date
Application number
PCT/KR2023/006857
Other languages
English (en)
French (fr)
Inventor
최헌식
강성문
Original Assignee
고려아연 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려아연 주식회사 filed Critical 고려아연 주식회사
Priority to AU2023222922A priority Critical patent/AU2023222922A1/en
Priority to PE2024001562A priority patent/PE20241720A1/es
Priority to JP2023552357A priority patent/JP2024524803A/ja
Priority to CN202380013025.2A priority patent/CN118215748A/zh
Priority to MX2024003081A priority patent/MX2024003081A/es
Priority to US18/548,285 priority patent/US20240344173A1/en
Priority to CA3211916A priority patent/CA3211916A1/en
Publication of WO2023234608A1 publication Critical patent/WO2023234608A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/02Preliminary treatment of ores; Preliminary refining of zinc oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/32Refining zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals

Definitions

  • the present invention relates to a method of producing high-quality iron oxide with an iron content of 60% or more by removing impurities such as zinc, potassium, sodium, and sulfur from iron oxide, which is a by-product of the zinc smelting process.
  • the sulfur component is primarily removed by calcining the iron oxide. It relates to a dry process for removing and a wet process for removing residual impurities remaining in iron oxide. And it is about the Selective Zinc Precipitation (SZP) process to recover the removed zinc.
  • SZP Selective Zinc Precipitation
  • Methods for extracting zinc from zinc concentrate include dry smelting and wet smelting methods.
  • zinc concentrate goes through a roasting process, a dissolution process, and a purification process, and finally, it goes through an electrolysis process to extract high-purity zinc.
  • iron dissolved with zinc is converted into iron oxides such as Jarosite, Goethite, or Hematite through a separate process and then separated/discharged.
  • iron oxide a by-product of the zinc smelting process
  • iron oxide has an iron content of 40-50% based on 100% of the total weight, and other contents include 1-5% zinc, 1-5% potassium, 1-5% sodium, and 5-10% sulfur. Includes %, etc.
  • iron oxide may also contain carbon, magnesium, calcium, and aluminum. Iron oxide with a low iron content has a problem of increasing storage and transportation costs due to the large amount of iron oxide produced. Also, due to its high impurity content, it is difficult to use as a raw material in the steelmaking process, making it difficult to find a use for it.
  • the purpose of the present invention is to provide a method for removing zinc, potassium, sodium, and sulfur, which are major impurities in iron oxide, and improving the iron content by using a mixed dry/wet process to solve these conventional problems. .
  • One embodiment of the present invention is a method of purifying raw iron oxide, which is a by-product of a zinc smelting process, the method comprising: a sintering process of calcining the raw iron oxide; A washing process of washing the iron oxide cake with a washing liquid after firing; and providing iron oxide after purification through a first filtration process of filtering the iron oxide cake after washing with water.
  • One embodiment of the present invention provides a method wherein the firing temperature of the firing process is 700°C to 950°C.
  • the firing process further includes the step of drying iron oxide, the drying temperature in the step of drying the iron oxide is 90 ° C to 110 ° C, and the drying time is 2 hours or more. do.
  • One embodiment of the present invention provides a method wherein the firing process is performed under atmosphere using a rotary kiln.
  • One embodiment of the present invention provides a method in which the washing process is characterized in that 140 g to 160 g of the fired iron oxide cake is added per 1 L of the washing liquid.
  • the purified iron oxide contains more than 60% by weight of iron, less than 0.3% by weight of zinc, less than 0.1% by weight of potassium, less than 0.1% by weight of sodium, and less than 0.5% by weight of sulfur. Provides a method.
  • One embodiment of the present invention provides a method in which the washing process is characterized in that the iron oxide cake after firing is washed with a washing liquid using an autoclave.
  • One embodiment of the present invention provides a method in which the washing process is characterized in that the iron oxide cake after firing is washed with a washing liquid using a stirrer.
  • One embodiment of the present invention provides a method wherein the temperature of the water washing liquid in the autoclave is 130°C to 150°C.
  • One embodiment of the present invention provides a method wherein the temperature of the water washing liquid in the stirrer is 130 °C to 150 °C.
  • One embodiment of the present invention further includes a selective zinc precipitation process for recovering zinc from the filtrate after washing with water from the first filtration process, wherein the selective zinc precipitation process includes adding a salt to the filtrate after washing with water, Provides a method.
  • One embodiment of the present invention provides a method wherein the salt is sodium carbonate.
  • the selective zinc precipitation process provides a method in which the temperature of the filtrate after the water washing is 50° C. to 70° C. and the pH is 7 to 9.
  • high-quality iron oxide with an iron content of 60% or more can be produced by removing impurities from iron oxide, which is a by-product of the zinc smelting process. At this time, the removal rate of zinc, potassium, sodium, and sulfur is over 90%.
  • the weight of iron oxide decreases to about 60% of the initial weight, which can contribute to reducing storage and transportation costs.
  • iron oxide after refining has low impurities such as zinc content of less than 0.3% and sulfur of less than 0.5%, so it can be used as a raw material for steelmaking, contributing to resource recycling and reducing the amount of industrial waste generated, which has the effect of reducing environmental pollution problems. .
  • Figure 1 is a flowchart showing a process for purifying iron oxide to produce high-quality iron oxide and recovering zinc from the filtrate after washing with water, according to an embodiment of the present invention.
  • Embodiments of the present disclosure are illustrated for the purpose of explaining the technical idea of the present disclosure.
  • the scope of rights according to the present disclosure is not limited to the embodiments presented below or the specific description of these embodiments.
  • Figure 1 is a flowchart showing a process for purifying iron oxide to produce high-quality iron oxide and recovering zinc from the filtrate after washing with water, according to an embodiment of the present invention. Referring to FIG. 1, an iron oxide purification process according to an embodiment of the present invention will be described.
  • the sintering process (S100) is to remove impurities by thermally decomposing iron oxide and may include sintering the iron oxide at a high temperature.
  • the step of calcining iron oxide can be performed using a rotary kiln under an air atmosphere.
  • the temperature for sintering iron oxide may be 700°C to 950°C. If the firing temperature is lower than 700 °C, the decomposition reaction of jarosite, which will be described later, may not occur, and if it is higher than 950 °C, more zinc oxide will be formed than zinc sulfate during the reaction of zinc sulfide with oxygen, which will be described later, resulting in subsequent wet It can be difficult to remove from the process. Additionally, the firing temperature may be preferably 700°C to 800°C, more preferably 750°C to 800°C.
  • the raw material iron oxide fired in the firing process is K-jarosite (KFe 3 (SO 4 ) 2 (OH) 6 (s)) or Na-jarosite (NaFe 3 (SO 4 ) 2 (OH) 6 (s)). May include Jarosite.
  • KFe 3 (SO 4 ) 2 (OH) 6 (s) KFe(SO 4 ) 2 (s) + Fe 2 O 3 (s) + 3H 2 O(g)
  • NaFe 3 (SO 4 ) 2 (OH) 6 (s) NaFe(SO 4 ) 2 (s) + Fe 2 O 3 (s) + 3H 2 O(g)
  • K-jarosite can be decomposed into KFe(SO 4 ) 2 (s), Fe 2 O 3 (s), and H 2 O(g) as in formula (1-1) above. And KFe(SO 4 ) 2 (s) is again converted into K 2 SO 4 (s), Fe 2 O 3 (s), SO 2 (g) and O 2 (g) as in the above formula (2-1). It can be decomposed.
  • Na-jarosite can be decomposed into NaFe(SO 4 ) 2 (s), Fe 2 O 3 (s), and H 2 O(g) as in the above formula (1-2). And NaFe(SO 4 ) 2 (s) is again divided into Na 2 SO 4 (s), Fe 2 O 3 (s), SO 2 (g) and O 2 (g) as in the above formula (2-2). It can be decomposed.
  • Equations (1-1) and (1-2) may be reactions that occur at 450°C or higher.
  • Equations (2-1) and (2-2) may be reactions that occur at 680°C or higher.
  • Raw iron oxide may contain zinc (Zn) as an impurity.
  • Zinc included as an impurity may be contained in the form of zinc sulfide, such as zinc sulfide (ZnS).
  • ZnS zinc sulfide
  • ZnSO 4 zinc sulfate
  • the oxygen that reacts with zinc sulfide may be injected from the outside or may be oxygen generated during the decomposition of jarosite, especially oxygen generated from formula (2-1) or formula (2-2).
  • zinc sulfide can react with oxygen to form zinc oxide (ZnO).
  • ZnO zinc oxide
  • the firing temperature is higher than 400°C
  • zinc sulfide may form zinc oxide during reaction with oxygen.
  • the firing temperature is higher than 950°C, the amount of zinc oxide formed increases, and since this zinc oxide is not ionized, it may be difficult to remove it in the water washing process, which is a subsequent wet process.
  • the firing process (S100) may include a drying step in which all or part of the moisture contained in the iron oxide is evaporated to provide dry iron oxide.
  • the drying step may be accomplished using a rotary kiln, but is not limited to this.
  • the temperature at which the drying step is performed may be 90° C. or higher. Since the temperature at which the drying step is performed is lower than the temperature at which the iron oxide calcination step is performed, the iron oxide calcination step may proceed after the drying step. At this time, as the temperature of iron oxide in the rotary kiln increases, the drying step and the step of calcining the iron oxide progress, so the drying step and the step of calcining the iron oxide may not be clearly distinguished.
  • the drying step may be performed separately before the step of calcining the iron oxide.
  • the temperature at which the drying step is performed may be 90° C. or higher. If the drying temperature is lower than 90°C, drying may not occur properly. Additionally, the drying temperature may preferably be 90°C to 110°C.
  • the drying step may take more than 2 hours. In addition, the time during which the drying step proceeds is preferably between 2 hours and 24 hours, and more preferably between 2 hours and 4 hours.
  • the iron oxide cake after going through the firing process may contain 4% by weight or less of sulfur (S) component based on the weight of the entire iron oxide cake.
  • impurities contained in the iron oxide cake such as zinc, potassium, sodium, and sulfur components that have not been removed in the form of gas, may be contained in the form of water-soluble substances.
  • impurities contained in the iron oxide cake after firing may be zinc sulfate (ZnSO 4 (s)), potassium sulfate (K 2 SO 4 (s)), and/or sodium sulfate (Na 2 SO 4 (s)).
  • the sulfur removal rate may be 60% or more
  • the sodium removal rate may be 10% or more.
  • the washing process (S200) is a process of removing impurities by washing the iron oxide cake with a washing liquid after firing.
  • the washing liquid used in the washing process (S200) may be water.
  • the washing process can be performed using water at room temperature. Specifically, when using a stirrer, the water washing process may be performed at a temperature of 20°C to 30°C. Additionally, water at different temperatures can be used to improve washing efficiency.
  • the water washing process (S200) may be performed at normal pressure.
  • the water washing process (S200) may be performed for 1 to 3 hours.
  • the washing process may be performed by adding 140 g to 160 g of the iron oxide cake after firing per 1 L of the washing liquid. If less than 140 g of iron oxide cake after firing is added per 1 L of washing liquid, the amount of washing liquid used may increase and the size of the facility may increase. If more than 160 g of iron oxide cake after firing is added per 1 L of washing liquid, washing efficiency may decrease.
  • Impurities removed in the water washing process may be water-soluble impurities contained in the iron oxide cake after firing.
  • water-soluble impurities may include zinc sulfate (ZnSO 4 (s)), potassium sulfate (K 2 SO 4 (s)), and/or sodium sulfate (Na 2 SO 4 (s)).
  • the temperature and pressure in the water washing process (S200) can be increased using an autoclave, and then the iron oxide cake can be washed with water after firing.
  • the water washing process using an autoclave may be carried out at a pressure of 2 bar to 3 bar and may be carried out for 1 hour to 3 hours. At this time, if the water washing process time using an autoclave is less than 1 hour, the impurity removal efficiency may decrease, and if it is more than 3 hours, the effect on impurity removal efficiency is minimal, but costs may increase due to the increase in process time. there is.
  • the temperature of the washing liquid may be 130°C to 150°C. At this time, if the temperature of the washing liquid is less than 130°C, the impurity control efficiency may decrease.
  • Iron oxide obtained through a water washing process using an autoclave may have a higher impurity removal rate than iron oxide obtained through a water washing process at room temperature and pressure.
  • the iron oxide cake can be filtered through a filter to obtain purified iron oxide.
  • the purified iron oxide obtained after the filtration process may contain 3% by weight or less of zinc, 0.8% by weight or less of sodium, 3% by weight or less of potassium, and/or 8% by weight or less of sulfur.
  • the iron oxide may have an iron content of 60% by weight or more because impurities have been removed.
  • the iron oxide after purification may preferably be a high-grade iron oxide containing 0.3% by weight or less of zinc, 0.1% by weight or less of sodium, 0.1% by weight or less of potassium, and 0.5% by weight or less of sulfur.
  • the iron oxide cake is filtered through a filter, purified, and the iron oxide is separated.
  • the remaining filtrate after washing may contain zinc.
  • SZP Selective Zinc Precipitation
  • salt can be added to the filtrate after washing with water.
  • the salt may be sodium carbonate (Na 2 CO 3 ).
  • the selective zinc precipitation process (S400) may have a pH of 7 to 9 by adding salt. At this time, if the pH is less than 7, the zinc recovery rate may decrease, and if the pH exceeds 9, components other than zinc may precipitate.
  • the temperature of the filtrate after washing with water may be 50°C to 70°C. At this time, if the temperature of the filtrate after washing with water is less than 50°C, process efficiency may decrease.
  • the zinc contained in the filtrate may react with salt and precipitate in a solid state as shown in equation (4) below.
  • the zinc contained in the filtrate after washing with water is precipitated in the form of ZnCO 3 (s) through the second filtration process (S500), and more than 99% of the zinc in the filtrate can be recovered.
  • high-quality iron oxide with an iron content of 60% or more can be produced by removing impurities from iron oxide, which is a by-product of the zinc smelting process. At this time, the removal rate of zinc, potassium, sodium, and sulfur is over 90%.
  • the weight of iron oxide decreases to about 60% of the initial weight, and the iron oxide after purification has lower impurities, such as zinc content of 0.3% or less and sulfur content of 0.5% or less.
  • the main components, excluding moisture, of the raw iron oxide, which is a by-product of zinc smelting according to an embodiment of the present invention, are shown in Table 1 below.
  • the raw iron oxide was dried at 100°C for 24 hours. At this time, the moisture content of iron oxide after drying is 24%.
  • the iron oxide was fired at 700°C, 750°C, 800°C, 850°C, and 950°C for 2 hours.
  • the weight reduction of iron oxide according to each firing temperature is as follows.
  • the weight percent of ingredients contained in the iron oxide cake and the removal rate of impurities after firing according to each firing temperature are as follows.
  • Example 1 700°C weight% 53.9 2.29 0.79 2.98 3.72 Removal rate (%) 0.12 14.78 0.52 63.8
  • Example 2 750°C weight% 55.1 2.34 0.84 3.05 3.51 Removal rate (%) 0.04 10.53 0.46 66.5
  • Example 3 800°C weight% 55.8 2.35 0.85 3.09 3.13 Removal rate (%) 0.34 10.52 0.14 70.4
  • Example 4 850°C weight% 56.2 2.36 0.87 3.09 3.22 Removal rate (%) 0.77 9.13 0.81 69.8
  • Example 5 950°C weight% 56.4 2.41 0.90 3.13 2.47 Removal rate (%) 0.14 7.37 0.96 77.2
  • the iron oxide cake was added and then stirred for 2 hours at room temperature (25°C) and normal pressure (1 bar) and washed with water. After completing the water washing, the washing liquid was placed in a filter and filtered to separate the iron oxide and the filtrate. Afterwards, the iron oxide was dried and the remaining weight was measured and component analysis was performed. For comparison, unfired iron oxide was tested under the same conditions. At this time, the moisture content of iron oxide after drying is 30%.
  • the weight percent of components contained in the iron oxide and the removal rate of impurities after purification are as follows.
  • Example 1 700°C weight% 65.2 0.29 0.18 0.15 0.48 Removal rate (%) 89.8 81.8 96.1 89.7
  • Example 2 750°C weight% 65.6 0.28 0.09 0.09 0.35 Removal rate (%) 90.0 91.2 97.5 91.7
  • Example 3 800°C weight% 67.5 0.44 0.04 0.09 0.21 Removal rate (%) 84.5 95.7 97.6 94.5
  • Example 4 850°C weight% 64.8 0.73 0.06 0.12 0.35 Removal rate (%) 73.7 93.9 96.8 90.7
  • Example 5 950°C weight% 64.1 2.12 0.01 0.02 0.04 Removal rate (%) 22.7 98.9 99.5 98.7 Comparative Example 1 No firing weight% 43.3 1.27 0.71 2.39 7.53 Removal rate (%) 30.5 3.4 0.1 8.2
  • the removal rate of impurities was found to be higher in the example in which the iron oxide was washed with water after the calcination process than in the comparative example in which the iron oxide was washed with water without calcination.
  • the removal rates of four types of impurities, zinc, sodium, potassium, and sulfur were all over 90%, so impurities were removed best.
  • the water washing process was performed at 60°C, 90°C using iron oxide, and 140°C (pressure 2.5 bar) using an autoclave, respectively.
  • the stirring time (2 hours) and the amount of iron oxide added were kept the same, and only the water temperature was changed for washing.
  • the weight percent of components contained in iron oxide and the removal rate of impurities are as follows.
  • Example 6 which was washed with water under pressure and a temperature of 140°C, the removal rate of impurities increased compared to Example 2, which did not use an autoclave.
  • the zinc content in the filtrate was 2,950 mg/l, and after going through the selective zinc precipitation process, the zinc content in the filtrate decreased to 2.65 mg/l.
  • zinc was precipitated in the form of ZnCO 3 (s), and after washing with water, more than 99% of the zinc in the filtrate could be recovered.
  • 6.5 g of precipitate was generated per 1 L of filtrate after washing with water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

본 발명은, 아연 제련 공정의 부산물인 산화철을 정제하는 방법으로서, 상기 방법은 상기 산화철을 소성하는 소성 공정, 소성 후 산화철 케이크를 수세액으로 수세하는 수세 공정 및 수세 후 산화철 케이크를 여과하여 정제 후 산화철을 제공하는 단계를 포함하는 방법을 개시한다.

Description

아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법
본 발명은 아연 제련 공정의 부산물인 산화철로부터 아연, 칼륨, 나트륨, 황 등의 불순물을 제거하여 철 함량이 60% 이상인 고품위 산화철을 생산하는 방법에 관한 것으로, 산화철을 소성하여 황 성분을 1차적으로 제거하는 건식 공정과 산화철 내에 남은 잔류 불순물을 제거하는 습식 공정에 관한 것이다. 그리고 제거된 아연을 다시 회수하는 선택적 아연 침전(SZP, Selective Zinc Precipitation) 공정에 관한 것이다.
아연 정광으로부터 아연을 추출하는 공법에는 건식 제련 공법과 습식 제련 공법이 있다. 이 중 습식 제련 공법에서는 아연 정광을 배소(Roasting) 공정, 용해 (Leaching) 공정 및 정액(Purification) 공정을 거친 뒤 최종적으로 전기 분해(Electrolysis) 공정을 거쳐 고순도 아연으로 추출한다.
습식 제련에서 아연과 함께 용해된 철은 별도의 공정을 통해 자로사이트(Jarosite), 괴타이트(Goethite) 또는 헤마타이트(Hematite) 등의 산화철의 형태로 변환 후 분리/배출된다.
통상적으로, 아연 제련 공정의 부산물인 산화철에는 전체 중량 100%를 기준으로 철 함량은 40~50%이고, 기타 아연 1~5%, 칼륨 1~5%, 나트륨 1~5%, 황 5~10% 등을 포함한다. 산화철에는 철, 아연, 칼륨, 나트륨, 황 이 외에도 탄소, 마그네슘, 칼슘, 알루미늄 등이 포함될 수 있다. 낮은 철 함유율을 가진 산화철은 그 발생량이 많아서 보관 및 운반 비용이 증가하는 문제가 있다. 그리고 높은 불순물 함량으로 인해 제철 공정의 원료로 사용하기 어려워 그 사용처를 찾기가 쉽지 않다.
본 발명은 이러한 종래의 문제점을 해결하기 위해 건/습식 공정을 혼합 이용하여 산화철의 주요 불순물인 아연, 칼륨, 나트륨, 황을 제거하고, 철 함량은 향상시킬 수 있는 방법을 제공하는데 그 목적이 있다.
본 발명의 일 실시예는, 아연 제련 공정의 부산물인 원료 산화철을 정제하는 방법으로서, 상기 방법은 상기 원료 산화철을 소성하는 소성 공정; 소성 후 산화철 케이크를 수세액으로 수세하는 수세 공정; 및 수세 후 산화철 케이크를 여과하는 제1여과 공정을 거쳐 정제 후 산화철을 제공하는, 방법을 제공한다.
본 발명의 일 실시예는, 상기 소성 공정의 소성 온도는 700 ℃ 내지 950 ℃인, 방법을 제공한다.
본 발명의 일 실시예는, 상기 소성 공정은 산화철을 건조하는 단계를 더 포함하며, 상기 산화철을 건조하는 단계에서의 건조 온도는 90 ℃ 내지 110 ℃이고, 건조 시간은 2시간 이상인, 방법을 제공한다.
본 발명의 일 실시예는, 상기 소성 공정은 로터리 킬른을 이용하여 대기 하에서 수행하는 것을 특징으로 하는, 방법을 제공한다.
본 발명의 일 실시예는, 상기 수세 공정은 수세액 1L 당 상기 소성 후 산화철 케이크를 140 g 내지 160 g 투입하는 것을 특징으로 하는, 방법을 제공한다.
본 발명의 일 실시예는, 상기 정제 후 산화철은 60 중량% 이상의 철, 0.3 중량% 이하의 아연, 0.1 중량% 이하의 칼륨, 0.1 중량% 이하의 나트륨 및 0.5 중량% 이하의 황을 포함하는, 방법을 제공한다.
본 발명의 일 실시예는, 상기 수세 공정은 오토클레이브를 이용하여 상기 소성 후 산화철 케이크를 수세액으로 수세하는 것을 특징으로 하는, 방법을 제공한다.
본 발명의 일 실시예는, 상기 수세 공정은 교반기를 이용하여 상기 소성 후 산화철 케이크를 수세액으로 수세하는 것을 특징으로 하는, 방법을 제공한다.
본 발명의 일 실시예는, 오토클레이브에서의 상기 수세액의 온도는 130 ℃ 내지 150 ℃인 것을 특징으로 하는, 방법을 제공한다.
본 발명의 일 실시예는, 교반기의 상기 수세액의 온도는 130 ℃ 내지 150 ℃인 것을 특징으로 하는, 방법을 제공한다.
본 발명의 일 실시예는, 제1여과 공정에서 나오는 수세 후 여액으로부터 아연을 회수하는 선택적 아연 침전 공정을 더 포함하고, 상기 선택적 아연 침전 공정은 상기 수세 후 여액에 염을 투입하는 것을 포함하는, 방법을 제공한다.
본 발명의 일 실시예는, 상기 염은 탄산나트륨인, 방법을 제공한다.
본 발명의 일 실시예는, 상기 선택적 아연 침전 공정은 상기 수세 후 여액의 온도가 50 ℃ 내지 70 ℃이고, pH가 7 내지 9인, 방법을 제공한다.
본 발명의 실시예들에 따른 산화철의 정제 방법에 의하면, 아연 제련 공정의 부산물인 산화철로부터 불순물이 제거된 철 함량 60% 이상의 고품위 산화철을 제조할 수 있다. 이 때 아연, 칼륨, 나트륨, 황의 제거율은 90% 이상이다.
불순물 감소에 따라 산화철의 중량은 초기 중량 대비 약 60%로 감소하며 이는 보관 및 운송비 절감에 기여할 수 있다.
또한 정제 후 산화철은 아연 함량 0.3% 이하, 황 0.5% 이하 등 불순물 품위가 낮아 제강사의 원료로 사용이 가능해짐으로써 자원 재순환에 기여하고 산업 폐기물 발생량이 감소하여 환경 오염 문제를 줄일 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른, 산화철을 정제하여 고품위 산화철을 제조하고, 수세 후 여액으로부터 아연을 회수하는 공정을 나타내는 순서도이다.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른, 산화철을 정제하여 고품위 산화철을 제조하고, 수세 후 여액으로부터 아연을 회수하는 공정을 나타내는 순서도이다. 도 1을 참조하여 본 발명의 일 실시예에 따른 산화철 정제 공정에 대해 설명한다.
소성 공정(S100)
소성 공정(S100)은 산화철을 열분해시켜 불순물을 제거하기 위한 것으로 산화철을 고온에서 소성하는 단계를 포함할 수 있다. 산화철을 소성하는 단계는 공기 분위기 하에서 로터리 킬른(Rotary Kiln)을 이용하여 이루어질 수 있다. 이 때 산화철을 소성하는 온도는 700 ℃ 내지 950 ℃일 수 있다. 소성 온도가 700 ℃ 보다 낮으면 후술하는 자로사이트의 분해 반응이 이루어지지 않을 수 있고, 950 ℃ 보다 높으면 후술하는 황화 아연이 산소와 반응하는 과정에서 황산 아연보다 산화 아연을 더 많이 형성하게 되어 후속 습식 공정에서 제거하기가 힘들 수 있다. 또한, 소성하는 온도는 바람직하게는 700 ℃ 내지 800 ℃, 더욱 바람직하게는 750 ℃ 내지 800 ℃일 수 있다.
소성 공정에서 소성하는 원료 산화철은 K-자로사이트(KFe3(SO4)2(OH)6(s)) 또는 Na-자로사이트(NaFe3(SO4)2(OH)6(s))의 자로사이트(Jarosite)를 포함할 수 있다.
소성 공정의 주요 반응은 하기와 같다.
[식 (1-1)]
KFe3(SO4)2(OH)6(s) = KFe(SO4)2(s) + Fe2O3(s) + 3H2O(g)
[식 (1-2)]
NaFe3(SO4)2(OH)6(s) = NaFe(SO4)2(s) + Fe2O3(s) + 3H2O(g)
[식 (2-1)]
2KFe(SO4)2(s) = K2SO4(s) + Fe2O3(s) + 3SO2(g) + 1.5O2(g)
[식 (2-2)]
2NaFe(SO4)2(s) = Na2SO4(s) + Fe2O3(s) + 3SO2(g) + 1.5O2(g)
K-자로사이트는 상기 식 (1-1)에서와 같이 KFe(SO4)2(s), Fe2O3(s) 및 H2O(g)로 분해될 수 있다. 그리고 KFe(SO4)2(s)는 다시 상기 식 (2-1)에서와 같이 K2SO4(s), Fe2O3(s), SO2(g) 및 O2(g)로 분해될 수 있다.
Na-자로사이트는 상기 식 (1-2)에서와 같이 NaFe(SO4)2(s), Fe2O3(s) 및 H2O(g)로 분해될 수 있다. 그리고 NaFe(SO4)2(s)는 다시 상기 식 (2-2)에서와 같이 Na2SO4(s), Fe2O3(s), SO2(g) 및 O2(g)로 분해될 수 있다.
식 (1-1) 및 식 (1-2)는 450 ℃ 이상에서 일어나는 반응일 수 있다. 식 (2-1) 및 식 (2-2)는 680 ℃ 이상에서 일어나는 반응일 수 있다.
원료 산화철은 불순물로 아연(Zn)을 함유할 수 있다. 불순물로 포함된 아연은 아연 황화물, 예컨대 황화 아연(ZnS)의 형태로 포함되어 있을 수 있다. 소성 공정(S100)에서 황화 아연은 아래의 식 (3)에서와 같이 산소와 반응하여 황산 아연(ZnSO4)을 형성할 수 있다.
[식 (3)]
ZnS(s) + 2O2(g) = ZnSO4(s)
이 때 황화 아연과 반응하는 산소는 외부에서 주입되거나, 자로사이트의 분해 과정에서 발생하는 산소, 특히 식 (2-1) 또는 식 (2-2)에서 발생하는 산소일 수 있다. 소성 온도가 높은 경우 황화 아연은 산소와 반응하여 산화 아연(ZnO)을 형성할 수 있다. 예컨대, 소성 온도가 400 ℃ 보다 높으면 황화 아연은 산소와 반응하는 과정에서 산화 아연을 형성할 수 있다. 소성 온도가 950 ℃ 보다 높으면 산화 아연의 형성량이 많아지고, 이러한 산화 아연은 이온화가 되지 않으므로 후속 습식 공정인 수세 공정에서 제거하는 것이 어려워질 수 있다.
소성 공정(S100)은 산화철에 포함된 수분을 전부 또는 일부 증발시켜 건조한 산화철을 제공하는 건조 단계를 포함할 수 있다. 건조 단계는 로터리 킬른을 사용하여 이루어질 수 있지만, 이에 한정되지 않는다.
건조 단계가 진행되는 온도는 90 ℃ 이상일 수 있다. 건조 단계가 진행되는 온도가 산화철을 소성하는 단계가 진행되는 온도보다 낮으므로 건조 단계 이후에 산화철을 소성하는 단계가 진행될 수 있다. 이 때 로터리 킬른 내의 산화철의 온도가 상승함에 따라 건조 단계와 산화철을 소성하는 단계가 진행되므로, 건조 단계와 산화철을 소성하는 단계는 명확히 구분되지 않을 수 있다.
건조 단계는 산화철을 소성하는 단계 이전에 별도로 진행될 수도 있다. 이 때, 건조 단계가 진행되는 온도는 90 ℃ 이상일 수 있다. 건조 온도가 90 ℃보다 낮을 경우 건조가 정상적으로 이루어지지 않을 수 있다. 또한 건조 온도는 바람직하게는 90 ℃ 내지 110 ℃일 수 있다. 건조 단계가 진행되는 시간은 2시간 이상일 수 있다. 또한, 건조 단계가 진행되는 시간은 바람직하게는 2시간 이상 24시간 이하일 수 있고, 더욱 바람직하게는 2시간 이상 4시간 이하일 수 있다.
소성 공정(S100)을 거친 소성 후 산화철 케이크는 전체 산화철 케이크의 중량을 기준으로 4 중량% 이하의 황(S) 성분을 포함할 수 있다. 소성 후 산화철 케이크에 함유된 불순물인 아연, 칼륨, 나트륨 및 가스 형태로 제거되지 않은 황 성분은 수용성 물질의 형태로 포함되어 있을 수 있다. 예컨대, 소성 후 산화철 케이크에 함유된 불순물은 황산 아연(ZnSO4(s)), 황산 칼륨(K2SO4(s)) 및/또는 황산 나트륨(Na2SO4(s))일 수 있다. 이 때 황의 제거율은 60% 이상일 수 있고, 나트륨의 제거율은 10% 이상일 수 있다.
수세 공정(S200)
수세 공정(S200)은 소성 후 산화철 케이크를 수세액으로 수세하여 불순물을 제거하는 공정이다. 수세 공정(S200)에서 사용되는 수세액은 물일 수 있다. 수세 공정은 상온에서의 물을 사용하여 이루어질 수 있다. 구체적으로, 교반기를 이용하는 경우 수세 공정은 20 ℃ 내지 30 ℃의 온도에서 행해질 수 있다. 또한, 수세 효율을 향상시키기 위해 다른 온도의 물을 사용할 수도 있다.
수세 공정(S200)은 상압에서 행해질 수 있다. 수세 공정(S200)은 1시간 내지 3시간 동안 행해질 수 있다.
산화철 케이크의 효과적인 수세를 위해 수세 공정은 수세액 1 L 당 소성 후 산화철 케이크 140 g 내지 160 g을 투입하여 행해질 수 있다. 수세액 1 L 당 소성 후 산화철 케이크 140 g 미만을 투입하는 경우 수세액 사용량이 증가하고 설비 규모가 커질 수 있다. 수세액 1 L 당 소성 후 산화철 케이크 160 g을 초과하여 투입하는 경우 수세 효율이 감소할 수 있다.
수세 공정에서 제거하는 불순물은 소성 후 산화철 케이크에 함유된 수용성 불순물일 수 있다. 이와 같은 수용성 불순물은 황산 아연(ZnSO4(s)), 황산 칼륨(K2SO4(s)) 및/또는 황산 나트륨(Na2SO4(s))을 포함할 수 있다.
불순물 제거 효율을 향상시키기 위해 오토클레이브를 이용하여 수세 공정(S200)에서의 온도 및 압력을 상승시킨 후 소성 후 산화철 케이크를 수세할 수 있다. 오토클레이브를 이용한 수세 공정은 2 bar 내지 3 bar의 압력에서 진행될 수 있고, 1시간 내지 3시간 동안 진행될 수 있다. 이 때, 오토클레이브를 이용한 수세 공정 시간이 1시간 미만인 경우 불순물 제거 효율이 감소할 수 있고, 3시간 초과인 경우 불순물 제거 효율에 미치는 영향은 미미한 반면, 공정 시간이 늘어남으로 인해 비용이 증가할 수 있다.
오토클레이브를 이용한 수세 공정에서 수세액의 온도는 130 ℃ 내지 150 ℃일 수 있다. 이 때, 수세액의 온도가 130 ℃ 미만인 경우 불순물 제어 효율이 감소할 수 있다.
오토클레이브를 이용한 수세 공정을 통해 얻어진 산화철은 상온, 상압에서의 수세 공정을 통해 얻어진 산화철보다 불순물 제거율이 높을 수 있다.
제 1 여과 공정(S300)
수세 후 산화철 케이크를 여과기로 여과하여 정제 후 산화철을 얻을 수 있다. 이와 같이 여과 공정 후 얻은 정제 후 산화철은 아연 3 중량% 이하, 나트륨 0.8 중량% 이하, 칼륨 3 중량% 이하 및/또는 황 8 중량% 이하를 포함할 수 있다. 정제 후 산화철은 불순물이 제거되었으므로 철 함량이 60 중량% 이상일 수 있다. 정제 후 산화철은 바람직하게는 아연 0.3 중량% 이하, 나트륨 0.1 중량% 이하, 칼륨 0.1 중량% 이하 및 황 0.5 중량% 이하를 포함하는 고품위 산화철일 수 있다.
선택적 아연 침전 공정(S400)
수세 후 산화철 케이크를 여과기로 여과하고 정제 후 산화철을 분리한 후 남은 수세 후 여액은 아연을 포함할 수 있다. 선택적 아연 침전 공정, 즉 SZP(Selective Zinc Precipitation) 공정은 이와 같은 수세 후 여액에서 아연을 회수하는 공정이다.
선택적 아연 침전 공정(S400)에서는 수세 후 여액에 염을 투입할 수 있다. 이 때 염은 탄산나트륨(Na2CO3)일 수 있다. 선택적 아연 침전 공정(S400)은 염을 투입함으로써 pH가 7 내지 9일 수 있다. 이 때, pH가 7 미만이면, 아연 회수율이 하락할 수 있고, pH가 9를 초과하면 아연 이외에 다른 성분이 침전될 수 있다.
선택적 아연 침전 공정(S400)에서 수세 후 여액의 온도는 50 ℃ 내지 70 ℃일 수 있다. 이 때, 수세 후 여액의 온도가 50 ℃ 미만인 경우, 공정 효율이 감소할 수 있다.
수세 후 여액에 함유된 아연은 염과 반응하여 아래의 식 (4)에서와 같이 고체 상태로 침전될 수 있다.
[식(4)]
ZnSO4(aq) + Na2CO3(s) = ZnCO3(s) + Na2SO4(aq)
위 반응의 결과로 수세 후 여액에 함유된 아연은 제 2 여과 공정(S500)을 통하여 ZnCO3(s)의 형태로 침전되고, 여액 중 아연을 99% 이상 회수할 수 있다.
상기의 공정으로부터 아연 제련 공정의 부산물인 산화철로부터 불순물이 제거된 철 함량 60%이상의 고품위 산화철을 제조할 수 있다. 이 때 아연, 칼륨, 나트륨, 황의 제거율은 90% 이상이다.
불순물 감소에 따라 산화철의 중량은 초기 중량 대비 약 60%로 감소하고, 또한 정제 후 산화철은 아연 함량 0.3% 이하, 황 0.5% 이하 등 불순물 품위가 낮아진다.
[실시예]
본 발명을, 이하의 실시예 및 비교예를 사용하여 더욱 상세하게 설명한다. 단, 본 발명의 기술적 범위가 이하의 실시예에만 제한되는 것은 아니다.
소성 공정(S100)
본 발명의 일 실시예에 따른 아연 제련의 부산물인 원료 산화철 중 수분을 제외한 주요 성분은 다음 표 1과 같다.
구분 Fe Zn Na K S
중량% 41.7 1.76 0.71 2.26 7.90
(1) 건조 단계
원료 산화철을 100 ℃에서 24시간 동안 건조하였다. 이 때, 건조 후 산화철의 수분 함유율은 24%이다.
(2) 소성 단계
건조 후 산화철을 700 ℃, 750 ℃, 800 ℃, 850 ℃, 950 ℃에서 2시간 동안 소성하였다.
각 소성 온도에 따른 산화철의 무게 감소는 다음과 같다.
구분 700℃ 750℃ 800℃ 850℃ 950℃
무게감소율(%) 23.2 24.7 25.4 26.0 27.0
각 소성 온도에 따른 소성 후 산화철 케이크에 포함된 성분의 중량% 및 불순물의 제거율은 다음과 같다.
  소성 온도 구분 Fe Zn Na K S
실시예 1 700℃ 중량% 53.9 2.29 0.79 2.98 3.72
제거율(%)   0.12 14.78 0.52 63.8
실시예 2 750℃ 중량% 55.1 2.34 0.84 3.05 3.51
제거율(%)   0.04 10.53 0.46 66.5
실시예 3 800℃ 중량% 55.8 2.35 0.85 3.09 3.13
제거율(%)   0.34 10.52 0.14 70.4
실시예 4 850℃ 중량% 56.2 2.36 0.87 3.09 3.22
제거율(%)   0.77 9.13 0.81 69.8
실시예 5 950℃ 중량% 56.4 2.41 0.90 3.13 2.47
제거율(%)   0.14 7.37 0.96 77.2
수세 공정(S200) 및 제1여과 공정(S300)
물 1 L당 150 g의 소성 후 산화철 케이크를 투입한 다음 상온(25℃), 상압(1bar)에서 2시간 동안 교반하여 수세하였다. 수세를 완료한 후, 수세액을 여과기에 넣고 여과하여 산화철과 여액을 분리하였다. 이 후, 산화철을 건조시켜 남은 무게 측정 및 성분 분석을 시행하였다. 비교를 위해 소성하지 않은 산화철을 동일한 조건으로 실험하였다. 이 때, 건조 후 산화철의 수분 함유율은 30%이다.
각 소성 온도에 따른 소성 후 산화철 케이크를 각각 수세하고 여과한 결과, 정제 후 산화철에 포함된 성분의 중량% 및 불순물의 제거율은 다음과 같다.
  소성 온도 구분 Fe Zn Na K S
실시예 1 700℃ 중량% 65.2 0.29 0.18 0.15 0.48
제거율(%)   89.8 81.8 96.1 89.7
실시예 2 750℃ 중량% 65.6 0.28 0.09 0.09 0.35
제거율(%)   90.0 91.2 97.5 91.7
실시예 3 800℃ 중량% 67.5 0.44 0.04 0.09 0.21
제거율(%)   84.5 95.7 97.6 94.5
실시예 4 850℃ 중량% 64.8 0.73 0.06 0.12 0.35
제거율(%)   73.7 93.9 96.8 90.7
실시예 5 950℃ 중량% 64.1 2.12 0.01 0.02 0.04
제거율(%)   22.7 98.9 99.5 98.7
비교예 1 소성을 하지 않음 중량% 43.3 1.27 0.71 2.39 7.53
제거율(%)   30.5 3.4 0.1 8.2
실험 결과, 산화철을 소성하지 않고 수세한 비교예의 경우보다, 소성 공정을 거친 후 수세한 실시예에서 불순물의 제거율이 높게 나왔다. 또한, 750 ℃로 소성한 후, 수세를 한 산화철의 경우(실시예 2) 아연, 나트륨, 칼륨, 황 4 종류의 불순물 제거율이 모두 90% 이상이므로 불순물이 가장 잘 제거되었다.
오토클레이브를 이용한 수세 공정
수세 공정에서 온도에 대한 영향을 파악하기 위하여 750℃에서 소성한 소성 후 산화철을 이용하여 60 ℃, 90 ℃ 및 오토클레이브를 이용하여 140 ℃(압력 2.5 bar)에서 수세 공정을 각각 진행하였다. 이 때, 교반 시간(2시간) 및 산화철 투입량(물 1 L당 소성 후 산화철 케이크 150 g)은 동일 조건을 유지하고 물의 온도만 달리 하여 수세를 하였다. 수세 후, 상기 실험과 동일한 방법으로 여과하고, 무게 측정 및 성분 분석을 시행하였다. 이 때, 산화철에 포함된 성분의 중량% 및 불순물의 제거율은 다음과 같다.
  수세액 온도 구분 Fe Zn Na K S
실시예 6 140℃ 중량% 67.9 0.15 0.07 0.08 0.32
제거율(%)   94.9 98.0 94.0 92.9
비교예 2 60℃ 중량% 65.7 0.27 0.09 0.09 0.34
제거율(%)   90.4 91.6 97.6 91.9
비교예 3 90℃ 중량% 65.7 0.27 0.08 0.08 0.34
제거율(%)   90.4 91.9 97.9 91.9
수세 공정에서 수세액의 온도가 상승할수록 약간의 불순물 제거 효율이 증가하나, 비교에 2 및 3은 실시예 2에 비해 불순물 제거율이 큰 차이를 보이지는 않는다.다만, 오토클레이브를 이용하여 2.5 bar의 압력 및 140 ℃의 온도에서 수세한 실시예 6은, 오토클레이브를 이용하지 않은 실시예 2에 비해 불순물의 제거율이 상승하였다.
선택적 아연 침전 공정(S400) 및 제2 여과 공정(S500)
수세 후 여액 중 아연을 회수하기 위해 선택적 아연 침전 공정을 진행하였다. 우선 수세 후 여액의 온도를 60 ℃로 상승시킨 후, pH 농도가 8로 유지될 수 있도록 Na2CO3를 지속적으로 투입하였다. 투입된 Na2CO3가 잘 섞일 수 있도록 3시간 동안 교반한 후, 여과기로 여과하였다. 그 다음, 여과된 케이크를 건조한 후 무게 측정 및 성분 분석을 시행하였다.
수세 후 여액 중, 아연 함유량은 2,950 mg/l이였으며 선택적 아연 침전 공정을 거친 후 여액 중 아연 함유량은 2.65 mg/l로 감소하였다. 즉, 아연은 ZnCO3(s)의 형태로 침전되었고, 수세 후 여액 중 아연을 99% 이상 회수할 수 있었다. 이 때, 침전물은 수세 후 여액 1 L당 6.5 g 발생하였다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 아연 제련 공정의 부산물인 원료 산화철을 정제하는 방법으로서,
    상기 방법은 상기 원료 산화철을 소성하는 소성 공정;
    소성 후 산화철 케이크를 수세액으로 수세하는 수세 공정; 및
    수세 후 산화철 케이크를 여과하는 제1여과 공정을 거쳐 정제 후 산화철을 제공하는, 방법.
  2. 제1항에 있어서,
    상기 소성 공정의 소성 온도는 700 ℃ 내지 950 ℃인, 방법.
  3. 제1항에 있어서,
    상기 소성 공정은 산화철을 건조하는 단계를 더 포함하며,
    상기 산화철을 건조하는 단계에서의 건조 온도는 90 ℃ 내지 110 ℃이고, 건조 시간은 2시간 이상인, 방법.
  4. 제1항에 있어서,
    상기 소성 공정은 로터리 킬른을 이용하여 대기 하에서 수행하는 것을 특징으로 하는, 방법.
  5. 제1항에 있어서,
    상기 수세 공정은 수세액 1L 당 상기 소성 후 산화철 케이크를 140 g 내지 160 g 투입하는 것을 특징으로 하는, 방법.
  6. 제1항에 있어서,
    상기 정제 후 산화철은 60 중량% 이상의 철, 0.3 중량% 이하의 아연, 0.1 중량% 이하의 칼륨, 0.1 중량% 이하의 나트륨 및 0.5 중량% 이하의 황을 포함하는, 방법.
  7. 제1항에 있어서,
    상기 수세 공정은 오토클레이브를 이용하여 상기 소성 후 산화철 케이크를 수세액으로 수세하는 것을 특징으로 하는, 방법.
  8. 제1항에 있어서,
    상기 수세 공정은 교반기를 이용하여 상기 소성 후 산화철 케이크를 수세액으로 수세하는 것을 특징으로 하는, 방법.
  9. 제7항에 있어서, 상기 수세액의 온도는 130 ℃ 내지 150 ℃인 것을 특징으로 하는, 방법.
  10. 제8항에 있어서, 상기 수세액의 온도는 20 ℃ 내지 30 ℃인 것을 특징으로 하는, 방법.
  11. 제1항에 있어서,
    제1여과 공정에서 나오는 수세 후 여액으로부터 아연을 회수하는 선택적 아연 침전 공정을 더 포함하고,
    상기 선택적 아연 침전 공정은 상기 수세 후 여액에 염을 투입하는 것을 포함하는, 방법.
  12. 제11항에 있어서,
    상기 염은 탄산나트륨인, 방법.
  13. 제11항에 있어서,
    상기 선택적 아연 침전 공정은 상기 수세 후 여액의 온도가 50 ℃ 내지 70 ℃이고, pH가 7 내지 9인, 방법.
PCT/KR2023/006857 2022-10-14 2023-05-19 아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법 WO2023234608A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2023222922A AU2023222922A1 (en) 2022-10-14 2023-05-19 Method for manufacturing high-grade refined iron oxide from iron oxide as by-product of zinc smelting process
PE2024001562A PE20241720A1 (es) 2022-10-14 2023-05-19 Metodo para fabricar oxido de hierro refinado de alta calidad a partir de oxido de hierro como subproducto de un proceso de fundicion de zinc
JP2023552357A JP2024524803A (ja) 2022-10-14 2023-05-19 亜鉛製錬工程の副産物である酸化鉄からの高品位精製酸化鉄の製造方法
CN202380013025.2A CN118215748A (zh) 2022-10-14 2023-05-19 由锌冶炼工序的副产物氧化铁制造高级精炼氧化铁的方法
MX2024003081A MX2024003081A (es) 2022-10-14 2023-05-19 Metodo para fabricar oxido de hierro refinado de alta calidad a partir de oxido de hierro como subproducto de un proceso de fundicion de zinc.
US18/548,285 US20240344173A1 (en) 2022-10-14 2023-05-19 Method for manufacturing high-grade refined iron oxide from iron oxide as by-product of zinc smelting process
CA3211916A CA3211916A1 (en) 2022-10-14 2023-05-19 Method for manufacturing high-grade refined iron oxide from iron oxide as by-product of zinc smelting process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220132523A KR102632434B1 (ko) 2022-10-14 2022-10-14 아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법
KR10-2022-0132523 2022-10-14

Publications (1)

Publication Number Publication Date
WO2023234608A1 true WO2023234608A1 (ko) 2023-12-07

Family

ID=89025262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006857 WO2023234608A1 (ko) 2022-10-14 2023-05-19 아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법

Country Status (10)

Country Link
US (1) US20240344173A1 (ko)
JP (1) JP2024524803A (ko)
KR (1) KR102632434B1 (ko)
CN (1) CN118215748A (ko)
AU (1) AU2023222922A1 (ko)
CA (1) CA3211916A1 (ko)
MX (1) MX2024003081A (ko)
PE (1) PE20241720A1 (ko)
TW (1) TW202415624A (ko)
WO (1) WO2023234608A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890002856A (ko) * 1987-07-30 1989-04-11 최근선 브이씨알의 재생기능 제어장치 및 그 제어방법
JPH05171310A (ja) * 1991-12-25 1993-07-09 Mitsubishi Materials Corp 還元焙焼による亜鉛製錬法
KR100366866B1 (ko) * 1994-12-02 2003-02-11 메탈스 리사이클링 테크날러지즈 코퍼레이션 철원료 제조방법
KR20030092062A (ko) * 2001-04-10 2003-12-03 바스프 악티엔게젤샤프트 고 정제도를 갖는 산화철
KR100625521B1 (ko) * 2005-06-21 2006-09-20 심재윤 아연재를 이용한 초미립자 활성산화아연 분말의 제조방법및 그 제조물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890002856A (ko) * 1987-07-30 1989-04-11 최근선 브이씨알의 재생기능 제어장치 및 그 제어방법
JPH05171310A (ja) * 1991-12-25 1993-07-09 Mitsubishi Materials Corp 還元焙焼による亜鉛製錬法
KR100366866B1 (ko) * 1994-12-02 2003-02-11 메탈스 리사이클링 테크날러지즈 코퍼레이션 철원료 제조방법
KR20030092062A (ko) * 2001-04-10 2003-12-03 바스프 악티엔게젤샤프트 고 정제도를 갖는 산화철
KR100625521B1 (ko) * 2005-06-21 2006-09-20 심재윤 아연재를 이용한 초미립자 활성산화아연 분말의 제조방법및 그 제조물

Also Published As

Publication number Publication date
JP2024524803A (ja) 2024-07-09
CN118215748A (zh) 2024-06-18
KR102632434B1 (ko) 2024-02-02
AU2023222922A1 (en) 2024-05-02
PE20241720A1 (es) 2024-08-19
US20240344173A1 (en) 2024-10-17
MX2024003081A (es) 2024-03-27
TW202415624A (zh) 2024-04-16
CA3211916A1 (en) 2024-04-14

Similar Documents

Publication Publication Date Title
WO2019198972A1 (ko) 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법
WO2015137653A1 (ko) 탈질 폐촉매의 침출용액으로부터 바나듐 및 텅스텐의 회수방법
WO2023191414A1 (ko) 블랙 매스로부터 이차전지 소재의 제조방법
WO2018164340A1 (ko) 리튬 함유 폐기물로부터 리튬 화합물을 회수하는 방법
WO2014038762A1 (ko) 배소 및 수침출을 이용한 탈질폐촉매에 함유된 유가금속 침출 방법
WO2021085777A1 (ko) 염수로부터 리튬을 회수하는 방법
CN111533156A (zh) 焚烧飞灰的处理工艺和焚烧灰渣的处理工艺
WO2014000404A1 (zh) 一种电子废弃物永磁废料中回收稀土的工艺
WO2023234608A1 (ko) 아연 제련 공정의 부산물인 산화철로부터 고품위 정제 산화철의 제조방법
WO2023234623A1 (ko) 웰즈 산화물로부터 할로겐화물을 제거하는 방법
WO2023158008A1 (ko) 니켈, 코발트 및 망간의 분리 회수를 위한 2단 추출을 이용한 용매추출방법
WO2014098300A1 (ko) 환원철 제조방법 및 제조장치
WO2019151666A1 (ko) 철-함유 혼합 금속 염화물 수용액에서 산화철 및 알칼리토금속 염화물의 분리 제조 방법
WO2017162013A1 (zh) 一种离子阻控吸附剂制备与应用方法
WO2024122803A1 (ko) 양극재 폐도가니로부터 리튬의 회수방법
WO2013042897A2 (ko) 칼슘 및 마그네슘 함유용액에서 칼슘 및 마그네슘의 선택적 분리방법, 상기 분리방법에 의해 얻어진 칼슘옥살레이트 및 마그네슘옥살레이트, 및 상기 옥살레이트들로부터 얻어진 칼슘옥사이드 및 마그네슘옥사이드
WO2015080326A1 (ko) 구리 함유 휘수연광의 전처리 방법
WO2023243878A1 (ko) 가압 침출법을 이용한 구리의 침출 방법
RU2483131C1 (ru) Способ получения оксида скандия из красного шлама
WO2023243827A1 (ko) 니켈 또는 코발트 수용액 제조 방법
CN1789445A (zh) 铜冶炼高砷烟尘硫酸浸出液分离铜砷锌的方法
CN1410358A (zh) 铬酸钾的清洁生产方法
WO2018052220A1 (ko) 중조 및 탄산칼슘 제조방법 및 제조설비
WO2022154250A1 (ko) 슬래그로부터 칼슘 및 희토류 금속 회수 방법
WO2018190461A1 (ko) 질산을 이용하여 폐 ito스크랩으로부터 높은 상대밀도를 가지는 고순도 ito타겟용 분말의 제조방법 및 그 분말

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023552357

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18548285

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23754991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380013025.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023222922

Country of ref document: AU

Date of ref document: 20230519

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12024551523

Country of ref document: PH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024012160

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202491407

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 001562-2024

Country of ref document: PE