WO2017162013A1 - 一种离子阻控吸附剂制备与应用方法 - Google Patents

一种离子阻控吸附剂制备与应用方法 Download PDF

Info

Publication number
WO2017162013A1
WO2017162013A1 PCT/CN2017/075455 CN2017075455W WO2017162013A1 WO 2017162013 A1 WO2017162013 A1 WO 2017162013A1 CN 2017075455 W CN2017075455 W CN 2017075455W WO 2017162013 A1 WO2017162013 A1 WO 2017162013A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
solution
adsorbent
chromate
biomass
Prior art date
Application number
PCT/CN2017/075455
Other languages
English (en)
French (fr)
Inventor
马伟
段诗博
于双恩
孟凡庆
王刃
徐军
郭丽燕
吴磊
柳卓
谭大志
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610179512.8A external-priority patent/CN105648224B/zh
Priority claimed from CN201611020782.0A external-priority patent/CN106693914B/zh
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US15/776,985 priority Critical patent/US11071967B2/en
Publication of WO2017162013A1 publication Critical patent/WO2017162013A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4843Algae, aquatic plants or sea vegetals, e.g. seeweeds, eelgrass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the fields of chemical separation, hydrometallurgy and resource recovery, and particularly relates to a detoxification and recovery of hydroxy chromium having various uses by using chromium-containing ore, chromium-containing slag, and chromium-containing by-products of intermediate chemicals and metallurgical processes.
  • Compound, nano-scale chromium oxide treatment method Compound, nano-scale chromium oxide treatment method.
  • Chromium metal has the characteristics of melting, high boiling point, high hardness and strong corrosion resistance. Chromium trioxide is a widely used multi-purpose product, which is widely used in chemical, refractory and metal materials.
  • the current production of sorghum sodium company due to improper handling of a large amount of waste, has caused considerable chromium-containing by-products, which contain hexavalent chromium, which is an element that seriously endangers human health, and its water solubility is good, and it is stacked. The process is seriously polluted by the environment due to the erosion of rain. Trivalent chromium is an element with relatively low toxicity.
  • the detoxification process of hexavalent chromium residue currently involved is to convert hexavalent chromium into trivalent chromium and to recover chromium. Since chromium waste contains some impurities such as iron, aluminum, vanadium, etc., the presence of these impurities affects the purity and quality of the final chromium product, thus reducing the content of impurities in the chromium residue eluate, and improving the quality of chromium products for deep purification of chromium solution. have important meaning.
  • the leaching rate of chromium and aluminum increases with the increase of alkali slag ratio, calcination time and calcination temperature, and increases with the decrease of chromium slag particle size.
  • the optimum leaching process conditions are: calcination temperature 700 °C, roasting time 4 h, particle size 0.045 mm and alkali-to-mine ratio 6:1.
  • the purity of the obtained chromium salt (calcium dichromate) and alumina were 88.5% and 95.4%, the total recovery rate was 85.6% and 96.4%, respectively, and sodium was recovered in the form of sodium carbonate and sodium bicarbonate.
  • the dissolution method separates the vanadium in the vanadium and chromium solution, and simultaneously obtains the chromium trioxide and vanadium pentoxide products, but the process is too long and the operation is cumbersome.
  • the publication number is CN 102925686A
  • a method for selectively separating and extracting vanadium and chromium from a solution containing vanadium and chromium is proposed, which realizes efficient separation and high-purity extraction of vanadium and chromium, but the process needs to be applied to an ion exchange resin, which requires washing. The agent washes off the chromium remaining in the exchange column, and the process is cumbersome.
  • the above purification process of chromium solution is mainly based on chemical precipitation and ion exchange, on the adsorption and recovery of chromium by biomass and the purification of chromium, 2011 Wang et al., Chemical Engineering Journal, No. 174, No. 326-332
  • the application of microwave-assisted modified bamboo charcoal to prepare adsorbents and their removal of hexavalent chromium from solution is reported.
  • Hu Ying et al., 2016, Safety and Environmental Engineering, Vol. 23, No. 1 The research progress of plant waste adsorption of chromium-containing wastewater was reviewed. It is pointed out that the biomass adsorbent has abundant sources and has a strong ability to remove chromium after modification. 2016, Johansson Et al., Journal of Environment Management, Vol. 165, No. 1
  • biomass-based adsorbents have a large number of functional groups capable of adsorbing heavy metal ions, various metal contaminants in water can be removed, but their selectivity in the presence of multiple metals is poor, and there are few reports on this.
  • the biomass-based adsorbent does not involve the 'ion resistance' effect, that is, the target ion is controlled and protected while adsorbing the impurity ions. Therefore, in the deep purification of the chromium solution, the present invention proposes an adsorbent for hydrothermally preparing the chromium resistance control effect of the biomass, and in the multi-ion coexistence system, deep purification of the impurities in the chromium solution has certain practical significance.
  • the purified chromium solution can be used as a raw material to prepare high quality chromium oxide products, which has not been reported yet.
  • the object of the present invention is to overcome the above-mentioned deficiencies, and to provide a method for reducing hexavalent chromium or inhibiting the production of hexavalent chromium by using a hydrothermal reducing atmosphere, and performing a method for separating chromium, aluminum, vanadium and the like by sinking chromium, and the main feature is Control the hexavalent chromium pollution process to extract chromium or first convert the hexavalent chromium in the waste residue to trivalent chromium.
  • pH Oxidation is selected to achieve the purpose of oxidizing only ferrous iron to ferric iron.
  • a highly selective adsorbent having an internal regular multistage structure can be prepared, which can be used for the depth of impurities such as iron, aluminum, vanadium and the like in a chromium solution. Purification; after deep purification of the chromium solution, then adjust the pH Adding appropriate hydrating agent, hydrothermal precipitation of chromium, filtration, acid washing, roasting to obtain chromium oxide crystals, achieving separation of chromium, iron, aluminum, vanadium and purification, recycling and disposal of chromium Comprehensive utilization method.
  • the process is simple, and the selective adsorption of impurities such as iron, aluminum, vanadium and the like, and the deep purification treatment of the chromium solution can provide technical support for processing high-purity chromium products. At the same time, it has the advantages of easy process control, less waste water discharge, and environmental protection.
  • a method for preparing an ion-barrier adsorbent the steps are as follows:
  • step (3) Transfer the biomass chromate mixture obtained in step (2) to the reaction vessel and age at 120 ⁇ 220 °C. 2 ⁇ 8 hours, get the chromium resistance-controlled adsorbent, which is the ion-resistance adsorbent.
  • An application method of an ion-blocking adsorbent is as follows:
  • step (2) First, adjust the pH of the chromium solution 1 obtained in step (1) to 0.5 ⁇ 6.0, add the reducing agent, and adjust the pH. To 1.0 ⁇ 5.0 , obtaining a qualified ferrochrome qualified liquid; then, adding an oxidizing agent to the separated ferrochrome qualified liquid to obtain a mixed solution of ferric iron, trivalent chromium and trivalent aluminum; finally, hydrothermal reaction of the mixed solution, the reaction is accompanied by constant Stirring, filtration after the end of the reaction to obtain the filtrate and Fe sediment, adjust the pH of the filtrate to 0.5 ⁇ 3.5, get the chromium sulphate stock solution, which is the chrome solution 2; the hydrothermal condition is at 50 ⁇ 150 °C and 0.5 MPa ⁇ 2.5 MPa Under pressure conditions, the reaction is 0.5 ⁇ 10 hours;
  • the biomass is one or a mixture of two or more of kelp, straw, wood chips, leaves, peels, and the like;
  • the reducing agent may be methanol, ethanol, straw, or the like;
  • the oxidizing agent is selected from oxygen, air, hydrogen peroxide, ozone or sulfuric acid free radicals.
  • the chromate solution is potassium chromate or sodium chromate;
  • the hydrating agent may be selected from organic substances such as oxalic acid, cellulose, methanol, formaldehyde, formic acid, ethanol or glucose;
  • the vanadium, aluminum, iron and magnesium plasmas can be purified to a level of ppb.
  • the washing liquid in the above process can be reused or the sodium sulfate can be recovered and reused.
  • the method prepares an adsorbent having a chromium ion resistance control effect, and the adsorption and separation effect of the resistive adsorbent is good, and the purified chromium solution can prepare a high-purity chromium compound.
  • the process is simple, reducing the emission of three wastes and being green.
  • Fig. 1 is a 400-fold photomicrograph of a chromium-barrier adsorbent prepared by the present invention.
  • Fig. 2 is a transmission electron micrograph of a microscopic particle composed of clusters of adsorbents prepared by the present invention.
  • Figure 3 is an infrared spectrum of a chromium-barrier adsorbent.
  • Figure 4 is a SEM characterization of chromium oxide obtained after calcination of a chromium-containing compound.
  • Figure 5 is a TEM representation of chromium oxide obtained after calcination of a chromium-containing compound.
  • Figure 6 is a HRTEM characterization of chromium oxide obtained after calcination of a chromium-containing compound.
  • Figure 7 is a graphical representation of the XRD pattern of chromium oxides obtained after calcination of chromium-containing compounds.
  • Example 1 Using high carbon ferrochrome as raw material
  • the raw materials are as follows:
  • Example 2 Using chromium aluminum slag as raw material
  • the orange peel was washed and broken into pieces of about 1 cm 2 .
  • a small piece of 30 g of orange peel was weighed, immersed in a potassium chromate solution, and immersed in an oven at 50 ° C for 2 hours.
  • the mixture was transferred to an autoclave and aged at 220 ° C for 6 hours.
  • the obtained sample of the chromium-barrier adsorbent was washed with hydrochloric acid, washed with deionized water, and dried at 80 ° C for 24 hours, and then used.
  • Example 3 A chrome ore is used as a raw material
  • Example 4 After the straw was washed, the excess water on the surface was drained, and the straw was broken into pieces by scissors. Weigh 50 g of straw pieces and immerse them in 100 mL of 0.3 mol/L potassium chromate solution was immersed in an oven at 50 °C for 2 hours. The mixture was transferred to an autoclave and aged at 180 °C. 2 Hours. After completion of the reaction, the obtained solid sample was pickled, filtered, and dried at 80 ° C for 24 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种离子阻控吸附剂制备与应用方法。通过调节pH选择氧化,以达到只将二价铁氧化为三价铁的目的,经过水热反应后,分离出铁;采用生物质为原料,制备出具有内部规则多级结构的高选择性的吸附剂,可用于铬溶液中铁、铝、钒等杂质的深度净化;经过深度净化铬溶液,再调节pH,加入适当水化剂,经水热沉淀铬处理,过滤、酸性洗液洗涤、焙烧后可得到氧化铬晶体。

Description

一种离子阻控吸附剂制备与应用方法
技术领域
本发明属于化学分离、湿法冶金和资源回收领域,具体涉及一种利用含铬矿、含铬渣以及化工、冶金过程含铬副产物以及中间产物的解毒并回收制备具有多种用途的羟基铬化合物、纳米级三氧化铬的处理方法。
背景技术
铬金属具有熔、沸点高、硬度大、抗腐蚀性强等特点,三氧化二铬是一种广泛应用的多用产品,在化工、耐火材料和金属材料等领域应用广泛。目前的生产红矾钠公司,由于对产生大量的废弃物处理不当,造成了相当大的含铬副产物,其中含有的六价铬是严重危害人体健康的一种元素,而且其水溶性较好,堆放过程由于雨水冲刷的原因,会对环境造成严重污染。而三价铬却是毒性相对较小的一种元素,目前普遍涉及的六价铬废渣解毒过程是将六价铬转化为三价铬,同时进行铬的回收。由于铬废渣中包含一些如铁、铝、钒等杂质,这些杂质的存在影响着最终铬产品的纯度及质量,因此降低铬废渣溶出液中杂质的含量,对于深度纯化铬溶液提高铬产品的质量有重要意义。
针对铬与其他金属元素的分离,如铬、铁分离问题。 2011 年,邬建辉等人在《湿法冶金》第 30 卷第 1 期中铬铁合金中的铬、铁分离研究中提出先用硫酸浸出废铬铁合金,再用莫尔盐结晶法分离溶液中的铁,铬的损失率为 1.85% 。但最佳 pH 为 0.5 ,对反应容器的耐酸程度要求较高。 2014 年张波等人在《有色金属(冶炼部分)》第 7 期中发表论文指出,对于铬铁矿硫酸浸出液中的三价铬与三价铁的分离,可采用黄钠铁矾法,铁的脱除率接近 100% ,钒的损失率低于 7% ,但其 pH 要求在 -0.87 ,对 pH 要求比较苛刻,且对容器的腐蚀性较大。 2015 年徐志峰等在《有色金属科学与工程》发表论文指出,对溶液中的铬、铁离子可用磷酸沉淀法加以分离,最终可使沉淀后溶液中铬的浓度降至 0.04 g/L 左右,沉铬渣中铁含量降至 0.4% 。在经过初步的铬铁分离后,铬中还会含有少量的铁及其他金属元素,最终会影响铬产物的质量。
针对铬、铝分离问题, 2013 年魏广叶等人在《中国有色金属学报》第 23 卷第 6 期 1712 页中报道了铬盐生产工艺中除铝方法的研究进展,文中主要从固相法和液相法两个方面综述了各种除铝的方法特点,并探讨了除铝方法的发展方向。 林盛 等在 2014 年第 5 期《矿冶工程》 ' 从铝热法制备金属铬所得铬渣中回收铬、铝工艺研究 ' 一文中提出了熔融碱中焙烧 - 水浸 - 碳酸化分解 - 浓缩结晶工艺从铝热法生产金属铬所得炉渣中回收氧化铝和铬酸钠的方法,探讨了铬渣粒度、碱渣比、焙烧时间以及温度等因素对铬和铝浸出率的影响。铬和铝的浸出率随碱渣比、焙烧时间以及焙烧温度增加而增加,随铬渣粒度减少而增加,最佳浸出工艺条件为:焙烧温度 700 ℃ ,焙烧时间 4 h ,粒度 0.045 mm 和碱矿比 6 ∶ 1 。所得铬盐 ( 以重铬酸钠计 ) 和氧化铝的纯度分别为 88.5% 和 95.4% ,总回收率分别达到 85.6% 和 96.4% ,钠以碳酸钠和碳酸氢钠的形式得到回收。
针对铬、钒分离问题,李鸿乂等在 2014 年《钢铁钒钛》第 3 期第 5 页上报道了一种以阴离子交换树脂选择性吸附钒从而分离及提取钒与铬的方法,并阐述了该树脂吸附钒的机理及钒铬的分离原理。但该工艺在树脂转型及再生步骤中需耗用大量的酸,且再生时会产生大量废水。公开号为 CN 103773956A 的专利中,提出一种利用还原 - 沉淀 - 煅烧 - 溶出的方法对钒、铬溶液中的钒进行了分离,同时制得了三氧化二铬和五氧化二钒产品,但该工艺流程过长,操作繁琐。公开号为 CN 102925686A 的专利中,提出从含钒、铬的溶液中选择性分离和提取钒与铬的方法,实现了钒和铬的高效分离及高纯度提取,但该过程需运用到离子交换树脂,需要用洗涤剂将残留在交换柱内的铬洗涤下来,工艺较为繁琐。
以上的铬溶液的纯化过程主要依据化学沉淀和离子交换,关于生物质吸附回收铬以及净化铬的行为, 2011 年 Wang 等人在《 Chemical Engineering Journal 》第 174 期第 326-332 页中报道了微波辅助改性竹炭制备吸附剂及其去除溶液中六价铬的应用研究。胡颖等人 2016 年在《安全与环境工程》 第 23 卷第 1 期中综述了植物废料吸附含铬污废水的研究进展。文中指出,生物质类吸附剂其来源丰富,且经过改性后具有较强的去除铬的能力。 2016 年, Johansson 等人在《 Journal of Environment Management 》第 165 卷第 1 期中发表了关于改性海藻基生物质吸附剂同时去除溶液中的硒、砷、钼的论文。
由于生物质基吸附剂具有大量的可以吸附重金属离子的官能团,可以去除水中多种金属污染物,但是其在多种金属共存情况下的选择性较差,关于此方面的报道较少。目前,生物质基吸附剂没有涉及到'离子阻控'效应,即在吸附杂质离子的同时对目标离子进行阻控保护。因此,本发明对于铬溶液的深度纯化提出利用生物质水热制备铬阻控效应的吸附剂,在多种离子共存体系中,深度净化铬溶液中的杂质具有一定的实际意义。经过净化后的铬溶液,可作为原料制备高品质的三氧化铬产品,目前该方法还没有被报道。
发明内容
本发明的目的是克服上述不足问题,提供了一种利用水热还原氛围还原六价铬或抑制六价铬产生的方法,来进行沉铬分离铁、铝、钒等杂质的方法,主要特点是控制六价铬污染过程提取铬或先将废渣中六价铬转为三价铬后进行分离。通过调节 pH 选择氧化以达到只将二价铁氧化为三价铁的目的,经过水热反应后,分离出铁;利用离子印迹的'离子阻控'效应,采用生物质如大型海藻、橘子皮、秸秆等为原料,制备出具有内部规则多级结构的高选择性的吸附剂,可用于铬溶液中铁、铝、钒等杂质的深度 净化;经过深度净化铬溶液,再调节 pH ,加入适当水化剂,经水热沉淀铬处理,过滤、酸性洗液洗涤、焙烧后可得到氧化铬晶体,实现了铬、铁、铝、钒的分离和铬的提纯、回收与废弃资源的综合利用的方法。该工艺流程简单,对铁、铝、钒等杂质的选择性吸附好,经过深度净化处理的铬溶液,可以为加工高纯的铬产品提供技术支持。同时具有过程容易控制,废水废气排放少,工艺环保等优势。
本发明的技术方案:
一种离子阻控吸附剂的制备方法,步骤如下:
(1) 配制浓度为 0.1~1.5mol/L 的铬酸盐溶液,并调节 pH 为 2~6 ;
(2) 将生物质洗净并破碎,在 30~70 ℃ 的温度条件下,将破碎的生物质添加到铬酸盐溶液中浸泡 2~36 小时,得到生物质铬酸钾混合物;其中,生物质与铬酸盐溶液的质量体积比为 1 : 2~8 ;
(3) 将步骤 (2) 得到的生物质铬酸盐混合物转移至反应釜中,在 120~220 ℃ 温度条件下陈化 2~8 小时,得到铬阻控吸附剂,即为离子阻控吸附剂。
一种离子阻控吸附剂的应用方法,步骤如下:
(1) 对含铬固形物或含铬溶液进行酸溶,并调节 pH 为 0.5~4.5 ,过滤不溶物,得到铬液 1 ;对过滤得到的不溶固渣多次酸洗至铬含量符合国家环保标准,在上述过程中所用的酸液可重复使用;
(2) 首先,调节步骤 (1) 得到的铬液 1 的 pH 调至 0.5~6.0 ,加入还原剂,再调节 pH 至 1.0~5.0 ,得到分离铬铁合格液;然后,向分离铬铁合格液中加入氧化剂,得到三价铁、三价铬和三价铝的混合溶液;最后,对混合溶液进行水热反应,反应伴随着不断搅拌,反应结束后过滤得到滤液与含 Fe 沉渣,调节滤液 pH 为 0.5~3.5 ,得到沉铬储备液,即为铬液 2 ;水热条件为在 50~150 ℃ 温度和 0.5 MPa~2.5 MPa 压力条件下,反应 0.5~10 小时;
(3) 将离子阻控吸附剂加入到步骤 (2) 得到的铬液 2 中或将铬液 2 经过装有离子阻控吸附剂的固定床,离子阻控吸附剂与铬液 2 按照质量体积比为 1:150~500 震荡或搅拌 5-24 小时,得到沉铬合格液 3 ;
(4) 高温水热:将沉铬合格液 3 与水化剂置于密闭反应釜中水热反应,加温至 150 ℃ ~400 ℃ ,压力在 0.5 MPa~4.5 MPa ,保温 1~5 小时,对反应后产物过滤、用酸性液体洗涤、干燥,得到绿色滤饼,即为高纯铬化合物,经 500~1200 ℃ 焙烧后转化为纳米氧化铬固体。
所述的生物质为海带、秸秆、木屑、树叶、果皮等中的一种或两种以上混合;
所述的还原剂可以为甲醇、乙醇、秸秆等;
所述的氧化剂选用氧气、空气、过氧化氢、臭氧或硫酸自由基。所述的铬酸盐溶液为铬酸钾或铬酸钠;
所述的水化剂可选用草酸、纤维素、甲醇、甲醛、甲酸、乙醇或葡萄糖等有机质物质;
沉铬合格液 3 经过吸附净化后,其中的钒、铝、铁、镁等离子净化程度可达 ppb 级别。
在以上过程中的洗涤液均可重复使用或回收硫酸钠后水回用。
本发明的有益效果:该方法制备出具有铬离子阻控效应的吸附剂,该阻控吸附剂的吸附分离效果好,经过纯化后的铬溶液,可制备高纯度的铬化合物。流程简单,减少了三废的排放,绿色环保。
附图说明
图 1 是本发明制备的铬阻控吸附剂的 400 倍显微照片。
图 2 是本发明制备的吸附剂的团簇构成微观粒子透射电镜图。
图 3 是铬阻控吸附剂的红外光谱图。
图 4 是含铬化合物经焙烧后得到的氧化铬 SEM 表征图。
图 5 是含铬化合物经焙烧后得到的氧化铬 TEM 表征图。
图 6 是含铬化合物经焙烧后得到的氧化铬 HRTEM 表征图。
图 7 是含铬化合物与其焙烧后得到的氧化铬 XRD 表征图。
具体实施方式
下面结合技术方案和附图对本发明作进一步详细说明,但本发明并不局限于具体实施例。
实施例 1 :以高碳铬铁为原料
原料成分如下:
表 1 高碳铬铁成分
成分 Cr C Si P S Fe 和其他
含量 42~47 6~10 3~4 0.03~0.04 0.02~0.05 38~41
取 15.0 g 高碳铬铁,溶于 35mL 体积分数为 60% 硫酸溶液中,水浴加热至 80 ℃ ,恒温 30min ,使其充分反应。然后冷却到室温,过滤掉少量不溶物,得到含铬、铁和其他杂质的混合溶液滤液 1 ,将其稀释 10 倍,用质量分数为 5% 的硫酸调节其 pH 至 2.8 。在滤液 1 中加入 0.5 mL 甲醇水热 160 ℃还原 4 h ,使六价铬全部转化为三价铬,过滤。取 10mL 该滤液,加入 2 mL 质量分数为 20% 的过氧化氢,搅拌 30min ,然后置于 18 mL 的密闭反应釜中,在 90 ℃ 条件下恒温 2 小时,再冷却至室温,过滤,得到含 Fe 沉渣与绿色铬滤液 2 。
将洗净晾干后的海带用剪刀破碎成约 5 cm2 小块。称取 50 g 海带小块,将浸其置于 150 mL 0.4 mol/L 的铬酸钾溶液中,放置于 80 ℃烘箱中浸渍 8 小时。再将上述混合物转移至高压釜中, 210 ℃陈化 5 小时。反应结束后,得到的固体吸附剂样品经过盐酸洗涤、过滤、去离子水洗涤、 80 ℃干燥 24 小时备用(吸附剂表征如图 2~ 图 4 所示)。
称取 1 g 吸附剂加入到 500 mL 铬滤液 2 中,混合液中铬( VI )、铁( III )的浓度分别为 120.95 mg/L, 16.91 mg/L 。磁力搅拌 12 h ,过滤分离吸附剂后,检测溶液中剩余铁( III )的含量,在此溶液中再加入 1 g 吸附剂,磁力搅拌 12 h ,得到深度纯化铬液 3 ,再检测溶液中的铁( III )浓度,结果如下:
初始浓度(mg/L) 18 h 后浓度(mg/L) 24h 后浓度(mg/L) 去除率(%)
120.95 ---- ---- ----
16.91 0.175 0.042 99.75
取 15 mL 铬液 3 ,加入甲醇 1.5mL ,用质量分数 5% 的硫酸调节 pH 至 2.1 ,置于 18mL 的密闭反应釜中,在 210 ℃条件 下恒温 1.5 小时,冷却至室温,过滤,去离子水洗涤, 120 ℃ 下干燥 2 小时, 600 ℃ 下焙烧 3.5 小时,得到绿色氧化铬晶体(产物表征如图 5~ 图 8 所示)。
实施例 2 :以铬铝渣为原料
表 2 铬铝渣成分
成分 Cr Al Si P S 其他
含量 62~67 18~25 3~4 0.03~0.04 0.02~0.05 3~5
取 100.0 g 铬铝渣,溶于 300 mL 体积分数 13% 为硫酸溶液中,加热反应 35min ,使得铬铝渣反应完全。过滤反应后的物质,得到铬铝混合液 1 。取 200 mL 滤液 1 中加入 1.0 mL 甲醇水热 160 ℃还原 4 h ,使六价铬全部转化为三价铬,过滤得铬铝混合液 2 。
将橘子皮洗净后破碎成约 1cm2 小块。称取 30 g 橘子皮小块,将其浸渍于铬酸钾溶液中,置于 50 ℃烘箱中浸泡 2 小时。再将上述混合物转移至高压釜中, 220 ℃陈化 6 小时。反应结束后,将得到的铬阻控吸附剂样品经过盐酸洗涤、去离子水洗涤后于 80 ℃干燥 24 小时后备用。
称取 2 g 铬阻控吸附剂加入到 100 mL , pH 值为 3.05 的铬铝混合液 2 中,放入摇床中振摇 26 h ,离心分离吸附剂,取上清液分析溶液中剩余铝的含量,结果如下:
初始浓度(mg/L) 18 h 后浓度(mg/L) 去除率(%)
105.20 ---- ----
6.17 0.037 99.40
取离心分离后的上清液 20 mL ,加入 1.0 mL 乙醇,调节 pH 至 1.9 ,然后加入到 18 mL 的密闭反应釜, 140 ℃ 下反应 2 小时。反应结束后,冷却至室温,过滤,得到的固体在 110 ℃ 下烘干 2 小时, 450 ℃ 下焙烧 2.5 小时,得到氧化铬晶体。对收集到的滤液及洗涤液,调节其 pH 到 8 ,得到白色沉淀,过滤,去离子水洗涤,干燥, 300 ℃ 下焙烧 2.5 小时,得到氧化铝固体, 上述过程中 滤液及洗涤液可以重复使用。
实施例 3 :一种铬矿为原料
表 3 铬矿成分
成分 Cr Fe Al Mg Ca 其他
含量 18~26 15~24 9~13 8~12 3~5 14~16
取 15.0g 铬矿,溶于 50 mL 体积分数 45% 为硫酸溶液中,水浴加热至 80 ℃ ,恒温 30min ,使铬矿充分反应。然后冷却到室温,过滤掉少量不溶物,得到含铬、铁和其他杂质的混合滤液 1 。将其稀释 10 倍,用质量分数为 5% 的硫酸调节其 pH 至 2.5 。在滤液 1 中加入 0.5 mL 甲醇水热 160 ℃还原 4 h ,使六价铬全部转化为三价铬,得含三价铬溶液。取 10mL 上述三价铬溶液,加入 2 mL 质量分数为 20% 的过氧化氢,搅拌 30min ,然后置于 18 mL 的密闭反应釜中,在 90 ℃ 条件下恒温 2 小时,再冷却至室温,过滤,得到含 Fe 沉渣与绿色铬滤液 2
再取 10 g 搅碎的菠萝皮,浸泡在 50 mL 0.25 mol/L 的铬酸钠溶液中,置于 60 ℃烘箱中浸泡 2 小时。再将上述混合物转移至高压釜中, 150 ℃陈化 3 小时。反应结束后,将得到的固体铬阻控吸附剂样品酸洗、过滤、 80 ℃干燥 24 小时备用。取上述铬阻控吸附剂 1 g ,加入到 20 mL 待深度纯化的滤液 2 中,搅拌 12 h 后过滤分离,得到铬滤液 3 。取 12 mL 滤液 3 ,加入 0.2 mL 甲醇,调节 pH 至 2.15 ,然后加入到 25 mL 的密闭反应釜, 160 ℃ 下反应 4 小时。反应结束后,冷却至室温,过滤,得到的固体在 120 ℃ 下烘干 4 小时, 500 ℃ 下焙烧 2.5 小时,可以得到纳米氧化铬。
实施例 4 :将秸秆洗净后,沥去表面多余的水,用剪刀将秸秆破碎成碎块。称取 50 g 秸秆碎块,将其浸渍于 100 mL 0.3 mol/L 的铬酸钾溶液中,置于 50 ℃烘箱中浸泡 2 小时。再将上述混合物转移至高压釜中, 180 ℃陈化 2 小时。反应结束后,将得到的固体样品酸洗、过滤、 80 ℃干燥 24 小时备用。
称取 0.5 g 吸附剂加入到 150 mL , pH 值为 8.15 的钒铬混合液中,混合液中钒( V )、铬( VI )浓度分别为 9.803 mg/L, 88.79 mg/L 。震荡 4h ,过滤分离吸附剂后,分析溶液中剩余钒( V )、铬( VI )的含量,计算吸附剂对钒( V )、铬( VI )的吸附能力,结果如下:
初始浓度(mg/L) 4h 后浓度(mg/L) 吸附量(mg/g) 去除率(%) 初始铬钒浓度比 4h 后铬钒浓度比
9.803 0.035 2.93 99.64 9:1 2549:1
88.79 89.23 ---- ----
取分离后的上清液 300 mL ,加入 5.0 mL 甲醇,调节 pH 至 2.30 ,然后加入到 500 mL 的密闭反应釜, 150 ℃ 下反应 3.5 小时。反应结束后,冷却至室温,过滤,得到的固体在 110 ℃ 下烘干 2 小时, 500 ℃ 下焙烧 2.5 小时,得到氧化铬晶体。

Claims (10)

  1. 一种离子阻控吸附剂的制备方法,其特征在于,步骤如下:
    (1) 配制浓度为 0.1~1.5mol/L 的铬酸盐溶液,并调节 pH 为 2~6 ;
    (2) 将生物质洗净并破碎,在 30~70 ℃ 的温度条件下,将破碎的生物质添加到铬酸盐溶液中浸泡 2~36 小时,得到生物质铬酸钾混合物;其中,生物质与铬酸盐溶液的质量体积比为 1 : 2~8 ;
    (3) 将步骤 (2) 得到的生物质铬酸盐混合物转移至反应釜中,在 120~220 ℃ 温度条件下陈化 2~8 小时,得到铬阻控吸附剂,即为离子阻控吸附剂。
  2. 根据权利要求 1 所述的制备方法,其特征在于,所述的生物质为海带、秸秆、木屑、树叶、果皮中的一种或两种以上混合。
  3. 一种权利要求 1 或 2 所述的制备方法得到的离子阻控吸附剂的应用方法,其特征在于,步骤如下:
    (1) 对含铬固形物或含铬溶液进行酸溶,并调节 pH 为 0.5~4.5 ,过滤不溶物,得到铬液 1 ;对过滤得到的不溶固渣多次酸洗至铬含量符合国家环保标准,在上述过程中所用的酸液重复使用;
    (2) 首先,调节步骤 (1) 得到的铬液 1 的 pH 调至 0.5~6.0 ,加入还原剂,再调节 pH 至 1.0~5.0 ,得到分离铬铁合格液;然后,向分离铬铁合格液中加入氧化剂,得到三价铁、三价铬和三价铝的混合溶液;最后,对混合溶液进行水热反应,反应伴随着不断搅拌,反应结束后过滤得到滤液与含 Fe 沉渣,调节滤液 pH 为 0.5~3.5 ,得到沉铬储备液,即为铬液 2 ;水热条件为在 50~150 ℃ 温度和 0.5 MPa~2.5 MPa 压力条件下,反应 0.5~10 小时;
    (3) 将离子阻控吸附剂加入到步骤 (2) 得到的铬液 2 中或将铬液 2 经过装有离子阻控吸附剂的固定床,离子阻控吸附剂与铬液 2 按照质量体积比为 1:150~500 震荡或搅拌 5-24 小时,得到沉铬合格液 3 ;
    (4) 高温水热:将沉铬合格液 3 与水化剂置于密闭反应釜中水热反应,加温至 150 ℃ ~400 ℃ ,压力在 0.5 MPa~4.5 MPa ,保温 1~5 小时,对反应后产物过滤、用酸性液体洗涤、干燥,得到绿色滤饼,即为高纯铬化合物,经 500~1200 ℃ 焙烧后转化为纳米氧化铬固体。
  4. 根据权利要求 3 所述的应用方法,其特征在于,所述的还原剂为甲醇、乙醇、秸秆中的一种或两种以上混合。
  5. 根据权利要求 3 所述的应用方法,其特征在于,所述的氧化剂选用氧气、空气、过氧化氢、臭氧或硫酸自由基。
  6. 根据权利要求 4 所述的应用方法,其特征在于,所述的氧化剂选用氧气、空气、过氧化氢、臭氧或硫酸自由基。
  7. 根据权利要求 3 所述的应用方法,其特征在于,所述的铬酸盐溶液为铬酸钾或铬酸钠。
  8. 根据权利要求 4 、 5 或 6 所述的应用方法,其特征在于,所述的铬酸盐溶液为铬酸钾或铬酸钠。
  9. 根据权利要求 3 所述的应用方法,其特征在于,所述的水化剂选用草酸、纤维素、甲醇、甲醛、甲酸、乙醇或葡萄糖。
  10. 根据权利要求 8 所述的应用方法,其特征在于,所述的水化剂选用草酸、纤维素、甲醇、甲醛、甲酸、乙醇或葡萄糖。
PCT/CN2017/075455 2016-03-25 2017-03-02 一种离子阻控吸附剂制备与应用方法 WO2017162013A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/776,985 US11071967B2 (en) 2016-03-25 2017-03-02 Method of preparation and application of ion-keeper adsorbent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2016101795128 2016-03-25
CN201610179512.8A CN105648224B (zh) 2016-03-25 2016-03-25 一种铬提取和有害废物治理回收并制备铬化合物的方法
CN2016110207820 2016-11-14
CN201611020782.0A CN106693914B (zh) 2016-11-14 2016-11-14 一种生物质水热制备铬阻控吸附剂的方法与应用

Publications (1)

Publication Number Publication Date
WO2017162013A1 true WO2017162013A1 (zh) 2017-09-28

Family

ID=59899360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075455 WO2017162013A1 (zh) 2016-03-25 2017-03-02 一种离子阻控吸附剂制备与应用方法

Country Status (2)

Country Link
US (1) US11071967B2 (zh)
WO (1) WO2017162013A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11071967B2 (en) * 2016-03-25 2021-07-27 Dalian University Of Technology Method of preparation and application of ion-keeper adsorbent
CN111910076B (zh) * 2019-05-09 2022-04-05 湖北振华化学股份有限公司 一种从三价铬化合物中去除铁杂质的方法
CN110252262A (zh) * 2019-07-01 2019-09-20 河南城建学院 一种磁性玉米芯多级孔碳微球表面印迹材料及其制备方法和应用
CN114480883B (zh) * 2021-12-16 2023-11-21 成都先进金属材料产业技术研究院股份有限公司 一种镍离子协同去除钒溶液中硅和铬以制备高纯五氧化二钒的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188230A (ja) * 2009-02-16 2010-09-02 Nippon Sheet Glass Co Ltd バイオマス原料の処理方法
JP2012170856A (ja) * 2011-02-18 2012-09-10 Central Research Institute Of Electric Power Industry 海水中金属の捕集材及び海水中金属の捕集方法
CN103395912A (zh) * 2013-08-09 2013-11-20 中国科学院南京土壤研究所 去除酸性废水中铬的方法
CN103566887A (zh) * 2013-11-25 2014-02-12 桂林理工大学 能去除废水中砷的山核桃壳生物质遗态材料的制备方法
CN104587954A (zh) * 2014-12-25 2015-05-06 东莞市粤威环保科技有限公司 一种活性吸附剂的制备方法及其制备的活性吸附剂的应用
CN104785212A (zh) * 2014-01-21 2015-07-22 中国科学院过程工程研究所 一种生物质吸附剂、制备方法及其用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025915B1 (zh) * 1971-02-16 1975-08-27
US20040124151A1 (en) * 2000-12-12 2004-07-01 Maxim, Llc, A Limited Liability Corporation Fibrous protein adsorption of heavy metals
CA2599660A1 (en) * 2005-03-04 2006-09-14 Cornell Research Foundation, Inc. Remediation and reclamation of heavy metals from aqueous liquid
US11071967B2 (en) * 2016-03-25 2021-07-27 Dalian University Of Technology Method of preparation and application of ion-keeper adsorbent
WO2018144807A2 (en) * 2017-02-02 2018-08-09 Massachusetts Institute Of Technology Engineered yeast as a method for bioremediation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188230A (ja) * 2009-02-16 2010-09-02 Nippon Sheet Glass Co Ltd バイオマス原料の処理方法
JP2012170856A (ja) * 2011-02-18 2012-09-10 Central Research Institute Of Electric Power Industry 海水中金属の捕集材及び海水中金属の捕集方法
CN103395912A (zh) * 2013-08-09 2013-11-20 中国科学院南京土壤研究所 去除酸性废水中铬的方法
CN103566887A (zh) * 2013-11-25 2014-02-12 桂林理工大学 能去除废水中砷的山核桃壳生物质遗态材料的制备方法
CN104785212A (zh) * 2014-01-21 2015-07-22 中国科学院过程工程研究所 一种生物质吸附剂、制备方法及其用途
CN104587954A (zh) * 2014-12-25 2015-05-06 东莞市粤威环保科技有限公司 一种活性吸附剂的制备方法及其制备的活性吸附剂的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU YING ET AL.: "A Review on Adsorbents from Plants Waste of Chromium Removal from sewage and wastewater", SAFETY AND ENVIRONMENTAL ENGINEERING, vol. 23, no. 1, 31 January 2016 (2016-01-31) *

Also Published As

Publication number Publication date
US11071967B2 (en) 2021-07-27
US20180339285A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017162013A1 (zh) 一种离子阻控吸附剂制备与应用方法
CN106987721B (zh) 一种含重金属污泥的无废利用方法
CN108584901B (zh) 一种从多金属危险废物中回收陶瓷级磷酸铁的方法
WO2019148901A1 (zh) 一种氯化焙烧联合水热矿化处理铬渣的方法
WO2018000730A1 (zh) 一种含六价铬废渣的资源循环再利用的处理方法
CN105648224A (zh) 一种铬提取和有害废物治理回收并制备铬化合物的方法
CN110306065A (zh) 一种钒渣制备偏钒酸铵的方法
CN103952567A (zh) 利用多段酸浸取从含钛高炉渣回收钛、硅、铝、钙和镁的方法
CN1284259C (zh) 利用废干电池制备锰锌铁氧体颗粒料和混合碳酸盐的方法
CN109809494B (zh) 一种稳定化处理砷碱渣制备臭葱石的固砷方法
CN109680155B (zh) 一种含镍铬不锈钢尘泥无害化处置及资源化利用的方法
CN113862464B (zh) 一种黑铜泥中铜及稀散金属回收的方法
CN112209446B (zh) 回收利用含Cr碳化钨废料的方法及其应用
CN117758080A (zh) 一种钛白废酸和碱沉废渣协同提钪的方法
CN108950181A (zh) 一种氧化铍的制备工艺
CN112158932A (zh) 一种磁性零价铁聚合氯化铝复合絮凝剂及其制备方法和应用
CN113354182B (zh) 一种含铬废液中铬矿化调控及净化分离的方法
CN107381705B (zh) 一种相变调控分离回收水中多种阳离子重金属的方法
CN107473319B (zh) 一种相变调控回收水中阳离子重金属的方法
CN113060817B (zh) 一种矿物改性材料处理电镀含铬废水的方法
CN107233884A (zh) 一种用于催化三价铁水解沉淀的铁磁性催化剂及其制备方法和应用
CN113023823A (zh) 一种用于净化含砷重金属溶液的复合材料的制备方法
CN112441614B (zh) 一种从酸性溶液中分离回收二氧化钛的方法
CN108425014A (zh) 一种从废钯-氧化铝催化剂中提取高纯金属钯的方法
CN117960254B (zh) 一种糠醛加氢反应铜硅系废催化剂的回收再生工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15776985

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769290

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769290

Country of ref document: EP

Kind code of ref document: A1