WO2024071143A1 - 光電変換素子、撮像素子、光センサ、化合物、化合物の製造方法 - Google Patents

光電変換素子、撮像素子、光センサ、化合物、化合物の製造方法 Download PDF

Info

Publication number
WO2024071143A1
WO2024071143A1 PCT/JP2023/035018 JP2023035018W WO2024071143A1 WO 2024071143 A1 WO2024071143 A1 WO 2024071143A1 JP 2023035018 W JP2023035018 W JP 2023035018W WO 2024071143 A1 WO2024071143 A1 WO 2024071143A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
aliphatic hydrocarbon
formula
carbon atoms
Prior art date
Application number
PCT/JP2023/035018
Other languages
English (en)
French (fr)
Inventor
優子 鈴木
陽介 山本
寛記 杉浦
栄喜 国吉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024071143A1 publication Critical patent/WO2024071143A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/10Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D421/00Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D421/14Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present invention relates to a photoelectric conversion element, an imaging element, an optical sensor, a compound, and a method for manufacturing the compound.
  • Non-Patent Document 1 discloses an ADA (acceptor-donor-acceptor) type dye that can be used as a p-type or n-type semiconductor.
  • an object of the present invention is to provide a photoelectric conversion element that has excellent quantum efficiency when receiving blue light.
  • Another object of the present invention is to provide an imaging element, an optical sensor, a compound, and a method for producing the compound, which are related to the photoelectric conversion element.
  • the substituent selected from the substituent group S described later represents a linear aliphatic hydrocarbon group having 1 to 2 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aliphatic hydrocarbon group having 1 carbon atom and a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aromatic ring group which may have a substituent selected from the substituent group R Ar1 described later, a group represented by the formula (S-3) described later, or a group represented by the formula (S-4) described later.
  • R N and R C1 to R C10 are respectively defined as R N and R C1 to R C10 in the above formula (1).
  • R N and R C1 to R C4 are respectively defined as R N and R C1 to R C4 in the above formula (1).
  • R 3 N has the same meaning as R 3 N in formula (1) above.
  • the photoelectric conversion film further contains an n-type organic semiconductor, The photoelectric conversion element according to any one of [1] to [7], wherein the photoelectric conversion film has a bulk heterostructure formed by mixing the compound represented by formula (1) and the n-type organic semiconductor.
  • R N and R C1 to R C10 are respectively defined as R N and R C1 to R C10 in the above formula (1).
  • X represents >NR N , >CR C1 R C2 , or >C ⁇ CR C3 R C4 .
  • R N and R C1 to R C4 are respectively defined as R N and R C1 to R C4 in the above formula (1).
  • X represents >NR 3 N.
  • R 3 N has the same meaning as R 3 N in formula (1) above.
  • a method for producing a compound represented by formula (2b) described later comprising a step of reacting a compound represented by formula (2a) described later with a compound represented by formula (X) described later.
  • R Sn , R B1 and R B2 each independently represent a substituent, and multiple R Sn , R B1 and R B2 may be the same or different.
  • R B1 and R B2 may be bonded to each other to form a ring structure.
  • M + represents a monovalent metal cation.
  • * represents a bonding position.
  • the present invention it is possible to provide a photoelectric conversion element that has excellent quantum efficiency when receiving blue light. Furthermore, according to the present invention, it is possible to provide an imaging element, an optical sensor, a compound, and a method for producing the compound, which relate to the above-mentioned photoelectric conversion element.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a photoelectric conversion element.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of a photoelectric conversion element.
  • a hydrogen atom may be a protium atom (a normal hydrogen atom) or a deuterium atom (eg, a deuterium atom, etc.).
  • substituent W in this specification will be described.
  • substituent W include a halogen atom (e.g., a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), an alkyl group (including a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group), an alkenyl group (including a cycloalkenyl group and a bicycloalkenyl group), an alkynyl group, an aryl group, a heteroaryl group (a heterocyclic group), a cyano group, a nitro group, an alkoxy group, an aryloxy group, a silyl group, a silyloxy group, a heterocyclic oxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, an aryloxycarbonyloxy group, a halogen atom (e
  • each of the above groups may further have a substituent (e.g., one or more of the above groups) if possible.
  • a substituent e.g., one or more of the above groups
  • an alkyl group which may have a substituent is also included as one form of the substituent W.
  • the substituent W has a carbon atom
  • the number of carbon atoms contained in the substituent W is, for example, 1 to 20.
  • the number of atoms other than hydrogen atoms contained in the substituent W is, for example, 1 to 30.
  • the specific compound described later does not have a carboxy group, a salt of a carboxy group, a salt of a phosphate group, a sulfonic acid group, a salt of a sulfonic acid group, a hydroxy group, a thiol group, an acylamino group, a carbamoyl group, a ureido group, a boronic acid group (-B(OH) 2 ), and/or a primary amino group as a substituent.
  • halogen atoms include fluorine atoms, chlorine atoms, bromine atoms, and iodine atoms.
  • the aliphatic hydrocarbon group may be any of linear, branched, and cyclic.
  • the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • the alkyl group may be linear, branched, or cyclic.
  • alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a t-butyl group, an n-hexyl group, and a cyclopentyl group.
  • the alkyl group may be any one of a cycloalkyl group, a bicycloalkyl group, and a tricycloalkyl group, and may have these ring structures as partial structures.
  • examples of the substituent which the alkyl group may have examples of the substituent which the alkyl group may have include the groups exemplified as the substituent W.
  • an aryl group preferably having 6 to 18 carbon atoms, more preferably having 6 carbon atoms
  • a heteroaryl group preferably having 5 to 18 carbon atoms, more preferably having 5 to 6 carbon atoms
  • a halogen atom preferably a fluorine atom or a chlorine atom
  • the alkyl group moiety in the alkoxy group is preferably the above-mentioned alkyl group
  • the alkyl group moiety in the alkylthio group is preferably the above-mentioned alkyl group.
  • examples of the substituent that the alkoxy group may have include the same as the substituent in the alkyl group which may have a substituent.
  • examples of the substituent that the alkylthio group may have include the same as the substituent in the alkyl group which may have a substituent.
  • the alkenyl group may be any of linear, branched, and cyclic.
  • the number of carbon atoms in the alkenyl group is preferably 2 to 20.
  • examples of the substituent which the alkenyl group may have include the same as those of the substituent in the alkyl group which may have a substituent.
  • the alkynyl group may be any of linear, branched, and cyclic.
  • the number of carbon atoms in the alkynyl group is preferably 2 to 20.
  • an aromatic ring or an aromatic ring constituting an aromatic ring group may be either a monocyclic ring or a polycyclic ring (e.g., 2 to 6 rings).
  • a monocyclic aromatic ring is an aromatic ring having only one aromatic ring structure as a ring structure.
  • a polycyclic (e.g., 2 to 6 rings) aromatic ring is an aromatic ring having a plurality of (e.g., 2 to 6 rings) aromatic ring structures condensed as ring structures.
  • the aromatic ring preferably has 4 to 15 member atoms.
  • the aromatic ring may be an aromatic hydrocarbon ring or an aromatic heterocycle.
  • the number of heteroatoms contained as ring member atoms is, for example, 1 to 10.
  • the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom.
  • the aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
  • aromatic heterocycle examples include a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a triazine ring (for example, a 1,2,3-triazine ring, a 1,2,4-triazine ring, and a 1,3,5-triazine ring), a tetrazine ring (for example, a 1,2,4,5-tetrazine ring), a quinoxaline ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a benzopyrrole ring, a benzofuran ring, a benzothiophene ring, a benzimidazole ring, a benzoxazole ring, a benzothiazole ring, a naphthopyr
  • the type of the substituent which the aromatic ring may have may be, for example, the groups exemplified as the substituent W.
  • the number of the substituents may be 1 or more (for example, 1 to 4, etc.).
  • aromatic ring group includes, for example, groups obtained by removing one or more (for example, 1 to 5, etc.) hydrogen atoms from the above-mentioned aromatic ring.
  • aryl group includes, for example, a group obtained by removing one hydrogen atom from a ring that corresponds to an aromatic hydrocarbon ring among the above aromatic rings.
  • heteroaryl group includes, for example, a group in which one hydrogen atom has been removed from a ring corresponding to an aromatic heterocycle among the above aromatic rings.
  • arylene group includes, for example, a group formed by removing two hydrogen atoms from a ring corresponding to an aromatic hydrocarbon ring among the above aromatic rings.
  • heteroarylene group includes, for example, a group formed by removing two hydrogen atoms from a ring corresponding to an aromatic heterocycle among the above aromatic rings.
  • the types of the substituents which these groups may have include, for example, the groups exemplified for the substituent W.
  • the number of the substituents may be 1 or more (for example, 1 to 4, etc.).
  • the aliphatic heterocyclic group preferably has 5 to 20 ring members, more preferably 5 to 12 ring members, and even more preferably 6 to 8 ring members.
  • the heteroatom contained in the aliphatic heterocyclic group include a sulfur atom, an oxygen atom, a nitrogen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom and a boron atom, with a sulfur atom, an oxygen atom or a nitrogen atom being preferred.
  • Examples of the aliphatic heterocycle constituting the aliphatic heterocyclic group include a pyrrolidine ring, an oxolane ring, a thiolane ring, a piperidine ring, a tetrahydrofuran ring, a tetrahydropyran ring, a thiane ring, a piperazine ring, a morpholine ring, a quinuclidine ring, a pyrrolidine ring, an azetidine ring, an oxetane ring, an aziridine ring, a dioxane ring, a pentamethylene sulfide ring, and ⁇ -butyrolactone.
  • the bonding direction of a divalent group (such as -CO-O-) described in this specification is not limited unless otherwise specified.
  • a divalent group such as -CO-O-
  • the compound when Y is -CO-O- in a compound represented by the formula "X-Y-Z", the compound may be either "X-O-CO-Z" or "X-CO-O-Z".
  • the term "optionally having an etheric oxygen atom” means that the aliphatic hydrocarbon group may have a divalent linking group represented by -O- in the aliphatic hydrocarbon group (between carbon atoms) or at an end.
  • the general formula or structural formula representing the compound may be described in only one of the cis and trans forms for convenience. Even in such cases, unless otherwise specified, the form of the compound is not limited to either the cis or trans form, and the compound may be in either the cis or trans form.
  • the photoelectric conversion element of the present invention is a photoelectric conversion element having a conductive film, a photoelectric conversion film, and a transparent conductive film in this order, and the photoelectric conversion film contains a compound represented by formula (1) described later (hereinafter, also referred to as a "specific compound").
  • the mechanism by which the photoelectric conversion element of the present invention having the above-mentioned configuration can solve the problems of the present invention is not necessarily clear, but the present inventors speculate as follows. It should be noted that the mechanism by which the effects are obtained is not limited by the following speculation, and in other words, even if the effects are obtained by a mechanism other than the following, it is included in the scope of the present invention.
  • the compound disclosed in Literature 1 is an ADA dye having a structure in which a branched alkyl group is substituted on a fused ring structure such as fluorene as a donor site.
  • a fused ring structure such as fluorene as a donor site.
  • the dyes are likely to aggregate, which leads to a deterioration in the quantum efficiency of the photoelectric conversion element. Therefore, in Literature 1, the aggregation is suppressed by introducing a substituent such as an alkyl group.
  • the substituent in Reference 1 the substituent is too large to efficiently transfer electrons and holes, and the quantum efficiency is still insufficient.
  • the size of the substituent introduced into the fused ring structure of carbazole, fluorene, or the like is optimized, so that the above-mentioned aggregation of the dyes does not occur, and electrons and holes can be efficiently exchanged.
  • the quantum efficiency of the photoelectric conversion element is improved compared to that of Literature 1.
  • a better quantum efficiency when the photoelectric conversion element receives blue light is also referred to as a better effect of the present invention.
  • the configuration of the photoelectric conversion element of the present invention will be described in detail below.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of a photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10a shown in Figure 1 has a configuration in which a conductive film (hereinafter also referred to as the "lower electrode") 11 functioning as a lower electrode, an electron blocking film 16A, a photoelectric conversion film 12 containing a specific compound, and a transparent conductive film (hereinafter also referred to as the "upper electrode”) 15 functioning as an upper electrode are stacked in this order.
  • Fig. 2 shows a configuration example of another photoelectric conversion element.
  • FIG. 2 has a configuration in which an electron blocking film 16A, a photoelectric conversion film 12, a hole blocking film 16B, and an upper electrode 15 are laminated in this order on a lower electrode 11.
  • the laminated order of the electron blocking film 16A, the photoelectric conversion film 12, and the hole blocking film 16B in Figs. 1 and 2 may be changed as appropriate depending on the application and characteristics.
  • the photoelectric conversion element 10 a it is preferable that light is incident on the photoelectric conversion film 12 through the upper electrode 15 . Furthermore, when the photoelectric conversion element 10a (or 10b) is used, a voltage can be applied. In this case, the lower electrode 11 and the upper electrode 15 form a pair of electrodes, and it is preferable to apply a voltage of 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 7 V/cm between the pair of electrodes. In terms of performance and power consumption, the applied voltage is more preferably 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 7 V/cm, and even more preferably 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 6 V/cm.
  • the voltage is preferably applied so that the electron blocking film 16A side becomes the cathode and the photoelectric conversion film 12 side becomes the anode.
  • the photoelectric conversion element 10a (or 10b) is used as an optical sensor or incorporated in an imaging element, a voltage can be applied in a similar manner.
  • the photoelectric conversion element 10a (or 10b) can be suitably used as an imaging element. The configuration of each layer constituting the photoelectric conversion element of the present invention will be described in detail below.
  • the photoelectric conversion element of the present invention has a photoelectric conversion film.
  • the photoelectric conversion film contains a compound (specific compound) represented by formula (1).
  • X represents >NR N , >CR C1 R C2 , >C ⁇ CR C3 R C4 , >SiR C5 R C6 , >GeR C7 R C8 , —OC(R C9 )(R C10 )—, a sulfur atom, an oxygen atom, or a selenium atom.
  • R 1 N represents a substituent selected from the substituent group S described below.
  • R C1 to R C10 each independently represent a hydrogen atom or a substituent selected from the substituent group S described below.
  • R C1 and R C2 represents a substituent selected from the substituent group S
  • at least one of R C3 and R C4 represents a substituent selected from the substituent group S
  • at least one of R C5 and R C6 represents a substituent selected from the substituent group S
  • at least one of R C7 and R C8 represents a substituent selected from the substituent group S
  • at least one of R C9 and R C10 represents a substituent selected from the substituent group S.
  • R and R , R and R , R and R , R and R , R and R , R and R may each independently bond directly or via a linking group to form a ring.
  • R and R may both be benzene ring groups and bond directly (via a single bond) to form a fluorene ring.
  • X preferably represents >NR N , >CR C1 R C2 , >C ⁇ CR C3 R C4 , >SiR C5 R C6 , >GeR C7 R C8 , or --OC(R C9 )(R C10 )-, more preferably represents >NR N , >CR C1 R C2 , or >C ⁇ CR C3 R C4 , even more preferably represents >NR N or >CR C1 R C2 , and most preferably represents >NR N. It is also preferred that both R C1 and R C2 represent a substituent selected from the substituent group S.
  • both R C3 and R C4 represent a substituent selected from Substituent Group S.
  • both R C5 and R C6 represent a substituent selected from Substituent Group S.
  • both R C7 and R C8 represent a substituent selected from the substituent group S.
  • both R C9 and R C10 represent a substituent selected from Substituent Group S.
  • Substituent group S is a group consisting of the following substituents: Substituent group S: a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms (hereinafter also referred to as “substituent S A "), a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms which may have a substituent (hereinafter also referred to as “substituent S B "), a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms and a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms (hereinafter also referred to as “substituent S AB “), a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms and an aromatic ring group which may have a substituent (hereinafter also referred to as "substituent S AAr "), a branched aliphatic hydrocarbon group having 3 carbon atoms and a cyclic aliphatic
  • the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms which may have a substituent, the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms and having a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms and having an aromatic ring group which may have a substituent, the branched aliphatic hydrocarbon group having 3 carbon atoms and having a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, and the branched aliphatic hydrocarbon group having 3 carbon atoms and having an aromatic ring group which may have a substituent may have an ethereal oxygen atom or may be substituted with a halogen atom.
  • the number of carbon atoms in the substituent S A is not particularly limited as long as it is 1 to 3, but 1 or 2 is preferred.
  • the substituent S A include a linear alkyl group having 1 to 3 carbon atoms, a linear alkenyl group having 2 or 3 carbon atoms, and a linear alkynyl group having 2 or 3 carbon atoms.
  • Examples of the linear alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and an n-propyl group, and among these, a methyl group or an ethyl group is preferable.
  • the linear alkenyl group having 2 or 3 carbon atoms include a vinyl group, an allyl group, and an isoallyl group.
  • the linear alkynyl group having 2 or 3 carbon atoms include an ethynyl group, a 1-propynyl group, and a propargyl group.
  • the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S B may have either a monocyclic or polycyclic structure.
  • the number of carbon atoms in the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S B is not particularly limited as long as it is 3 to 8, but 3 to 6 carbon atoms is preferable, and 3 is more preferable.
  • Examples of the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S B include a cyclic alkyl group having 3 to 8 carbon atoms and a cyclic alkenyl group having 3 to 8 carbon atoms.
  • Examples of the cyclic alkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclohexyl group, a cycloheptyl group, a 4-tetrahydropyranyl group, and a group formed by removing one hydrogen atom from bicyclo[1,1,1]pentane.
  • Examples of cyclic alkenyl groups having 3 to 8 carbon atoms include groups obtained by removing one hydrogen atom from a cycloalkene having 3 to 8 carbon atoms.
  • cycloalkenes examples include cyclobutene, cyclopentene, cyclohexene, 1,3-cyclohexadiene, and 1,4-cyclohexadiene.
  • the number of substituents that the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S B may have is not particularly limited, but is preferably 1 to 6, more preferably 1 to 4, and even more preferably 1 or 2.
  • the substituent that the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S B may have, the groups exemplified in the substituent group R Ar1 described later are preferable, and a linear alkyl group having 1 to 3 carbon atoms, a branched alkyl group having 3 to 5 carbon atoms, or a halogen atom are more preferable.
  • the substituent S AB is a straight-chain aliphatic hydrocarbon group having 1 to 3 carbon atoms which has a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, and corresponds to a group in which one or more hydrogen atoms in the above-mentioned substituent S A (straight-chain aliphatic hydrocarbon group having 1 to 3 carbon atoms) are substituted with a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms.
  • the number of cyclic aliphatic hydrocarbon groups having 3 to 8 carbon atoms is not particularly limited, but 1 to 3 is preferred, and 1 or 2 is more preferred.
  • linear aliphatic hydrocarbon group having 1 to 3 carbon atoms in the substituent S AB are the same as the specific and preferred embodiments of the substituent S A described above.
  • specific and preferred embodiments of the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S AB are the same as the specific and preferred embodiments of the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S B.
  • the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms in the substituent S AB is preferably a linear alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group.
  • the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S AB is preferably a cyclic alkyl group having 3 to 8 carbon atoms, more preferably a cyclic alkyl group having 3 to 6 carbon atoms.
  • substituent S AB examples include a methyl group having a cyclic alkyl group having 3 to 8 carbon atoms (hereinafter also referred to as “substituent S AB1 "; in other words, a group in which at least one hydrogen atom of a methyl group is substituted with a cyclic alkyl group having 3 to 8 carbon atoms), an ethyl group having a cyclic alkyl group having 3 to 8 carbon atoms (hereinafter also referred to as “substituent S AB2 "; in other words, a group in which a hydrogen atom of an ethyl group is substituted with a cyclic alkyl group having 3 to 8 carbon atoms), and an n-propyl group having a cyclic alkyl group having 3 to 8 carbon atoms (hereinafter also referred to as “substituent S AB3 "; in other words, a group in which a hydrogen atom of an n-propy
  • Examples of the cyclic alkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclohexyl group, a cycloheptyl group, a 4-tetrahydropyranyl group, and a group obtained by removing one hydrogen atom from bicyclo[1,1,1]pentane. Of these, a cyclopropyl group is preferable.
  • the number of cyclic alkyl groups having 3 to 8 carbon atoms is not particularly limited, but is preferably 1 or 2.
  • a group in which one or two hydrogen atoms of a methyl group are substituted with a cyclic alkyl group having 3 to 6 carbon atoms is preferable, and a group in which one or two hydrogen atoms of a methyl group are substituted with a cyclic alkyl group having 3 carbon atoms (cyclopropyl group) is more preferable.
  • the number of cyclic alkyl groups having 3 to 8 carbon atoms is not particularly limited, but is preferably 1 or 2.
  • the number of cyclic alkyl groups having 3 to 8 carbon atoms is not particularly limited, but is preferably 1 or 2.
  • the substituent S AAr is a straight-chain aliphatic hydrocarbon group having 1 to 3 carbon atoms and having an aromatic ring group which may have a substituent, and corresponds to a group in which one or more hydrogen atoms in the above-mentioned substituent S A (straight-chain aliphatic hydrocarbon group having 1 to 3 carbon atoms) are substituted with a substituent S Ar (an aromatic ring group which may have a substituent) which will be described later.
  • the number of aromatic ring groups which may have a substituent is not particularly limited, but is preferably 1 to 3, and more preferably 1 or 2.
  • linear aliphatic hydrocarbon group having 1 to 3 carbon atoms and the aromatic ring group which may have a substituent in the substituent S AAr are the same as those of the above-mentioned substituent S A and the below-mentioned substituent S Ar .
  • the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms in the substituent S AAr is preferably a linear alkyl group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group.
  • aromatic ring group which may have a substituent in the substituent S AAr is preferably an aryl group, more preferably a phenyl group.
  • the substituent S DB is a branched aliphatic hydrocarbon group having 3 carbon atoms which has a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, and corresponds to a group in which one or more hydrogen atoms in the branched aliphatic hydrocarbon group having 3 carbon atoms (hereinafter also referred to as "substituent S D ”) are substituted with a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms.
  • the number of cyclic aliphatic hydrocarbon groups having 3 to 8 carbon atoms is not particularly limited, but 1 to 3 is preferable, and 1 or 2 is more preferable.
  • Examples of the branched aliphatic hydrocarbon group having 3 carbon atoms in the substituent S DB include an isopropyl group and an isopropenyl group. Of these, an isopropyl group is preferable.
  • Specific and preferred embodiments of the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms in the substituent S DB are as described above.
  • the substituent S DAr is a branched aliphatic hydrocarbon group having 3 carbon atoms and having an aromatic ring group which may have a substituent, and corresponds to a group in which one or more hydrogen atoms in the above-mentioned substituent S D (branched aliphatic hydrocarbon group having 3 carbon atoms) are substituted with a substituent S Ar (an aromatic ring group which may have a substituent) described later.
  • the number of aromatic ring groups which may have a substituent is not particularly limited, but is preferably 1 to 3, and more preferably 1 or 2.
  • Specific and preferred embodiments of the substituent S D in the substituent S DAr are as described above.
  • Specific and preferred embodiments of the substituent S 1 Ar in the substituent S 1 DAr are as described below.
  • the aromatic ring constituting the aromatic ring group in the substituent S Ar may be either a monocyclic or polycyclic ring, and may be either an aromatic hydrocarbon ring or an aromatic heterocyclic ring. Specific embodiments of the monocyclic aromatic ring, polycyclic aromatic ring, aromatic hydrocarbon ring, and aromatic heterocyclic ring are as described above.
  • the aromatic ring constituting the aromatic ring group in the substituent S Ar preferably has 4 to 15 member atoms, more preferably 4 to 10 member atoms, and even more preferably 4 to 6 member atoms.
  • the aromatic hydrocarbon ring constituting the aromatic ring group in the substituent S Ar is preferably a benzene ring, a naphthalene ring, or an anthracene ring.
  • the aromatic heterocycle constituting the aromatic ring group in the substituent S Ar is preferably a pyridine ring, a thiophene ring, a benzofuran ring (eg, a 2,3-benzofuran ring, etc.), or a benzothiophene ring (eg, a benzo[b]thiophene ring, etc.).
  • the number of substituents which the aromatic ring group in Substituent S Ar may have is not particularly limited, but is preferably 1 to 6, more preferably 1 to 4, and even more preferably 1 or 2.
  • Substituent S Examples of the substituent that the aromatic ring group in Ar may have include the groups exemplified as the substituent W above.
  • the substituent that the aromatic ring group in the substituent S Ar may have, the groups exemplified in the substituent group R Ar1 described later are preferable, and a linear alkyl group having 1 to 3 carbon atoms, a branched alkyl group having 3 to 5 carbon atoms, or a halogen atom is more preferable.
  • Substituent group R Ar1 The substituents selected from the above substituent group R Ar1 are as follows.
  • Substituent group R Ar1 linear aliphatic hydrocarbon groups having 1 to 3 carbon atoms, branched aliphatic hydrocarbon groups having 3 to 5 carbon atoms, cyclic aliphatic hydrocarbon groups having 3 to 8 carbon atoms, aromatic ring groups, halogen atoms, and *-Si(R Si ) 3 .
  • R 3 Si represents a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, or an aromatic ring group.
  • the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, the branched aliphatic hydrocarbon group having 3 to 5 carbon atoms, and the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms may have an ethereal oxygen atom or be substituted with a halogen atom.
  • substituent group R Ar1 specific and preferred embodiments of the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms and the cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms are the same as the specific and preferred embodiments of the substituent S A and the substituent S B.
  • examples of the branched aliphatic hydrocarbon group having 3 to 5 carbon atoms include a branched alkyl group having 3 to 5 carbon atoms (such as an isopropyl group), a branched alkenyl group having 3 to 5 carbon atoms, and a branched alkynyl group having 3 to 5 carbon atoms.
  • the number of carbon atoms in the branched aliphatic hydrocarbon group having 3 to 5 carbon atoms is not particularly limited as long as it is 3 to 5, but is preferably 3 to 4.
  • Specific and preferred embodiments of the aromatic ring group in the substituent group R Ar1 are the same as those of the aromatic ring group in the substituent S Ar , and among them, an aryl group is preferred, and a phenyl group is more preferred.
  • L S1 represents a single bond or a linear alkylene group having 1 to 3 carbon atoms.
  • R S1 independently represents a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 4 carbon atoms, or a cyclic alkyl group having 3 carbon atoms.
  • Multiple R S1 may be the same or different, provided that two or more of the three R S1 are other than a hydrogen atom.
  • the alkylene group, the linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, the branched aliphatic hydrocarbon group having 3 to 4 carbon atoms, and the cyclic alkyl group having 3 carbon atoms may have an ethereal oxygen atom or be substituted with a halogen atom.
  • the group represented by formula (S-1) preferably has 3 to 9 carbon atoms, and more preferably 3 to 7 carbon atoms.
  • the number of carbon atoms in the group represented by the above formula (S-1) means the total number of all carbon atoms contained in the group represented by the formula (S-1).
  • L S1 is preferably a single bond or a methylene group, more preferably a single bond.
  • the number of R S1 represented by a group other than a hydrogen atom is not particularly limited as long as it is two or more. It is preferable that one of R S1 is a hydrogen atom and the remaining two are groups other than a hydrogen atom. Of these, R S1 is preferably a methyl group, an isopropyl group, or a t-butyl group, and more preferably a methyl group or an isopropyl group.
  • Q represents an oxygen atom or a sulfur atom
  • Q is preferably an oxygen atom
  • R Ac1 represents an aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent, or an aliphatic heterocyclic group which may have a substituent.
  • the definition of each group represented by R Ac1 is as described above.
  • examples of the substituent that each group represented by R Ac1 may have include the groups exemplified by the above-mentioned substituent W.
  • R Ac1 which may have a substituent
  • a linear, branched or cyclic aliphatic hydrocarbon group which may have a halogen atom is particularly preferred.
  • an aromatic ring group which may have a substituent represented by R Ac1 an aromatic ring group which may have a substituent selected from the above-mentioned group of substituents R Ar1 is particularly preferable.
  • the substituent selected from the above-mentioned substituent group S represents a linear aliphatic hydrocarbon group having 1 to 2 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aliphatic hydrocarbon group having 1 carbon atom and having a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aromatic ring group which may have a substituent selected from the substituent group R Ar1 , a group represented by formula (S-3), or a group represented by formula (S-4).
  • substituent selected from the above-mentioned substituent group R Ar1 is as described above, but the substituent selected from the substituent group R Ar1 is preferably a substituent selected from the substituent group R Ar2 .
  • Substituent group R Ar2 linear aliphatic hydrocarbon groups having 1 to 2 carbon atoms, branched aliphatic hydrocarbon groups having 3 to 4 carbon atoms, cyclic aliphatic hydrocarbon groups having 3 to 6 carbon atoms, halogen atoms, and *-Si(R Si ) 3 .
  • R 3 Si represents a linear aliphatic hydrocarbon group having 1 to 2 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 4 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, or an aromatic ring group.
  • the linear aliphatic hydrocarbon group having 1 to 2 carbon atoms, the branched aliphatic hydrocarbon group having 3 to 4 carbon atoms, and the cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms may have an ethereal oxygen atom or be substituted with a halogen atom.
  • each R S2 independently represents a hydrogen atom, a methyl group, an isopropyl group, or a t-butyl group.
  • Multiple R S2 may be the same or different, provided that the group represented by formula (S-3) has 3 to 9 carbon atoms, and two or more of the three R S2 are other than a hydrogen atom.
  • the group represented by formula (S-3) preferably has 3 to 9 carbon atoms, and more preferably 3 to 7 carbon atoms.
  • the number of carbon atoms in the group represented by the above formula (S-3) means the total number of all carbon atoms contained in the group represented by the formula (S-3).
  • the number of R S2 represented by a group other than a hydrogen atom is not particularly limited as long as it is two or more. It is preferable that one of R S2 is a hydrogen atom and the remaining two are groups other than a hydrogen atom. Of these, R S2 is preferably a methyl group or an isopropyl group.
  • R Ac2 represents a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms which may have a halogen atom, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms which may have a halogen atom, a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms which may have a halogen atom, or an aromatic ring group which may have a substituent selected from the above substituent group R Ar1 .
  • the aliphatic hydrocarbon group is preferably an alkyl group.
  • the aromatic ring group which may have a substituent selected from the above substituent group R Ar1 is preferably an aromatic ring group having 4 to 10 ring atoms which may have a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms, or a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, and more preferably a phenyl group which may have a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms, or a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms.
  • the two R X1 may be bonded to each other to form a ring.
  • R X1 may be the same or different.
  • Z 1 to Z 6 preferably two or less of Z 2 , Z 3 , Z 5 and Z 6
  • R X1 examples include the groups exemplified as the above-mentioned substituent W, and more specifically, halogen atoms and alkyl groups are mentioned.
  • the halogen atom is preferably a fluorine atom or a chlorine atom.
  • the alkyl group is preferably an alkyl group having 1 to 3 carbon atoms, more preferably a linear alkyl group having 1 to 3 carbon atoms, and further preferably a methyl group.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent.
  • substituents represented by R1 and R2 include the groups exemplified as the above-mentioned substituent W. Among them, in terms of the superior effect of the present invention, it is preferable that R1 and R2 are hydrogen atoms.
  • a 1 and A 2 each independently represent a group represented by formula (A-1) above.
  • each Y 1 independently represents a sulfur atom, an oxygen atom, ⁇ NR X2 , or ⁇ CR X3 R X4 .
  • R X2 represents a hydrogen atom or a substituent.
  • R X3 and R X4 independently represent a cyano group, —SO 2 R X5 , —COOR X6 , or —COR X7 .
  • Y1 preferably represents an oxygen atom or a sulfur atom in that the effects of the present invention are more excellent.
  • substituent represented by R 1 X2 include the substituents exemplified as the above-mentioned substituent W.
  • R x5 to R x7 each independently represent an aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent, or an aliphatic heterocyclic group which may have a substituent.
  • the aliphatic hydrocarbon group is as defined above, and among them, an alkyl group is preferable, and a linear alkyl group is more preferable.
  • the aliphatic hydrocarbon group preferably has 1 to 3 carbon atoms.
  • the aromatic ring group is as defined above, and among them, an aryl group is preferable, and a phenyl group is more preferable.
  • the aliphatic heterocyclic group is as defined above.
  • C1 represents a ring containing 2 or more carbon atoms and which may have a substituent.
  • the number of carbon atoms in the ring is preferably 3 to 30, more preferably 3 to 20, and even more preferably 3 to 10.
  • the number of carbon atoms includes the two carbon atoms specified in the formula.
  • the ring may be either aromatic or non-aromatic.
  • the ring may be either a monocyclic or polycyclic ring, and is preferably a 5-membered ring, a 6-membered ring, or a fused ring containing at least one of a 5-membered ring and a 6-membered ring.
  • the number of rings forming the fused ring is preferably 1 to 4, and more preferably 1 to 3.
  • the ring may have a heteroatom, such as a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, or a boron atom, and is preferably a sulfur atom, a nitrogen atom, or an oxygen atom.
  • the number of heteroatoms in the ring is preferably 0 to 10, and more preferably 0 to 5.
  • substituents that the ring may have include the groups exemplified as the substituent W above.
  • a halogen atom, an alkyl group, an aromatic ring group or a silyl group is preferable, and a halogen atom or an alkyl group is more preferable.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably has 1 to 3 carbon atoms.
  • the ring represented by C1 above is preferably a ring used as an acidic nucleus (for example, an acidic nucleus in a merocyanine dye), and examples thereof include the following nuclei.
  • (b) Pyrazolinone nucleus for example, 1-phenyl-2-pyrazolin-5-one, 3-methyl-1-phenyl-2-pyrazolin-5-one, 1-(2-benzothiazolyl)-3-methyl-2-pyrazolin-5-one, and the like.
  • (c) Isoxazolinone nucleus for example, 3-phenyl-2-isoxazolin-5-one, 3-methyl-2-isoxazolin-5-one, and the like.
  • (d) Oxindole nucleus for example, 1-alkyl-2,3-dihydro-2-oxindole, etc.
  • (e) 2,4,6-trioxohexahydropyrimidine nucleus for example, barbituric acid, 2-thiobarbituric acid and derivatives thereof, etc.
  • the derivatives include 1-alkyl compounds such as 1-methyl and 1-ethyl, 1,3-dialkyl compounds such as 1,3-dimethyl, 1,3-diethyl and 1,3-dibutyl, 1,3-diaryl compounds such as 1,3-diphenyl, 1,3-di(p-chlorophenyl) and 1,3-di(p-ethoxycarbonylphenyl), 1-alkyl-1-aryl compounds such as 1-ethyl-3-phenyl, and 1,3-diheteroaryl compounds such as 1,3-di(2-pyridyl).
  • 2-thio-2,4-thiazolidinedione nucleus for example, rhodanine and its derivatives, etc.
  • the derivatives include 3-alkylrhodanines such as 3-methylrhodanine, 3-ethylrhodanine, and 3-allylrhodanine, 3-arylrhodanine such as 3-phenylrhodanine, and 3-heteroarylrhodanine such as 3-(2-pyridyl)rhodanine, etc.
  • 2-thio-2,4-oxazolidinedione nucleus (2-thio-2,4-(3H,5H)-oxazoledione nucleus): for example, 3-ethyl-2-thio-2,4-oxazolidinedione.
  • Thianaphthenone nucleus for example, 3(2H)-thianaphthenone-1,1-dioxide.
  • 2-thio-2,5-thiazolidinedione nucleus for example, 3-ethyl-2-thio-2,5-thiazolidinedione, etc.
  • (j) 2,4-thiazolidinedione nucleus: for example, 2,4-thiazolidinedione, 3-ethyl-2,4-thiazolidinedione, 3-phenyl-2,4-thiazolidinedione, and the like.
  • 2-thio-2,4-imidazolidinedione (2-thiohydantoin) nucleus for example, 2-thio-2,4-imidazolidinedione and 3-ethyl-2-thio-2,4-imidazolidinedione.
  • Imidazolin-5-one nucleus for example, 2-propylmercapto-2-imidazolin-5-one, etc.
  • 3,5-pyrazolidinedione nucleus for example, 1,2-diphenyl-3,5-pyrazolidinedione and 1,2-dimethyl-3,5-pyrazolidinedione.
  • Benzothiophen-3(2H)-one nucleus for example, benzothiophen-3(2H)-one, oxobenzothiophen-3(2H)-one, dioxobenzothiophen-3(2H)-one, and the like.
  • Indanone nucleus for example, 1-indanone, 3-phenyl-1-indanone, 3-methyl-1-indanone, 3,3-diphenyl-1-indanone, 3,3-dimethyl-1-indanone, and the like.
  • Benzofuran-3-(2H)-one nucleus for example, benzofuran-3-(2H)-one, etc.
  • the group represented by the above formula (A-1) is preferably a group represented by formula (A-2) in that the effects of the present invention are more excellent.
  • X1 and X2 each independently represent an oxygen atom or a sulfur atom. It is preferable that both X1 and X2 represent an oxygen atom.
  • C2 represents a ring containing 3 or more carbon atoms. The three carbon atoms included in the above C2 are the three carbon atoms clearly shown in formula (A-2).
  • the number of carbon atoms in the ring is preferably 3 to 30, more preferably 3 to 20, and even more preferably 3 to 10.
  • the number of carbon atoms in the ring is the number including the three carbon atoms specified in the formula.
  • the ring may be either an aromatic ring or a non-aromatic ring.
  • the ring may be either a monocyclic ring or a polycyclic ring, and is preferably a 5-membered ring, a 6-membered ring, or a fused ring containing at least one of a 5-membered ring and a 6-membered ring.
  • the number of rings contained is preferably 2 to 6, and more preferably 2 or 3.
  • the ring may have a heteroatom, such as a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, or a boron atom, and is preferably a sulfur atom, a nitrogen atom, or an oxygen atom.
  • the number of heteroatoms contained in the ring is preferably 0 to 10, and more preferably 0 to 5.
  • Preferred embodiments of the substituent that the above ring may have are the same as the substituent that the above ring C1 may have.
  • the group represented by the above formula (A-2) is preferably a group represented by the formula (C-1) or a group represented by the formula (C-2).
  • Xc1 and Xc2 each independently represent a sulfur atom or an oxygen atom. At least one of Xc1 and Xc2 is preferably an oxygen atom, and it is more preferable that both Xc1 and Xc2 are oxygen atoms.
  • C3 represents an aromatic ring which may have a substituent.
  • the number of carbon atoms in the aromatic ring is preferably 4 to 30, more preferably 5 to 12, and even more preferably 6 to 8.
  • the number of carbon atoms includes the two carbon atoms specified in the formula.
  • the aromatic ring may be either a monocyclic ring or a polycyclic ring.
  • the aromatic ring may be either an aromatic hydrocarbon ring or an aromatic heterocycle, with an aromatic hydrocarbon ring being preferred.
  • Examples of the aromatic ring represented by C3 include the rings exemplified above in the description of the aromatic ring.
  • the aromatic ring represented by C3 is preferably a benzene ring, a naphthalene ring, an anthracene ring, or a pyrene ring, and more preferably a benzene ring.
  • the substituent that the aromatic ring may have include the groups exemplified for the substituent W above.
  • X c3 to X c5 represent a sulfur atom or an oxygen atom. It is preferable that all of X c3 to X c5 are oxygen atoms.
  • Rc1 and Rc2 each independently represent a hydrogen atom or a substituent. Examples of the substituent represented by Rc1 and Rc2 include the groups exemplified by the above-mentioned substituent W. Among them, an alkyl group or a phenyl group is preferable, and an alkyl group is more preferable. The phenyl group may further have a substituent, for example, the groups exemplified as the substituent W above.
  • the molecular weight of the specific compound is preferably from 400 to 1,200, more preferably from 400 to 1,000, and even more preferably from 500 to 800.
  • the molecular weight is within the above range, it is presumed that the sublimation temperature of the specific compound is low, and the quantum efficiency is excellent even when the photoelectric conversion film is formed at high speed.
  • the specific compound has an ionization potential of -5.0 to -6.0 eV in a single film.
  • the maximum absorption wavelength of the specific compound is preferably in the range of 400 to 600 nm, and more preferably in the range of 400 to 500 nm.
  • the maximum absorption wavelength is a value measured in a solution state (solvent: chloroform) by adjusting the absorption spectrum of the specific compound to a concentration such that the absorbance is 0.5 to 1.0.
  • solvent chloroform
  • the specific compound is evaporated and the value measured using the specific compound in a film state is regarded as the maximum absorption wavelength of the specific compound.
  • the specific compounds are particularly useful as materials for photoelectric conversion films used in imaging devices, photosensors, or photovoltaic cells.
  • the specific compounds often function as dyes within the photoelectric conversion films.
  • the specific compounds can also be used as coloring materials, liquid crystal materials, organic semiconductor materials, charge transport materials, medicinal materials, and fluorescent diagnostic materials.
  • a in the specific compounds exemplified above represents one of the following groups.
  • the particular compound may be purified if necessary.
  • Methods for purifying the specific compound include, for example, sublimation purification, purification using silica gel column chromatography, purification using gel permeation chromatography, reslurry washing, reprecipitation purification, purification using an adsorbent such as activated carbon, and recrystallization purification.
  • the specific compound may be used alone or in combination of two or more. When two or more types are used, the total amount thereof is preferably within the above range.
  • the photoelectric conversion film preferably contains an n-type organic semiconductor in addition to the specific compound.
  • the n-type organic semiconductor is a compound different from the above specific compound.
  • An n-type organic semiconductor is an acceptor organic semiconductor material (compound) that is an organic compound that has the property of easily accepting electrons.
  • an n-type organic semiconductor is an organic compound that has a larger electron affinity when two organic compounds are used in contact with each other. In other words, any organic compound that has electron accepting properties can be used as an acceptor organic semiconductor.
  • n-type organic semiconductors include fullerenes selected from the group consisting of fullerenes and derivatives thereof; condensed aromatic carbon ring compounds (e.g., naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, and fluoranthene derivatives); 5- to 7-membered heterocyclic compounds having at least one selected from the group consisting of nitrogen atoms, oxygen atoms, and sulfur atoms (e.g., pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxaline, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, acridine, phenazine, phenanthroline, tetrazole, pyridine ...
  • condensed aromatic carbon ring compounds e.g.,
  • Examples of the compounds include 1,4,5,8-naphthalenetetracarboxylic anhydride, 1,4,5,8-naphthalenetetracarboxylic anhydride imide derivatives and oxadiazole derivatives, anthraquinodimethane derivatives, diphenylquinone derivatives, bathocuproine, bathophenanthroline and derivatives thereof, triazole compounds, distyrylarylene derivatives, metal complexes having a nitrogen-containing heterocyclic compound as a ligand, silole compounds, and the compounds described in paragraphs [0056] to [0057] of JP2006-100767A.
  • fullerenes selected from the group consisting of fullerene and derivatives thereof are preferred.
  • fullerenes include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C80, fullerene C82, fullerene C84, fullerene C90, fullerene C96, fullerene C240, fullerene C540, and mixed fullerenes.
  • the fullerene derivative may be, for example, a compound in which a substituent is added to the fullerene.
  • the substituent is preferably an alkyl group, an aryl group, or a heterocyclic group.
  • the fullerene derivative is preferably a compound described in JP-A-2007-123707.
  • the n-type organic semiconductor may be an organic dye.
  • organic dyes include cyanine dyes, styryl dyes, hemicyanine dyes, merocyanine dyes (including zeromethine merocyanine (simple merocyanine)), rhodacyanine dyes, allopolar dyes, oxonol dyes, hemioxonol dyes, squarylium dyes, croconium dyes, azamethine dyes, coumarin dyes, arylidene dyes, anthraquinone dyes, triphenylmethane dyes, azo dyes, azomethine dyes, metallocene dyes, fluorenone dyes, fulgide dyes, perylene dyes, phenazine dyes, phenothiazine dyes, quinone dyes, diphenylmethane dyes, polyene dyes, acridine dyes, a
  • the molecular weight of the n-type organic semiconductor is preferably 200 to 1,200, and more preferably 200 to 900.
  • the maximum absorption wavelength of the n-type organic semiconductor is preferably 400 nm or less or in the range of 500 to 600 nm.
  • the photoelectric conversion film preferably has a bulk heterostructure formed by mixing a specific compound with an n-type organic semiconductor.
  • the bulk heterostructure is a layer in the photoelectric conversion film in which a specific compound and an n-type organic semiconductor are mixed and dispersed.
  • a photoelectric conversion film having a bulk heterostructure can be formed by either a wet method or a dry method. The bulk heterostructure is described in detail in paragraphs [0013] to [0014] of JP 2005-303266 A.
  • the difference in electron affinity between the specific compound and the n-type organic semiconductor is preferably 0.1 eV or more.
  • the n-type organic semiconductor may be used alone or in combination of two or more.
  • the content of the n-type organic semiconductor in the photoelectric conversion film is preferably 15 to 75 vol%, more preferably 20 to 60 vol%, and even more preferably 20 to 50 vol%.
  • the content of fullerenes relative to the total content of the n-type organic semiconductor material is preferably 50 to 100 volume %, more preferably 80 to 100 volume %.
  • Fullerenes may be used alone or in combination of two or more types.
  • the content of the specific compound relative to the total content of the specific compound and the n-type organic semiconductor is preferably 20 to 80 vol%, and more preferably 40 to 80 vol%.
  • the content of the specific compound is preferably 15 to 75 vol%, and more preferably 30 to 75 vol%. It is preferable that the photoelectric conversion film is substantially composed of the specific compound, the n-type organic semiconductor, and the p-type organic semiconductor contained as desired.
  • the total content of the specific compound, the n-type organic semiconductor, and the p-type organic semiconductor relative to the total mass of the photoelectric conversion film is 90 to 100 volume %, preferably 95 to 100 volume %, and more preferably 99 to 100 volume %.
  • the photoelectric conversion film preferably contains a p-type organic semiconductor in addition to the specific compound.
  • the p-type organic semiconductor is a compound different from the above specific compound.
  • a p-type organic semiconductor is a donor organic semiconductor material (compound) that has the property of easily donating electrons.
  • a p-type organic semiconductor is an organic compound that has a smaller ionization potential when two organic compounds are used in contact with each other.
  • the p-type organic semiconductor may be used alone or in combination of two or more.
  • Examples of p-type organic semiconductors include triarylamine compounds (e.g., N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), 4,4'-bis[N-(naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), the compounds described in paragraphs [0128] to [0148] of JP-A No. 2011-228614, the compounds described in paragraphs [0052] to [0063] of JP-A No. 2011-176259, the compounds described in paragraphs [0054] to [0065] of JP-A No.
  • TPD N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine
  • ⁇ -NPD 4,4'-bis[N-(naphthyl)-N-phenyl-amino]biphenyl
  • Examples of p-type organic semiconductors include benzoxazole compounds (for example, compounds described in Figures 3 to 7 of JP-A-2022-123944), dicarbazole compounds (for example, compounds described in Figures 2 to 5 of JP-A-2022-122839), benzoquinazoline compounds (for example, compounds described in paragraphs [0053] to [0056] of JP-A-2022-120323), azine compounds (for example, compounds described in paragraphs [0041] to [0042] of JP-A-2022-120273), compounds described in Figures 2 to 10 of JP-A-2022-115832, indolotriphenylene compounds (for example, compounds described in Figures 2 to 5 of JP-A-2022-122839), and the like.
  • benzoxazole compounds for example, compounds described in Figures 3 to 7 of JP-A-2022-123944
  • dicarbazole compounds for example, compounds described in Figures 2 to 5 of JP-A-2022-122839
  • Examples of p-type organic semiconductors include compounds having a smaller ionization potential than n-type organic semiconductors. If this condition is satisfied, the organic dyes exemplified as n-type organic semiconductors can be used. Examples of compounds that can be used as the p-type organic semiconductor compound are given below.
  • the difference in ionization potential between the specific compound and the p-type organic semiconductor is preferably 0.1 eV or more.
  • the p-type organic semiconductor may be used alone or in combination of two or more.
  • the content of the p-type organic semiconductor in the photoelectric conversion film is preferably 15 to 75 vol%, more preferably 20 to 60 vol%, and even more preferably 25 to 50 vol%.
  • the photoelectric conversion film containing a specific compound is a non-luminescent film, and has characteristics different from those of an organic electroluminescent device (OLED: Organic Light Emitting Diode).
  • a non-luminescent film means a film with a luminescent quantum efficiency of 1% or less, preferably 0.5% or less, and more preferably 0.1% or less. The lower limit is often 0% or more.
  • the photoelectric conversion film preferably contains a dye in addition to the specific compound.
  • the dye is a compound different from the above specific compound.
  • the dye is preferably an organic dye.
  • organic dyes include cyanine dyes, styryl dyes, hemicyanine dyes, merocyanine dyes (including zeromethine merocyanine (simple merocyanine)), rhodacyanine dyes, allopolar dyes, oxonol dyes, hemioxonol dyes, squarylium dyes, croconium dyes, azamethine dyes, coumarin dyes, arylidene dyes, anthraquinone dyes, triphenylmethane dyes, azo dyes, azomethine dyes, metallocene dyes, fluorenone dyes, fulgide dyes, perylene dyes, phenazine dyes, phenothiazine dyes,
  • Cridinone dyes diphenylamine dyes, quinophthalone dyes, phenoxazine dyes, phthaloperylene dyes, dioxane dyes, porphyrin dyes, chlorophyll dyes, phthalocyanine dyes, subphthalocyanine dyes, metal complex dyes, WO2020/013246, WO2022/168856, JP2023-10305A, and JP2023-10299A described imidazoquinoxaline dyes, as well as acceptor-donor-acceptor type dyes in which two acidic nuclei are bound to a donor, and donor-acceptor-donor type dyes in which two donors are bound to an acceptor.
  • organic dye among others, a cyanine dye, an imidazoquinoxaline dye, or an acceptor-donor-acceptor type dye is preferable, and an imidazoquinoxaline dye or an acceptor-donor-acceptor type dye is more preferable.
  • the maximum absorption wavelength of the dye is preferably in the visible light region, more preferably 400 to 650 nm, and even more preferably 450 to 650 nm.
  • the dyes may be used alone or in combination of two or more.
  • the photoelectric conversion film may be formed, for example, by a dry film formation method.
  • the dry film formation method include physical vapor deposition methods such as vapor deposition (particularly vacuum deposition), sputtering, ion plating, and MBE (Molecular Beam Epitaxy), and CVD (Chemical Vapor Deposition) methods such as plasma polymerization, and the vacuum deposition method is preferred.
  • the manufacturing conditions such as the degree of vacuum and the deposition temperature can be set according to a conventional method.
  • the thickness of the photoelectric conversion film is preferably 10 to 1000 nm, more preferably 50 to 800 nm, and even more preferably 50 to 500 nm.
  • the photoelectric conversion element preferably has an electrode.
  • the electrodes (upper electrode (transparent conductive film) 15 and lower electrode (conductive film) 11) are made of a conductive material. Examples of the conductive material include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Since light is incident from the upper electrode 15, the upper electrode 15 is preferably transparent to the light to be detected.
  • Examples of materials constituting the upper electrode 15 include conductive metal oxides such as antimony- or fluorine-doped tin oxide (ATO: Antimony Tin Oxide, FTO: Fluorine doped Tin Oxide), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO: Indium Tin Oxide), and indium zinc oxide (IZO: Indium Zinc Oxide); metal thin films such as gold, silver, chromium, and nickel; mixtures or laminates of these metals and conductive metal oxides; and organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and nanocarbon materials such as carbon nanotubes and graphene. In terms of high conductivity and transparency, conductive metal oxides are preferred.
  • the sheet resistance may be 100 to 10,000 ⁇ / ⁇ , and there is a large degree of freedom in the range of the film thickness that can be thinned.
  • An increase in light transmittance is preferable because it increases the light absorption in the photoelectric conversion film and increases the photoelectric conversion ability.
  • the thickness of the upper electrode 15 is preferably 5 to 100 nm, and more preferably 5 to 20 nm.
  • the lower electrode 11 may be made transparent or may be made non-transparent and reflect light.
  • Materials constituting the lower electrode 11 include, for example, conductive metal oxides such as tin oxide doped with antimony or fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); metals such as gold, silver, chromium, nickel, titanium, tungsten, and aluminum; conductive compounds such as oxides or nitrides of these metals (for example, titanium nitride (TiN)); mixtures or laminates of these metals and conductive metal oxides; organic conductive materials such as polyaniline, polythiophene, and polypyrrole; and carbon materials such as carbon nanotubes and granphenes.
  • conductive metal oxides such as tin oxide doped with antimony or fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO),
  • the method for forming the electrodes can be appropriately selected depending on the electrode material. Specific examples include wet methods such as printing and coating, physical methods such as vacuum deposition, sputtering and ion plating, and chemical methods such as CVD and plasma CVD.
  • wet methods such as printing and coating
  • physical methods such as vacuum deposition, sputtering and ion plating
  • chemical methods such as CVD and plasma CVD.
  • the electrode material is ITO
  • methods such as an electron beam method, a sputtering method, a resistance heating deposition method, a chemical reaction method (such as a sol-gel method), and coating of a dispersion of indium tin oxide can be used.
  • the photoelectric conversion element preferably has one or more intermediate layers between the conductive film and the transparent conductive film in addition to the photoelectric conversion film.
  • the intermediate layer may be, for example, a charge blocking film.
  • the charge blocking film may be, for example, an electron blocking film or a hole blocking film.
  • the electron blocking film is a donor organic semiconductor material (compound), and the above-mentioned p-type organic semiconductor can be used. Furthermore, polymeric materials can also be used as the electron blocking film. Examples of the polymeric material include polymers of phenylenevinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, and diacetylene, and derivatives thereof.
  • the electron blocking film may be made up of multiple films.
  • the electron blocking film may be composed of an inorganic material.
  • inorganic materials have a higher dielectric constant than organic materials, so when an inorganic material is used for the electron blocking film, a higher voltage is applied to the photoelectric conversion film, and the quantum efficiency is increased.
  • examples of inorganic materials that can be used for the electron blocking film include calcium oxide, chromium oxide, copper chromium oxide, manganese oxide, cobalt oxide, nickel oxide, copper oxide, copper gallium oxide, copper strontium oxide, niobium oxide, molybdenum oxide, copper indium oxide, silver indium oxide, and iridium oxide.
  • the hole blocking film is an acceptor organic semiconductor material (compound), and the above-mentioned n-type organic semiconductor can be used.
  • the hole blocking film may be made up of multiple films.
  • Methods for manufacturing the charge blocking film include, for example, a dry film formation method and a wet film formation method.
  • dry film formation methods include a vapor deposition method and a sputtering method.
  • the vapor deposition method may be either a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method, with physical vapor deposition methods such as vacuum vapor deposition being preferred.
  • wet film formation methods include an inkjet method, a spray method, a nozzle print method, a spin coat method, a dip coat method, a cast method, a die coat method, a roll coat method, a bar coat method, and a gravure coat method, with the inkjet method being preferred in terms of high-precision patterning.
  • each of the charge blocking films is preferably 3 to 200 nm, more preferably 5 to 100 nm, and even more preferably 5 to 30 nm.
  • the photoelectric conversion element may further include a substrate.
  • the substrate include a semiconductor substrate, a glass substrate, and a plastic substrate.
  • the conductive film, the photoelectric conversion film, and the transparent conductive film are usually laminated in this order on the substrate.
  • the photoelectric conversion element may further include a sealing layer.
  • the performance of photoelectric conversion materials may be significantly deteriorated in the presence of deterioration factors such as water molecules, etc. Therefore, the deterioration can be prevented by covering and sealing the entire photoelectric conversion film with a sealing layer such as ceramics such as dense metal oxide, metal nitride, or metal nitride oxide, which does not allow water molecules to penetrate, or diamond-like carbon (DLC).
  • a sealing layer such as ceramics such as dense metal oxide, metal nitride, or metal nitride oxide, which does not allow water molecules to penetrate, or diamond-like carbon (DLC).
  • the sealing layer is described, for example, in paragraphs [0210] to [0215] of JP-A-2011-082508, the contents of which are incorporated herein by reference.
  • Photoelectric conversion elements are used, for example, as imaging elements.
  • An imaging element is an element that converts the optical information of an image into an electrical signal, and is usually configured with multiple photoelectric conversion elements arranged in a matrix on the same plane, with each photoelectric conversion element (pixel) converting the optical signal into an electrical signal, and outputting the electrical signal pixel by pixel from the imaging element. For this reason, each pixel is composed of one or more photoelectric conversion elements and one or more transistors.
  • the photoelectric conversion element include, for example, a photocell and an optical sensor, and the photoelectric conversion element of the present invention is preferably used as an optical sensor.
  • the photoelectric conversion element may be used alone, or the photoelectric conversion element may be used as a line sensor in which the photoelectric conversion elements are arranged in a straight line, or as a two-dimensional sensor in which the photoelectric conversion elements are arranged on a plane.
  • the present invention also includes the invention of a compound.
  • the compound of the present invention is the specific compound or an intermediate in the synthesis process of the specific compound, which is a compound represented by formula (2) (hereinafter also referred to as "intermediate A”), a compound represented by formula (3) (hereinafter also referred to as "intermediate B”), or a compound represented by formula (3c).
  • Specific and preferred embodiments of Z 1 to Z 6 in formula (2) are the same as those of Z 1 to Z 6 in formula (1).
  • R 3 represents a substituent selected from the substituent group T.
  • Substituent group T a straight-chain aliphatic hydrocarbon group, a branched-chain aliphatic hydrocarbon group, a cyclic aliphatic hydrocarbon group, and an aromatic ring group not containing a nitrogen atom which may have a substituent selected from the substituent group R Ar3 .
  • the linear aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • the branched aliphatic hydrocarbon group preferably has 3 to 10 carbon atoms, more preferably 3 to 6 carbon atoms, and even more preferably 3 to 5 carbon atoms.
  • the cyclic aliphatic hydrocarbon group preferably has 3 to 10 carbon atoms, and more preferably has 3 to 8 carbon atoms.
  • the linear aliphatic hydrocarbon group, the branched aliphatic hydrocarbon group, and the cyclic aliphatic hydrocarbon group in the substituent group T may have an etheric oxygen atom.
  • substituents selected from the substituent group R Ar3 are as follows.
  • Substituent group R Ar3 a straight-chain aliphatic hydrocarbon group, a branched-chain aliphatic hydrocarbon group, a cyclic aliphatic hydrocarbon group, a halogen atom, and an aromatic ring group containing no nitrogen atom.
  • Specific and preferred embodiments of each group exemplified in the substituent group R Ar3 are the same as the specific and preferred embodiments of each group exemplified in the substituent group T above.
  • the linear aliphatic hydrocarbon group, the branched aliphatic hydrocarbon group and the cyclic aliphatic hydrocarbon group in the substituent group R Ar3 may have an ether oxygen atom or be substituted with a halogen atom.
  • a linear alkyl group having 1 to 3 carbon atoms, a methoxy group, a branched alkyl group having 3 to 5 carbon atoms, or a cyclic alkyl group having 3 carbon atoms (cyclopropyl group) is preferable.
  • R f represents a perfluoroalkyl group having 1 to 6 carbon atoms.
  • R Sn , R B1 and R B2 each independently represent a substituent, and a plurality of R Sn , R B1 and R B2 may be the same or different.
  • R B1 and R B2 may be bonded to each other to form a ring structure.
  • M + represents a monovalent metal cation.
  • the perfluoroalkyl group represented by Rf is preferably a trifluoromethyl group.
  • the substituent represented by R Sn include an aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent, and an aliphatic heterocyclic group which may have a substituent.
  • the substituent which each of the above groups may have include the groups exemplified by the above substituent W.
  • R 3 Sn an aliphatic hydrocarbon group which may have an aromatic ring group is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and a methyl group or a butyl group is even more preferable.
  • the substituent represented by R B1 is not particularly limited as long as it is a substituent in an organoboron compound generally used in an aromatic coupling reaction, and examples thereof include a hydroxy group and an alkoxy group.
  • the ring formed may be an aromatic ring (for example, a benzene ring) or a non-aromatic ring.
  • Examples of the group represented by R B1 include groups represented by formula (B1) and formula (B2).
  • the substituent represented by R B2 is not particularly limited as long as it is a substituent in an organoboron compound generally used in an aromatic coupling reaction, and examples thereof include a fluorine atom and an alkoxy group.
  • Examples of the monovalent metal cation represented by M + include monovalent metal cations such as a lithium ion, a potassium ion, a sodium ion, a rubidium ion, and a cesium ion.
  • the ring formed may be an aromatic ring (for example, a benzene ring) or a non-aromatic ring.
  • R B2 Of the three R B2 , two R B2 may be bonded to each other to form a ring, or three R B2 may be bonded to each other to form a ring.
  • R B2 examples include a group represented by formula (B3): In formula (B3), M + represents the above-mentioned monovalent metal cation.
  • Ar represents an aromatic ring containing two or more carbon atoms as ring member atoms and no nitrogen atom as a ring member atom.
  • the aromatic ring represented by Ar may be either a monocyclic or polycyclic ring, and may be either an aromatic hydrocarbon ring or an aromatic heterocyclic ring (aromatic heterocyclic ring not containing a nitrogen atom as a ring member atom). Specific embodiments of the monocyclic aromatic ring, polycyclic aromatic ring, aromatic hydrocarbon ring, and aromatic heterocyclic ring are as described above.
  • the aromatic ring represented by Ar preferably has 4 to 15 member atoms, more preferably 4 to 10 member atoms, and even more preferably 4 to 6 member atoms.
  • the aromatic hydrocarbon ring represented by Ar is preferably a benzene ring or a naphthalene ring.
  • the aromatic heterocycle represented by Ar is preferably a thiophene ring, a benzofuran ring (eg, a 2,3-benzofuran ring), or a benzothiophene ring (eg, a benzo[b]thiophene ring).
  • the aromatic ring represented by Ar may be substituted with a substituent selected from the above-mentioned substituent group T or a halogen atom. Specific and preferred embodiments of the substituent selected from the substituent group T are as described above.
  • the number of the substituents is not particularly limited, but is preferably 1 to 4, and more preferably 1 or 2.
  • the aromatic ring represented by Ar has a substituent selected from the substituent group T
  • the substituent selected from the substituent group T represented by R3 and the substituent selected from the substituent group T carried by the aromatic ring represented by Ar may be bonded to each other to form a non-aromatic ring.
  • the aromatic ring represented by Ar is substituted with a plurality of substituents selected from the substituent group T
  • the plurality of substituents may be bonded to each other to form a non-aromatic ring.
  • the non-aromatic ring include an aliphatic ring
  • examples of the non-aromatic ring include an aliphatic ring having 4 to 6 carbon atoms.
  • Examples of the method for producing intermediate A include a method in which a compound having an aryl group on the nitrogen atom of carbazole (N-aryl-substituted carbazole) is subjected to a reaction such as halogenation or lithiation (lithiation) to introduce a group represented by R4 and a group represented by R5 .
  • step P1 intermediate A (compound represented by formula (2)) can be efficiently produced by a compound production method including a step (hereinafter also referred to as step P1) of producing a compound represented by formula (2b) by reacting a compound represented by formula (2a) with a compound represented by formula (X), as shown below.
  • the compound represented by formula (2b) is an embodiment in which R 4 and R 5 in formula (2) are each independently an iodine atom, *-O-S( ⁇ O) 2 R f , a bromine atom, a chlorine atom, or a fluorine atom.
  • R X1 represents a hydrogen atom or a substituent.
  • the two R X1 may be bonded to each other to form a ring.
  • Z 1 to Z 6 have the same meanings as Z 1 to Z 6 in formula (2), and the preferred embodiments are also the same.
  • R L4 and R L5 each independently represent *--O--S(.dbd.O) 2 R f , a bromine atom, a chlorine atom, or a fluorine atom.
  • X1 and X2 each independently represent an iodine atom, *--O--S(.dbd.O) 2Rf , a bromine atom, or a chlorine atom, where Rf has the same meaning as Rf in formula (2).
  • R L4 , R L5 , X1 and X2 satisfy the following requirements.
  • both the ranking of the group represented by R L4 and the ranking of the group represented by R L5 are higher than the ranking of the group represented by X1 and are also higher than the ranking of the group represented by X2 .
  • the order from 1st to 5th position indicates the difficulty of the leaving group to be eliminated, and the 5th position means that the leaving group is more difficult to eliminate.
  • both the group represented by X1 and the group represented by X2 are more likely to be eliminated than the group represented by R L4 and are more likely to be eliminated than the group represented by R L5 , so that an intramolecular ring-forming reaction proceeds preferentially over an intermolecular reaction.
  • X1 is a bromine atom at the third position
  • X2 is a bromine atom at the third position
  • R1 is an iodine atom at the first position
  • R2 is an iodine atom at the first position
  • the priorities of R1 and R2 are lower than the priorities of X1 and X2 (both of which are third), and therefore the above requirement is not satisfied.
  • Examples of combinations of R L4 , R L5 , X1 and X2 that satisfy the above requirements include the following examples 1 to 4.
  • the combination of Example 1 is particularly preferable.
  • R 3 represents a substituent selected from the above-mentioned substituent group T.
  • Ar represents an aromatic ring containing two or more carbon atoms as ring member atoms and not containing a nitrogen atom as a ring member atom.
  • the aromatic ring represented by Ar may be substituted with a substituent selected from the above-mentioned substituent group T or a halogen atom.
  • the aromatic ring represented by Ar has a substituent selected from the above-mentioned substituent group T
  • the substituent selected from the above-mentioned substituent group T represented by R3 and the substituent selected from the above-mentioned substituent group T carried by the aromatic ring represented by Ar may be bonded to each other to form a non-aromatic ring.
  • the aromatic ring represented by Ar is substituted with a plurality of substituents selected from the above-mentioned substituent group T, the plurality of substituents may be bonded to each other to form a non-aromatic ring.
  • R3 and Ar in formula (X) have the same meanings as R3 and Ar in formula (2), and the preferred embodiments thereof are also the same.
  • Z 1 to Z 6 , R L4 and R L5 have the same meanings as Z 1 to Z 6 , R L4 and R L5 in the above formula (2a).
  • R3 and Ar have the same meanings as R3 and Ar in the above formula (X).
  • the above step P1 is typically carried out under Buchwald-Hartwig cross-coupling conditions, and more specifically, the step P1 is preferably carried out in the presence of an organometallic catalyst and a base.
  • organometallic catalyst include palladium catalysts, and more specifically, palladium salts such as palladium chloride, palladium acetate, palladium trifluoroacetate, and palladium nitrate; complex compounds such as ⁇ -allylpalladium chloride dimer, palladium acetylacetonate, tris(dibenzylideneacetone)dipalladium, bis(dibenzylideneacetone)palladium, dichlorobis(acetonitrile)palladium, and dichlorobis(benzonitrile)palladium; and palladium complexes having a tertiary phosphine as a ligand, such as dichlorobis(triphenylphosphine)palladium, tetrakis(
  • the above palladium catalyst may be prepared in situ by adding a tertiary phosphine to a palladium salt or complex compound.
  • a palladium complex having a tertiary phosphine as a ligand is preferable, a palladium complex having a tertiary phosphine having at least one aryl group as a ligand is more preferable, and a palladium complex having a triarylphosphine as a ligand is even more preferable.
  • the aryl group which the tertiary phosphine may have include a phenyl group which may have a group exemplified by the above-mentioned substituent W.
  • the base examples include a base containing an alkali metal and a tertiary amine, and the base containing an alkali metal is preferred.
  • the base containing an alkali metal is preferably an alkali metal alkoxide (e.g., sodium methoxide, sodium ethoxide, potassium t-butoxide, etc.), or an alkali metal carbonate, phosphate, hydroxide, or fluoride, more preferably an alkali metal alkoxide, and even more preferably an alkoxide consisting of a tert-butoxide anion and an alkali metal.
  • the alkali metals include lithium, potassium, sodium, and cesium, with lithium, potassium, or sodium being preferred.
  • reaction solvent in step P1 examples include toluene, tetrahydrofuran, 1,4-dioxane, 1,2-dichlorobenzene, benzene, xylene, mesitylene, anisole, chlorobenzene, dimethoxyethane, dimethylformamide (DMF), cyclopentyl methyl ether, 4-methyltetrahydropyran, acetonitrile, alcohols, and ionic liquids, and toluene is preferred.
  • the reaction temperature is often a temperature at which the reaction mixture is refluxed depending on the reaction solvent used, and is preferably 50 to 200°C, more preferably 90 to 150°C.
  • step P2 a step (hereinafter also referred to as "step P2") of converting the group represented by R L4 and the group represented by R L5 to a formyl group, *-Sn(R Sn ) 3 , *-B(R B1 ) 2 , or *-B - (R B2 ) 3 M + is further carried out, whereby a compound represented by formula (2) in which R 4 and R 5 are a formyl group, *-Sn(R Sn ) 3 , *-B(R B1 ) 2 , or *-B - (R B2 ) 3 M + is obtained.
  • R Sn , R B1 and R B2 have the same meanings as R Sn , R B1 and R B2 in the intermediate A (compound represented by formula (2)), and the preferred embodiments thereof are also the same.
  • an example of the step of converting the group represented by R L4 and the group represented by R L5 into a formyl group is a step of reacting the compound represented by formula (2b) with a formylating agent.
  • a formylating agent known agents can be used, and examples thereof include N,N-disubstituted formamides, orthoformates, and compounds represented by formula (B′′).
  • N,N-disubstituted formamide is a compound represented by the formula (B).
  • R Y2 represents an organic group.
  • a plurality of R Y2 may be the same or different.
  • the organic group include an aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent, and an aliphatic heterocyclic group which may have a substituent. Of these, an aliphatic hydrocarbon group or an aromatic ring group is preferable.
  • Examples of the compound represented by formula (B) include N,N-dimethylformamide (DMF), N-(diethylcarbamoyl)-N-methoxyformamide, 1-formylpiperidine, 4-formylmorpholine, N-methylformanilide, and N-formylsaccharin, and among these, DMF is preferred.
  • DMF N,N-dimethylformamide
  • diethylcarbamoyl)-N-methoxyformamide 1-formylpiperidine
  • 4-formylmorpholine N-methylformanilide
  • N-formylsaccharin examples include N,N-dimethylformamide (DMF), N-(diethylcarbamoyl)-N-methoxyformamide, 1-formylpiperidine, 4-formylmorpholine, N-methylformanilide, and N-formylsaccharin, and among these, DMF is preferred.
  • R Y3 represents an alkyl group.
  • a plurality of R Y3 may be the same or different.
  • the alkyl group is preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group.
  • R represents an alkyl group having 1 to 6 carbon atoms.
  • N-methoxyethyleneaniline is preferred.
  • step P2A typically, the group represented by R4 and the group represented by R5 in the compound represented by formula (2b) are converted into metal active species using a metallation reagent, and then the formylating agent is reacted.
  • the metallation reagent and reaction conditions used are not particularly limited, and known metallation reagents and reaction conditions can be applied.
  • a lithium reagent or a magnesium reagent is particularly preferred.
  • organolithium reagents are preferred, and examples thereof include alkyllithiums such as n-butyllithium, sec-butyllithium, and tert-butyllithium.
  • the magnesium reagent may be an organomagnesium reagent (such as a Grignard reagent) or elemental magnesium.
  • step P2B An example of the step of converting the group represented by R L4 and the group represented by R L5 in the compound represented by formula (2b) to *-Sn(R Sn ) 3 is a step of reacting the compound represented by formula (2b) with a compound represented by formula (Y) (hereinafter also referred to as "step P2B").
  • step P2B a step of reacting the compound represented by formula (2b) with a compound represented by formula (Y) (hereinafter also referred to as "step P2B").
  • step P2B (R Sn ) 3 Sn-Xa formula (Y)
  • R 3 Sn has the same meaning as R 3 Sn in *-Sn(R 3 Sn ) 3 exemplified as R 4 and R 5 in formula (2) above.
  • substituent represented by R Sn include an aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent, and an aliphatic heterocyclic group which may have a substituent.
  • substituent which each of the above groups may have include the groups exemplified by the above substituent W.
  • R 3 Sn an aliphatic hydrocarbon group which may have an aromatic ring group is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and a methyl group or a butyl group is even more preferable.
  • Rf has the same meaning as Rf in formula (2).
  • step P2B typically, the group represented by R L4 and the group represented by R L5 in the compound represented by formula (2b) are converted to lithium using an organolithium reagent, and then the compound represented by formula (Y) is reacted.
  • organolithium reagents include alkyllithiums such as n-butyllithium, sec-butyllithium, and tert-butyllithium.
  • step P2B can also be carried out in the presence of a palladium catalyst.
  • a palladium catalyst Specific reaction conditions can be referenced to the synthesis method described in the non-patent document "J. Org. Chem. 2016, 81, 8, 3356-3363.”
  • the palladium catalyst those exemplified as the palladium catalyst in step P1 can be used.
  • the step of converting the group represented by R L4 and the group represented by R L5 to *-B(R B1 ) 2 or *-B - (R B2 ) 3 M + can be, for example, a step of reacting the compound represented by formula (2b) above with a borylation agent.
  • a borylation agent known agents can be used, and examples thereof include compounds represented by the formula (Z).
  • Rf has the same meaning as Rf in the above formula (2).
  • R B3 , R B4 and R B5 each independently represent an aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent, or an aliphatic heterocyclic group which may have a substituent.
  • Plural R B3 and R B5 may be the same or different.
  • R B3 and R B4 are preferably aliphatic hydrocarbon groups, more preferably alkyl groups, and even more preferably alkyl groups having 1 to 6 carbon atoms.
  • R B3 may be bonded to each other to form a ring, and the compound represented by formula (Z) is preferably a compound represented by formula (Z').
  • the group represented by *-B(OR B3 ) 2 is preferably a group represented by the above formula (B1) or (B2).
  • R B5 is preferably an aliphatic hydrocarbon group or an aromatic ring group, more preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • step P2C typically, the group represented by R L4 and the group represented by R L5 in the compound represented by formula (2b) are converted to lithium using an organolithium reagent, and then the compound represented by formula (Z) is reacted.
  • the reaction conditions are not particularly limited as long as they are generally conditions for lithiation, and specific examples of the organolithium reagent are as described above.
  • it is also effective to convert the group represented by R 4 and the group represented by R 5 to lithium or magnesium, and then react with a compound represented by formula (Z) to convert the group represented by R 4 and the group represented by R 5 to *-B(R B1 ) 2 or *-B - (R B2 ) 3 M + .
  • Specific reaction conditions can be taken into consideration of the synthesis method described in the non-patent document "Org. Lett. 2006, 8, 18, 4071-4074".
  • step P2C is often carried out in the presence of a palladium catalyst.
  • a palladium catalyst Specific reaction conditions can be found in the synthesis method described in the non-patent document "European Polymer Journal (2019), 112, 283-290".
  • the palladium catalyst and base that can be used in this synthesis method, those exemplified as the palladium catalyst and base in step P1 can be used.
  • the step P2C can also be carried out without using a transition metal catalyst.
  • reaction conditions include a case where a compound represented by the above formula (2b) is reacted with a compound represented by formula (Z) in which Xb is *-Si(R B5 ) 3.
  • the synthesis method described in the non-patent document "J. Am. Chem. Soc. 2012, 134, 19997-20000" can be referred to.
  • R4 and R5 each independently represent a fluorine atom, a chlorine atom , a bromine atom, an iodine atom, *-Sn(n-Bu) 3 , *-SnMe3, *-B(OH) 2 , * -BF3M + (M + represents a monovalent metal cation), a formyl group, or a group represented by any of the above formulas (B1) to (B3).
  • intermediate B (a compound represented by formula (3)) will be described in detail.
  • Intermediate B is represented by the following structural formula.
  • Specific and preferred embodiments of Z 1 to Z 6 in formula (3) are the same as those of Z 1 to Z 6 in formula (1).
  • Q represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • R6 represents a substituent selected from the group U of substituents.
  • Substituent group U an aliphatic hydrocarbon group which may have a substituent, an aromatic ring group which may have a substituent, and an aliphatic heterocyclic group which may have a substituent.
  • the aliphatic hydrocarbon group which may have a substituent is preferably a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms which may have a halogen atom, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms which may have a halogen atom, or a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms which may have a halogen atom.
  • the aromatic ring group which may have a substituent is preferably an aromatic ring group which may have a substituent selected from the above substituent group R Ar1 , is preferably an aromatic ring group having 4 to 10 ring atoms which may have a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms, or a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, and is more preferably a phenyl group which may have a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms, or a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms.
  • the method for producing intermediate B of the present invention includes a step 1 of reacting a compound represented by formula (3a) with a compound represented by formula (A) to obtain a compound represented by formula (3b) having a protecting group represented by SiR Y1 3 ; Step 2 of reacting the compound represented by formula (3b) with a metallation reagent, then reacting with a formylating agent, and further deprotecting the protecting group to obtain a compound represented by formula (3c); and step 3 of reacting a compound represented by formula (3c) with a compound represented by formula (C) to obtain a compound represented by formula (3).
  • Z 1 to Z 6 have the same meanings as Z 1 to Z 6 in the above formula (3), and the preferred embodiments are also the same.
  • X 3 and X 4 each independently represent an iodine atom, *—O—S( ⁇ O) 2 R f , a bromine atom, or a chlorine atom, preferably an iodine atom, a bromine atom, or a chlorine atom, more preferably a bromine atom.
  • Step 1 is a step of reacting a compound represented by formula (3a) with a compound represented by formula (A) to obtain a compound represented by formula (3b) having a protecting group represented by SiR Y1 3 .
  • R f has the same meaning as R f in formula (2). Among them, L 1 is preferably a bromine atom or a chlorine atom.
  • R represents an optionally substituted aliphatic hydrocarbon group, an optionally substituted aromatic ring group, or an optionally substituted aliphatic heterocyclic group.
  • R Y1 is preferably a linear aliphatic hydrocarbon group having 1 to 3 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 5 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 8 carbon atoms, or an aromatic ring group.
  • step 1 typically, the hydrogen atom on N in the compound represented by formula (3a) is converted to lithium using an organolithium reagent, and then the compound represented by formula (A) is reacted.
  • organolithium reagents There are no particular limitations on the reaction conditions as long as they are generally conditions for lithiation, and specific examples of organolithium reagents are as described above.
  • Step 2 is a step in which the compound represented by formula (3b) obtained in step 1 is reacted with a metallation reagent, then with a formylating agent, and the protecting group is deprotected to obtain a compound represented by formula (3c) described below.
  • the metallization reagent may be a known one, for example, the reagent exemplified in step P2A.
  • the reaction conditions are not particularly limited, and known reaction conditions may be applied.
  • the formylating agent may be a known agent, such as the N,N-disubstituted formamide and orthoformate ester exemplified in the above step P2A.
  • the reaction conditions may also be known, such as the conditions exemplified in the above step P2A.
  • a method for deprotecting the protecting group represented by SiR Y1 3 for example, a method of reacting with an appropriate desilylation agent depending on the compound represented by formula (A) used can be mentioned.
  • the desilylation agent is not particularly limited and any known desilylation agent can be used, and examples thereof include water, an acid, a base, and a fluoride ion.
  • the silyl protecting group derived from the compound represented by formula (A) is easily deprotected, and deprotection may occur in a post-process (such as a separation process and a column purification process) after the completion of the reaction or due to moisture in the air. Even in such a case, it is within the scope of the present invention as long as a compound represented by formula (3c) can be obtained from a compound represented by formula (3b).
  • steps 1 and 2 above may be carried out in one pot.
  • Step 3 is a step of reacting the compound represented by formula (3c) obtained in step 2 with the compound represented by formula (C) to introduce a group derived from the compound represented by formula (C) onto N in formula (3c), thereby obtaining a compound represented by formula (3).
  • Rf has the same meaning as Rf in formula (A).
  • R6 has the same meaning as R6 in formula (3) above, and is preferably a methyl group or an ethyl group.
  • Comparative Synthesis Example 1 (Comparative Synthesis Example of Intermediate (3)) As shown in the following scheme, 2,7-dibromocarbazole (100 mg), 2-fluoro-1,3-dimethylbenzene (76 mg), cesium carbonate (201 mg), and DMF (1.5 mL) were added to a recovery flask, heated to 100° C., and stirred for 1 hour, but the desired intermediate (3) was not obtained.
  • intermediate (R1) was synthesized in the same manner as in the above ⁇ Synthesis of intermediate (12)>.
  • intermediate (R1) 200 mg
  • THF 5.5 mL
  • normal butyl lithium 2.7 M, 0.5 mL
  • DMF 0.4 mL
  • Comparative Synthesis Example 3 (Comparative Synthesis Example of Intermediate (12)) As shown in the following scheme, an attempt was made to synthesize intermediate (12) using 2,7-dibromocarbazole as a starting material in the same manner as above, but a complex mixture was obtained and the desired intermediate (12) was not obtained.
  • a photoelectric conversion element was produced using the above materials, and Tests X and Y were carried out.
  • the photoelectric conversion element here comprises a lower electrode 11, an electron blocking film 16A, a photoelectric conversion film 12, a hole blocking film 16B and an upper electrode 15.
  • amorphous ITO was formed on a glass substrate by sputtering to form a lower electrode 11 (thickness: 30 nm), and a compound (EB-1) was further formed on the lower electrode 11 by vacuum heating deposition to form an electron blocking film 16A (thickness: 30 nm).
  • each specific compound or each comparative compound shown in Table 1 an n-type organic semiconductor (fullerene (C 60 )), and a p-type organic semiconductor (compound (P-1)) were co-evaporated by vacuum evaporation onto the electron blocking film 16A to a thickness of 80 nm in terms of a single layer.
  • the film formation speed of the photoelectric conversion film 12 was set to 1.0 ⁇ /sec.
  • a compound (EB-2) was deposited on the photoelectric conversion film 12 to form a hole blocking film 16B (thickness: 10 nm).
  • Amorphous ITO was deposited on the hole blocking film 16B by sputtering to form an upper electrode 15 (transparent conductive film) (thickness: 10 nm).
  • an aluminum oxide (Al 2 O 3 ) layer was formed thereon by atomic layer chemical vapor deposition (ALCVD).
  • ACVD atomic layer chemical vapor deposition
  • the dark current was measured by the following method. A voltage was applied to the lower and upper electrodes of each photoelectric conversion element to achieve an electric field strength of 2.5 ⁇ 10 5 V/cm, and the current value in a dark place (dark current) was measured. As a result, it was confirmed that the dark current in each photoelectric conversion element was 50 nA/cm 2 or less, which is a sufficiently low dark current.
  • Quantum efficiency (relative ratio) (quantum efficiency at a wavelength of 460 nm of each example or each comparative example) / (quantum efficiency at a wavelength of 460 nm of the reference example)
  • Quantum efficiency is 1.6 or more.
  • Relative response speed is less than 0.5
  • B Relative response speed is 0.5 or more and less than 1.0
  • C Relative response speed is 1.0 or more and less than 1.5
  • D Relative response speed is 1.5 or more and less than 2.0
  • E Relative response speed is 2.0 or more
  • ⁇ Response speed vs. electric field strength> For each of the obtained photoelectric conversion elements, the dependence of the response speed on the electric field strength was evaluated by the following method. In the evaluation of the above ⁇ Response speed>, the voltage applied to each photoelectric conversion element was changed to 7.5 ⁇ 10 4 V/cm, but the response speed at 7.5 ⁇ 10 4 V/cm was measured in the same manner as above. The electric field strength dependence of the response speed was evaluated based on the value obtained according to formula (S3) in accordance with the following criteria. In addition, the photoelectric conversion elements in the numerator and denominator of formula (S3) are the same.
  • the rise time of the photoelectric conversion efficiency of Example 1-1 at a wavelength of 460 nm and a current density of 7.5 ⁇ 10 4 V/cm is compared with the rise time of the photoelectric conversion efficiency of Example 1-1 at a wavelength of 460 nm and a current density of 2.0 ⁇ 10 5 V/cm.
  • Equation (S3): Dependence of response speed on electric field strength (rise time at 7.5 ⁇ 10 4 V/cm at a wavelength of 460 nm for each Example or Comparative Example)/(rise time at 2.0 ⁇ 10 5 V/cm at a wavelength of 460 nm for each Example or Comparative Example)
  • ⁇ Manufacturing suitability> The manufacturability of each of the obtained photoelectric conversion elements was evaluated by the following method.
  • Photoelectric conversion elements of each Example or Comparative Example were produced in the same manner as in the above ⁇ Production of Photoelectric Conversion Element>, except that the deposition rate of the photoelectric conversion film 12 was changed to 3.0 ⁇ /sec.
  • the photoelectric conversion element obtained in the above ⁇ Preparation of photoelectric conversion element> was designated as photoelectric conversion element (A), and the photoelectric conversion element obtained by setting the film formation speed of the photoelectric conversion film 12 at 3.0 ⁇ /sec was designated as photoelectric conversion element (B).
  • the quantum efficiency of each was determined in the same manner as in the evaluation of the above ⁇ Quantum efficiency>.
  • the relative ratio B/A of the quantum efficiency of the photoelectric conversion element (B) to the quantum efficiency of the photoelectric conversion element (A) was calculated, and the manufacturing suitability of the obtained value was evaluated in accordance with the following criteria.
  • Table 1 shows the evaluation results of the above test X.
  • the symbols in Table 1 indicate the following:
  • the substituent selected from the substituent group S represented by R N and R C1 to R C10 in formula (1) represents a straight-chain aliphatic hydrocarbon group having 1 to 2 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aliphatic hydrocarbon group having 1 carbon atom and having a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aromatic ring group which may have a substituent selected from the substituent group R Ar1 , a group represented by formula (S-3), or a group represented by formula (S-4), it is marked as "A", and when it is not the above, it is marked as "B”.
  • the photoelectric conversion elements of the examples of the present invention have excellent quantum efficiency.
  • the photoelectric conversion element of the comparative example using a comparative compound that does not fall under the specific compound had insufficient quantum efficiency.
  • the quantum efficiency is more excellent in the specific compound when the substituent selected from the substituent group S represents a linear aliphatic hydrocarbon group having 1 to 2 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aliphatic hydrocarbon group having 1 carbon atom and having a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aromatic ring group which may have a substituent selected from the substituent group R Ar1 , a group represented by the formula (S-3), or a group represented by the formula (S-4) (e.g., comparison between Example 1-1 and Example 1-27).
  • the substituent selected from the substituent group S represents a linear aliphatic hydrocarbon group having 1 to 2 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aliphatic hydrocarbon group having 1 carbon atom and having a cyclic aliphatic hydrocarbon group having 3 to 6 carbon atoms, an aromatic ring
  • the quantum efficiency of each of the obtained photoelectric conversion elements was measured by the following method. A voltage was applied to each photoelectric conversion element so as to achieve an electric field strength of 2.0 ⁇ 10 5 V/cm, and then light was irradiated from the upper electrode (transparent conductive film) side to evaluate the quantum efficiency at a wavelength of 460 nm or 600 nm. The quantum efficiency was evaluated based on the value obtained according to formula (S4) in accordance with the following criteria. In formula (S4), the quantum efficiency in the numerator and denominator is the quantum efficiency at the same wavelength. In addition, for the examples and comparative examples shown in Table 2, Example 2-15 was adopted as the reference example below.
  • Quantum efficiency (relative ratio) (quantum efficiency at a wavelength of 460 nm or 600 nm of each example or comparative example) / (quantum efficiency at a wavelength of 460 nm or 600 nm of the reference example)
  • Quantum efficiency is 1.6 or more.
  • Quantum efficiency is 1.6 or more.
  • B Quantum efficiency is 1.2 or more and less than 1.6.
  • C Quantum efficiency is 0.8 or more and less than 1.2.
  • D Quantum efficiency is 0.4 or more and less than 0.8.
  • E Quantum efficiency is less than 0.4.
  • the response speed of each of the obtained photoelectric conversion elements was evaluated by the following method. A voltage of 2.0 ⁇ 10 5 V/cm was applied to the photoelectric conversion element. Then, the LED was turned on momentarily to irradiate light from the upper electrode (transparent conductive film) side, and the photocurrent at a wavelength of 460 nm or 600 nm was measured with an oscilloscope to measure the rise time from 0% signal intensity to 97% signal intensity. The response speed was evaluated based on the value obtained according to formula (S5) in accordance with the following criteria. In formula (S5), the rise times of the numerator and denominator are the rise times at the same wavelength.
  • Equation (S5): Relative response speed (rise time at a wavelength of 460 nm or 600 nm for each example or comparative example) / (rise time at a wavelength of 460 nm or 600 nm for the reference example)
  • Relative response speed is less than 0.5
  • B Relative response speed is 0.5 or more and less than 1.0
  • C Relative response speed is 1.0 or more and less than 1.5
  • D Relative response speed is 1.5 or more and less than 2.0
  • E Relative response speed is 2.0 or more
  • Table 2 shows the evaluation results of test Y.
  • the notations in Table 2 are as described above for the notations in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

本発明は、青色光を受光した際の量子効率に優れる、光電変換素子を提供する。また、上記光電変換素子に関する、撮像素子、光センサ、化合物、及び、化合物の製造方法を提供する。本発明の光電変換素子は、導電性膜、光電変換膜及び透明導電性膜をこの順で有する光電変換素子であって、上記光電変換膜が、式(1)で表される化合物を含む。

Description

光電変換素子、撮像素子、光センサ、化合物、化合物の製造方法
 本発明は、光電変換素子、撮像素子、光センサ、化合物、及び化合物の製造方法に関する。
 近年、光電変換膜を有する素子(例えば、撮像素子)の開発が進んでいる。
 例えば、非特許文献1では、p型半導体又はn型半導体としての適用が可能である、ADA(アクセプター-ドナー-アクセプター)型色素を開示している。
Wurthner et al., org. chem. front. 2016, 3, 545-555.
 近年、撮像素子及び光センサ等の性能向上の要求に伴い、これらに使用される光電変換素子に求められる諸特性に関しても更なる向上が求められている。
 例えば、光電変換素子が青色光(特に、波長460nm)を受光した際の量子効率が高いことがより高いレベルで要求されている。ここで、上記青色光とは、波長400~500nmの範囲の光を指す。
 本発明者らが、非特許文献1に記載のADA型色素をp型半導体として含む光電変換素子について検討したところ、上述した青色光を受光した際の量子効率について、更なる改善の余地があることを知見した。
 そこで、本発明は、青色光を受光した際の量子効率に優れる、光電変換素子を提供することを課題とする。
 また、本発明は、上記光電変換素子に関する、撮像素子、光センサ、化合物、及び化合物の製造方法を提供することも課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、本発明を完成させるに至った。すなわち、以下の構成により上記課題が解決されることを見出した。
 〔1〕 導電性膜、光電変換膜、及び透明導電性膜をこの順で有する光電変換素子であって、上記光電変換膜が、後述する式(1)で表される化合物を含む、光電変換素子。
 〔2〕 後述する置換基群Sから選択される置換基が、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基を有する炭素数1の脂肪族炭化水素基、後述する置換基群RAr1から選択される置換基を有していてもよい芳香環基、後述する式(S-3)で表される基、又は後述する式(S-4)で表される基を表す、〔1〕に記載の光電変換素子。
 〔3〕 式(A-1)で表される基が、後述する式(A-2)で表される基である、〔1〕又は〔2〕に記載の光電変換素子。
 〔4〕 式(A-2)で表される基が、後述する式(C-1)で表される基、又は後述する式(C-2)で表される基である、〔3〕に記載の光電変換素子。
 〔5〕 Xが、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、又は-OC(RC9)(RC10)-を表す、〔1〕~〔4〕のいずれか1つに記載の光電変換素子。
 R及びRC1~RC10は、それぞれ上記式(1)中のR、及びRC1~RC10と同義である。
 〔6〕 Xが、>NR、>CRC1C2、又は>C=CRC3C4を表す、〔1〕~〔5〕のいずれか1つに記載の光電変換素子。
 R及びRC1~RC4は、それぞれ上記式(1)中のR、及びRC1~RC4と同義である。
 〔7〕 Xが、>NRを表す、〔1〕~〔6〕のいずれか1つに記載の光電変換素子。
 Rは、上記式(1)中のRと同義である。
 〔8〕 上記光電変換膜が、更にn型有機半導体を含み、
 上記光電変換膜が、上記式(1)で表される化合物と、上記n型有機半導体とが混合された状態で形成するバルクへテロ構造を有する、〔1〕~〔7〕のいずれか1つに記載の光電変換素子。
 〔9〕 上記n型有機半導体が、フラーレン及びその誘導体からなる群から選択されるフラーレン類を含む、〔8〕に記載の光電変換素子。
 〔10〕 上記光電変換膜が、更に色素を含む、〔1〕~〔9〕のいずれか1つに記載の光電変換素子。
 〔11〕 上記光電変換膜が、更にp型有機半導体を含む、〔1〕~〔10〕のいずれか1つに記載の光電変換素子。
 〔12〕 上記導電性膜と上記透明導電性膜の間に、上記光電変換膜の他に1種以上の中間層を有する、〔1〕~〔11〕のいずれか1つに記載の光電変換素子。
 〔13〕 〔1〕~〔12〕のいずれか1つに記載の光電変換素子を有する、撮像素子。
 〔14〕 〔1〕~〔12〕のいずれか1つに記載の光電変換素子を有する、光センサ。
 〔15〕 後述する式(1)で表される化合物。
 〔16〕 後述する置換基群Sから選択される置換基が、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基を有する炭素数1の脂肪族炭化水素基、後述する置換基群RAr1から選択される置換基を有していてもよい芳香環基、後述する式(S-3)で表される基、又は後述する式(S-4)で表される基を表す、〔15〕に記載の化合物。
 〔17〕 後述する式(A-1)で表される基が、後述する式(A-2)で表される基である、〔15〕又は〔16〕に記載の化合物。
 〔18〕 上記式(A-2)で表される基が、後述する式(C-1)で表される基、又は後述する式(C-2)で表される基である、〔17〕に記載の化合物。
 〔19〕 Xが、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、又は-OC(RC9)(RC10)-を表す、〔15〕~〔18〕のいずれか1つに記載の化合物。
 R及びRC1~RC10は、それぞれ上記式(1)中のR、及びRC1~RC10と同義である。
 〔20〕 Xが、>NR、>CRC1C2、又は>C=CRC3C4を表す、〔15〕~〔19〕のいずれか1つに記載の化合物。
 R及びRC1~RC4は、それぞれ上記式(1)中のR、及びRC1~RC4と同義である。
 〔21〕 Xが、>NRを表す、〔15〕~〔20〕のいずれか1つに記載の化合物。
 Rは、上記式(1)中のRと同義である。
 〔22〕 後述する式(2)で表される化合物。
 〔23〕 後述する式(2a)で表される化合物と、後述する式(X)で表される化合物とを反応させて、後述する式(2b)で表される化合物を製造する工程を含む、化合物の製造方法。
 〔24〕 後述する式(2a)で表される化合物と、後述する式(X)で表される化合物とを反応させて、後述する式(2b)で表される化合物を製造する工程と、
 上記式(2b)で表される化合物中、RL4で表される基及びRL5で表される基を、ホルミル基、*-Sn(RSn、*-B(RB1、又は*-B(RB2に変換する工程と、を含む、化合物の製造方法。
 RSn、RB1及びRB2は、各々独立に、置換基を表し、複数のRSn、RB1及びRB2は、それぞれ、互いに同一であっても異なってもよい。RB1同士、及びRB2同士は、互いに結合して環構造を形成していてもよい。Mは、1価の金属カチオンを表す。*は、結合位置を表す。
 〔25〕 後述する式(3)で表される化合物。
 〔26〕 後述する式(3a)で表される化合物と、後述する式(A)で表される化合物とを反応させて、SiRY1 で表される保護基を有する後述する式(3b)で表される化合物を得る工程1と、
 上記式(3b)で表される化合物と、金属化試薬とを反応させた後、ホルミル化剤を反応させ、更に、上記保護基を脱保護して、後述する式(3c)で表される化合物を得る工程2と、
 上記式(3c)で表される化合物と後述する式(C)で表される化合物とを反応させて、後述する式(3)で表される化合物を得る工程3と、を有する、化合物の製造方法。
 〔27〕 後述する式(3c)で表される化合物。
 本発明によれば、青色光を受光した際の量子効率に優れる、光電変換素子を提供できる。
 また、本発明によれば、上記光電変換素子に関する、撮像素子、光センサ、化合物、及び化合物の製造方法を提供できる。
光電変換素子の一構成例を示す断面模式図である。 光電変換素子の一構成例を示す断面模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
 以下、本明細書における各記載の意味を表す。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、水素原子は、軽水素原子(通常の水素原子)及び重水素原子(例えば、二重水素原子等)であってもよい。
 化学式中に明示される「*」の記号は、特に断らない限り、結合位置を表す。
 本明細書において、特定の符号で表示された置換基及び連結基等(以下、「置換基等」ともいう。)が複数あるとき、又は、複数の置換基等を同時に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。この点は、置換基等の数の規定についても同様である。
 本明細書において、「置換基」は、特段の断りがない限り、後述する置換基Wで例示される基が挙げられる。
(置換基W)
 本明細書における置換基Wについて記載する。
 置換基Wは、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子等)、アルキル基(シクロアルキル基、ビシクロアルキル基及びトリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基及びビシクロアルケニル基を含む)、アルキニル基、アリール基、ヘテロアリール基(ヘテロ環基)、シアノ基、ニトロ基、アルコキシ基、アリールオキシ基、シリル基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、2級又は3級のアミノ基(アニリノ基を含む)、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、アルキル又はアリールスルフィニル基、アルキル又はアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、アリール又はヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、カルボキシ基、リン酸基、スルホン酸基、ヒドロキシ基、チオール基、アシルアミノ基、カルバモイル基、ウレイド基、ボロン酸基及び1級アミノ基が挙げられる。
 また、上述の各基は、可能な場合、更に置換基(例えば、上述の各基のうちの1以上の基等)を有していてもよい。例えば、置換基を有していてもよいアルキル基も、置換基Wの一形態として含まれる。
 また、置換基Wが炭素原子を有する場合、置換基Wが有する炭素数は、例えば、1~20である。
 置換基Wが有する水素原子以外の原子の数は、例えば、1~30である。
 なお、後述する特定化合物は、置換基として、カルボキシ基、カルボキシ基の塩、リン酸基の塩、スルホン酸基、スルホン酸基の塩、ヒドロキシ基、チオール基、アシルアミノ基、カルバモイル基、ウレイド基、ボロン酸基(-B(OH))及び/又は1級アミノ基を有さないことも好ましい。
 本明細書において、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 本明細書において、脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。
 上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基及びアルキニル基が挙げられる。
 また、本明細書において、特段の断りがない限り、アルキル基の炭素数は、1~20が好ましく、1~10がより好ましく、1~6が更に好ましい。
 アルキル基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。
 アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ヘキシル基及びシクロペンチル基が挙げられる。
 また、アルキル基は、シクロアルキル基、ビシクロアルキル基及びトリシクロアルキル基のいずれであってもよく、これらの環構造を部分構造として有していてもよい。
 置換基を有していてもよいアルキル基において、アルキル基が有していてもよい置換基としては、例えば、置換基Wで例示される基が挙げられる。なかでも、アリール基(好ましくは炭素数6~18、より好ましくは炭素数6)、ヘテロアリール基(好ましくは炭素数5~18、より好ましくは炭素数5~6)又はハロゲン原子(好ましくはフッ素原子又は塩素原子)が好ましい。
 本明細書において、特段の断りがない限り、アルコキシ基におけるアルキル基部分は、上記アルキル基が好ましい。アルキルチオ基におけるアルキル基部分は、上記アルキル基が好ましい。
 置換基を有していてもよいアルコキシ基において、アルコキシ基が有していてもよい置換基は、置換基を有していてもよいアルキル基における置換基と同様の例が挙げられる。置換基を有していてもよいアルキルチオ基において、アルキルチオ基が有していてもよい置換基は、置換基を有していてもよいアルキル基における置換基と同様の例が挙げられる。
 本明細書において、特段の断りがない限り、アルケニル基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。上記アルケニル基の炭素数は、2~20が好ましい。置換基を有していてもよいアルケニル基において、アルケニル基が有していてもよい置換基は、置換基を有していてもよいアルキル基における置換基と同様の例が挙げられる。
 本明細書において、特段の断りがない限り、アルキニル基は、直鎖状、分岐鎖状及び環状のいずれであってもよい。上記アルキニル基の炭素数は、2~20が好ましい。置換基を有していてもよいアルキニル基において、アルキニル基が有してもよい置換基は、置換基を有していてもよいアルキル基における置換基と同様の例が挙げられる。
 本明細書において、芳香環又は芳香環基を構成する芳香環は、特段の断りがない限り、単環及び多環(例えば、2~6環等)のいずれであってもよい。単環の芳香環は、環構造として、1環の芳香環構造のみを有する芳香環である。多環(例えば、2~6環等)の芳香環は、環構造として複数(例えば、2~6等)の芳香環構造が縮環している芳香環である。
 上記芳香環の環員原子の数は、4~15が好ましい。
 上記芳香環は、芳香族炭化水素環及び芳香族複素環であってもよい。
 上記芳香環が芳香族複素環の場合、環員原子として有するヘテロ原子の数は、例えば、1~10である。上記ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子及びホウ素原子が挙げられる。
 上記芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環及びフェナントレン環が挙げられる。
 上記芳香族複素環としては、例えば、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環(例えば、1,2,3-トリアジン環、1,2,4-トリアジン環及び1,3,5-トリアジン環等)、テトラジン環(例えば、1,2,4,5-テトラジン環等)、キノキサリン環、ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾピロール環、ベンゾフラン環、ベンゾチオフェン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ナフトピロール環、ナフトフラン環、ナフトチオフェン環、ナフトイミダゾール環、ナフトオキサゾール環、3H-ピロリジン環、ピロロイミダゾール環(例えば、5H-ピロロ[1,2-a]イミダゾール環等)、イミダゾオキサゾール環(例えば、イミダゾ[2,1-b]オキサゾール環等)、チエノチアゾール環(例えば、チエノ[2,3-d]チアゾール環等)、ベンゾチアジアゾール環、ベンゾジチオフェン環(例えば、ベンゾ[1,2-b:4,5-b’]ジチオフェン環等)、チエノチオフェン環(例えば、チエノ[3,2-b]チオフェン環等)、チアゾロチアゾール環(例えば、チアゾロ[5,4-d]チアゾール環等)、ナフトジチオフェン環(例えば、ナフト[2,3-b:6,7-b’]ジチオフェン環、ナフト[2,1-b:6,5-b’]ジチオフェン環、ナフト[1,2-b:5,6-b’]ジチオフェン環及び1,8-ジチアジシクロペンタ[b,g]ナフタレン環等)、ベンゾチエノベンゾチオフェン環、ジチエノ[3,2-b:2’,3’-d]チオフェン環及び3,4,7,8-テトラチアジシクロペンタ[a,e]ペンタレン環が挙げられる。
 置換基を有していてもよい芳香環において、芳香環が有していてもよい置換基の種類は、例えば、置換基Wで例示される基が挙げられる。上記芳香環が置換基を有する場合の置換基の数は、1以上(例えば、1~4等)であればよい。
 本明細書において、芳香環基という場合、例えば、上記芳香環から水素原子を1つ以上(例えば、1~5等)除いてなる基が挙げられる。
 本明細書でアリール基という場合、例えば、上記芳香環のうちの芳香族炭化水素環に該当する環から水素原子を1つ取り除いてなる基が挙げられる。
 本明細書でヘテロアリール基という場合、例えば、上記芳香環のうちの芳香族複素環に該当する環から水素原子を1つ除いてなる基が挙げられる。
 本明細書でアリーレン基という場合、例えば、上記芳香環のうちの芳香族炭化水素環に該当する環から水素原子を2つ除いてなる基が挙げられる。
 本明細書でヘテロアリーレン基という場合、例えば、上記芳香環のうちの芳香族複素環に該当する環から水素原子を2つ除いてなる基が挙げられる。
 置換基を有していてもよい芳香環基、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基、置換基を有していてもよいアリーレン基及び置換基を有していてもよいヘテロアリーレン基において、これらの基が有してもよい置換基の種類は、例えば、置換基Wで例示される基が挙げられる。置換基を有していてもよいこれらの基が置換基を有する場合の置換基の数は1以上(例えば、1~4等)であればよい。
 本明細書において、脂肪族ヘテロ環基の環員数は、5~20が好ましく、5~12がより好ましく、6~8が更に好ましい。
 上記脂肪族ヘテロ環基が有するヘテロ原子としては、例えば、硫黄原子、酸素原子、窒素原子、セレン原子、テルル原子、リン原子、ケイ素原子及びホウ素原子が挙げられ、硫黄原子、酸素原子又は窒素原子が好ましい。
 上記脂肪族ヘテロ環基を構成する脂肪族ヘテロ環としては、例えば、ピロリジン環、オキソラン環、チオラン環、ピペリジン環、テトラヒドロフラン環、テトラヒドロピラン環、チアン環、ピペラジン環、モルホリン環、キヌクリジン環、ピロリジン環、アゼチジン環、オキセタン環、アジリジン環、ジオキサン環、ペンタメチレンスルフィド環及びγ-ブチロラクトンが挙げられる。
 本明細書において表記される2価の基(例えば、-CO-O-等)の結合方向は、特段の断りがない限り、制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-CO-O-である場合、上記化合物は「X-O-CO-Z」及び「X-CO-O-Z」のいずれであってもよい。
 本明細書において、上記エーテル性酸素原子を有していてもよいとは、脂肪族炭化水素基中(炭素原子-炭素原子間)又は末端に、-O-で表される2価の連結基を有していてもよいことを意味する。
 本明細書において、幾何異性体(シス-トランス異性体)を有し得る化合物に関して、上記化合物を表す一般式又は構造式が、便宜上、シス体及びトランス体のいずれか一方の形態でのみ記載される場合がある。このような場合であっても、特段の記載がない限り、上記化合物の形態がシス体及びトランス体のいずれか一方に限定されることはなく、上記化合物は、シス体及びトランス体のいずれの形態であってもよい。
[光電変換素子]
 本発明の光電変換素子は、導電性膜、光電変換膜、及び透明導電性膜をこの順で有する光電変換素子であって、上記光電変換膜は、後述する式(1)で表される化合物(以下、「特定化合物」ともいう。)を含む。
 本発明の光電変換素子が上記構成を取ることで、本発明の課題を解決できる機序は必ずしも明らかではないが、本発明者らは以下の通り推測している。
 なお、下記推測により、効果が得られる機序が制限されるものではない。すなわち、下記以外の機序により効果が得られる場合でも、本発明の範囲に含まれる。
 文献1に開示されている化合物は、ドナー部位としてフルオレン等の縮環構造に分岐鎖状のアルキル基が置換した構造を有するADA型色素である。芳香環が縮環した構造を持つ場合、色素同士の凝集が起こりやすく、光電変換素子の量子効率の悪化に繋がるため、文献1においてはアルキル基のような置換基を導入することで凝集を抑制している。
 しかしながら、文献1における置換基では、置換基が大きすぎるために電子やホールの授受が効率的に行われず、量子効率がやはり不十分であった。
 一方、本発明における特定化合物の場合、カルバゾールやフルオレン等の縮環構造に導入されている置換基は、置換基の大きさが適正化されているため、上記のような色素同士の凝集が起こることなく、電子やホールの授受も効率的に行うことができた結果、光電変換素子の量子効率が文献1よりも向上したものと推察される。
 以下、光電変換素子が青色光(波長400~500nmの範囲の光)を受光した際の量子効率がより優れることを、本発明の効果がより優れるともいう。
 本発明の光電変換素子の構成について以下で詳細に説明する。
 図1に、本発明の光電変換素子の一実施形態の断面模式図を示す。
 図1に示す光電変換素子10aは、下部電極として機能する導電性膜(以下、「下部電極」ともいう。)11と、電子ブロッキング膜16Aと、特定化合物を含む光電変換膜12と、上部電極として機能する透明導電性膜(以下、「上部電極」ともいう。)15とがこの順に積層された構成を有する。
 図2に別の光電変換素子の構成例を示す。図2に示す光電変換素子10bは、下部電極11上に、電子ブロッキング膜16Aと、光電変換膜12と、正孔ブロッキング膜16Bと、上部電極15とがこの順に積層された構成を有する。なお、図1及び図2中の電子ブロッキング膜16A、光電変換膜12及び正孔ブロッキング膜16Bの積層順は、用途及び特性に応じて、適宜変更してもよい。
 光電変換素子10a(又は10b)では、上部電極15を介して光電変換膜12に光が入射されることが好ましい。
 また、光電変換素子10a(又は10b)を使用する場合、電圧を印加できる。この場合、下部電極11と上部電極15とが一対の電極をなし、この一対の電極間に、1×10-5~1×10V/cmの電圧を印加することが好ましい。性能及び消費電力の点で、印加される電圧としては、1×10-4~1×10V/cmがより好ましく、1×10-3~5×10V/cmが更に好ましい。
 なお、電圧印加方法については、図1及び図2において、電子ブロッキング膜16A側が陰極となり、光電変換膜12側が陽極となるように印加することが好ましい。光電変換素子10a(又は10b)を光センサとして使用した場合、また、撮像素子に組み込んだ場合も、同様の方法により電圧を印加できる。
 後段で詳述するように、光電変換素子10a(又は10b)は撮像素子用途に好適に適用できる。
 以下に、本発明の光電変換素子を構成する各層の形態について詳述する。
〔光電変換膜〕
 本発明の光電変換素子は、光電変換膜を有する。
<特定化合物>
 上記光電変換膜は、式(1)で表される化合物(特定化合物)を含む。
 式(1)中、Xは、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、-OC(RC9)(RC10)-、硫黄原子、酸素原子、又はセレン原子を表す。
 Rは、後述する置換基群Sから選択される置換基を表す。
 RC1~RC10は、各々独立に、水素原子、又は後述する置換基群Sから選択される置換基を表す。但し、RC1及びRC2の少なくとも一方は、置換基群Sから選択される置換基を表し、RC3及びRC4の少なくとも一方は、置換基群Sから選択される置換基を表し、RC5及びRC6の少なくとも一方は、置換基群Sから選択される置換基を表し、RC7及びRC8の少なくとも一方は、置換基群Sから選択される置換基を表し、RC9及びRC10の少なくとも一方は、置換基群Sから選択される置換基を表す。
 RC1とRC2、RC3とRC4、RC5とRC6、RC7とRC8、及び、RC9とRC10は、各々独立に、直接又は連結基を介して結合して環を形成してもよい。例えば、RC1とRC2とがともにベンゼン環基であり、両者が直接結合(単結合を介して結合)して、フルオレン環を形成してもよい。
 Xは、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、又は-OC(RC9)(RC10)-を表すことが好ましく、>NR、>CRC1C2、又は>C=CRC3C4を表すことがより好ましく、>NR又は>CRC1C2を表すことが更に好ましく、>NRを表すことが最も好ましい。
 また、RC1及びRC2の両方が、置換基群Sから選択される置換基を表すことが好ましい。
 また、RC3及びRC4の両方が、置換基群Sから選択される置換基を表すことが好ましい。
 また、RC5及びRC6の両方が、置換基群Sから選択される置換基を表すことが好ましい。
 また、RC7及びRC8の両方が、置換基群Sから選択される置換基を表すことが好ましい。
 また、RC9及びRC10の両方が、置換基群Sから選択される置換基を表すことが好ましい。
・置換基群S
 置換基群Sは、以下の置換基からなる群である。
 置換基群S:炭素数1~3の直鎖状の脂肪族炭化水素基(以下、「置換基S」ともいう。)、置換基を有していてもよい炭素数3~8の環状の脂肪族炭化水素基(以下、「置換基S」ともいう。)、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数1~3の直鎖状の脂肪族炭化水素基(以下、「置換基SAB」ともいう。)、置換基を有していてもよい芳香環基を有する炭素数1~3の直鎖状の脂肪族炭化水素基(以下、「置換基SAAr」ともいう。)、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数3の分岐鎖状の脂肪族炭化水素基(以下、「置換基SDB」ともいう。)、置換基を有していてもよい芳香環基を有する炭素数3の分岐鎖状の脂肪族炭化水素基(以下、「置換基SDAr」ともいう。)、置換基を有していてもよい芳香環基(以下、「置換基SAr」ともいう。)、式(S-1)で表される基、及び式(S-2)で表される基。
 置換基群S中の、炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい炭素数3~8の環状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数3の分岐鎖状の脂肪族炭化水素基、及び置換基を有していてもよい芳香環基を有する炭素数3の分岐鎖状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
 置換基Sの炭素数は1~3であれば特に制限されないが、1又は2が好ましい。
 置換基Sとしては、例えば、炭素数1~3の直鎖状のアルキル基、炭素数2又は3の直鎖状のアルケニル基、及び炭素数2又は3の直鎖状のアルキニル基が挙げられる。
 炭素数1~3の直鎖状のアルキル基としては、例えば、メチル基、エチル基及びn-プロピル基が挙げられ、なかでも、メチル基又はエチル基が好ましい。
 炭素数2又は3の直鎖状のアルケニル基としては、例えば、ビニル基、アリル基又はイソアリル基が挙げられる。
 炭素数2又は3の直鎖状のアルキニル基としては、例えば、エチニル基、1-プロピニル基又はプロパルギル基が挙げられる。
 置換基S中の炭素数3~8の環状の脂肪族炭化水素基は、単環及び多環のいずれの構造であってもよい。
 置換基S中の炭素数3~8の環状の脂肪族炭化水素基の炭素数は3~8であれば特に制限されないが、3~6が好ましく、3がより好ましい。
 置換基S中の炭素数3~8の環状の脂肪族炭化水素基としては、例えば、炭素数3~8の環状のアルキル基、及び炭素数3~8の環状のアルケニル基が挙げられる。
 炭素数3~8の環状のアルキル基としては、シクロプロピル基、シクロブチル基、シクロへキシル基、シクロヘプチル基、4-テトラヒドロピラニル基、及びビシクロ[1,1,1]ペンタンから水素原子1つを除いてなる基が挙げられる。
 炭素数3~8の環状のアルケニル基としては、炭素数3~8のシクロアルケンから水素原子を1つ除いてなる基が挙げられる。シクロアルケンとしては、シクロブテン、シクロペンテン、シクロヘキセン、1,3-シクロヘキサジエン、及び1,4-シクロヘキサジエンが挙げられる。
 置換基S中の炭素数3~8の環状の脂肪族炭化水素基が有していてもよい置換基の数は特に制限されないが、1~6が好ましく、1~4がより好ましく、1又は2が更に好ましい。
 置換基S中の炭素数3~8の環状の脂肪族炭化水素基が有していてもよい置換基は、例えば、上記置換基Wで例示される基が挙げられる。
 なかでも、置換基S中の炭素数3~8の環状の脂肪族炭化水素基が有していてもよい置換基としては、後述する置換基群RAr1で例示される基が好ましく、炭素数1~3の直鎖状のアルキル基、炭素数3~5の分岐鎖状のアルキル基、又はハロゲン原子がより好ましい。
 置換基SABは、上述したように、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数1~3の直鎖状の脂肪族炭化水素基であるが、上記置換基S(炭素数1~3の直鎖状の脂肪族炭化水素基)中の1以上の水素原子を炭素数3~8の環状の脂肪族炭化水素基で置換してなる基に該当する。
 置換基SAB中、炭素数3~8の環状の脂肪族炭化水素基の数は特に制限されないが、1~3が好ましく、1又は2がより好ましい。
 置換基SABにおける、炭素数1~3の直鎖状の脂肪族炭化水素基の具体的な態様、及び好適態様は、上述した置換基Sの具体的な態様、及び好適態様と同じである。
 また、置換基SABにおける、炭素数3~8の環状の脂肪族炭化水素基の具体的な態様、及び好適態様は、置換基S中の炭素数3~8の環状の脂肪族炭化水素基の具体的な態様、及び好適態様と同じである。
 なかでも、置換基SAB中の炭素数1~3の直鎖状の脂肪族炭化水素基としては、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基又はエチル基がより好ましい。また、置換基SAB中の炭素数3~8の環状の脂肪族炭化水素基としては、炭素数3~8の環状のアルキル基が好ましく、炭素数3~6の環状のアルキル基がより好ましい。
 置換基SABとしては、例えば、炭素数3~8の環状のアルキル基を有するメチル基(以下、「置換基SAB1」ともいう。言い換えれば、メチル基の水素原子の少なくとも1つを炭素数3~8の環状のアルキル基で置換してなる基。)、炭素数3~8の環状のアルキル基を有するエチル基(以下、「置換基SAB2」ともいう。言い換えれば、エチル基の水素原子を炭素数3~8の環状のアルキル基で置換してなる基。)、及び炭素数3~8の環状のアルキル基を有するn-プロピル基(以下、「置換基SAB3」ともいう。言い換えれば、n-プロピル基の水素原子を炭素数3~8の環状のアルキル基で置換してなる基。)が挙げられる。
 上記炭素数3~8の環状のアルキル基としては、シクロプロピル基、シクロブチル基、シクロへキシル基、シクロヘプチル基、4-テトラヒドロピラニル基、及びビシクロ[1,1,1]ペンタンから水素原子1つを除いてなる基が挙げられる。なかでも、シクロプロピル基が好ましい。
 置換基SAB1中、炭素数3~8の環状のアルキル基の数は、特に制限されないが、1又は2が好ましい。
 置換基SAB1としては、なかでも、メチル基の1つ又は2つの水素原子を炭素数3~6の環状のアルキル基で置換してなる基が好ましく、メチル基の1つ又は2つの水素原子を炭素数3の環状のアルキル基(シクロプロピル基)で置換してなる基がより好ましい。
 置換基SAB2中、炭素数3~8の環状のアルキル基の数は、特に制限されないが、1又は2が好ましい。
 置換基SAB3中、炭素数3~8の環状のアルキル基の数は、特に制限されないが、1又は2が好ましい。
 置換基SAArは、上述したように、置換基を有していてもよい芳香環基を有する炭素数1~3の直鎖状の脂肪族炭化水素基であるが、上記置換基S(炭素数1~3の直鎖状の脂肪族炭化水素基)中の1以上の水素原子を後述する置換基SAr(置換基を有していてもよい芳香環基)で置換してなる基に該当する。
 置換基SAAr中、置換基を有していてもよい芳香環基の数は特に制限されないが、1~3が好ましく、1又は2がより好ましい。
 置換基SAArにおける、炭素数1~3の直鎖状の脂肪族炭化水素基及び置換基を有していてもよい芳香環基の具体的な態様、及び好適態様は、上述した置換基S及び後述する置換基SArの具体的な態様、及び好適態様と同じである。なかでも、置換基SAAr中の炭素数1~3の直鎖状の脂肪族炭化水素基としては、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基又はエチル基がより好ましい。また、置換基SAAr中の置換基を有していてもよい芳香環基としては、アリール基が好ましく、フェニル基がより好ましい。
 置換基SDBは、上述したように、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数3の分岐鎖状の脂肪族炭化水素基であるが、炭素数3の分岐鎖状の脂肪族炭化水素基(以下、「置換基S」ともいう。)中の1以上の水素原子を炭素数3~8の環状の脂肪族炭化水素基で置換してなる基に該当する。
 置換基SDB中、炭素数3~8の環状の脂肪族炭化水素基の数は特に制限されないが、1~3が好ましく、1又は2がより好ましい。
 置換基SDBにおける、炭素数3の分岐鎖状の脂肪族炭化水素基としては、例えば、イソプロピル基、及びイソプロペニル基が挙げられる。なかでも、イソプロピル基が好ましい。
 また、置換基SDBにおける炭素数3~8の環状の脂肪族炭化水素基の具体的な態様、及び好適態様は、置換基S中の炭素数3~8の環状の脂肪族炭化水素基の具体的な態様、及び好適態様は上述した通りである。
 置換基SDArは、上述したように、置換基を有していてもよい芳香環基を有する炭素数3の分岐鎖状の脂肪族炭化水素基であるが、上記置換基S(炭素数3の分岐鎖状の脂肪族炭化水素基)中の1以上の水素原子を後述する置換基SAr(置換基を有していてもよい芳香環基)で置換してなる基に該当する。
 置換基SDAr中、置換基を有していてもよい芳香環基の数は特に制限されないが、1~3が好ましく、1又は2がより好ましい。
 置換基SDArにおける、置換基Sの具体的な態様、及び好適態様は上述した通りである。
 置換基SDArにおける、置換基SArの具体的な態様、及び好適態様は後述する通りである。
 置換基SAr中の芳香環基を構成する芳香環は、単環及び多環のいずれであってもよく、芳香族炭化水素環及び芳香族複素環のいずれであってもよい。単環の芳香環、多環の芳香環、芳香族炭化水素環、及び芳香族複素環の具体的な態様は上述した通りである。
 置換基SAr中の芳香環基を構成する芳香環の環員原子の数は、4~15が好ましく、4~10がより好ましく、4~6が更に好ましい。
 なかでも、置換基SAr中の芳香環基を構成する芳香族炭化水素環としては、ベンゼン環、ナフタレン環、又はアントラセン環が好ましい。
 また、置換基SAr中の芳香環基を構成する芳香族複素環としては、ピリジン環、チオフェン環、ベンゾフラン環(例えば、2,3-ベンゾフラン環等)、又はベンゾチオフェン環(例えば、ベンゾ[b]チオフェン環等)が好ましい。
 置換基SAr中の芳香環基が有していてもよい置換基の数は特に制限されないが、1~6が好ましく、1~4がより好ましく、1又は2が更に好ましい。
 置換基SAr中の芳香環基が有していてもよい置換基としては、例えば、上記置換基Wで例示される基が挙げられる。
 置換基SAr中の芳香環基が有していてもよい置換基が複数ある場合、置換基同士が互いに結合して非芳香環を形成してもよい。
 なかでも、置換基SAr中の芳香環基が有していてもよい置換基としては、後述する置換基群RAr1で例示される基が好ましく、炭素数1~3の直鎖状のアルキル基、炭素数3~5の分岐鎖状のアルキル基、又はハロゲン原子がより好ましい。
・置換基群RAr1
 上記置換基群RAr1から選択される置換基は以下の通りである。
 置換基群RAr1:炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基、芳香環基、ハロゲン原子、及び*-Si(RSi
 RSiは、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基、又は芳香環基を表す。
 置換基群RAr1中の、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、及び炭素数3~8の環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
 置換基群RAr1中、炭素数1~3の直鎖状の脂肪族炭化水素基、及び炭素数3~8の環状の脂肪族炭化水素基の具体的な態様、及び好適態様については、置換基S及び置換基Sの具体的な態様、及び好適態様と同様である。
 置換基群RAr1中、炭素数3~5の分岐鎖状の脂肪族炭化水素基としては、例えば、炭素数3~5の分岐鎖状のアルキル基(イソプロピル基等)、炭素数3~5の分岐鎖状のアルケニル基、及び炭素数3~5の分岐鎖状のアルキニル基が挙げられる。また、炭素数3~5の分岐鎖状の脂肪族炭化水素基の炭素数は3~5であれば特に制限されないが、3~4が好ましい。
 置換基群RAr1中、芳香環基の具体的な態様、及び好適態様は、置換基SAr中の芳香環基の具体的な態様、及び好適態様と同様であり、なかでも、アリール基が好ましく、フェニル基がより好ましい。
 RSiで表される、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、及び炭素数3~8の環状の脂肪族炭化水素基の具体的な態様、及び好適態様については、置換基群RAr1で述べた各基の態様、及び好適態様と同様である。
 また、RSiで表される芳香環基の具体的な態様、及び好適態様は上述した通りであるが、なかでも、アリール基が好ましく、フェニル基がより好ましい。
 式(S-1)で表される基は、以下の通りである。
   *-LS1-C(RS1   式(S-1)
 式(S-1)中、LS1は、単結合又は炭素数1~3の直鎖状のアルキレン基を表す。
 RS1は、各々独立に、水素原子、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~4の分岐鎖状の脂肪族炭化水素基、又は炭素数3の環状のアルキル基を表す。
 複数のRS1は、互いに同一であっても異なってもよい。但し、3つのRS1のうち、2つ以上が水素原子以外である。
 上記アルキレン基、上記炭素数1~3の直鎖状の脂肪族炭化水素基、上記炭素数3~4の分岐鎖状の脂肪族炭化水素基、及び上記炭素数3の環状のアルキル基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
 式(S-1)で表される基の炭素数は、3~9が好ましく、3~7がより好ましい。
 なお、上記式(S-1)で表される基の炭素数とは、式(S-1)で表される基に含まれるすべての炭素原子の合計数を意味する。
 LS1は、単結合又はメチレン基が好ましく、単結合がより好ましい。
 水素原子以外で表されるRS1の数は、2つ以上であれば特に制限されないが、RS1のうち、1つが水素原子であり、残りの2つが水素原子以外であることが好ましい。
 RS1としては、なかでも、メチル基、イソプロピル基、又はt-ブチル基が好ましく、メチル基又はイソプロピル基がより好ましい。
 式(S-2)で表される基は、以下の通りである。
   *-C(=Q)RAc1    式(S-2)
 式(S-2)中、
 Qは、酸素原子又は硫黄原子を表す。Qとしては、酸素原子が好ましい。
 RAc1は、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は置換基を有していてもよい脂肪族ヘテロ環基を表す。RAc1で表される各基の定義は上述した通りである。また、RAc1で表される各基が有していてもよい置換基としては、例えば、上記置換基Wで例示される基が挙げられる。
 RAc1で表される置換基を有していてもよい脂肪族炭化水素基としては、なかでも、ハロゲン原子を有していてもよい直鎖状、分岐鎖状、又は環状の脂肪族炭化水素基が好ましい。
 RAc1で表される置換基を有していてもよい芳香環基としては、なかでも、上記置換基群RAr1から選択される置換基を有していてもよい芳香環基が好ましい。
 本発明の効果がより優れる点で、上記置換基群Sから選択される置換基が、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基を有する炭素数1の脂肪族炭化水素基、置換基群RAr1から選択される置換基を有していてもよい芳香環基、式(S-3)で表される基、又は式(S-4)で表される基を表すことが好ましい。
 また、上記置換基群RAr1から選択される置換基の具体的な態様及び好適態様については、上述した通りであるが、置換基群RAr1から選択される置換基は、置換基群RAr2から選択される置換基であることが好ましい。
 置換基群RAr2:炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~4の分岐鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、ハロゲン原子、及び*-Si(RSi
 RSiは、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~4の分岐鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、又は芳香環基を表す。
 置換基群RAr2中の、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~4の分岐鎖状の脂肪族炭化水素基、及び炭素数3~6の環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
 式(S-3)で表される基は、以下の通りである。
   *-C(RS2   式(S-3)
 式(S-3)中、RS2は、各々独立に、水素原子、メチル基、イソプロピル基、又はt-ブチル基を表す。
 複数のRS2は、互いに同一であっても異なってもよい。但し、式(S-3)で表される基の炭素数は、3~9であり、3つのRS2のうち、2つ以上が水素原子以外である。
 式(S-3)で表される基の炭素数は、3~9が好ましく、3~7がより好ましい。
 なお、上記式(S-3)で表される基の炭素数とは、式(S-3)で表される基に含まれるすべての炭素原子の合計数を意味する。
 水素原子以外で表されるRS2の数は、2つ以上であれば特に制限されないが、RS2のうち、1つが水素原子であり、残りの2つが水素原子以外であることが好ましい。
 RS2としては、なかでも、メチル基又はイソプロピル基が好ましい。
 式(S-4)で表される基は、以下の通りである。
   *-C(=O)RAc2 式(S-4)
 RAc2は、ハロゲン原子を有していてもよい炭素数1~3の直鎖状の脂肪族炭化水素基、ハロゲン原子を有していてもよい炭素数3~5の分岐鎖状の脂肪族炭化水素基、ハロゲン原子を有していてもよい炭素数3~6の環状の脂肪族炭化水素基、又は上記置換基群RAr1から選択される置換基を有していてもよい芳香環基を表す。
 上記脂肪族炭化水素基としては、アルキル基が好ましい。
 また、上記置換基群RAr1から選択される置換基を有していてもよい芳香環基としては、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、又は炭素数3~8の環状の脂肪族炭化水素基を有していてもよい環員原子4~10の芳香環基が好ましく、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、又は炭素数3~8の環状の脂肪族炭化水素基を有していてもよいフェニル基がより好ましい。
 式(1)中、Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
 RX1は、水素原子又は置換基を表す。
 Z~Zのうち4つ以上が-CRX1=を表すことが好ましく、全てが-CRX1=を表すことがより好ましい。
 Z~Zのうち2つ以上が-CRX1=を表す場合、RX1同士は、同一であっても異なっていてもよい。
 なかでも、Z~Zのうち2つ以下(好ましくは、Z、Z、Z及びZのうち2つ以下)が、RX1が置換基である-CRX1=であり、且つ、Z~Zのうち残りが-CH=であることが好ましく、Z~Zのうち全てが-CH=であることがより好ましい。
 RX1で表される置換基としては、例えば、上記置換基Wで例示される基が挙げられ、より具体的には、ハロゲン原子及びアルキル基が挙げられる。
 ハロゲン原子としては、フッ素原子又は塩素原子が好ましい。
 アルキル基としては、炭素数1~3のアルキル基が好ましく、炭素数1~3の直鎖状のアルキル基がより好ましく、メチル基が更に好ましい。
 式(1)中、R及びRは、各々独立に、水素原子又は置換基を表す。
 R及びRで表される置換基としては、例えば、上記置換基Wで例示される基が挙げられる。なかでも、本発明の効果がより優れる点で、R及びRは、水素原子であることが好ましい。
 式(1)中、A及びAは、各々独立に、上記式(A-1)で表される基を表す。
 式(A-1)中、Yは、各々独立に、硫黄原子、酸素原子、=NRX2、又は=CRX3X4を表す。RX2は、水素原子又は置換基を表す。RX3及びRX4は、各々独立に、シアノ基、-SOX5、-COORX6、又は-CORX7を表す。
 Yとしては、本発明の効果がより優れる点で、酸素原子又は硫黄原子を表すことが好ましい。
 RX2で表される置換基としては、例えば、上記置換基Wで例示される置換基が挙げられる。
 また、RX5~RX7は、各々独立に、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は置換基を有していてもよい脂肪族ヘテロ環基を表す。RX5~RX7で表されるこれらの基が有していてもよい置換基としては、例えば、上記置換基Wで例示される置換基が挙げられる。
 上記脂肪族炭化水素基の定義は上述した通りであり、なかでも、アルキル基が好ましく、直鎖状のアルキル基がより好ましい。脂肪族炭化水素基の炭素数は1~3が好ましい。
 上記芳香環基の定義は上述した通りであり、なかでも、アリール基が好ましく、フェニル基がより好ましい。
 上記脂肪族ヘテロ環基の定義は上述した通りである。
 式(A-1)中、Cは、2以上の炭素原子を含み、置換基を有していてもよい環を表す。
 上記環の炭素数は、3~30が好ましく、3~20がより好ましく、3~10が更に好ましい。なお、上記炭素数は、式中に明示される2個の炭素原子を含む数である。
 上記環は、芳香族性及び非芳香族性のいずれであってもよい。
 上記環は、単環及び多環のいずれであってもよく、5員環、6員環、又は5員環及び6員環の少なくとも1つを含む縮合環が好ましい。上記縮合環を形成する環の数は、1~4が好ましく、1~3がより好ましい。
 上記環は、ヘテロ原子を有していてもよい。上記ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子及びホウ素原子が挙げられ、硫黄原子、窒素原子又は酸素原子が好ましい。
 上記環のヘテロ原子の数は、0~10が好ましく、0~5がより好ましい。
 上記Cで表される環を構成する炭素原子のうち、式(A-1)中で*が付されている結合位置の炭素原子及びYと結合している炭素原子以外の炭素原子は、カルボニル炭素(>C=O)又はチオカルボニル炭素(>C=S)で置換されていてもよい。
 上記環が有していてもよい置換基としては、例えば、上記置換基Wで例示される基が挙げられ、ハロゲン原子、アルキル基、芳香環基又はシリル基が好ましく、ハロゲン原子、又は、アルキル基がより好ましい。
 上記アルキル基は、直鎖状、分岐鎖状及び環状のいずれであってもよく、直鎖状が好ましい。
 上記アルキル基の炭素数は、1~10が好ましく、1~3がより好ましい。
 上記Cで表される環としては、酸性核(例えば、メロシアニン色素で酸性核等)として用いられる環が好ましく、例えば以下の核が挙げられる。
 (a)1,3-ジカルボニル核:例えば、1,3-インダンジオン核、1,3-シクロヘキサンジオン、5,5-ジメチル-1,3-シクロヘキサンジオン及び1,3-ジオキサン-4,6-ジオン等。
 (b)ピラゾリノン核:例えば、1-フェニル-2-ピラゾリン-5-オン、3-メチル-1-フェニル-2-ピラゾリン-5-オン及び1-(2-ベンゾチアゾリル)-3-メチル-2-ピラゾリン-5-オン等。
 (c)イソオキサゾリノン核:例えば、3-フェニル-2-イソオキサゾリン-5-オン及び3-メチル-2-イソオキサゾリン-5-オン等。
 (d)オキシインドール核:例えば、1-アルキル-2,3-ジヒドロ-2-オキシインドール等。
 (e)2,4,6-トリオキソヘキサヒドロピリミジン核:例えば、バルビツール酸、2-チオバルビツール酸及びその誘導体等。上記誘導体としては、例えば、1-メチル、1-エチル等の1-アルキル体、1,3-ジメチル、1,3-ジエチル及び1,3-ジブチル等の1,3-ジアルキル体、1,3-ジフェニル、1,3-ジ(p-クロロフェニル)及び1,3-ジ(p-エトキシカルボニルフェニル)等の1,3-ジアリール体、1-エチル-3-フェニル等の1-アルキル-1-アリール体、並びに、1,3-ジ(2-ピリジル)等の1,3-ジヘテロアリール体が挙げられる。
(f)2-チオ-2,4-チアゾリジンジオン核:例えば、ローダニン及びその誘導体等。上記誘導体としては、例えば、3-メチルローダニン、3-エチルローダニン及び3-アリルローダニン等の3-アルキルローダニン、3-フェニルローダニン等の3-アリールローダニン、並びに、3-(2-ピリジル)ローダニン等の3-ヘテロアリールローダニン等が挙げられる。
(g)2-チオ-2,4-オキサゾリジンジオン核(2-チオ-2,4-(3H,5H)-オキサゾールジオン核):例えば、3-エチル-2-チオ-2,4-オキサゾリジンジオン等。
(h)チアナフテノン核:例えば、3(2H)-チアナフテノン-1,1-ジオキサイド等。
(i)2-チオ-2,5-チアゾリジンジオン核:例えば、3-エチル-2-チオ-2,5-チアゾリジンジオン等。
(j)2,4-チアゾリジンジオン核:例えば、2,4-チアゾリジンジオン、3-エチル-2,4-チアゾリジンジオン及び3-フェニル-2,4-チアゾリジンジオン等。
(k)チアゾリン-4-オン核:例えば、4-チアゾリノン及び2-エチル-4-チアゾリノン等。
(l)2,4-イミダゾリジンジオン(ヒダントイン)核:例えば、2,4-イミダゾリジンジオン及び3-エチル-2,4-イミダゾリジンジオン等。
(m)2-チオ-2,4-イミダゾリジンジオン(2-チオヒダントイン)核:例えば、2-チオ-2,4-イミダゾリジンジオン及び3-エチル-2-チオ-2,4-イミダゾリジンジオン等。
(n)イミダゾリン-5-オン核:例えば、2-プロピルメルカプト-2-イミダゾリン-5-オン等。
(o)3,5-ピラゾリジンジオン核:例えば、1,2-ジフェニル-3,5-ピラゾリジンジオン及び1,2-ジメチル-3,5-ピラゾリジンジオン等。
(p)ベンゾチオフェン-3(2H)-オン核:例えば、ベンゾチオフェン-3(2H)-オン、オキソベンゾチオフェン-3(2H)-オン及びジオキソベンゾチオフェン-3(2H)-オン等。
(q)インダノン核:例えば、1-インダノン、3-フェニル-1-インダノン、3-メチル-1-インダノン、3,3-ジフェニル-1-インダノン及び3,3-ジメチル-1-インダノン等。
(r)ベンゾフラン-3-(2H)-オン核:例えば、ベンゾフラン-3-(2H)-オン等。
(s)2,2-ジヒドロフェナレン-1,3-ジオン核等。
 上記式(A-1)で表される基は、本発明の効果がより優れる点で、式(A-2)で表される基であることが好ましい。
 式(A-2)中、X及びXは、各々独立に、酸素原子又は硫黄原子を表す。X及びXは、両方が酸素原子を表すことが好ましい。
 また、式(A-2)中、Cは、3以上の炭素原子を含む環を表す。
 上記Cが含む3つの炭素原子は、式(A-2)中に明示される3つの炭素原子である。
 上記環の炭素数は、3~30が好ましく、3~20がより好ましく、3~10が更に好ましい。上記環の炭素数は、式中に明示される3つの炭素原子を含む数である。
 上記環は、芳香環及び非芳香族環のいずれであってもよい。
 上記環は、単環及び多環のいずれであってもよく、5員環、6員環、又は5員環及び6員環の少なくとも1つを含む縮環が好ましい。上記環が多環である場合、含まれる環の数は、2~6が好ましく、2又は3がより好ましい。
 上記環は、ヘテロ原子を有していてもよい。上記ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子及びホウ素原子が挙げられ、硫黄原子、窒素原子又は酸素原子が好ましい。
 上記環が有するヘテロ原子の数は、0~10が好ましく、0~5がより好ましい。
 上記Cで表される環を構成する炭素原子のうち、式(A-2)中で*が付されている結合位置の炭素原子、並びに、X及びXと結合している炭素原子以外の炭素原子は、カルボニル炭素(>C=O)又はチオカルボニル炭素(>C=S)で置換されていてもよい。
 上記環が有していてもよい置換基の好適態様は、上述の環Cが有していてもよい置換基と同様である。
 また、上記式(A-2)で表される基は、式(C-1)で表される基、又は式(C-2)で表される基であることが好ましい。
 式(C-1)中、Xc1及びXc2は、各々独立に、硫黄原子又は酸素原子を表す。
 上記Xc1及びXc2の少なくとも一方は、酸素原子であることが好ましく、Xc1及びXc2の両方が酸素原子であることがより好ましい。
 式(C-1)中、Cは、置換基を有していてもよい芳香環を表す。
 上記芳香環の炭素数は、4~30が好ましく、5~12がより好ましく、6~8が更に好ましい。なお、上記炭素数は、式中に明示される2個の炭素原子を含む数である。
 上記芳香環は、単環及び多環のいずれであってもよい。
 また、芳香環は、芳香族炭化水素環及び芳香族複素環のいずれであってもよいが、芳香族炭化水素環が好ましい。
 上記Cで表される芳香環としては、上記芳香環の説明で例示した環が挙げられる。
 なかでも、Cで表される芳香環としては、ベンゼン環、ナフタレン環、アントラセン環、又はピレン環が好ましく、ベンゼン環がより好ましい。
 上記芳香環が有していてもよい置換基としては、例えば、上記置換基Wで例示される基が挙げられる。
 上記式(C-2)中、Xc3~Xc5は、硫黄原子又は酸素原子を表す。
 Xc3~Xc5は、全てが酸素原子であることが好ましい。
 また、Rc1及びRc2は、各々独立に、水素原子又は置換基を表す。Rc1及びRc2で表される置換基としては、例えば上記置換基Wで例示される基が挙げられるが、なかでも、アルキル基、又はフェニル基が好ましく、アルキル基がより好ましい。
 上記フェニル基は、更に置換基を有していてもよく、例えば、上記置換基Wで例示される基が挙げられる。
 上記式(1)中、A及びAが式(A-1)で表される基である場合、特定化合物は式(1A-1)で表され、A及びAが式(A-2)で表される基である場合、特定化合物は式(1A-2)で表される。
 また、上記式(A-2)で表される基が式(C-1)で表される基である場合、特定化合物は式(1C-1)で表され、上記式(A-2)で表される基が式(C-2)で表される基である場合、特定化合物は式(1C-2)で表される。
 特定化合物の分子量は、400~1,200が好ましく、400~1,000がより好ましく、500~800が更に好ましい。
 上記分子量である場合、特定化合物の昇華温度が低くなり、高速で光電変換膜を成膜した際にも量子効率に優れると推測される。
 特定化合物は、p型有機半導体として使用する際の安定性とn型有機半導体とのエネルギー準位のマッチングの点で、単膜でのイオン化ポテンシャルが-5.0~-6.0eVであることが好ましい。
 特定化合物の極大吸収波長は、波長400~600nmの範囲が好ましく、波長400~500nmの範囲がより好ましい。
 上記極大吸収波長は、特定化合物の吸収スペクトルを吸光度が0.5~1.0になる程度の濃度に調整して溶液状態(溶剤:クロロホルム)で測定した値である。ただし、特定化合物がクロロホルムに溶解しない場合、特定化合物を蒸着し、膜状態にした特定化合物を用いて測定した値を特定化合物の極大吸収波長とする。
 特定化合物は、撮像素子、光センサ又は光電池に用いる光電変換膜の材料として特に有用である。特定化合物は、光電変換膜内で色素として機能する場合が多い。また、特定化合物は、着色材料、液晶材料、有機半導体材料、電荷輸送材料、医薬材料及び蛍光診断薬材料としても使用できる。
 以下、特定化合物の具体例を示すが、本発明はこれらに限定されない。
 上記例示した特定化合物中のAは、以下のいずれかの基を表す。
 特定化合物は、必要に応じて精製されてもよい。
 特定化合物の精製方法としては、例えば、昇華精製、シリカゲルカラムクロマトグラフィーを用いた精製、ゲル浸透クロマトグラフィーを用いた精製、リスラリー洗浄、再沈殿精製、及び、活性炭等の吸着剤を用いた精製及び再結晶精製が挙げられる。
 光電変換膜中の特定化合物の含有量(=特定化合物の単層換算での膜厚/光電変換膜の膜厚×100)は特に限定されないが、15~75体積%が好ましく、20~60体積%がより好ましく、20~50体積%が更に好ましい。
 特定化合物は1種のみ用いてもよく、2種以上用いてもよい。2種以上用いる場合は、それらの合計量が上記範囲となることが好ましい。
<n型有機半導体>
 光電変換膜は、上記特定化合物以外に、n型有機半導体を含むことが好ましい。
 n型有機半導体は、上記特定化合物とは異なる化合物である。
 n型有機半導体は、アクセプター性有機半導体材料(化合物)であり、電子を受容しやすい性質がある有機化合物をいう。つまり、n型有機半導体は、2つの有機化合物を接触させて用いた場合に電子親和力の大きい方の有機化合物をいう。つまり、アクセプター性有機半導体としては、電子受容性のある有機化合物であれば、いずれの有機化合物も使用可能である。
 n型有機半導体としては、例えば、フラーレン及びその誘導体からなる群から選択されるフラーレン類;縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体及びフルオランテン誘導体等);窒素原子、酸素原子及び硫黄原子からなる群から選択される少なくとも1つを有する5~7員環のヘテロ環化合物(例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール及びチアゾール等);ポリアリーレン化合物;フルオレン化合物;シクロペンタジエン化合物;シリル化合物;1,4,5,8-ナフタレンテトラカルボン酸無水物;1,4,5,8-ナフタレンテトラカルボン酸無水物イミド誘導体及びオキサジアゾール誘導体;アントラキノジメタン誘導体;ジフェニルキノン誘導体;バソクプロイン、バソフェナントロリン及びこれらの誘導体;トリアゾール化合物;ジスチリルアリーレン誘導体;含窒素ヘテロ環化合物を配位子として有する金属錯体;シロール化合物;特開2006-100767号公報の段落[0056]~[0057]に記載の化合物;が挙げられる。
 n型有機半導体(化合物)としては、フラーレン及びその誘導体からなる群から選択されるフラーレン類が好ましい。
 フラーレンとしては、例えば、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC80、フラーレンC82、フラーレンC84、フラーレンC90、フラーレンC96、フラーレンC240、フラーレンC540及びミックスドフラーレンが挙げられる。
 フラーレン誘導体は、例えば、上記フラーレンに置換基が付加した化合物が挙げられる。上記置換基としては、アルキル基、アリール基又は複素環基が好ましい。フラーレン誘導体としては、特開2007-123707号公報に記載の化合物が好ましい。
 n型有機半導体は、有機色素であってもよい。
 有機色素としては、例えば、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、ロダシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、サブフタロシアニン色素及び金属錯体色素が挙げられる。
 n型有機半導体の分子量は、200~1,200が好ましく、200~900がより好ましい。
 n型有機半導体の極大吸収波長は、波長400nm以下又は波長500~600nmの範囲が好ましい。
 光電変換膜は、特定化合物とn型有機半導体とが混合された状態で形成されるバルクヘテロ構造を有することが好ましい。バルクヘテロ構造は、光電変換膜内で、特定化合物とn型有機半導体とが混合及び分散している層である。バルクヘテロ構造を有する光電変換膜は、湿式法及び乾式法のいずれ方法でも形成できる。なお、バルクへテロ構造については、特開2005-303266号公報の段落[0013]~[0014]において詳細に説明されている。
 特定化合物とn型有機半導体との電子親和力の差は、0.1eV以上であることが好ましい。
 n型有機半導体は、1種単独又は2種以上で用いてもよい。
 光電変換膜がn型有機半導体を含む場合、光電変換膜中のn型有機半導体の含有量(n型有機半導体の単層換算での膜厚/光電変換膜の膜厚×100)は、15~75体積%が好ましく、20~60体積%がより好ましく、20~50体積%が更に好ましい。
 n型有機半導体材料がフラーレン類を含む場合、n型有機半導体材料の合計含有量に対するフラーレン類の含有量(フラーレン類の単層換算での膜厚/単層換算した各n型有機半導体材料の膜厚の合計×100)は、50~100体積%が好ましく、80~100体積%がより好ましい。フラーレン類は、1種単独又は2種以上で用いてもよい。
 光電変換素子の応答速度の点で、特定化合物とn型有機半導体との合計含有量に対する特定化合物の含有量(特定化合物の単層換算での膜厚/(特定化合物の単層換算での膜厚+n型有機半導体の単層換算での膜厚)×100)は、20~80体積%が好ましく、40~80体積%がより好ましい。
 光電変換膜がn型有機半導体及びp型有機半導体を含む場合、特定化合物の含有量(特定化合物の単層換算での膜厚/(特定化合物の単層換算での膜厚+n型有機半導体の単層換算での膜厚+p型有機半導体の単層換算での膜厚)×100)は、15~75体積%が好ましく、30~75体積%がより好ましい。
 なお、光電変換膜は、実質的に、特定化合物とn型有機半導体と所望に応じて含まれるp型有機半導体とから構成されることが好ましい。実質的とは、光電変換膜の全質量に対して、特定化合物、n型有機半導体及びp型有機半導体の合計含有量が、90~100体積%であり、95~100体積%が好ましく、99~100体積%がより好ましい。
<p型有機半導体>
 光電変換膜は、上記特定化合物以外に、p型有機半導体を含むことが好ましい。
 p型有機半導体は、上記特定化合物とは異なる化合物である。
 p型有機半導体とは、ドナー性有機半導体材料(化合物)であり、電子を供与しやすい性質がある有機化合物をいう。つまり、p型有機半導体とは、2つの有機化合物を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。
 p型有機半導体は、1種単独又は2種以上で用いてもよい。
 p型有機半導体としては、例えば、トリアリールアミン化合物(例えば、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、特開2011-228614号公報の段落[0128]~[0148]に記載の化合物、特開2011-176259号公報の段落[0052]~[0063]に記載の化合物、特開2011-225544号公報の段落[0119]~[0158]に記載の化合物、特開2015-153910号公報の[0044]~[0051]に記載の化合物及び特開2012-094660号公報の段落[0086]~[0090]に記載の化合物等)、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、ポリシラン化合物、チオフェン化合物(例えば、チエノチオフェン誘導体、ジベンゾチオフェン誘導体、ベンゾジチオフェン誘導体、ジチエノチオフェン誘導体、[1]ベンゾチエノ[3,2-b]チオフェン(BTBT)誘導体、チエノ[3,2-f:4,5-f´]ビス[1]ベンゾチオフェン(TBBT)誘導体、特開2018-014474号の段落[0031]~[0036]に記載の化合物、WO2016/194630号の段落[0043]~[0045]に記載の化合物、WO2017/159684号の段落[0025]~[0037]、[0099]~[0109]に記載の化合物、特開2017-076766号公報の段落[0029]~[0034]に記載の化合物、WO2018/207722の段落[0015]~[0025]に記載の化合物、特開2019-054228の段落[0045]~[0053]に記載の化合物、WO2019/058995の段落[0045]~[0055]に記載の化合物、WO2019/081416の段落[0063]~[0089]に記載の化合物、特開2019-80052の段落[0033]~[0036]に記載の化合物、WO2019/054125の段落[0044]~[0054]に記載の化合物、WO2019/093188の段落[0041]~[0046]に記載の化合物等)、特開2019-050398号公報の段落[0034]~[0037]の化合物、特開2018-206878号公報の段落[0033]~[0036]の化合物、特開2018-190755号公報の段落[0038]の化合物、特開2018-026559号公報の段落[0019]~[0021]の化合物、特開2018-170487号公報の段落[0031]~[0056]の化合物、特開2018-078270号公報の段落[0036]~[0041]の化合物、特開2018-166200号公報の段落[0055]~[0082]の化合物、特開2018-113425号公報の段落[0041]~[0050]の化合物、特開2018-085430号公報の段落[0044]~[0048]の化合物、特開2018-056546号公報の段落[0041]~[0045]の化合物、特開2018-046267号公報の段落[0042]~[0049]の化合物、特開2018-014474号公報の段落[0031]~[0036]の化合物、WO2018/016465号の段落[0036]~[0046]に記載の化合物、特開2020-010024号公報の段落[0045]~[0048]の化合物、等)、シアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ペンタセン誘導体、ピレン誘導体、ペリレン誘導体及びフルオランテン誘導体等)、ポルフィリン化合物、フタロシアニン化合物、トリアゾール化合物、オキサジアゾール化合物、イミダゾール化合物、ポリアリールアルカン化合物、ピラゾロン化合物、アミノ置換カルコン化合物、オキサゾール化合物、フルオレノン化合物、シラザン化合物、並びに、含窒素ヘテロ環化合物を配位子として有する金属錯体が挙げられる。
 また、p型有機半導体としては、ベンゾオキサゾール化合物(例えば、特開2022-123944号公報の図3~7に記載の化合物)、ジカルバゾール化合物(例えば、特開2022-122839号公報の図2~5に記載の化合物)、ベンゾキナゾリン化合物(例えば、特開2022-120323号公報の段落[0053]~[0056]に記載の化合物)、アジン化合物(例えば、特開2022-120273号公報の段落[0041]~[0042]の記載の化合物)、特開2022-115832号公報の図2~10に記載の化合物、インドロトリフェニレン化合物(例えば、特開2022-108268号公報の段落[0065]~[0072]に記載の化合物)、インドロカルバゾール化合物(例えば、特開2023-005703号公報の段落[0052]~[0073]及び特開2022-100258号公報の段落[0028]に記載の化合物)、トリスカルバゾリルフェニル化合物(例えば、特開2022-181226号公報の段落[0038]~[0040]に記載の化合物)、特開2022-027575号公報の段落[0070]~[0082]に記載の化合物、及び特開2021-163968号公報の段落[0051]~[0064]に記載の化合物等も挙げられる。
 p型有機半導体としては、例えば、n型有機半導体よりもイオン化ポテンシャルが小さい化合物も挙げられ、この条件を満たせば、n型有機半導体として例示した有機色素を使用し得る。
 以下に、p型有機半導体化合物として使用し得る化合物を例示する。
 特定化合物とp型有機半導体とのイオン化ポテンシャルの差は、0.1eV以上であることが好ましい。
 p型有機半導体は、1種単独又は2種以上で用いてもよい。
 光電変換膜がp型有機半導体を含む場合、光電変換膜中のp型有機半導体の含有量(p型有機半導体の単層換算での膜厚/光電変換膜の膜厚×100)は、15~75体積%が好ましく、20~60体積%がより好ましく、25~50体積%が更に好ましい。
 特定化合物を含む光電変換膜は非発光性膜であり、有機電界発光素子(OLED:Organic Light Emitting Diode)とは異なる特徴を有する。非発光性膜とは発光量子効率が1%以下の膜を意味し、発光量子効率は0.5%以下が好ましく、0.1%以下がより好ましい。下限は、0%以上の場合が多い。
<色素>
 光電変換膜は、上記特定化合物以外に、色素を含むことが好ましい。
 色素は、上記特定化合物とは異なる化合物である。
 色素としては、有機色素が好ましい。
 有機色素としては、例えば、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、ロダシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ジオキサン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、サブフタロシアニン色素、金属錯体色素、WO2020/013246号、WO2022/168856号、特開2023-10305号公報、及び、特開2023-10299号公報に記載のイミダゾキノキサリン色素、並びに、ドナーに2つの酸性核が結合したアクセプター-ドナー-アクセプター型の色素、及び、アクセプターに2つのドナーが結合したドナー-アクセプター-ドナー型の色素等が挙げられる。
 有機色素としては、中でも、シアニン色素、イミダゾキノキサリン色素、又は、アクセプター-ドナー-アクセプター型の色素が好ましく、イミダゾキノキサリン色素、又は、アクセプター-ドナー-アクセプター型の色素がより好ましい。
 色素の極大吸収波長は、可視光領域が好ましく、波長400~650nmがより好ましく、波長450~650nmが更に好ましい。
 色素は、1種単独又は2種以上で用いてもよい。
 光電変換膜中における、特定化合物と色素との合計の含有量に対する、色素の含有量(=(色素の単層換算での膜厚/(特定化合物の単層換算での膜厚+色素の単層換算での膜厚)×100))は、15~75体積%が好ましく、20~60体積%がより好ましく、20~50体積%が更に好ましい。
<成膜方法>
 上記光電変換膜の成膜方法としては、例えば、乾式成膜法が挙げられる。
 乾式成膜法としては、例えば、蒸着法(特に真空蒸着法)、スパッタ法、イオンプレーティング法及びMBE(Molecular Beam Epitaxy)法等の物理気相成長法、並びに、プラズマ重合等のCVD(Chemical Vapor Deposition)法が挙げられ、真空蒸着法が好ましい。真空蒸着法により光電変換膜を成膜する場合、真空度及び蒸着温度等の製造条件は、常法に従って設定できる。
 光電変換膜の膜厚は、10~1000nmが好ましく、50~800nmがより好ましく、50~500nmが更に好ましい。
〔電極〕
 光電変換素子は、電極を有することが好ましい。
 電極(上部電極(透明導電性膜)15と下部電極(導電性膜)11)は、導電性材料から構成される。導電性材料としては、金属、合金、金属酸化物、電気伝導性化合物及びこれらの混合物が挙げられる。
 上部電極15から光が入射されるため、上部電極15は検知したい光に対して透明であることが好ましい。上部電極15を構成する材料としては、例えば、アンチモン又はフッ素等をドープした酸化錫(ATO:Antimony Tin Oxide、FTO:Fluorine doped Tin Oxide)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO:Indium Tin Oxide)及び酸化亜鉛インジウム(IZO:Indium zinc oxide)等の導電性金属酸化物;金、銀、クロム及びニッケル等の金属薄膜;これらの金属と導電性金属酸化物との混合物又は積層物;並びにポリアニリン、ポリチオフェン及びポリピロール等の有機導電性材料、カーボンナノチューブ及びグラフェン等のナノ炭素材料等が挙げられ、高導電性及び透明性の点で、導電性金属酸化物が好ましい。
 通常、導電性膜をある範囲より薄くすると、急激に抵抗値が増加する場合が多い。本実施形態にかかる光電変換素子を組み込んだ固体撮像素子においては、シート抵抗は、100~10000Ω/□であってもよく、薄膜化できる膜厚の範囲の自由度は大きい。
 また、上部電極(透明導電性膜)15は膜厚が薄いほど吸収する光の量は少なくなり、一般に光透過率が増加する。光透過率の増加は、光電変換膜での光吸収を増大させ、光電変換能を増大させるため、好ましい。薄膜化に伴う、リーク電流の抑制、薄膜の抵抗値の増大及び透過率の増加を考慮すると、上部電極15の厚さは、5~100nmが好ましく、5~20nmがより好ましい。
 下部電極11は、用途に応じて、透明性を持たせる場合と、逆に透明性を持たせず光を反射させる場合とがある。下部電極11を構成する材料としては、例えば、アンチモン又はフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル、チタン、タングステン及びアルミ等の金属;これらの金属の酸化物又は窒化物等の導電性化合物(例えば、窒化チタン(TiN)等);これらの金属と導電性金属酸化物との混合物又は積層物;ポリアニリン、ポリチオフェン及びポリピロール等の有機導電性材料;カーボンナノチューブ及びグランフェン等の炭素材料が挙げられる。
 電極を形成する方法としては、電極材料に応じて適宜選択できる。具体的には、印刷方式及びコーティング方式等の湿式方式;真空蒸着法、スパッタ法及びイオンプレーティング法等の物理的方式;並びにCVD及びプラズマCVD法等の化学的方式が挙げられる。
 電極の材料がITOである場合、電子ビーム法、スパッタ法、抵抗加熱蒸着法、化学反応法(ゾル-ゲル法等)及び酸化インジウムスズの分散物の塗布等の方法が挙げられる。
〔電荷ブロッキング膜:電子ブロッキング膜、正孔ブロッキング膜〕
 光電変換素子は、導電性膜と透明導電性膜との間に、光電変換膜の他に1種以上の中間層を有することが好ましい。
 上記中間層としては、例えば、電荷ブロッキング膜が挙げられる。光電変換素子がこの膜を有する場合、得られる光電変換素子の特性(量子効率及び応答速度等)がより優れる。電荷ブロッキング膜としては、例えば、電子ブロッキング膜と正孔ブロッキング膜とが挙げられる。
〔電子ブロッキング膜〕
 電子ブロッキング膜は、ドナー性有機半導体材料(化合物)であり、上記p型有機半導体を使用できる。
 また、電子ブロッキング膜として、高分子材料も使用できる。
 高分子材料としては、例えば、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン及びジアセチレン等の重合体、並びに、その誘導体が挙げられる。
 なお、電子ブロッキング膜は、複数膜で構成してもよい。
 電子ブロッキング膜は、無機材料で構成されていてもよい。一般的に、無機材料は有機材料よりも誘電率が大きいため、無機材料を電子ブロッキング膜に用いた場合に、光電変換膜に電圧が多くかかるようになり、量子効率が高くなる。電子ブロッキング膜となりうる無機材料としては、例えば、酸化カルシウム、酸化クロム、酸化クロム銅、酸化マンガン、酸化コバルト、酸化ニッケル、酸化銅、酸化ガリウム銅、酸化ストロンチウム銅、酸化ニオブ、酸化モリブデン、酸化インジウム銅、酸化インジウム銀及び酸化イリジウムが挙げられる。
〔正孔ブロッキング膜〕
 正孔ブロッキング膜は、アクセプター性有機半導体材料(化合物)であり、上記n型有機半導体を利用できる。
 なお、正孔ブロッキング膜は、複数膜で構成してもよい。
 電荷ブロッキング膜の製造方法としては、例えば、乾式成膜法及び湿式成膜法が挙げられる。乾式成膜法としては、例えば、蒸着法及びスパッタ法が挙げられる。蒸着法は、物理蒸着(PVD:Physical Vapor Deposition)法及び化学蒸着(CVD)法のいずれでもよく、真空蒸着法等の物理蒸着法が好ましい。湿式成膜法としては、例えば、インクジェット法、スプレー法、ノズルプリント法、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法及びグラビアコート法が挙げられ、高精度パターニングの点で、インクジェット法が好ましい。
 電荷ブロッキング膜(電子ブロッキング膜及び正孔ブロッキング膜)の膜厚は、それぞれ、3~200nmが好ましく、5~100nmがより好ましく、5~30nmが更に好ましい。
〔基板〕
 光電変換素子は、更に基板を有してもよい。
 基板としては、例えば、半導体基板、ガラス基板及びプラスチック基板が挙げられる。
 なお、基板の位置は、通常、基板上に導電性膜、光電変換膜及び透明導電性膜をこの順で積層する。
〔封止層〕
 光電変換素子は、更に封止層を有してもよい。
 光電変換材料は水分子等の劣化因子の存在で顕著にその性能が劣化してしまう場合がある。そこで、水分子を浸透させない緻密な金属酸化物、金属窒化物若しくは金属窒化酸化物等のセラミックス又はダイヤモンド状炭素(DLC:Diamond-like Carbon)等の封止層で光電変換膜全体を被覆して封止して、上記劣化を防止できる。
 なお、封止層としては、例えば、特開2011-082508号公報の段落[0210]~[0215]の記載が挙げられ、これらの内容は本明細書に組み込まれる。
[撮像素子]
 光電変換素子の用途として、例えば、撮像素子が挙げられる。
 撮像素子とは、画像の光情報を電気信号に変換する素子であり、通常、複数の光電変換素子が同一平面状でマトリクス上に配置されており、それぞれの光電変換素子(画素)において光信号を電気信号に変換し、その電気信号を画素ごとに逐次撮像素子外に出力できるものをいう。そのために、画素ひとつあたり、1つ以上の光電変換素子及び1つ以上のトランジスタから構成される。
[光センサ]
 光電変換素子の他の用途として、例えば、光電池及び光センサが挙げられ、本発明の光電変換素子は光センサとして用いることが好ましい。光センサとしては、上記光電変換素子単独で用いてもよいし、上記光電変換素子を直線状に配したラインセンサ又は平面上に配した2次元センサとして用いてもよい。
[化合物]
 本発明は、化合物の発明も含む。本発明の化合物とは、上記特定化合物、又は特定化合物の合成工程における中間体である、式(2)で表される化合物(以下、「中間体Aともいう。」)、式(3)で表される化合物(以下、「中間体B」ともいう。)、若しくは式(3c)で表される化合物である。
<特定化合物>
 特定化合物の具体的な態様、及び好適態様は、上述した通りである。
<中間体A>
 中間体A(式(2)で表される化合物)は、以下構造式で表される。
 上記式(2)中、Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
 Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
 式(2)中のZ~Zの具体的な態様及び好適態様は、式(1)中のZ~Zの具体的な態様及び好適態様と同様である。
 上記式(2)中、Rは、置換基群Tから選択される置換基を表す。
 置換基群T:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、及び置換基群RAr3から選択される置換基を有していてもよい窒素原子を含まない芳香環基。
 直鎖状の脂肪族炭化水素基の炭素数は、1~10が好ましく、1~6がより好ましく、1~3が更に好ましい。
 分岐鎖状の脂肪族炭化水素基の炭素数は、3~10が好ましく、3~6がより好ましく、3~5が更に好ましい。
 環状の脂肪族炭化水素基の炭素数は、3~10が好ましく、3~8がより好ましい。
 また、置換基群T中の、上記直鎖状の脂肪族炭化水素基、上記分岐鎖状の脂肪族炭化水素基、及び上記環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよい。
 上記置換基群Tにおける、置換基群RAr3から選択される置換基は以下の通りである。
 置換基群RAr3:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、ハロゲン原子、及び窒素原子を含まない芳香環基。
 置換基群RAr3で例示される各基の具体的な態様及び好適態様については、上記置換基群Tで例示される各基の具体的な態様及び好適態様と同じである。
 置換基群RAr3中の、直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、及び環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
 置換基群Tから選択される置換基としては、なかでも、炭素数1~3の直鎖状のアルキル基、メトキシ基、炭素数3~5の分岐鎖状のアルキル基、又は炭素数3の環状のアルキル基(シクロプロピル基)が好ましい。
 上記式(2)中、R及びRは、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、塩素原子、フッ素原子、ホルミル基、*-Sn(RSn、*-B(RB1、又は、*-B(RB2を表す。
 Rは、炭素数1~6のパーフルオロアルキル基を表す。RSn、RB1及びRB2は、各々独立に、置換基を表し、複数のRSn、RB1及びRB2は、それぞれ、互いに同一であっても異なってもよい。RB1同士、及びRB2同士は、互いに結合して環構造を形成していてもよい。Mは、1価の金属カチオンを表す。
 Rで表されるパーフルオロアルキル基としては、トリフルオロメチル基が好ましい。
 RSnで表される置換基としては、例えば、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、及び置換基を有していてもよい脂肪族ヘテロ環基が挙げられる。上記各基が有していてもよい置換基としては、例えば、上記置換基Wで例示される基が挙げられる。
 RSnで表される置換基としては、なかでも、芳香環基を有してもよい脂肪族炭化水素基が好ましく、炭素数1~10のアルキル基がより好ましく、メチル基又はブチル基が更に好ましい。
 RB1で表される置換基としては、一般に芳香族カップリング反応に用いられる有機ホウ素化合物中の置換基であれば特に制限されないが、例えば、ヒドロキシ基、及びアルコキシ基が挙げられる。
 RB1同士が互いに結合して環を形成する場合、形成される環は芳香環(例えば、ベンゼン環)であっても、非芳香環であってもよい。
 RB1で表される基としては、例えば、式(B1)、及び式(B2)で表される基が挙げられる。
 RB2で表される置換基としては、一般に芳香族カップリング反応に用いられる有機ホウ素化合物中の置換基であれば特に制限されないが、例えば、フッ素原子、及びアルコキシ基が挙げられる。
 Mで表される1価の金属カチオンとしては、例えば、リチウムイオン、カリウムイオン、ナトリウムイオン、ルビジウムイオン、及びセシウムイオンの1価の金属カチオンが挙げられる。
 RB2同士が互いに結合して環を形成する場合、形成される環は芳香環(例えば、ベンゼン環)であっても、非芳香環であってもよい。
 3つのRB2のうち、2つのRB2が互いに結合し環を形成してもよいし、3つのRB2が互いに結合して環を形成してもよい。
 RB2で表される基としては、例えば、式(B3)で表される基が挙げられる。式(B3)中、Mは上記1価の金属カチオンを表す。
 R及びRとしては、特定化合物の製造適性や、R及びRを起点とした官能基変換のしやすさの観点で、*-O-S(=O)、臭素原子、塩素原子、又はフッ素原子が好ましく、臭素原子、又はホルミル基がより好ましい。
 上記式(2)中、Arは、環員原子として2以上の炭素原子を含み、環員原子として窒素原子を含まない芳香環を表す。
 上記Arで表される芳香環は、単環及び多環のいずれであってもよく、芳香族炭化水素環、及び芳香族複素環(環員原子として窒素原子を含まない芳香族複素環)のいずれであってもよい。単環の芳香環、多環の芳香環、芳香族炭化水素環、及び芳香族複素環の具体的な態様は上述した通りである。
 Arで表される芳香環の環員原子の数は、4~15が好ましく、4~10がより好ましく、4~6が更に好ましい。
 なかでも、Arで表される芳香族炭化水素環としては、ベンゼン環、又はナフタレン環が好ましい。
 また、Arで表される芳香族複素環としては、チオフェン環、ベンゾフラン環(例えば、2,3-ベンゾフラン環等)、又はベンゾチオフェン環(例えば、ベンゾ[b]チオフェン環等)が好ましい。
 Arで表される芳香環には、上記置換基群Tから選択される置換基、又はハロゲン原子が置換していてもよい。置換基群Tから選択される置換基の具体的な態様、及び好適態様については、上述した通りである。
 Arで表される芳香環に、置換基群Tから選択される置換基、又はハロゲン原子が置換する場合、その数は特に制限されないが、1~4が好ましく、1又は2がより好ましい。
 Arで表される芳香環が置換基群Tから選択される置換基を有する場合、Rで表される置換基群Tから選択される置換基と、Arで表される芳香環が有する置換基群Tから選択される置換基とが、互いに結合して非芳香環を形成してもよい。
 また、Arで表される芳香環に複数の置換基群Tから選択される置換基が置換される場合、複数の置換基同士が互いに結合して非芳香環を形成していてもよい。
 非芳香環としては、脂肪族環が挙げられ、炭素数4~6の脂肪族環が挙げられる。
<中間体Aの製造方法>
 中間体Aの製造方法としては、例えば、カルバゾールの窒素原子上にアリール基が存在する化合物(N-アリール置換カルバゾール)に、ハロゲン化又はリチオ化(Li化)等の反応により、Rで表される基、及びRで表される基を導入する方法が挙げられる。
 しかしながら、非特許文献「Helvetica Chimica Acta (2006), 89(6), 1123-1139」等に記載されている通り、N-アリール置換カルバゾールをハロゲン化又はリチオ化した場合、一般的には、3位及び6位での反応が進行し、2位及び7位が置換された化合物である中間体Aを得ることは困難であると考えられる。
・工程P1
 上述した内容を鑑みて、本発明者らは種々の検討を行った結果、以下に示す、式(2a)で表される化合物と、式(X)で表される化合物とを反応させて、式(2b)で表される化合物を製造する工程(以下、工程P1ともいう。)を含む、化合物の製造方法によって中間体A(式(2)で表される化合物)を効率よく製造できることを見出している。
 式(2b)で表される化合物は、式(2)中のR及びRが、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、塩素原子、又はフッ素原子である態様であり、後段で詳述する通り、式(2b)で表される化合物においてRL4で表される基及びRL5で表される基を、ホルミル基、*-Sn(RSn、*-B(RB1、又は*-B(RB2に変換することで、式(2)で表される化合物のうち、R及びRが、各々独立に、ホルミル基、*-Sn(RSn、*-B(RB1、又は*-B(RB2である化合物が得られる。
 式(2a)中、Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
 Z~Zは、式(2)中のZ~Zと同義であり、好適態様も同じである。
 式(2a)中、RL4及びRL5は、各々独立に、*-O-S(=O)、臭素原子、塩素原子、又はフッ素原子を表す。
 X及びXは、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、又は塩素原子を表す。Rは、式(2)中のRと同義である。
 但し、RL4、RL5、X及びXは、以下の要件を満たす。
 要件:ヨウ素原子を第1位、*-O-S(=O)を第2位、臭素原子を第3位、塩素原子を第4位、フッ素原子を第5位として順位付けし、第1位から第5位に向かって順位が高くなるとした際に、RL4で表される基の順位、及び、RL5で表される基の順位の両方が、Xで表される基の順位よりも高く、且つ、Xで表される基の順位よりも高い。
 上記要件において、第1位から第5位への順列は脱離基としての脱離しにくさを表しており、第5位ほど脱離しにくいことを意味する。つまり、順位が高いほど(第5位に近いほど)、脱離しにくいことを意味する。
 したがって、RL4、RL5、X及びXが要件を満たすことで、Xで表される基、及びXで表される基の両方が、RL4で表される基よりも脱離しやすく、且つ、RL5で表される基よりも脱離しやすくなるため、分子間反応よりも分子内の環形成反応が優先的に進行する。
 例えば、Xが第1位であるヨウ素原子、Xが第1位であるヨウ素原子、RL4が第3位である臭素原子、及び、RL5が第3位である臭素原子である場合には、RL4及びRL5の順位(いずれも第3位)が、X及びXの順位(いずれも第1位)よりも高いため、上記要件を満たすことになる。
 仮に、Xが第3位である臭素原子、Xが第3位である臭素原子、RL4が第1位であるヨウ素原子、及び、RL5が第1位であるヨウ素原子である場合には、RL4及びRL5の順位(いずれも第1位)が、X及びXの順位(いずれも第3位)よりも低いため、上記要件を満たさない。
 上記要件を満たすRL4、RL5、X及びXの組み合わせとしては、例えば、以下の例1~例4が挙げられる。
 例1:X=I、X=I、RL4=Br、RL5=Br
 例2:X=I、X=*-O-S(=O)、RL4=Br、RL5=Br
 例3:X=I、X=I、RL4=Br、RL5=Cl
 例4:X=Br、X=Br、RL4=Cl、RL5=Cl
 要件を満たす組み合わせとしては、なかでも、例1の組み合わせが好ましい。
 式(X)中、Rは、上記置換基群Tから選択される置換基を表す。
 Arは、環員原子として2以上の炭素原子を含み、環員原子として窒素原子を含まない芳香環を表す。Arで表される上記芳香環には、上記置換基群Tから選択される置換基、又はハロゲン原子が置換していてもよい。
 Arで表される上記芳香環が上記置換基群Tから選択される置換基を有する場合、Rで表される上記置換基群Tから選択される置換基と、Arで表される芳香環が有する上記置換基群Tから選択される置換基とが、互いに結合して非芳香環を形成してもよい。
 Arで表される上記芳香環に複数の上記置換基群Tから選択される置換基が置換される場合、複数の上記置換基同士が互いに結合して非芳香環を形成していてもよい。
 式(X)中のR及びArは、式(2)中のR及びArと同義であり、その好適態様も同じである。
 式(2b)中、
 Z~Z、RL4及びRL5は、上記式(2a)中のZ~Z、RL4及びRL5と同義である。
 R及びArは、上記式(X)中のR及びArと同義である。
 上記工程P1は、典型的には、Buchwald-Hartwigクロスカップリング条件で行われる場合が多い。工程P1は、より具体的には、有機金属触媒及び塩基の存在下で行われることが好ましい。
 有機金属触媒としては、例えば、パラジウム触媒が挙げられ、より具体的には、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、及び硝酸パラジウム等のパラジウム塩;π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、トリス(ジベンジリデンアセトン)ジパラジウム、ビス(ジベンジリデンアセトン)パラジウム、ジクロロビス(アセトニトリル)パラジウム、及びジクロロビス(ベンゾニトリル)パラジウム等の錯化合物;並びに、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロ(1,1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウム、ビス(トリ-tert-ブチルホスフィン)パラジウム、ビス(トリシクロヘキシルホスフィン)パラジウム、及びジクロロビス(トリシクロヘキシルホスフィン)パラジウム等の第3級ホスフィンを配位子として有するパラジウム錯体が挙げられる。
 上記パラジウム触媒は、パラジウム塩、又は錯化合物に第3級ホスフィンを添加し、反応系中で調製してもよい。
 有機金属触媒としては、なかでも、第3級ホスフィンを配位子として有するパラジウム錯体が好ましく、少なくとも1つのアリール基を有する第3級ホスフィンを配位子として有するパラジウム錯体がより好ましく、トリアリールホスフィンを配位子として有するパラジウム錯体が更に好ましい。
 第3級ホスフィンが有してもよいアリール基としては、例えば、上記置換基Wで例示される基を有してもよいフェニル基が挙げられる。
 塩基としては、アルカリ金属を含む塩基、及び第3級アミンが挙げられ、アルカリ金属を含む塩基が好ましい。
 アルカリ金属を含む塩基としては、アルカリ金属アルコキシド(例えば、ナトリウムメトキシド、ナトリウムエトキシド、及びカリウムt-ブトキシド等)、又はアルカリ金属の炭酸塩、リン酸塩、水酸化物、並びにフッ化物が好ましく、アルカリ金属アルコキシドがより好ましく、tert-ブトキシドアニオンとアルカリ金属からなるアルコキシドが更に好ましい。
 上記アルカリ金属としては、リチウム、カリウム、ナトリウム、及びセシウムが挙げられ、リチウム、カリウム、又はナトリウムが好ましい。
 工程P1における反応溶媒としては、トルエン、テトラヒドロフラン、1,4-ジオキサン、1,2-ジクロロベンゼン、ベンゼン、キシレン、メシチレン、アニソール、クロロベンゼン、ジメトキシエタン、ジメチルホルムアミド(DMF)、シクロペンチルメチルエーテル、4-メチルテトラヒドロピラン、アセトニトリル、アルコール、及びイオン液体が挙げられ、トルエンが好ましい。
 反応温度としては、使用する反応溶媒に応じて加熱還流する温度である場合が多く、50~200℃が好ましく、90~150℃がより好ましい。
・工程P2
 上記式(2b)で表される化合物中、RL4及び表される基及びRL5で表される基を、ホルミル基、*-Sn(RSn、*-B(RB1、又は*-B(RB2に変換する工程(以下、「工程P2」ともいう。)を更に実施することで、式(2)で表される化合物中のR及びRがホルミル基、*-Sn(RSn、*-B(RB1、又は*-B(RB2である化合物が得られる。
 RSn、RB1及びRB2は、中間体A(式(2)で表される化合物)中のRSn、RB1及びRB2と同義であり、その好適態様も同様である。
・工程P2A
 上記式(2b)で表される化合物中、RL4で表される基及びRL5で表される基を、ホルミル基に変換する工程としては、例えば、上記式(2b)で表される化合物と、ホルミル化剤とを反応させる工程が挙げられる。
 ホルミル化剤としては、公知のものを使用できるが、例えば、N,N-二置換ホルムアミド、オルトギ酸エステル、及び式(B’’)で表される化合物が挙げられる。
 N,N-二置換ホルムアミドとしては、例えば、式(B)で表される化合物が挙げられる。
 OHC-NRY2    式(B)
 式(B)中、RY2は、有機基を表す。複数存在するRY2は、各々同一であっても異なってもよい。
 有機基としては、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、及び置換基を有していてもよい脂肪族ヘテロ環基が挙げられ、なかでも、脂肪族炭化水素基、又は芳香環基が好ましい。
 式(B)で表される化合物としては、N,N-ジメチルホルムアミド(DMF)、N-(ジエチルカルバモイル)-N-メトキシホルムアミド、1-ホルミルピペリジン、4-ホルミルモルホリン、N-メチルホルムアニリド、及びN-ホルミルサッカリンが挙げられ、なかでも、DMFが好ましい。
 オルトギ酸エステルとしては、例えば、式(B’)で表される化合物が挙げられる。
 HC(ORY3   式(B’)
 式(B’)中、RY3は、アルキル基を表す。複数存在するRY3は、各々同一であっても異なってもよい。アルキル基としては、炭素数1~6のアルキル基が好ましく、メチル基又はエチル基がより好ましい。
 上記式(B’’)で表される化合物は以下の通りである。
 式(B’’)中、Rは、炭素数1~6のアルキル基を表す。
 上記式(B’’)で表される化合物としては、なかでも、N-メトキシエチレンアニリンが好ましい。
 工程P2Aは、典型的には、式(2b)で表される化合物中のRで表される基及びRで表される基を、金属化試薬を用いて金属活性種とした後に上記ホルミル化剤を反応させる場合が多い。使用する金属化試薬、及び反応条件としては、特に制限されず、公知の金属化試薬、及び反応条件を適用できる。
 工程P2Aで用いられる金属化試薬としては、なかでも、リチウム試薬又はマグネシウム試薬が好ましい。
 リチウム試薬としては、なかでも、有機リチウム試薬が好ましく、例えば、n-ブチルリチウム、sec-ブチルリチウム、及びtert-ブチルリチウム等のアルキルリチウムが挙げられる。
 マグネシウム試薬としては、有機マグネシウム試薬(グリニャール試薬など)が挙げられる。なお、マグネシウム試薬としては、マグネシウム単体も挙げられる。
・工程P2B
 上記式(2b)で表される化合物中、RL4で表される基及びRL5で表される基を、*-Sn(RSnに変換する工程としては、例えば、上記式(2b)で表される化合物と、式(Y)で表される化合物とを反応させる工程(以下、「工程P2B」ともいう。)が挙げられる。
 (RSnSn-X   式(Y)
 式(Y)中、RSnは、上記式(2)中のR及びRとして例示した、*-Sn(RSnにおけるRSnと同義である。
 RSnで表される置換基としては、例えば、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、及び置換基を有していてもよい脂肪族ヘテロ環基が挙げられる。上記各基が有していてもよい置換基としては、例えば、上記置換基Wで例示される基が挙げられる。
 RSnで表される置換基としては、なかでも、芳香環基を有してもよい脂肪族炭化水素基が好ましく、炭素数1~10のアルキル基がより好ましく、メチル基又はブチル基が更に好ましい。
 式(Y)中、Xは、ヨウ素原子、*-O-S(=O)、臭素原子、塩素原子、又は*-Sn(RSnを表す。Rは、上記式(2)におけるRと同義である。Xとしては、なかでも、ヨウ素原子、*-O-S(=O)、臭素原子、又は塩素原子が好ましく、塩素原子がより好ましい。
 工程P2Bは、典型的には、式(2b)で表される化合物中のRL4で表される基及びRL5で表される基を、有機リチウム試薬を用いてリチウムに変換した後に上記式(Y)で表される化合物を反応させる場合が多い。反応条件としては、一般的にリチオ化する条件であれば特に制限されない。
 有機リチウム試薬としては、n-ブチルリチウム、sec-ブチルリチウム、及びtert-ブチルリチウム等のアルキルリチウムが挙げられる。
 また、工程P2Bは、パラジウム触媒存在下で行うことも可能である。具体的な反応条件としては、非特許文献「J. Org. Chem. 2016, 81, 8, 3356-3363」に記載の合成方法を参酌できる。
 パラジウム触媒としては、工程P1におけるパラジウム触媒として例示したものを用いることができる。
・工程P2C
 上記式(2b)で表される化合物中、RL4で表される基及びRL5で表される基を、*-B(RB1、又は*-B(RB2に変換する工程としては、例えば、上記式(2b)で表される化合物と、ボリル化剤とを反応させる工程が挙げられる。
 ボリル化剤としては、公知のものを使用できるが、例えば、式(Z)で表される化合物が挙げられる。
 X-B(ORB3   式(Z)
 式(Z)中、Xは、ヨウ素原子、*-O-S(=O)、臭素原子、塩素原子、*-B(ORB3、*-ORB4、又は、*-Si(RB5を表す。
 Rは、上記式(2)におけるRと同義である。
 RB3、RB4及びRB5は、各々独立に、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は置換基を有していてもよい脂肪族ヘテロ環基を表す。複数存在するRB3及びRB5は、各々同一であっても異なってもよい。
 RB3及びRB4としては、なかでも、脂肪族炭化水素基が好ましく、アルキル基がより好ましく、炭素数1~6のアルキル基が更に好ましい。
 RB3同士は互いに結合して環を形成してもよく、式(Z)で表される化合物は、式(Z’)で表される化合物であることが好ましい。
 RB3同士が互いに結合して環を形成する場合、*-B(ORB3で表される基としては、上記式(B1)、又は上記式(B2)で表される基が好ましい。
 上記*-Si(RB5において、RB5としては、なかでも、脂肪族炭化水素基又は芳香環基が好ましく、炭素数1~6のアルキル基、又はフェニル基がより好ましい。
 工程P2Cは、典型的には、式(2b)で表される化合物中のRL4で表される基及びRL5で表される基を、有機リチウム試薬を用いてリチウムに変換した後に上記式(Z)で表される化合物を反応させる場合が多い。反応条件としては、一般的にリチオ化する条件であれば特に制限されず、有機リチウム試薬の具体例としては上述した通りである。
 また、Rで表される基及びRで表される基を、リチウムに変換するほか、マグネシウムに変換した後に、式(Z)で表される化合物を反応させて、Rで表される基及びRで表される基を、*-B(RB1、又は*-B(RB2に変換することも有効である。具体的な反応条件としては、非特許文献「Org. Lett. 2006, 8, 18, 4071-4074」に記載の合成方法を参酌できる。
 また、工程P2Cは、パラジウム触媒存在下で行う場合も多い。具体的な反応条件としては、非特許文献「European Polymer Journal (2019), 112, 283-290」に記載の合成方法を参酌できる。
 本合成方法で使用できるパラジウム触媒及び塩基としては、工程P1におけるパラジウム触媒及び塩基として例示したものを用いることできる。
 上述した反応条件の他、工程P2Cは、遷移金属触媒を用いることなく行うことも可能である。このような反応条件としては、例えば、上記式(2b)で表される化合物と、Xが*-Si(RB5である、式(Z)で表される化合物とを反応させる場合が挙げられ、具体的な反応条件としては、非特許文献「J. Am. Chem. Soc. 2012, 134, 19997-20000」に記載の合成方法を参酌できる。
 以下、式(2)で表される化合物の具体例を示すが、本発明はこれらに限定されない。
 下記の例示化合物におけるR及びRは、各々独立に、フッ素原子、塩素原子、臭素原子、ヨウ素原子、*-Sn(n-Bu)、*-SnMe、*-B(OH)、*-BF(Mは、1価の金属カチオンを表す。)、ホルミル基、又は、上記式(B1)~(B3)で表される基を表す。
<中間体B>
 続いて、中間体B(式(3)で表される化合物)について詳述する。中間体Bは、以下構造式で表される。
 式(3)中、Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
 Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
 式(3)中のZ~Zの具体的な態様及び好適態様は、式(1)中のZ~Zの具体的な態様及び好適態様と同様である。
 式(3)中、Qは、酸素原子又は硫黄原子を表し、酸素原子が好ましい。
 Rは、置換基群Uから選択される置換基を表す。
 置換基群U:置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、及び置換基を有していてもよい脂肪族ヘテロ環基。
 置換基群U中、置換基を有していてもよい脂肪族炭化水素基としては、ハロゲン原子を有していてもよい炭素数1~3の直鎖状の脂肪族炭化水素基、ハロゲン原子を有していてもよい炭素数3~5の分岐鎖状の脂肪族炭化水素基、又はハロゲン原子を有していてもよい炭素数3~6の環状の脂肪族炭化水素基が好ましい。
 置換基群U中、置換基を有していてもよい芳香環基としては、上記置換基群RAr1から選択される置換基を有していてもよい芳香環基が好ましく、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、又は炭素数3~8の環状の脂肪族炭化水素基を有していてもよい環員原子4~10の芳香環基が好ましく、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、又は炭素数3~8の環状の脂肪族炭化水素基を有していてもよいフェニル基がより好ましい。
<中間体Bの製造方法>
 本発明の中間体Bの製造方法は、式(3a)で表される化合物と、式(A)で表される化合物とを反応させて、SiRY1 で表される保護基を有する式(3b)で表される化合物を得る工程1と、
 上記式(3b)で表される化合物と、金属化試薬とを反応させた後、ホルミル化剤を反応させ、更に、上記保護基を脱保護して、式(3c)で表される化合物を得る工程2と、
 上記式(3c)で表される化合物と式(C)で表される化合物とを反応させて、上記式(3)で表される化合物を得る工程3と、を有する、化合物の製造方法である。
 式(3a)~式(3c)中、Z~Zは、上記式(3)中のZ~Zと同義であり、好適態様も同じである。
 X及びXは、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、又は塩素原子を表し、ヨウ素原子、臭素原子、又は塩素原子が好ましく、臭素原子がより好ましい。
・工程1
 以下、工程1について詳述する。工程1は、式(3a)で表される化合物と、式(A)で表される化合物とを反応させて、SiRY1 で表される保護基を有する式(3b)で表される化合物を得る工程である。
 式(A)中、Lは脱離基を表す。脱離基としては、例えば、ハロゲン原子、又は*-O-S(=O)が挙げられる。Rは、式(2)中のRと同義である。Lとしては、なかでも、臭素原子又は塩素原子が好ましい。
 式(A)中、RY1は、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は、置換基を有していてもよい脂肪族ヘテロ環基を表す。複数存在するRY1同士は、各々同一であっても異なってもよい。
 RY1としては、なかでも、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基、又は芳香環基が好ましい。
 上記工程1は、典型的には、式(3a)で表される化合物においてN上の水素原子を、有機リチウム試薬を用いてリチウムに変換した後に、上記式(A)で表される化合物を反応させる場合が多い。反応条件としては、一般的にリチオ化する条件であれば特に制限されず、有機リチウム試薬の具体例としては上述した通りである。
・工程2
 続いて、工程2について詳述する。工程2は、上記工程1で得られた上記式(3b)で表される化合物と、金属化試薬とを反応させた後、ホルミル化剤を反応させ、更に、上記保護基を脱保護して、後述する式(3c)で表される化合物を得る工程である。
 工程2において、上記金属化試薬としては、公知のものを用いることができ、例えば、上記工程P2Aにおいて例示した試薬を用いることができる。反応条件としては、特に制限されず、公知の反応条件を適用できる。
 上記ホルミル化剤としては、公知のものを使用できるが、例えば、上記工程P2Aにおいて例示した、N,N-二置換ホルムアミド、及びオルトギ酸エステルを用いることができる。反応条件についても公知の条件を採用でき、例えば、上記工程P2Aにおいて例示した条件が挙げられる。
 SiRY1 で表される保護基を脱保護する方法としては、例えば、用いる式(A)で表される化合物に応じて、適切な脱シリル化剤を反応させる方法が挙げられる。
 脱シリル化剤としては、特に制限されず公知の脱シリル化剤を使用できるが、例えば、水、酸、塩基、及びフッ化物イオンが挙げられる。
 なお、式(A)で表される化合物の構造によっては、式(A)で表される化合物に由来するシリル保護基は脱保護されやすく、反応終了後の後工程(分液工程、及びカラム精製工程等)や空気中の水分などによって脱保護が起こり得る。
 そのような場合であっても、式(3b)で表される化合物から、式(3c)で表される化合物が得られてさえいれば、本発明の範囲に含まれる。
 なお、反応条件によっては、上記工程1及び工程2はワンポットで行ってもよい。
・工程3
 続いて、工程3について詳述する。工程3は、工程2で得られた式(3c)で表される化合物と、上記式(C)で表される化合物とを反応させ、式(3c)におけるN上に式(C)で表される化合物に由来する基を導入することで、式(3)で表される化合物を得る工程である。
 式(C)中、Lは脱離基を表す。脱離基としては、例えば、*-O-(C=O)R、ハロゲン原子、及び*-O-S(=O)が挙げられる。Rは、式(A)中のRと同義である。Rは、上記式(3)中のRと同義であり、メチル基又はエチル基が好ましい。
 Lとしては、*-O-(C=O)R、又はハロゲン原子が好ましく、*-O-(C=O)R、塩素原子、又は臭素原子がより好ましく、*-O-(C=O)R、又は塩素原子が更に好ましい。
 以下、式(3)で表される化合物の具体例を示すが、本発明はこれらに限定されない。
 以下に実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
[光電変換膜に用いた材料]
 光電変換膜に含まれる各種成分を以下に示す。
〔化合物1の合成(特定化合物の合成例1)〕
 化合物1は、以下のスキームに従って合成した。
<中間体(1)の合成>
 中間体(1)は、Marciniec et al., Org. Biomol. Chem., 2016, 14, 9406.に記載の方法に従って、2,7-ジブロモカルバゾール、及び2-ブロモプロパンを出発原料として合成した。
<中間体(2)の合成>
 中間体(1)(7.0g)、及びテトラヒドロフラン(THF、180mL)を300mL三口フラスコに取り、窒素雰囲気下、-78℃に降温した。
 ノルマルブチルリチウムのヘキサン溶液(2.8M、富士フイルム和光純薬社製、27mL)を加え、1時間撹拌した後、N,N-ジメチルホルムアミド(DMF、15mL)を加え室温で1時間撹拌した。
 得られた反応液を飽和塩化アンモニウム水溶液、及び飽和食塩水で順次洗浄した後、有機相を回収した。得られた有機相を硫酸ナトリウムを用いて乾燥し、更に溶媒を除去した。得られた粗体をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/ジクロロメタン=1/1)で精製することで、中間体(2)を2.4g(収率40%)得た。
<化合物1の合成>
 中間体(2)(500mg)、1,3-ジメチルバルビツール酸(東京化成工業社製、765mg)、酢酸(20mL)、及びピペリジン(富士フイルム和光純薬社製、37μL)を100mLナスフラスコに取り、窒素雰囲気下、100℃で17時間反応させた。
 反応終了後、析出した固体をろ別し、粗体をジクロロメタン及びメタノールから再結晶した。得られた固体を昇華精製することで、化合物1を767mg(収率75%)得た。
 得られた化合物1のH-NMR(Nuclear Magnetic Resonance)データを以下に示す。
 H-NMR(CDCl):δ(ppm)=8.94(2H、s)、8.79(2H、s)、8.18(2H、d)、7.86(2H、dd)、5.15(1H、sep)、3.47(6H、s)、3.45(6H、s)、1.84(6H、d)
〔化合物3の合成(特定化合物の合成例2)〕
 化合物3は、以下のスキームに従って合成した。
<中間体(3)の合成>
 4,4’-ジブロモ-2,2’-ジヨードビフェニル(Combi-Blocks社製、18g)、2,6-ジメチルアニリン(富士フイルム和光純薬社製、5.8g)、カリウム-t-ブトキシド(富士フイルム和光純薬社製、11g)、トルエン(750mL)、及びテトラキス(トリフェニルホスフィン)パラジウム(0)(東京化成工業社製、3.7g)を2L三口フラスコに取り、窒素雰囲気下、100℃で39時間撹拌した。
 反応液を室温まで冷却した後、セライト濾過を行うことで不溶成分を除去し、得られたろ液から溶媒を除去した。得られた粗体をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/トルエン=99/1)で精製することで、中間体(3)を3.7g(収率25%)得た。
 得られた中間体(3)のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=7.97(d,2H)、7.39(dd,2H)、7.38(d,1H)、7.29(d,2H)、7.07(d,2H)1.86(s,6H)
<中間体(4)の合成>
 中間体(4)は、上記<中間体(2)の合成>と同様の手順にて合成した。
 得られた中間体(4)のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=10.1(s,2H)、8.37(d,2H)、7.87(dd,2H)、7.54(s,2H)、7.43(d,1H)、7.32(d,2H)、1.85(s,6H)
<化合物3の合成>
 中間体(4)(250mg)、1,3-ジメチルバルビツール酸(310mg)、酢酸(25mL)、及びピペリジン(15μL)を100mLナスフラスコに取り、窒素雰囲気下、100℃で2時間反応させた。
 析出した固体をろ別し、粗体をジクロロメタン及びメタノールから再結晶した。得られた固体を昇華精製することで、化合物3を250mg(収率54%)得た。
 得られた化合物1のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=8.65(2H、s)、8.26(2H、d)、8.17(2H、dd)、7.70(2H、s)、7.42(1H、dd)、2.11(2H、d)、3.41(6H、s)、3.36(6H、s)、1.92(6H、s)
<比較合成例1(中間体(3)の比較合成例)>
 以下スキームに示す通り、2,7-ジブロモカルバゾール(100mg)、2-フルオロ-1,3-ジメチルベンゼン(76mg)、炭酸セシウム(201mg)、DMF(1.5mL)をナスフラスコに加え、100℃に加熱して1時間撹拌したが、目的とする中間体(3)は得られなかった。
〔化合物24の合成(特定化合物の合成例3)〕
 化合物24は、以下のスキームに従って合成した。
<中間体(5)の合成>
 上記<中間体(3)の合成>の合成において、2,6-ジメチルアニリンを2,4,6-トリメチルアニリンに替えた以外は同様の手順にて、中間体(5)を合成した。
 得られた中間体(5)のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=7.96(d,2H)、7.38(dd,2H)、7.09(d,2H)、7.08(d,2H)、2.43(s,3H)、1.81(s,6H)
<中間体(6)の合成>
 中間体(6)は、中間体(3)のかわりに中間体(5)を用いて上記<中間体(2)の合成>と同様の手順にて合成した。
 得られた中間体(6)のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=10.1(s,2H)、8.36(d,2H)、7.86(dd,2H)、7.55(d,2H)、7.13(d,2H)、2.45(s,3H)、1.80(s,6H)
<化合物24の合成>
 中間体(4)のかわりに中間体(6)を用いた上記<化合物3の合成>の合成において、1,3-ジメチルバルビツール酸を1,3-インダンジオンに替えた以外は同様の手順にて、化合物24を合成した。
 得られた化合物24のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=8.63(dd,2H)、8.34(d,2H)、8.02(m,8H)、7.80(m,4H)、7.21(s,2H)、2.51(s,3H)、1.91(s,6H)
〔化合物34の合成(特定化合物の合成例4)〕
 化合物34は、以下のスキームに従って合成した。
<中間体(7)の合成>
 中間体(7)は、上記<中間体(3)の合成>の合成において、2,6-ジメチルアニリンを2,6-ジイソプロピルアニリンに替えた以外は同様の手順にて、中間体(7)を合成した。
 得られた中間体(7)のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=7.97(d,2H)、7.57(t,1H)、7.39(d,2H)、7.39(dd,2H)、7.07(d,2H)、2.14(sept,2H)、0.99(d,12H)
<中間体(8)の合成>
 中間体(8)は、中間体(1)のかわりに中間体(7)を用いて上記<中間体(2)の合成>と同様の手順にて合成した。
 得られた中間体(8)のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=10.1(s,2H)、8.37(d,2H)、7.87(dd,2H)、7.62(t,1H)、7.55(d,2H)、7.43(d,2H)、2.12(sept,2H)、0.97(d,12H)
<化合物34の合成>
 化合物34は中間体(4)のかわりに中間体(8)を用いた上記<化合物3の合成>の合成において、1,3-ジメチルバルビツール酸を1,3-インダンジオンに替えた以外は同様の手順にて合成した。
 得られた化合物34のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=8.70(dd,2H)、8.36(d,2H)、8.02-7.96(m,6H)、7.82-7.78(m,4H)、7.69(t,1H)、7.50(d,2H)、2.22(sept,2H)、1.02(d,12H).
 上記合成例1~4においては、Rで表される基及びRで表される基がホルミル基である、中間体A(以下、「ホルミル中間体」ともいう。)から特定化合物を合成している。
 一方で、Rで表される基及びRで表される基が*-Sn(RSn、*-B(RB1、又は*-B(RB2である中間体A(以下、「その他の中間体」ともいう。)を原料として、上記ホルミル中間体に変換した後に、合成例1~4を参照して特定化合物を合成することも可能である。
 その他の中間体の合成例を以下に示す。
<Sn体の合成>
 Rで表される基及びRで表される基が*-Sn(RSnである中間体A(以下、「Sn体」ともいう。)は、以下のスキームに従って合成した。
 上記中間体(3)(3.0g)、及びTHF(77mL)を三口フラスコに取り、窒素雰囲気下、-78℃に降温した。ノルマルブチルリチウムのヘキサン溶液(2.8M、12mL)を加え、1時間撹拌した後、トリブチルすずクロリド(東京化成工業社製、9.5mL)を加え室温で1時間撹拌した。
 得られた反応液を飽和塩化アンモニウム水溶液、及び飽和食塩水で順次洗浄した後、有機相を回収した。得られた有機相を硫酸ナトリウムを用いて乾燥し、更に溶媒を除去した。
 得られた粗体をシリカゲルカラムクロマトグラフィー(NHカラム、溶離液:ヘキサン)で精製することで、Sn体を5.0g(収率85%)得た。
 Sn体の構造はLC-MS(Liquid Chromatography-Mass Spectrometry)にて確認した。
 LC-MS(Sn体):851.3(M
<B体の合成>
 Rで表される基及びRで表される基が*-B(RB1、又は*-B(RB2である中間体A(以下、「B体」ともいう。)は、以下のスキームに従って合成した。
 上記中間体(3)(1.0g)、及びTHF(100mL)を三口フラスコに取り、窒素雰囲気下、-100℃に降温した。ノルマルブチルリチウムのヘキサン溶液(2.8M、1.8mL)を加え、1時間半撹拌した後、トリメトキシボラン(東京化成工業社製、0.58g)を加え、室温で18時間反応させた。
 得られた反応液に酢酸エチル100mL、塩酸(3M、100mL)を加えて撹拌した後、水相を除去した。得られた有機相を水で洗浄した後、硫酸ナトリウムを用いて乾燥し、更に溶媒を除去した。
 得られた粗体をシリカゲルカラムクロマトグラフィー(溶離液:トルエン)で精製することで、B体を0.38g(収率45%)得た。
 B体の構造はLC-MSにて確認した。
 LC-MS(B体):359.0(M
〔化合物36の合成(特定化合物の合成例5)〕
 化合物36は、以下のスキームに従って合成した。
<中間体(11)の合成>
 2,7-ジブロモカルバゾール(5.0g)及びTHF(280mL)を三口フラスコに入れ、窒素雰囲気下、0℃まで降温した。ノルマルブチルリチウムのヘキサン溶液(2.7M、富士フイルム和光純薬社製、5.8mL)を加え、5分間撹拌した後、トリメチルクロロシラン(2.0mL)を加えた。室温にて30分間撹拌した後、LC-MSにて、2,7-ジブロモカルバゾールの消失と、中間体(10)の生成を確認した。
 反応液に-78℃でノルマルブチルリチウムのヘキサン溶液(2.7M、23mL)を滴下した後、DMF(12mL)を滴下して、室温で10分間撹拌した。得られた反応液に酢酸エチル(280mL)を加え、水と食塩水で洗浄順次洗浄した後、有機相を回収した。得られた有機相を、硫酸ナトリウムを用いて乾燥し、更に溶媒を除去した。得られた粗体をシリカゲルカラムクロマトグラフィー(溶離液:ヘキサン/酢酸エチル=1/1)で精製することで、中間体(11)を1.4g(収率40%)得た。
 得られた中間体(11)のH-NMRデータを以下に示す。
 H-NMR(DMSO-d):δ=12.1(s、1H)、10.2(s,2H)、8.44(d、2H)、8.15(d、2H)、7.78(dd、2H).
<中間体(12)の合成>
 中間体(11)(1.3g)、4-ジメチルアミノピリジン(富士フイルム和光純薬社製、0.29g、THF(45mL)、トリエチルアミン(2.5mL)、及び無水酢酸(富士フイルム和光純薬社製、2.2mL)を三口フラスコに加え、室温で1時間撹拌した。
 反応液にクロロホルム300mLを加え、飽和塩化アンモニウム水溶液、及び食塩水で順次洗浄した後、有機相を回収した。得られた有機相を、硫酸ナトリウムを用いて乾燥し、更に溶媒を除去した。得られた粗体をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/酢酸エチル=7/3)で精製することで、中間体(12)を0.74g(収率48%)得た。
 得られた中間体(12)のH-NMRデータを以下に示す。
 H-NMR(CDCl):δ=10.2(s,2H)、8.81(s,2H)、8.24(d、2H)、8.01(d,2H)、3,04(s,3H).
<比較合成例2(中間体(12)の比較合成例)>
 以下スキームに従い、中間体(12)の合成を試みた。
 2,7-ジブロモカルバゾールを出発原料として、上記<中間体(12)の合成>と同様の手順にて、中間体(R1)を合成した。
 次に、中間体(R1)(200mg)、THF(5.5mL)、ノルマルブチルリチウム(2.7M、0.5mL)を三口フラスコに入れ、窒素雰囲気下-90℃で1時間撹拌した。反応液にDMF(0.4mL)を加え、室温まで昇温した後、LC-MSにて生成物の確認を行ったが、アセチル基の分解等が進行しており目的とする中間体(12)は得られなかった。
<比較合成例3(中間体(12)の比較合成例)>
 以下スキームに示す通り、2,7-ジブロモカルバゾールを出発原料として、上記と同様の手順にて中間体(12)の合成を試みたが、複雑な混合物を与え、目的とする中間体(12)は得られなかった。
<化合物36の合成>
 化合物36は中間体(4)のかわりに中間体(12)を用いた上記<化合物3の合成>の合成において、1,3-ジメチルバルビツール酸を1,3-インダンジオンに替えた以外は同様の手順にて合成した。
 化合物36は低溶解性のため、構造はLDI-MS(レーザー脱離イオン化質量分析法)にて確認した。
 LDI-MS(化合物36):521.1(M
 化合物1、化合物3、化合物24、化合物34及び化合物36以外の光電変換膜に用いられる特定化合物及び比較化合物は、上記合成例1~5を参照して合成した。
 光電変換膜に用いた各材料を以下に示す。なお、化合物1~38は特定化合物に該当し、化合物C-1~C-6は比較化合物に該当する。
〔特定化合物及び比較化合物〕

〔n型有機半導体〕
 ・C60:フラーレン(C60
〔p型有機半導体〕
〔色素〕
[評価]
 上記材料を用いて光電変換素子を作製し、試験X及び試験Yを実施した。
〔試験X〕
<光電変換素子の作製>
 上記に示す各種成分を用いて図2の形態の光電変換素子を作製した。ここで、光電変換素子は、下部電極11、電子ブロッキング膜16A、光電変換膜12、正孔ブロッキング膜16B及び上部電極15からなる。
 具体的には、ガラス基板上に、アモルファス性ITOをスパッタ法により成膜して、下部電極11(厚み:30nm)を形成し、更に下部電極11上に化合物(EB-1)を真空加熱蒸着法により成膜して、電子ブロッキング膜16A(厚み:30nm)を形成した。
 続いて、ガラス基板の温度を25℃に制御した状態で、電子ブロッキング膜16A上に表1に示す各特定化合物又は各比較化合物と、n型有機半導体(フラーレン(C60))とp型有機半導体(化合物(P-1))とをそれぞれ単層換算で80nmとなるように真空蒸着法により共蒸着して成膜した。これによって、240nmのバルクヘテロ構造を有する光電変換膜12を形成した。この際、光電変換膜12の成膜速度は1.0Å/秒とした。
 更に光電変換膜12上に化合物(EB-2)を蒸着して正孔ブロッキング膜16B(厚み:10nm)を形成した。正孔ブロッキング膜16B上に、アモルファス性ITOをスパッタ法により成膜して、上部電極15(透明導電性膜)(厚み:10nm)を形成した。上部電極15上に、真空蒸着法により封止層としてSiO膜を形成した後、その上にALCVD(Atomic Layer Chemical Vapor Deposition)法により酸化アルミニウム(Al)層を形成した。得られた積層体をグローブボックス内にて150℃で30分間加熱して、各実施例及び各比較例の光電変換素子を作製した。
Figure JPOXMLDOC01-appb-C000058
<暗電流>
 得られた各光電変換素子について、以下の方法で暗電流を測定した。
 各光電変換素子の下部電極及び上部電極に、2.5×10V/cmの電界強度となるように電圧を印加して、暗所での電流値(暗電流)を測定した。その結果、いずれの光電変換素子においても、暗電流は50nA/cm以下であり、十分に低い暗電流を示すことを確認した。
<量子効率>
 得られた各光電変換素子について、以下の方法で量子効率を測定した。
 各光電変換素子に2.0×10V/cmの電界強度となるように電圧を印加した後、上部電極(透明導電性膜)側から光を照射して波長460nmの量子効率(光電変換効率)を評価し、式(S1)に従って得られた値を下記基準に照らして量子効率を評価した。
 式(S1)中、表1に記載の実施例及び比較例に関しては、下記基準実施例として実施例1-18を採用した。
 式(S1):量子効率(相対比) = (各実施例又は各比較例の波長460nmにおける量子効率)/(基準実施例の波長460nmにおける量子効率)
(評価基準)
 AA:量子効率が1.6以上
 A:量子効率が1.4以上、1.6未満
 B:量子効率が1.2以上、1.4未満
 C:量子効率が0.9以上、1.2未満
 D:量子効率が0.5以上、0.9未満
 E:量子効率が0.5未満
<応答速度(応答性)>
 得られた各光電変換素子について、以下の方法で応答速度を評価した。
 光電変換素子に2.0×10V/cmの強度となるように電圧を印加した。その後、LED(light emitting diode)を瞬間的に点灯させて上部電極(透明導電性膜)側から光を照射し、そのときの波長460nmにおける光電流をオシロスコープで測定して0%信号強度から97%信号強度に上昇するまでの立ち上がり時間を計測し、式(S2)に従って得られた値を下記基準に照らして応答速度を評価した。
 式(S2)中、表1に記載の実施例及び比較例に関しては、下記基準実施例として実施例1-18を採用した。
 式(S2):相対応答速度 = (各実施例又は各比較例の波長460nmにおける立ち上がり時間)/(基準実施例の波長460nmにおける立ち上がり時間)
(評価基準)
 A:相対応答速度が0.5未満
 B:相対応答速度が0.5以上、1.0未満
 C:相対応答速度が1.0以上、1.5未満
 D:相対応答速度が1.5以上、2.0未満
 E:相対応答速度が2.0以上
<応答速度の電界強度依存性>
 得られた各光電変換素子について、以下の方法で応答速度の電界強度依存性を評価した。
 上記<応答速度>の評価において、各光電変換素子に印加する電圧を、7.5×10V/cmに変更した以外は、同様の手順で、7.5×10V/cmにおける応答速度を測定し、式(S3)に従って得られた値を下記基準に照らして応答速度の電界強度依存性を評価した。
 なお、式(S3)において分子分母の各光電変換素子は、同一のものである。例えば、実施例1-1に関しては、実施例1-1の光電変換効率の波長460nmにおける7.5×10V/cm時の立ち上がり時間と、実施例1-1の光電変換効率の波長460nmにおける2.0×10V/cm時の立ち上がり時間とを比較する。
 式(S3):応答速度の電界強度依存性 = (各実施例又は各比較例の波長460nmにおける7.5×10V/cm時の立ち上がり時間)/(各実施例又は各比較例の波長460nmにおける2.0×10V/cm時の立ち上がり時間)
(評価基準)
 A:応答速度の電界強度依存性が2.0未満
 B:応答速度の電界強度依存性が2.0以上、3.0未満
 C:応答速度の電界強度依存性が3.0以上、4.0未満
 D:応答速度の電界強度依存性が4.0以上、5.0未満
 E:応答速度の電界強度依存性が5.0以上
<製造適性>
 得られた各光電変換素子について、以下の方法で製造適性を評価した。
 上記<光電変換素子の作製>において、光電変換膜12の成膜速度を3.0Å/秒に変更した以外は、同様の手順で、各実施例又は各比較例の光電変換素子を作製した。
 上記<光電変換素子の作製>において得られた光電変換素子を光電変換素子(A)とし、光電変換膜12の成膜速度を3.0Å/秒として得られた光電変換素子を光電変換素子(B)として、各々の量子効率を上記<量子効率>の評価と同様の手順で、量子効率を求めた。
 同じ実施例又は比較例の構成の光電変換素子について、光電変換素子(A)の量子効率に対する光電変換素子(B)の量子効率の相対比B/A(光電変換素子(B)の量子効率/光電変換素子(A)の量子効率)を算出し、得られた値を下記基準に照らして製造適性を評価した。
(評価基準)
 A:相対比B/Aが、0.90以上
 B:相対比B/Aが、0.85以上0.90未満
 C:相対比B/Aが、0.80以上0.85未満
 D:相対比B/Aが、0.75以上0.80未満
 E:相対比B/Aが、0.75未満
 表1に上記試験Xの評価結果を示す。
 表1中の各表記は以下を示す。
 「置換基S規定1」欄は、式(1)において、R及びRC1~RC10で表される置換基群Sから選択される置換基が、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基を有する炭素数1の脂肪族炭化水素基、置換基群RAr1から選択される置換基を有していてもよい芳香環基、式(S-3)で表される基、又は式(S-4)で表される基を表す場合を「A」とし、上記以外の場合を「B」とした。なお、Xが硫黄原子、酸素原子又はセレン原子である場合「-」とした。
 「式(A-1)=式(A-2)」欄は、上記式(A-1)で表される基が、上記式(A-2)で表される基である場合を「A」とし、上記以外の場合を「B」とした。
 「式(A-1)=式(C-1)or式(C-2)」欄は、式(1)において式(A-1)で表される基が、上記式(C-1)又は上記式(C-2)で表される基である場合を「A」とし、上記以外の場合を「B」とした。
 「X=置換基Sを有する」欄は、式(1)において、Xが、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、又は-OC(RC9)(RC10)-を表す場合を「A」とし、上記以外の場合を「B」とした。
 「X=NR,CR」欄は、式(1)において、Xが、>NR、>CRC1C2、又は>C=CRC3C4を表す場合を「A」とし、上記以外の場合を「B」とした。
 「X=NR」欄は、式(1)において、XがNRを表す場合を「A」とし、上記以外の場合を「B」とした。
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
 表の結果から明らかな通り、本発明の実施例の光電変換素子は、量子効率に優れることが確認された。
 一方、特定化合物に該当しない比較化合物を用いた比較例の光電変換素子は、量子効率が不十分であった。
 また、表1の結果から、特定化合物が置換基Sを有する場合(式(1)において、Xが、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、又は-OC(RC9)(RC10)-を表す場合)、量子効率及び応答性がより優れることが確認された(実施例1-15~1-20の対比等)。
 特定化合物において置換基群Sから選択される置換基が、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基を有する炭素数1の脂肪族炭化水素基、置換基群RAr1から選択される置換基を有していてもよい芳香環基、式(S-3)で表される基、又は式(S-4)で表される基を表す場合、量子効率がより優れることが確認された(実施例1-1と、実施例1-27との対比等)。
 特定化合物において、式(A-1)で表される基が、式(A-2)で表される基である場合、量子効率が優れることが確認された(実施例1-25と、1-26との対比等)。
 式(A-2)で表される基が、式(C-1)で表される基、又は式(C-2)で表される基である場合、量子効率がより優れることが確認された(実施例1-10~1-14と、実施例1-26との対比等)。また、式(A-2)で表される基が、式(C-1)で表される基である場合、応答速度(応答性)がより優れることが確認された(実施例1-3と、実施例1-4との対比等)。
 式(1)において、Xが、>NR、>CRC1C2、又は>C=CRC3C4を表す場合、量子効率がより優れることが確認された(実施例1-10~1-14と、実施例1-15~1-17との対比等)。また、Xが、>NRを表す場合、量子効率が更に優れることが確認された(実施例1-1~1-9と、実施例1-10又は1-12との対比等)。
 実施例1と2との比較より、AとAとが式(C-1)で表される基である場合、応答速度がより優れることが確認された。
〔試験Y〕
<光電変換素子の作製>
 表2に示す各特定化合物又は各比較化合物、n型有機半導体(フラーレン(C60))、p型有機半導体(化合物(P-1))及び、色素を単膜換算で化合物:色素:p型有機半導体:n型有機半導体=1:1:2:2となるように真空蒸着法により共蒸着して成膜することで光電変換膜を形成し、その他手順は試験Xと同様にして、各実施例及び各比較例の光電変換素子を作製した。
<暗電流>
 試験Xと同様にして、暗電流を測定した。
 その結果、いずれの光電変換素子においても、暗電流は50nA/cm以下であり、十分に低い暗電流を示すことを確認した。
<量子効率>
 得られた各光電変換素子について、以下の方法で量子効率を測定した。
 各光電変換素子に2.0×10V/cmの電界強度となるように電圧を印加した後、上部電極(透明導電性膜)側から光を照射して波長460nm又は波長600nmの量子効率を評価し、式(S4)に従って得られた値を下記基準に照らして量子効率を評価した。
 式(S4)中、分母及び分子の量子効率は同一波長における量子効率である。また、表2に記載の実施例及び比較例に関しては、下記基準実施例として実施例2-15を採用した。
 式(S4):量子効率(相対比) = (各実施例又は各比較例の波長460nm又は波長600nmにおける量子効率)/(基準実施例の波長460nm又は波長600nmにおける量子効率)
(評価基準)
 波長460nmにおける量子効率の評価基準は、以下の通りである。
 AA:量子効率が1.6以上
 A:量子効率が1.4以上、1.6未満
 B:量子効率が1.2以上、1.4未満
 C:量子効率が0.9以上、1.2未満
 D:量子効率が0.5以上、0.9未満
 E:量子効率が0.5未満
(評価基準)
 波長600nmにおける量子効率の評価基準は、以下の通りである。
 A:量子効率が1.6以上
 B:量子効率が1.2以上、1.6未満
 C:量子効率が0.8以上、1.2未満
 D:量子効率が0.4以上、0.8未満
 E:量子効率が0.4未満
<応答速度>
 得られた各光電変換素子について、以下の方法で応答速度を評価した。
 光電変換素子に2.0×10V/cmの強度となるように電圧を印加した。その後、LEDを瞬間的に点灯させて上部電極(透明導電性膜)側から光を照射し、そのときの波長460nm又は波長600nmにおける光電流をオシロスコープで測定して0%信号強度から97%信号強度に上昇するまでの立ち上がり時間を計測し、式(S5)に従って得られた値を下記基準に照らして応答速度を評価した。
 式(S5)中、分母及び分子の立ち上がり時間は同一波長における立ち上がり時間である。また、表2に記載の実施例及び比較例に関しては、下記基準実施例として実施例2-15を採用した。
 式(S5):相対応答速度 = (各実施例又は各比較例の波長460nm又は波長600nmにおける立ち上がり時間)/(基準実施例の波長460nm又は波長600nmにおける立ち上がり時間)
(評価基準)
 A:相対応答速度が0.5未満
 B:相対応答速度が0.5以上、1.0未満
 C:相対応答速度が1.0以上、1.5未満
 D:相対応答速度が1.5以上、2.0未満
 E:相対応答速度が2.0以上
<応答速度の電界強度依存性>
 得られた各光電変換素子について、以下の方法で応答速度の電界強度依存性を評価した。
 試験Yの応答速度の評価において、各光電変換素子に印加する電圧を、7.5×10V/cmに変更した以外は、同様の手順で、7.5×10V/cmにおける応答速度を測定し、式(S6)に従って得られた値を下記基準に照らして応答速度の電界強度依存性を評価した。
 なお、式(S6)において分子分母の各光電変換素子は、同一のものである。
 式(S6):応答速度の電界強度依存性 = (各実施例又は各比較例の波長460nm又は波長600nmにおける7.5×10V/cm時の立ち上がり時間)/(各実施例又は各比較例の波長460nm又は波長600nmにおける2.0×10V/cm時の立ち上がり時間)
(評価基準)
 A:応答速度の電界強度依存性が2.0未満
 B:応答速度の電界強度依存性が2.0以上、3.0未満
 C:応答速度の電界強度依存性が3.0以上、4.0未満
 D:応答速度の電界強度依存性が4.0以上、5.0未満
 E:応答速度の電界強度依存性が5.0以上
 表2に試験Yの評価結果を示す。
 表2中の各表記は、表1の各表記について上述した通りである。
 上記表に示す結果から、本発明の光電変換素子は、所望の効果が得られることが確認された。
 10a,10b  光電変換素子
 11  導電性膜(下部電極)
 12  光電変換膜
 15  透明導電性膜(上部電極)
 16A  電子ブロッキング膜
 16B  正孔ブロッキング膜

Claims (27)

  1.  導電性膜、光電変換膜、及び透明導電性膜をこの順で有する光電変換素子であって、前記光電変換膜が、式(1)で表される化合物を含む、光電変換素子。

     式(1)中、
     Xは、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、-OC(RC9)(RC10)-、硫黄原子、酸素原子、又はセレン原子を表す。
     Rは、置換基群Sから選択される置換基を表す。
     RC1~RC10は、各々独立に、水素原子又は前記置換基群Sから選択される置換基を表す。但し、RC1及びRC2の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC3及びRC4の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC5及びRC6の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC7及びRC8の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC9及びRC10の少なくとも一方は、前記置換基群Sから選択される置換基を表す。RC1とRC2、RC3とRC4、RC5とRC6、RC7とRC8、及び、RC9とRC10は、各々独立に、直接又は連結基を介して結合して環を形成してもよい。
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
     RX1は、水素原子又は置換基を表す。
     R及びRは、各々独立に、水素原子又は置換基を表す。
     A及びAは、各々独立に、式(A-1)で表される基を表す。
     式(A-1)中、
     *は結合位置を表す。
     Cは、2以上の炭素原子を含み、置換基を有していてもよい環を表す。
     Yは、硫黄原子、酸素原子、=NRX2、又は=CRX3X4を表す。
     RX2は、水素原子又は置換基を表す。
     RX3及びRX4は、各々独立に、シアノ基、-SOX5、-COORX6、又は-CORX7を表す。
     RX5~RX7は、各々独立に、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は置換基を有していてもよい脂肪族ヘテロ環基を表す。
     置換基群S:炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい炭素数3~8の環状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数3の分岐鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基を有する炭素数3の分岐鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基、式(S-1)で表される基、及び式(S-2)で表される基。
     前記置換基群S中の、炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい炭素数3~8の環状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数3の分岐鎖状の脂肪族炭化水素基、及び置換基を有していてもよい芳香環基を有する炭素数3の分岐鎖状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
       *-LS1-C(RS1   式(S-1)
       *-C(=Q)RAc1    式(S-2)
     式(S-1)中、
     *は、結合位置を表す。
     LS1は、単結合又は炭素数1~3の直鎖状のアルキレン基を表す。
     RS1は、各々独立に、水素原子、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~4の分岐鎖状の脂肪族炭化水素基、又は炭素数3の環状のアルキル基を表す。
     複数のRS1は、互いに同一であっても異なってもよい。但し、3つのRS1のうち、2つ以上が水素原子以外である。
     前記アルキレン基、前記炭素数1~3の直鎖状の脂肪族炭化水素基、前記炭素数3~4の分岐鎖状の脂肪族炭化水素基、及び前記炭素数3の環状のアルキル基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
     式(S-2)中、
     *は、結合位置を表す。
     Qは、酸素原子又は硫黄原子を表す。
     RAc1は、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は置換基を有していてもよい脂肪族ヘテロ環基を表す。
  2.  前記置換基群Sから選択される置換基が、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基を有する炭素数1の脂肪族炭化水素基、置換基群RAr1から選択される置換基を有していてもよい芳香環基、式(S-3)で表される基、又は式(S-4)で表される基を表す、請求項1に記載の光電変換素子。
     置換基群RAr1:炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基、芳香環基、ハロゲン原子、及び*-Si(RSi。*は、結合位置を表す。
     RSiは、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基、又は芳香環基を表す。複数のRSiは、互いに同一であっても異なってもよい。
     前記置換基群RAr1中の、前記炭素数1~3の直鎖状の脂肪族炭化水素基、前記炭素数3~5の分岐鎖状の脂肪族炭化水素基、及び前記炭素数3~8の環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
       *-C(RS2   式(S-3)
       *-C(=O)RAc2 式(S-4)
     式(S-3)中、
     *は、結合位置を表す。
     RS2は、各々独立に、水素原子、メチル基、イソプロピル基、又はt-ブチル基を表す。
     複数のRS2は、互いに同一であっても異なってもよい。但し、式(S-3)で表される基の炭素数は、3~9であり、3つのRS2のうち、2つ以上が水素原子以外である。
     式(S-4)中、
     *は、結合位置を表す。
     RAc2は、ハロゲン原子を有していてもよい炭素数1~3の直鎖状の脂肪族炭化水素基、ハロゲン原子を有していてもよい炭素数3~5の分岐鎖状の脂肪族炭化水素基、ハロゲン原子を有していてもよい炭素数3~6の環状の脂肪族炭化水素基、又は前記置換基群RAr1から選択される置換基を有していてもよい芳香環基を表す。
  3.  前記式(A-1)で表される基が、式(A-2)で表される基である、請求項1に記載の光電変換素子。

     式(A-2)中、
     *は、結合位置を表す。
     Cは、3以上の炭素原子を含む環を表す。
     X及びXは、各々独立に、酸素原子又は硫黄原子を表す。
  4.  前記式(A-2)で表される基が、式(C-1)で表される基、又は式(C-2)で表される基である、請求項3に記載の光電変換素子。

     式(C-1)及び式(C-2)中、
     *は、結合位置を表す。
     式(C-1)中、
     Xc1及びXc2は、各々独立に、硫黄原子又は酸素原子を表す。
     Cは、置換基を有していてもよい芳香環を表す。
     式(C-2)中、
     Xc3~Xc5は、各々独立に、硫黄原子又は酸素原子を表す。
     Rc1及びRc2は、各々独立に、水素原子又は置換基を表す。
  5.  Xが、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、又は-OC(RC9)(RC10)-を表す、請求項1~4のいずれか1項に記載の光電変換素子。
     R及びRC1~RC10は、それぞれ前記式(1)中のR、及びRC1~RC10と同義である。
  6.  Xが、>NR、>CRC1C2、又は>C=CRC3C4を表す、請求項1~4のいずれか1項に記載の光電変換素子。
     R及びRC1~RC4は、それぞれ前記式(1)中のR、及びRC1~RC4と同義である。
  7.  Xが、>NRを表す、請求項1~4のいずれか1項に記載の光電変換素子。
     Rは、前記式(1)中のRと同義である。
  8.  前記光電変換膜が、更にn型有機半導体を含み、
     前記光電変換膜が、前記式(1)で表される化合物と、前記n型有機半導体とが混合された状態で形成するバルクへテロ構造を有する、請求項1~4のいずれか1項に記載の光電変換素子。
  9.  前記n型有機半導体が、フラーレン及びその誘導体からなる群から選択されるフラーレン類を含む、請求項8に記載の光電変換素子。
  10.  前記光電変換膜が、更に色素を含む、請求項1~4のいずれか1項に記載の光電変換素子。
  11.  前記光電変換膜が、更にp型有機半導体を含む、請求項1~4のいずれか1項に記載の光電変換素子。
  12.  前記導電性膜と前記透明導電性膜の間に、前記光電変換膜の他に1種以上の中間層を有する、請求項1~4のいずれか1項に記載の光電変換素子。
  13.  請求項1~4のいずれか1項に記載の光電変換素子を有する、撮像素子。
  14.  請求項1~4のいずれか1項に記載の光電変換素子を有する、光センサ。
  15.  式(1)で表される化合物。

     式(1)中、
     Xは、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、-OC(RC9)(RC10)-、硫黄原子、酸素原子、又はセレン原子を表す。
     Rは、置換基群Sから選択される置換基を表す。
     RC1~RC10は、各々独立に、水素原子又は前記置換基群Sから選択される置換基を表す。但し、RC1及びRC2の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC3及びRC4の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC5及びRC6の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC7及びRC8の少なくとも一方は、前記置換基群Sから選択される置換基を表し、RC9及びRC10の少なくとも一方は、前記置換基群Sから選択される置換基を表す。RC1とRC2、RC3とRC4、RC5とRC6、RC7とRC8、及び、RC9とRC10は、各々独立に、直接又は連結基を介して結合して環を形成してもよい。
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
     RX1は、水素原子又は置換基を表す。
     R及びRは、各々独立に、水素原子又は置換基を表す。
     A及びAは、各々独立に、式(A-1)で表される基を表す。
     式(A-1)中、
     *は結合位置を表す。
     Cは、2以上の炭素原子を含み、置換基を有していてもよい環を表す。
     Yは、硫黄原子、酸素原子、=NRX2、又は=CRX3X4を表す。
     RX2は、水素原子又は置換基を表す。
     RX3及びRX4は、各々独立に、シアノ基、-SOX5、-COORX6、又は-CORX7を表す。
     RX5~RX7は、各々独立に、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は置換基を有していてもよい脂肪族ヘテロ環基を表す。
     置換基群S:炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい炭素数3~8の環状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数3の分岐鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基を有する炭素数3の分岐鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基、式(S-1)で表される基、及び式(S-2)で表される基。
     前記置換基群S中の、炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい炭素数3~8の環状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、置換基を有していてもよい芳香環基を有する炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基を有する炭素数3の分岐鎖状の脂肪族炭化水素基、及び置換基を有していてもよい芳香環基を有する炭素数3の分岐鎖状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
       *-LS1-C(RS1   式(S-1)
       *-C(=Q)RAc1    式(S-2)
     式(S-1)中、
     *は、結合位置を表す。
     LS1は、単結合又は炭素数1~3の直鎖状のアルキレン基を表す。
     RS1は、各々独立に、水素原子、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~4の分岐鎖状の脂肪族炭化水素基、又は炭素数3の環状のアルキル基を表す。
     複数のRS1は、互いに同一であっても異なってもよい。但し、3つのRS1のうち、2つ以上が水素原子以外である。
     前記アルキレン基、前記炭素数1~3の直鎖状の脂肪族炭化水素基、前記炭素数3~4の分岐鎖状の脂肪族炭化水素基、及び前記炭素数3の環状のアルキル基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
     式(S-2)中、
     *は、結合位置を表す。
     Qは、酸素原子又は硫黄原子を表す。
     RAc1は、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は置換基を有していてもよい脂肪族ヘテロ環基を表す。
  16.  前記置換基群Sから選択される置換基が、炭素数1~2の直鎖状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基、炭素数3~6の環状の脂肪族炭化水素基を有する炭素数1の脂肪族炭化水素基、置換基群RAr1から選択される置換基を有していてもよい芳香環基、式(S-3)で表される基、又は式(S-4)で表される基を表す、請求項15に記載の化合物。
     置換基群RAr1:炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基、芳香環基、ハロゲン原子、及び*-Si(RSi。*は、結合位置を表す。
     RSiは、炭素数1~3の直鎖状の脂肪族炭化水素基、炭素数3~5の分岐鎖状の脂肪族炭化水素基、炭素数3~8の環状の脂肪族炭化水素基、又は芳香環基を表す。複数のRSiは、互いに同一であっても異なってもよい。
     前記置換基群RAr1中の、前記炭素数1~3の直鎖状の脂肪族炭化水素基、前記炭素数3~5の分岐鎖状の脂肪族炭化水素基、及び前記炭素数3~8の環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
       *-C(RS2   式(S-3)
       *-C(=O)RAc2 式(S-4)
     式(S-3)中、
     *は、結合位置を表す。
     RS2は、各々独立に、水素原子、メチル基、イソプロピル基、又はt-ブチル基を表す。
     複数のRS2は、互いに同一であっても異なってもよい。但し、式(S-3)で表される基の炭素数は、3~9であり、3つのRS2のうち、2つ以上が水素原子以外である。
     式(S-4)中、
     *は、結合位置を表す。
     RAc2は、ハロゲン原子を有していてもよい炭素数1~3の直鎖状の脂肪族炭化水素基、ハロゲン原子を有していてもよい炭素数3~5の分岐鎖状の脂肪族炭化水素基、ハロゲン原子を有していてもよい炭素数3~6の環状の脂肪族炭化水素基、又は前記置換基群RAr1から選択される置換基を有していてもよい芳香環基を表す。
  17.  前記式(A-1)で表される基が、式(A-2)で表される基である、請求項15に記載の化合物。

     式(A-2)中、
     *は、結合位置を表す。
     Cは、3以上の炭素原子を含む環を表す。
     X及びXは、各々独立に、酸素原子又は硫黄原子を表す。
  18.  前記式(A-2)で表される基が、式(C-1)で表される基、又は式(C-2)で表される基である、請求項17に記載の化合物。

     式(C-1)及び式(C-2)中、
     *は、結合位置を表す。
     式(C-1)中、
     Xc1及びXc2は、各々独立に、硫黄原子又は酸素原子を表す。
     Cは、置換基を有していてもよい芳香環を表す。
     式(C-2)中、
     Xc3~Xc5は、各々独立に、硫黄原子又は酸素原子を表す。
     Rc1及びRc2は、各々独立に、水素原子又は置換基を表す。
  19.  Xが、>NR、>CRC1C2、>C=CRC3C4、>SiRC5C6、>GeRC7C8、又は-OC(RC9)(RC10)-を表す、請求項15~18のいずれか1項に記載の化合物。
     R及びRC1~RC10は、それぞれ前記式(1)中のR、及びRC1~RC10と同義である。
  20.  Xが、>NR、>CRC1C2、又は>C=CRC3C4を表す、請求項15~18のいずれか1項に記載の化合物。
     R及びRC1~RC4は、それぞれ前記式(1)中のR、及びRC1~RC4と同義である。
  21.  Xが、>NRを表す、請求項15~18のいずれか1項に記載の化合物。
     Rは、前記式(1)中のRと同義である。
  22.  式(2)で表される化合物。

     式(2)中、
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
     Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
     Rは、置換基群Tから選択される置換基を表す。
     置換基群T:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、及び置換基群RAr3から選択される置換基を有していてもよい窒素原子を含まない芳香環基。
     置換基群T中の、前記直鎖状の脂肪族炭化水素基、前記分岐鎖状の脂肪族炭化水素基、及び前記環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよい。
     置換基群RAr3:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、ハロゲン原子、及び窒素原子を含まない芳香環基。
     置換基群RAr3中の、前記直鎖状の脂肪族炭化水素基、前記分岐鎖状の脂肪族炭化水素基、及び前記環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
     R及びRは、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、塩素原子、フッ素原子、ホルミル基、*-Sn(RSn、*-B(RB1、又は、*-B(RB2を表す。
     Rは、炭素数1~6のパーフルオロアルキル基を表す。RSn、RB1及びRB2は、各々独立に、置換基を表し、複数のRSn、RB1及びRB2は、それぞれ、互いに同一であっても異なってもよい。RB1同士、及びRB2同士は、互いに結合して環構造を形成していてもよい。Mは、1価の金属カチオンを表す。*は、結合位置を表す。
     Arは、環員原子として2以上の炭素原子を含み、環員原子として窒素原子を含まない芳香環を表す。Arで表される前記芳香環には、前記置換基群Tから選択される置換基、又はハロゲン原子が置換していてもよい。
     Arで表される前記芳香環が前記置換基群Tから選択される置換基を有する場合、Rで表される前記置換基群Tから選択される置換基と、Arで表される芳香環が有する前記置換基群Tから選択される置換基とが、互いに結合して非芳香環を形成してもよい。
     Arで表される前記芳香環に複数の前記置換基群Tから選択される置換基が置換される場合、複数の前記置換基同士が互いに結合して非芳香環を形成していてもよい。
  23.  式(2a)で表される化合物と、式(X)で表される化合物とを反応させて、式(2b)で表される化合物を製造する工程を含む、化合物の製造方法。

     式(2a)中、
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
     Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
     RL4及びRL5は、各々独立に、*-O-S(=O)、臭素原子、塩素原子、又はフッ素原子を表す。
     X及びXは、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、又は塩素原子を表す。Rは、炭素数1~6のパーフルオロアルキル基を表す。
     但し、RL4、RL5、X及びXは、以下の要件を満たす。
     要件:ヨウ素原子を第1位、*-O-S(=O)を第2位、臭素原子を第3位、塩素原子を第4位、フッ素原子を第5位として順位付けし、前記第1位から前記第5位に向かって順位が高くなるとした際に、RL4で表される基の順位、及び、RL5で表される基の順位の両方が、Xで表される基の順位よりも高く、且つ、Xで表される基の順位よりも高い。
     式(X)中、
     Rは、置換基群Tから選択される置換基を表す。
     置換基群T:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、及び置換基群RAr3から選択される置換基を有していてもよい窒素原子を含まない芳香環基。
     置換基群T中の、前記直鎖状の脂肪族炭化水素基、前記分岐鎖状の脂肪族炭化水素基、及び前記環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよい。
     置換基群RAr3:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、ハロゲン原子、及び窒素原子を含まない芳香環基。
     置換基群RAr3中の、前記直鎖状の脂肪族炭化水素基、前記分岐鎖状の脂肪族炭化水素基、及び前記環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
     Arは、環員原子として2以上の炭素原子を含み、環員原子として窒素原子を含まない芳香環を表す。Arで表される前記芳香環には、前記置換基群Tから選択される置換基、又はハロゲン原子が置換していてもよい。
     Arで表される前記芳香環が前記置換基群Tから選択される置換基を有する場合、Rで表される前記置換基群Tから選択される置換基と、Arで表される芳香環が有する前記置換基群Tから選択される置換基とが、互いに結合して非芳香環を形成してもよい。
     Arで表される前記芳香環に複数の前記置換基群Tから選択される置換基が置換される場合、複数の前記置換基同士が互いに結合して非芳香環を形成していてもよい。
     式(2b)中、
     Z~Z、RL4及びRL5は、前記式(2a)中のZ~Z、RL4及びRL5と同義である。
     R及びArは、前記式(X)中のR及びArと同義である。
  24.  式(2a)で表される化合物と、式(X)で表される化合物とを反応させて、式(2b)で表される化合物を製造する工程と、
     前記式(2b)で表される化合物中、RL4で表される基及びRL5で表される基を、ホルミル基、*-Sn(RSn、*-B(RB1、又は*-B(RB2に変換する工程と、を含む、化合物の製造方法。
     RSn、RB1及びRB2は、各々独立に、置換基を表し、複数のRSn、RB1及びRB2は、それぞれ、互いに同一であっても異なってもよい。RB1同士、及びRB2同士は、互いに結合して環構造を形成していてもよい。Mは、1価の金属カチオンを表す。*は、結合位置を表す。

     式(2a)中、
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
     Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
     RL4及びRL5は、各々独立に、*-O-S(=O)、臭素原子、塩素原子、又はフッ素原子を表す。
     X及びXは、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、又は塩素原子を表す。Rは、炭素数1~6のパーフルオロアルキル基を表す。
     但し、RL4、RL5、X及びXは、以下の要件を満たす。
     要件:ヨウ素原子を第1位、*-O-S(=O)を第2位、臭素原子を第3位、塩素原子を第4位、フッ素原子を第5位として順位付けし、前記第1位から前記第5位に向かって順位が高くなるとした際に、RL4で表される基の順位、及び、RL5で表される基の順位の両方が、Xで表される基の順位よりも高く、且つ、Xで表される基の順位よりも高い。
     式(X)中、
     Rは、置換基群Tから選択される置換基を表す。
     置換基群T:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、及び置換基群RAr3から選択される置換基を有していてもよい窒素原子を含まない芳香環基。
     置換基群T中の、前記直鎖状の脂肪族炭化水素基、前記分岐鎖状の脂肪族炭化水素基、及び前記環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよい。
     置換基群RAr3:直鎖状の脂肪族炭化水素基、分岐鎖状の脂肪族炭化水素基、環状の脂肪族炭化水素基、ハロゲン原子、及び窒素原子を含まない芳香環基。
     置換基群RAr3中の、前記直鎖状の脂肪族炭化水素基、前記分岐鎖状の脂肪族炭化水素基、及び前記環状の脂肪族炭化水素基は、エーテル性酸素原子を有していてもよく、ハロゲン原子が置換していてもよい。
     Arは、環員原子として2以上の炭素原子を含み、環員原子として窒素原子を含まない芳香環を表す。Arで表される前記芳香環には、前記置換基群Tから選択される置換基、又はハロゲン原子が置換していてもよい。
     Arで表される前記芳香環が前記置換基群Tから選択される置換基を有する場合、Rで表される前記置換基群Tから選択される置換基と、Arで表される芳香環が有する前記置換基群Tから選択される置換基とが、互いに結合して非芳香環を形成してもよい。
     Arで表される前記芳香環に複数の前記置換基群Tから選択される置換基が置換される場合、複数の前記置換基同士が互いに結合して非芳香環を形成していてもよい。
     式(2b)中、
     Z~Z、RL4及びRL5は、前記式(2a)中のZ~Z、RL4及びRL5と同義である。
     R及びArは、前記式(X)中のR及びArと同義である。
  25.  式(3)で表される化合物。

     式(3)中、
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
     Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
     Qは、酸素原子又は硫黄原子を表す。
     Rは、置換基群Uから選択される置換基を表す。
     置換基群U:置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、及び置換基を有していてもよい脂肪族ヘテロ環基。
  26.  式(3a)で表される化合物と、式(A)で表される化合物とを反応させて、SiRY1 で表される保護基を有する式(3b)で表される化合物を得る工程1と、
     前記式(3b)で表される化合物と、金属化試薬とを反応させた後、ホルミル化剤を反応させ、更に、前記保護基を脱保護して、式(3c)で表される化合物を得る工程2と、
     前記式(3c)で表される化合物と式(C)で表される化合物とを反応させて、式(3)で表される化合物を得る工程3と、を有する、化合物の製造方法。

     式(3a)~式(3c)中、
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
     Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
     X及びXは、各々独立に、ヨウ素原子、*-O-S(=O)、臭素原子、又は塩素原子を表す。Rは、炭素数1~6のパーフルオロアルキル基を表す。
     式(3)中、
     Z~Zは、前記式(3a)~前記式(3c)中のZ~Zと同義である。
     Qは、酸素原子又は硫黄原子を表す。
     Rは、置換基群Uから選択される置換基を表す。
     置換基群U:置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、及び置換基を有していてもよい脂肪族ヘテロ環基。
     式(A)中、
     Lは、脱離基を表す。
     RY1は、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香環基、又は、置換基を有していてもよい脂肪族ヘテロ環基を表す。
     式(C)中、
     Lは、脱離基を表す。
  27.  式(3c)で表される化合物。

     式(3c)中、
     Z~Zは、各々独立に、-CRX1=又は窒素原子を表す。RX1は、水素原子又は置換基を表す。
     Z~Zのうち隣接する2つが-CRX1=である場合、2つのRX1は互いに結合して環を形成してもよい。
PCT/JP2023/035018 2022-09-30 2023-09-26 光電変換素子、撮像素子、光センサ、化合物、化合物の製造方法 WO2024071143A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157552 2022-09-30
JP2022-157552 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071143A1 true WO2024071143A1 (ja) 2024-04-04

Family

ID=90478053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035018 WO2024071143A1 (ja) 2022-09-30 2023-09-26 光電変換素子、撮像素子、光センサ、化合物、化合物の製造方法

Country Status (1)

Country Link
WO (1) WO2024071143A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502251A (ja) * 2003-08-15 2007-02-08 ユニヴェルシテ・ラヴァル 2位官能化及び2,7位二官能化カルバゾール類のモノマー類、オリゴマー類、及びポリマー類
WO2014026244A1 (en) * 2012-08-17 2014-02-20 Commonwealth Scientific And Industrial Research Organisation Photoactive optoelectronic and transistor devices
WO2015121239A1 (de) * 2014-02-14 2015-08-20 Hartmut Yersin Organische moleküle mit kleinen triplett-singulett-energieabständen für eine effektive verzögerte fluoreszenz zur anwendung in opto-elektronischen vorrichtungen
JP2016025203A (ja) * 2014-07-18 2016-02-08 富士フイルム株式会社 有機半導体膜形成用の組成物、非発光性有機半導体デバイス用有機半導体材料、有機膜トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用インク、非発光性有機半導体デバイス用有機半導体膜、有機膜トランジスタおよびオリゴマー
CN112321804A (zh) * 2020-11-20 2021-02-05 北京航空航天大学 邻苯二酚衍生的多孔聚合物的制备及其负载高自旋单原子铁的光催化应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502251A (ja) * 2003-08-15 2007-02-08 ユニヴェルシテ・ラヴァル 2位官能化及び2,7位二官能化カルバゾール類のモノマー類、オリゴマー類、及びポリマー類
WO2014026244A1 (en) * 2012-08-17 2014-02-20 Commonwealth Scientific And Industrial Research Organisation Photoactive optoelectronic and transistor devices
WO2015121239A1 (de) * 2014-02-14 2015-08-20 Hartmut Yersin Organische moleküle mit kleinen triplett-singulett-energieabständen für eine effektive verzögerte fluoreszenz zur anwendung in opto-elektronischen vorrichtungen
JP2016025203A (ja) * 2014-07-18 2016-02-08 富士フイルム株式会社 有機半導体膜形成用の組成物、非発光性有機半導体デバイス用有機半導体材料、有機膜トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用インク、非発光性有機半導体デバイス用有機半導体膜、有機膜トランジスタおよびオリゴマー
CN112321804A (zh) * 2020-11-20 2021-02-05 北京航空航天大学 邻苯二酚衍生的多孔聚合物的制备及其负载高自旋单原子铁的光催化应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AGNIESZKA NOWAK-KRóL, ET AL.: "Modulation of band gap and p- versus n-semiconductor character of ADA dyes by core and acceptor group variation", ORGANIC CHEMISTRY FRONTIERS, vol. 3, no. 5, 19 February 2016 (2016-02-19), pages 545 - 555, XP055609385, DOI: 10.1039/C6QO00046K *
PATRICK, D. BOYKIN, D. WILSON, W. TANIOUS, F. SPYCHALA, J. BENDER, B. HALL, J. DYKSTRA, C. OHEMENG, K. TIDWELL, : "Anti-Pneumocystis carinii pneumonia activity of dicationic carbazoles", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 32, no. 10, 1 October 1997 (1997-10-01), AMSTERDAM, NL , pages 781 - 793, XP004172149, ISSN: 0223-5234, DOI: 10.1016/S0223-5234(99)80064-6 *

Similar Documents

Publication Publication Date Title
WO2012137741A1 (ja) 有機材料の精製方法、有機エレクトロニクス用材料、光電変換素子、光センサ、撮像素子、及び有機電界発光素子
JP6010567B2 (ja) 光電変換材料、光電変換素子、光センサおよび撮像素子
TW202010739A (zh) 光電轉換元件、攝像元件、光感測器、化合物
JP5840187B2 (ja) 光電変換素子およびその使用方法、光センサ、撮像素子
JP2013532168A (ja) オプトエレクトロニクス用の多環芳香族炭化水素及び複素環との融合ポルフィリン
JP6970808B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2022014721A1 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
WO2024071143A1 (ja) 光電変換素子、撮像素子、光センサ、化合物、化合物の製造方法
TW202012413A (zh) 光電轉換元件、攝像元件、光感測器、化合物
JP7308984B2 (ja) 光電変換素子、撮像素子、光センサ
WO2024122301A1 (ja) 光電変換素子、撮像素子、光センサ、撮像素子の製造方法、化合物
WO2024071188A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
CN115769695A (zh) 光电转换元件、成像元件、光传感器及化合物
JP6059616B2 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
WO2024135443A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2023219042A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2023219033A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2023171788A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP7454671B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2023054346A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2023038064A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP7411073B2 (ja) 光電変換素子、撮像素子、光センサ、及び化合物
WO2024062871A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2022168856A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2023210772A1 (ja) 光電変換素子、撮像素子、光センサ、化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872366

Country of ref document: EP

Kind code of ref document: A1