WO2024070142A1 - 固体電解コンデンサ素子および固体電解コンデンサ - Google Patents

固体電解コンデンサ素子および固体電解コンデンサ Download PDF

Info

Publication number
WO2024070142A1
WO2024070142A1 PCT/JP2023/026234 JP2023026234W WO2024070142A1 WO 2024070142 A1 WO2024070142 A1 WO 2024070142A1 JP 2023026234 W JP2023026234 W JP 2023026234W WO 2024070142 A1 WO2024070142 A1 WO 2024070142A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
particles
metal
solid electrolytic
metal particles
Prior art date
Application number
PCT/JP2023/026234
Other languages
English (en)
French (fr)
Inventor
雄太 富松
正理 井上
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024070142A1 publication Critical patent/WO2024070142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • This disclosure relates to solid electrolytic capacitor elements and solid electrolytic capacitors.
  • the solid electrolytic capacitor comprises a solid electrolytic capacitor element, an exterior body that seals the solid electrolytic capacitor element, and an external electrode that is electrically connected to the solid electrolytic capacitor element.
  • the solid electrolytic capacitor element comprises an anode body, a dielectric layer formed on the surface of the anode body, and a cathode portion that covers at least a portion of the dielectric layer.
  • the cathode portion comprises, for example, a solid electrolyte layer containing a conductive polymer that covers at least a portion of the dielectric layer, and a cathode extraction layer that covers at least a portion of the solid electrolyte layer.
  • the cathode extraction layer comprises, for example, a carbon layer that covers at least a portion of the solid electrolyte layer, and a metal particle-containing layer that covers at least a portion of the carbon layer.
  • the cathode extraction layer is electrically connected to the cathode-side external electrode via a cathode lead.
  • the metal particle-containing layer is often formed using a conductive paste containing silver particles and a resin binder.
  • this has drawbacks, such as the high cost of silver particles.
  • Patent Document 1 proposes a tantalum solid electrolytic capacitor that uses a sintered body made of fine powder of a valve metal, on which an oxide film layer, a manganese dioxide layer, and a conductive layer made of fine powder of carbon are successively formed, and a conductive paste containing copper powder is formed on top of the layers.
  • Solid electrolytic capacitors are generally soldered to a substrate through a reflow process that exposes them to high temperatures. If copper particles are used instead of silver particles in the conductive paste used for the cathode, costs can be reduced, but in solid electrolytic capacitors that have a solid electrolyte layer containing a conductive polymer, leakage current increases significantly after exposure to high temperatures.
  • a first aspect of the present disclosure includes an anode body, a dielectric layer formed on a surface of the anode body, and a cathode portion covering at least a portion of the dielectric layer, the cathode section includes a solid electrolyte layer covering at least a portion of the dielectric layer, and at least a portion of the cathode section includes a metal particle-containing layer,
  • the solid electrolyte layer includes a conductive polymer, the metal particles contained in the metal particle-containing layer include first metal particles containing silver;
  • the present invention relates to a solid electrolytic capacitor element, wherein the first metal particle includes a core particle containing silica and a silver-containing coating layer coating the core particle.
  • the second aspect of the present disclosure relates to a solid electrolytic capacitor including at least one of the above-described solid electrolytic capacitor elements and an exterior body that encapsulates the solid electrolytic capacitor element.
  • FIG. 1 is a schematic cross-sectional view of a solid electrolytic capacitor according to an embodiment of the present disclosure.
  • the metal particles used in the metal particle-containing layer that constitutes part of the cathode of a solid electrolytic capacitor are required to have high electrical conductivity.
  • the content of metal particles in the metal particle-containing layer is relatively high (e.g., 80 mass% or more). Therefore, it is expected that costs can be significantly reduced by using copper particles or the like as highly conductive metal particles instead of silver particles.
  • Solid electrolytic capacitors are generally soldered to a substrate through a reflow process in which they are exposed to high temperatures. Depending on the application, solid electrolytic capacitors may also be used in high-temperature environments. In solid electrolytic capacitors, when copper particles are used in the metal particle-containing layer, even if the initial leakage current is small, the leakage current may increase after the solid electrolytic capacitor is exposed to high temperatures. Furthermore, a large leakage current may cause a short circuit, increasing the product defect rate (hereinafter sometimes referred to as the short circuit defect rate).
  • the copper ions interact or react with components present in the surrounding area (such as components of the conductive polymer), or are reduced.
  • the components containing copper then reach the dielectric layer.
  • organic components such as the resin binder or its hardened product contained in the cathode expand, causing stress inside. As a result, stress is transmitted to the dielectric layer, which is a very thin layer, and it is easily damaged.
  • the anode body and the cathode part will be conductive via the copper components, resulting in a relatively large leakage current. If a solid electrolytic capacitor absorbs moisture from the atmosphere during storage, the dielectric layer is more likely to be damaged when exposed to high temperatures due to the application of greater stress to the dielectric layer. In this case, the leakage current becomes even more pronounced.
  • copper components e.g., copper ions, components in which copper ions interact with components of conductive polymers, metallic copper, copper compounds, and other conductive components containing copper
  • a solid electrolytic capacitor element includes an anode body, a dielectric layer formed on the surface of the anode body, and a cathode portion covering at least a portion of the dielectric layer.
  • the cathode portion includes a solid electrolyte layer covering at least a portion of the dielectric layer, and at least a portion of the cathode portion includes a metal particle-containing layer.
  • the solid electrolyte layer includes a conductive polymer.
  • the metal particles included in the metal particle-containing layer include first metal particles containing silver.
  • the first metal particles include core particles containing silica, and a silver-containing coating layer coating the core particles.
  • the first metal particles contain core particles containing silica, so that the silver content in the metal particle-containing layer can be reduced. This allows costs to be kept low. In addition, both silver and silica are difficult to ionize and hardly interact with the components of the conductive polymer. Therefore, the ions of the components of the first metal particles are prevented from moving to the solid electrolyte layer, as in the case of copper particles. This allows the leakage current to be reduced after the solid electrolytic capacitor is exposed to high temperatures. Since the occurrence of a large leakage current is prevented, the short circuit defect rate can be reduced.
  • the solid electrolytic capacitor even if the solid electrolytic capacitor is exposed to a high humidity environment (including a high temperature and high humidity environment), the leakage current can be kept small. In other words, the solid electrolytic capacitor has excellent moisture resistance and high reliability can be ensured. In the present disclosure, it is also possible to ensure high moisture resistance comparable to that of a conventional silver paste layer containing silver particles.
  • the first metal particles have a coating layer containing silver, so that it is easy to ensure high conductivity of the metal particle-containing layer.
  • the first metal particles have a silica core particle, so that the specific gravity is smaller than that of particles formed entirely of metal. Therefore, the paste for forming the metal particle-containing layer can cover the solid electrolyte layer with a small mass. By using such a paste, it is possible to form a metal particle-containing layer having high conductivity while reducing the cost per unit volume. Therefore, the initial equivalent series resistance (ESR) of the solid electrolytic capacitor can be kept low.
  • the coating layer of the first metal particles contains silver, oxidation deterioration of the first metal particles is suppressed compared to the case of copper particles, even when exposed to a high temperature environment or a high temperature and high humidity environment. Therefore, by using the first metal particles, it is possible to suppress the increase in ESR when exposed to high temperatures or a high temperature and high humidity environment compared to the case of copper particles. Therefore, it is possible to ensure high reliability of the solid electrolytic capacitor.
  • the ratio of the first metal particles to the total metal particles may be 10 mass% or more.
  • a cost reduction effect can be obtained according to the ratio of the first metal particles.
  • the effect of suppressing leakage current can be increased according to the ratio of the first metal.
  • the average aspect ratio of the core particles may be 1 or more and 10 or less.
  • the aspect ratio of the core particles is in such a range, it is relatively easy to ensure contact between the first metal particles and to highly disperse the first metal particles in the paste.
  • the average ratio of the silver-containing coating layer in the first metal particles may be 0.1% by mass or more and 50% by mass or less.
  • the ratio of the silver-containing coating layer is in such a range, it is easy to balance low cost and high conductivity.
  • the metal particles may include second metal particles containing silver.
  • the second metal particles are at least one type selected from the group consisting of silver particles and silver alloy particles.
  • the present disclosure also includes a solid electrolytic capacitor that includes at least one solid electrolytic capacitor element according to any one of (1) to (5) above and an exterior body that seals the solid electrolytic capacitor element.
  • the solid electrolytic capacitor may include a plurality of stacked solid electrolytic capacitor elements.
  • the metal particle-containing layer that contains the first metal particles may be referred to as the first metal particle-containing layer.
  • the solid electrolytic capacitor element may be simply referred to as the capacitor element.
  • the cathode portion includes, for example, a solid electrolyte layer and a cathode lead layer that covers at least a portion of the solid electrolyte layer.
  • the cathode portion herein also includes a conductive adhesive layer (hereinafter sometimes referred to as a first conductive adhesive layer) interposed between the cathode lead and the cathode lead.
  • the cathode portion herein also includes a conductive adhesive layer (hereinafter sometimes referred to as a second conductive adhesive layer) that fixes adjacent capacitor elements together (more specifically, the cathode portion of one of the capacitor elements).
  • a conductive adhesive layer hereinafter sometimes referred to as a second conductive adhesive layer
  • the cathode part may include a first metal particle-containing layer in at least a part of at least one selected from the group consisting of the cathode lead layer, the first conductive adhesive layer, and the second conductive adhesive layer.
  • the cathode lead layer may include a first layer (also referred to as a carbon layer) that includes conductive carbon and covers at least a part of the solid electrolyte layer, and a first metal particle-containing layer as a second layer that covers at least a part of the first layer.
  • the cathode part may include a metal particle-containing layer other than the first metal particle-containing layer (hereinafter, sometimes referred to as a second metal particle-containing layer or a third metal particle-containing layer).
  • the cathode lead layer may include a carbon layer as the first layer and a second metal particle-containing layer as the second layer, and may include the first metal particle-containing layer as a first conductive adhesive layer interposed between the second metal particle-containing layer and the cathode lead.
  • the solid electrolytic capacitor may also include a laminate in which a plurality of capacitor elements including a cathode lead layer including a first layer and a second layer including a second metal particle-containing layer are laminated via a first metal particle-containing layer as a second conductive adhesive layer. In such a laminate, the cathode lead layer and the cathode lead of each capacitor element may be connected via a third metal particle-containing layer or a first metal particle-containing layer as a first conductive adhesive layer.
  • the capacitor element and solid electrolytic capacitor of the present disclosure will be described in more detail below, including the above (1) to (7). At least one selected from the components described below can be arbitrarily combined with at least one of the above (1) to (5) for the solid electrolytic capacitor element of the present disclosure and (6) to (7) for the solid electrolytic capacitor, as long as such combination is technically possible.
  • a solid electrolytic capacitor includes one or more capacitor elements.
  • the anode body included in the capacitor element may include a valve metal, an alloy containing a valve metal, a compound containing a valve metal, etc.
  • the anode body may include one of these materials or a combination of two or more of them.
  • the valve metal include aluminum, tantalum, niobium, and titanium.
  • the anode body has a porous portion at least on the surface. Due to such a porous portion, the anode body has a fine uneven shape at least on the surface.
  • An anode body having a porous portion on the surface can be obtained, for example, by roughening the surface of a substrate (such as a sheet-like (e.g., foil-like, plate-like) substrate) containing a valve metal. The roughening may be performed, for example, by etching.
  • the anode body may also be a molded body of particles containing a valve metal or a sintered body thereof. Each of the molded body and the sintered body may entirely constitute the porous portion.
  • Each of the molded body and the sintered body may be in the form of a sheet, a rectangular parallelepiped, a cube, or a shape similar to these.
  • the anode body typically has an anode lead-out portion and a cathode forming portion.
  • the porous portion may be formed in the cathode forming portion, or may be formed in the cathode forming portion and the anode lead-out portion.
  • the cathode portion is typically formed in the cathode forming portion of the anode body via a dielectric layer.
  • the anode lead-out portion is used, for example, for electrical connection with an external electrode on the anode side.
  • the dielectric layer is formed, for example, so as to cover at least a part of the surface of the anode body.
  • the dielectric layer is an insulating layer that functions as a dielectric.
  • the dielectric layer is formed by anodizing the valve metal on the surface of the anode body by chemical conversion treatment or the like. Since the dielectric layer is formed on the porous surface of the anode body, the surface of the dielectric layer has a fine uneven shape as described above.
  • the dielectric layer contains an oxide of the valve metal.
  • the dielectric layer contains Ta2O5
  • aluminum is used as the valve metal
  • the dielectric layer contains Al2O3 .
  • the dielectric layer is not limited to these examples, and it is sufficient if it functions as a dielectric.
  • the cathode part is formed so as to cover at least a part of the dielectric layer formed on the surface of the anode body.
  • Each layer constituting the cathode part can be formed by a known method according to the layer configuration of the cathode part.
  • the cathode section includes, for example, a solid electrolyte layer covering at least a portion of the dielectric layer, and a cathode lead layer covering at least a portion of the solid electrolyte layer.
  • the cathode section may further include a first conductive adhesive layer interposed between the cathode lead layer and the cathode lead.
  • the cathode section may also include a second conductive adhesive layer that fixes adjacent capacitor elements together.
  • the first metal particle-containing layer may be included in at least a portion of at least one selected from the group consisting of the cathode lead layer, the first conductive adhesive layer, and the second conductive adhesive layer.
  • the cathode lead layer which is closer to the solid electrolyte layer, has a greater effect on the leakage current.
  • the cathode portion includes the first metal particle-containing layer at least in the cathode lead layer, the effect of reducing the leakage current after the solid electrolytic capacitor is exposed to high temperatures is more pronounced.
  • the solid electrolyte layer is formed on the surface of the anode body via the dielectric layer so as to cover the dielectric layer.
  • the solid electrolyte layer does not necessarily have to cover the entire dielectric layer (the entire surface), but may be formed so as to cover at least a portion of the dielectric layer.
  • the solid electrolyte layer constitutes at least a portion of the cathode part in the solid electrolytic capacitor.
  • the solid electrolyte layer includes a conductive polymer.
  • the conductive polymer includes, for example, a conjugated polymer and a dopant.
  • the solid electrolyte layer may further include an additive, if necessary.
  • Conjugated polymers include known conjugated polymers used in solid electrolytic capacitors, such as ⁇ -conjugated polymers.
  • Conjugated polymers include, for example, polymers having a basic skeleton of polypyrrole, polythiophene, polyaniline, polyfuran, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, and polythiophenevinylene. Of these, polymers having a basic skeleton of polypyrrole, polythiophene, or polyaniline are preferred.
  • the above polymers need only contain at least one type of monomer unit that constitutes the basic skeleton.
  • the monomer unit also includes a monomer unit having a substituent.
  • the above polymers also include homopolymers and copolymers of two or more types of monomers.
  • polythiophenes include poly(3,4-ethylenedioxythiophene) (PEDOT).
  • the solid electrolyte layer may contain one type of conjugated polymer, or a combination of two or more types.
  • the weight average molecular weight (Mw) of the conjugated polymer is not particularly limited, but is, for example, 1,000 or more and 1,000,000 or less.
  • the weight average molecular weight (Mw) is a value calculated in terms of polystyrene measured by gel permeation chromatography (GPC). GPC is usually measured using a polystyrene gel column and water/methanol (volume ratio 8/2) as the mobile phase.
  • the dopant may be, for example, at least one selected from the group consisting of anions and polyanions.
  • Examples of anions include, but are not limited to, sulfate ions, nitrate ions, phosphate ions, borate ions, organic sulfonate ions, and carboxylate ions.
  • Examples of dopants that generate sulfonate ions include benzenesulfonic acid, p-toluenesulfonic acid, and naphthalenesulfonic acid.
  • polyanions include polymer anions.
  • the solid electrolyte layer may include, for example, a conjugated polymer containing a monomer unit corresponding to a thiophene compound and a polymer anion.
  • polymer anions include polymers having multiple anionic groups. Such polymers include polymers that contain monomer units having anionic groups. Examples of anionic groups include sulfonic acid groups and carboxy groups.
  • the anionic group of the dopant may be contained in a free form, an anion form, or a salt form, or may be contained in a form bonded to or interacting with the conjugated polymer.
  • anionic group sulfonic acid group
  • carboxy group sulfonic acid group
  • polymer anions having a carboxy group examples include, but are not limited to, polyacrylic acid, polymethacrylic acid, and copolymers using at least one of acrylic acid and methacrylic acid.
  • polymeric polysulfonic acids include, but are not limited to, polyvinyl sulfonic acid, polystyrene sulfonic acid (including copolymers and substituted products having substituents), polyallylsulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, polyester sulfonic acid (such as aromatic polyester sulfonic acid), and phenolsulfonic acid novolac resin.
  • the amount of dopant contained in the solid electrolyte layer is, for example, 10 to 1000 parts by mass, or may be 20 to 500 parts by mass or 50 to 200 parts by mass, per 100 parts by mass of the conjugated polymer.
  • the solid electrolyte layer may further contain at least one selected from the group consisting of known additives and known conductive materials other than conductive polymers, as necessary.
  • the conductive material may be at least one selected from the group consisting of conductive inorganic materials such as manganese dioxide, and TCNQ complex salts.
  • a layer for enhancing adhesion may be interposed between the dielectric layer and the solid electrolyte layer.
  • the solid electrolyte layer may be a single layer or may be composed of multiple layers.
  • the solid electrolyte layer may be composed to include a first solid electrolyte layer covering at least a portion of the dielectric layer, and a second solid electrolyte layer covering at least a portion of the first solid electrolyte layer.
  • the types, compositions, contents, etc. of the conjugated polymers, dopants, additives, etc. contained in each layer may be different or the same for each layer.
  • the solid electrolyte layer is formed, for example, by polymerizing a precursor on the dielectric layer using a treatment liquid containing a precursor of a conjugated polymer and a dopant.
  • the polymerization can be performed by at least one of chemical polymerization and electrolytic polymerization.
  • the precursor of the conjugated polymer include a monomer, an oligomer, and a prepolymer.
  • the solid electrolyte layer may be formed by attaching a treatment liquid (for example, a dispersion liquid or a solution) containing a conductive polymer to the dielectric layer and then drying it.
  • a treatment liquid for example, a dispersion liquid or a solution
  • the dispersion medium include at least one selected from the group consisting of water and an organic solvent.
  • the treatment liquid may further include other components (such as at least one selected from the group consisting of a dopant and an additive).
  • the solid electrolyte layer may be formed using a treatment liquid containing a conductive polymer (for example, PEDOT), a dopant (for example, a polyanion such as polystyrene sulfonate), and, if necessary, an additive.
  • a conductive polymer for example, PEDOT
  • a dopant for example, a polyanion such as polystyrene sulfonate
  • an oxidizing agent is used to polymerize the precursor.
  • the oxidizing agent may be contained in the treatment liquid as an additive.
  • the oxidizing agent may be applied to the anode body before or after contacting the treatment liquid with the anode body on which the dielectric layer is formed.
  • examples of such oxidizing agents include compounds capable of generating Fe3 + (such as ferric sulfate), persulfates (such as sodium persulfate and ammonium persulfate), and hydrogen peroxide.
  • the oxidizing agents may be used alone or in combination of two or more.
  • the process of forming a solid electrolyte layer by immersion in a treatment liquid and polymerization (or drying) may be carried out once or may be repeated multiple times. Each time, the conditions such as the composition and viscosity of the treatment liquid may be the same, or at least one of the conditions may be changed.
  • the cathode extraction layer needs to include at least a first layer that is in contact with the solid electrolyte layer and covers at least a portion of the solid electrolyte layer, and may include the first layer and a second layer that covers at least a portion of the first layer.
  • the first layer may be, for example, a layer containing conductive particles, metal foil, etc.
  • the conductive particles may be, for example, at least one selected from conductive carbon and metal powder.
  • the cathode lead layer may be composed of a layer containing conductive carbon (carbon layer) as the first layer and a layer containing metal powder or metal foil as the second layer. When metal foil is used as the first layer, the cathode lead layer may be composed of this metal foil.
  • Examples of conductive carbon include graphite (artificial graphite, natural graphite, etc.).
  • the layer containing metal powder as the second layer can be formed, for example, by laminating a composition containing metal powder on the surface of the first layer.
  • a second layer can be, for example, a metal particle-containing layer formed using a paste containing metal powder and a resin binder.
  • a thermoplastic resin can be used as the resin binder, it is preferable to use a thermosetting resin such as an imide resin or an epoxy resin.
  • silver-containing particles may be used as the metal powder.
  • the silver-containing particles include first metal particles and second metal particles (specifically, silver particles and silver alloy particles).
  • the second layer may contain one type of silver-containing particle, or may contain two or more types in combination.
  • silver particles and first metal particles are preferable as the silver-containing particles.
  • the silver particles may contain a small amount of impurities.
  • the second layer containing silver-containing particles may be a first metal particle-containing layer or a second metal particle-containing layer.
  • the second layer may, for example, include silver particles and silver alloy particles, may include first metal particles, or may include first metal particles and at least one of silver particles and silver alloy particles.
  • the type of metal is not particularly limited. It is preferable to use a valve metal (aluminum, tantalum, niobium, etc.) or an alloy containing a valve metal for the metal foil. If necessary, the surface of the metal foil may be roughened. The surface of the metal foil may be provided with a chemical conversion coating, or may be provided with a coating of a metal (heterogeneous metal) different from the metal constituting the metal foil or a nonmetal. Examples of heterogeneous metals and nonmetals include metals such as titanium and nonmetals such as carbon (conductive carbon, etc.).
  • the coating of the dissimilar metal or nonmetal may be the first layer, and the metal foil may be the second layer.
  • the cathode lead layer includes the first metal particle-containing layer
  • the entire cathode lead layer may be composed of the first metal particle-containing layer
  • the first layer may be composed of the first metal particle-containing layer
  • the second layer may be composed of the first metal particle-containing layer.
  • the cathode lead layer may include a first layer (carbon layer) containing conductive carbon and a second layer including the first metal particle-containing layer covering at least a portion of the first layer.
  • the cathode extraction layer is formed by a known method according to its layer structure.
  • the first or second layer is formed by laminating the metal foil so as to cover at least a part of the solid electrolyte layer or the first layer.
  • the first layer including conductive particles is formed, for example, by applying a conductive paste or liquid dispersion including conductive particles and, if necessary, a resin binder (water-soluble resin, curable resin, etc.) to the surface of the solid electrolyte layer.
  • the second layer including metal powder is formed, for example, by applying a paste including metal powder and a resin binder to the surface of the first layer.
  • a drying process, a heating process, etc. may be performed as necessary.
  • the cathode lead layer does not contain copper particles and copper alloy particles. From the same viewpoint, even if the cathode lead layer contains at least one of copper particles and copper alloy particles, it is preferable that the total ratio of these particles is small.
  • the total ratio of copper particles and copper alloy particles to the total metal particles contained in the metal particle-containing layer is, for example, less than 10 mass%, and more preferably 5 mass% or less or 1 mass% or less.
  • the metal foil does not contain copper, or even if the metal foil contains copper, the copper content in the metal foil is low.
  • the copper content in the metal foil is, for example, less than 10 mass%, and more preferably 5 mass% or less or 1 mass% or less.
  • the ratio of copper to the total metal contained in the metal-containing layer may be less than 10 mass%, 5 mass% or less, or 1 mass% or less.
  • the solid electrolytic capacitor may include a cathode lead.
  • the cathode lead is connected to the cathode extraction layer via a first conductive adhesive layer.
  • the cathode extraction layers and cathode leads of some of the capacitor elements may be connected via the first conductive adhesive layer.
  • the first conductive adhesive layer electrically connects the cathode extraction layers and cathode leads of the capacitor elements.
  • the first conductive adhesive layer may be formed using a known conductive adhesive.
  • known conductive adhesives include pastes containing conductive particles and a resin binder (such as a curable resin).
  • the first conductive adhesive layer formed using a known conductive adhesive may be a second metal particle-containing layer formed using a known silver-containing adhesive (such as a silver-containing paste).
  • Such a first conductive adhesive layer is formed, for example, by arranging the above-mentioned paste (including the silver-containing paste) so as to be sandwiched between the cathode extraction layer and the cathode lead.
  • the above-mentioned paste may be applied or transferred to a portion of the surface of the cathode extraction layer, and a portion of one end side of the cathode lead may be overlapped on the coating of the paste formed.
  • a drying process, a heating process, etc. may be performed as necessary.
  • the first conductive adhesive layer may be a first metal particle-containing layer.
  • the cathode portion includes a first metal particle-containing layer interposed between the cathode extraction layer and the cathode lead.
  • the plurality of capacitor elements may be fixed via a second conductive adhesive layer.
  • the plurality of capacitor elements may be laminated via a second conductive adhesive layer.
  • the second conductive adhesive layer may be in contact with the cathode lead layer of each capacitor element.
  • the second conductive adhesive layer electrically connects the plurality of capacitor elements.
  • the second conductive adhesive layer may be formed using a known conductive adhesive.
  • known conductive adhesives include pastes containing conductive particles and a resin binder (such as a curable resin).
  • the second conductive adhesive layer formed using a known conductive adhesive may be a third metal particle-containing layer formed using a known silver-containing adhesive (such as a silver-containing paste).
  • Such a second conductive adhesive layer is formed, for example, by arranging the above-mentioned paste (including the silver-containing paste) so as to be sandwiched between adjacent capacitor elements. For example, the above-mentioned paste may be applied or transferred to a portion of the surface of the cathode lead layer of the capacitor element, and another capacitor element may be layered on the coating of the paste formed. In the process of forming the second conductive adhesive layer, drying treatment, heating treatment, etc. may be performed as necessary.
  • the second conductive adhesive layer may be a first metal particle-containing layer. In this case, adjacent solid electrolytic capacitor elements are fixed via the first metal particle-containing layer.
  • the first metal particle-containing layer contained in the cathode portion is described in more detail below.
  • the first metal particle-containing layer contains metal particles.
  • the first metal particle-containing layer usually contains a resin binder or a cured product thereof.
  • the metal particles include first metal particles.
  • the metal particles may further include second metal particles, and the second metal particles are specifically at least one type selected from the group consisting of silver particles and silver alloy particles.
  • the metal particles may further include third metal particles other than the first metal particles and the second metal particles, in addition to the first metal particles or the first metal particles and the second metal particles.
  • the first metal particle includes a core particle and a silver-containing coating layer that coats the core particle.
  • the core particle includes, for example, silica.
  • the silica may be crystalline or amorphous.
  • the silica may be porous or non-porous.
  • the core particle may be fused silica.
  • the average aspect ratio of the core particles is, for example, 1 or more and 100 or less, and may be 1 or more and 20 or less. From the viewpoint of facilitating the formation of a relatively uniform silver-containing coating layer, the average aspect ratio is preferably 1 or more and 10 or less, and more preferably 1 or more and 5 or less. Furthermore, when the average aspect ratio is in such a range, it is easy to disperse the core particles in the paste for forming the first metal particle-containing layer, and it is easy to arrange the first metal particles with high packing properties in the first metal particle-containing layer.
  • the shape of the core particles is not particularly limited, and may be spherical (including oval spheres), flake-like, irregular, etc. From the viewpoints of facilitating the formation of a relatively uniform silver-containing coating layer, facilitating dispersion in a paste, and facilitating high loading in the first metal particle-containing layer, it is preferable that the shape of the core particles is spherical (including oval spheres, etc.).
  • spherical particles refer to particles having a sphericity of 0.6 or more and 1 or less.
  • Flake-like particles refer to flat or flaky particles.
  • the silver-containing coating layer may be made of silver or a silver alloy. From the viewpoint of obtaining high conductivity, it is preferable that the silver-containing coating layer is made of silver. In this case, the silver may contain a small amount of impurities.
  • the average ratio of the silver-containing coating layer in the first metal particles may be, for example, 0.1% by mass or more and 50% by mass or less, 1% by mass or more and 40% by mass or less, 5% by mass or more and 30% by mass or less, or 10% by mass or more and 30% by mass or less.
  • ratio of the silver-containing coating layer is in such a range, most of the surface of the core particle is covered with the silver-containing coating layer, making it easy to ensure high conductivity of the first metal particles.
  • the first metal particles may include one type of particle, or may include a combination of two or more types of particles in which the composition of at least one of the core particle and the silver-containing coating layer is different.
  • the shape of the first metal particles is not particularly limited, and may be spherical (including oval spheres), flake-like, or amorphous.
  • the first metal particles may include particles of one type of shape, or may include a combination of particles of two or more types of shapes. It is preferable that the first metal particles include at least spherical particles. In this case, the first metal particles are easily dispersed in the paste, and the first metal particles are easily arranged in the first metal particle-containing layer with high packing. In addition, many contact points between particles can be secured in the first metal particle-containing layer. Therefore, the first metal particle-containing layer can have a higher electrical conductivity. This tends to enhance the effect of suppressing the initial ESR low.
  • the first metal particles may include, for example, spherical particles and particles of other shapes.
  • the sphericity of a particle can be estimated by acquiring a cross-sectional image including multiple particles (e.g., 10 or more particles) and analyzing the contours of the particles included in the image.
  • the ratio of the diameter of a circle equal to the area inside the closed curve formed by the contours (hereinafter referred to as the "equivalent circle") to the diameter of the smallest circle circumscribing the contours is calculated.
  • the average value of this ratio for multiple particles is taken as the sphericity of the particle.
  • the cross-sectional image may be an image obtained by a scanning electron microscope (SEM).
  • the above cross-sectional image can be obtained, for example, by the following procedure.
  • the cured product is wet or dry polished to expose a cross section parallel to the thickness direction of the cathode part (a cross section where the stacking state of each layer of the cathode part can be confirmed).
  • the exposed cross section is smoothed by ion milling to obtain a sample for photographing.
  • the cross-sectional image can be analyzed using image analysis-based particle size distribution measurement software (for example, MAC-View (Mountec Co., Ltd.)) to identify the outline of each particle.
  • image analysis-based particle size distribution measurement software for example, MAC-View (Mountec Co., Ltd.)
  • the average aspect ratio of the core particles can also be found from the cross-sectional image. More specifically, a number of first metal particles (e.g., 10 or more) from which core particles can be observed in the cross-sectional image are arbitrarily selected, and the maximum length a of each core particle is found. For each core particle, the maximum length b in a direction perpendicular to the maximum length a is found, and the ratio a/b is taken as the aspect ratio of each core particle. The ratios a/b for the multiple core particles are averaged to find the average aspect ratio of the core particles.
  • a number of first metal particles e.g. 10 or more
  • the average particle diameter of the first metal particles may be, for example, 1 ⁇ m or more and 20 ⁇ m or less, or 1 ⁇ m or more and 10 ⁇ m or less. When the average particle diameter is in such a range, it is easy to ensure contact between the first metal particles, and it is easy to obtain higher conductivity of the first metal particle-containing layer.
  • the average particle size of particles can be estimated by acquiring a cross-sectional image containing multiple particles (e.g., 10 or more particles) and analyzing the contours of the particles contained in the image.
  • the average particle size is determined by determining the diameter of an equivalent circle equal to the area inside the closed curve formed by the contours and averaging the diameters. Preparation of samples for cross-sectional images and analysis of images are performed, for example, in the same manner as in determining sphericity. If necessary, the cross-sectional image can be analyzed using the above software to identify the contours of each particle and determine the diameter of the equivalent circle or the smallest circumscribing circle having the same area as the area enclosed by the contours.
  • the ratio of the first metal particles to all the metal particles contained in the first metal particle-containing layer is, for example, 10% by mass or more, and may be 30% by mass or more, 50% by mass or more, or 60% by mass or more. As the ratio of the first metal particles increases, the average specific gravity of the metal particles decreases, which has the effect of lowering the cost per unit volume. From this perspective, the ratio of the first metal particles to all the metal particles contained in the first metal particle-containing layer may be 80% by mass or more, and may be more than 90% by mass. The ratio of the first metal particles to all the metal particles contained in the first metal particle-containing layer is 100% by mass or less.
  • the first metal particles can be obtained by a known method or a method similar thereto. Commercially available products may also be used as the first metal particles.
  • the core particles may be coated with a silver-containing coating layer by a plating method, a gas phase method (vapor deposition, sputtering, etc.), etc.
  • the mass ratio of Si to the metal is determined by using an electron probe microanalyzer (EPMA) on a cross section of the first metal particle-containing layer.
  • EPMA electron probe microanalyzer
  • the ratio of the area occupied by the first metal particles to the total area occupied by the metal particles may be 0.20 or more and 1.00 or less (e.g., 0.50 or more and 1.00 or less), or 0.40 or more and 1.00 or less (e.g., 0.40 or more and 0.95 or less).
  • This area ratio is determined by energy dispersive X-ray spectroscopy (EDX) using the cross-sectional image.
  • the silver particles are preferred.
  • the silver particles may contain a small amount of impurities.
  • the second metal particles may contain silver particles and silver alloy particles.
  • the content of silver particles in the second metal particles is, for example, 80% by mass or more, and may be 90% by mass or more.
  • the content of silver particles in the second metal particles is 100% by mass or less.
  • the second metal particles may be composed of only silver particles.
  • the shape of the second metal particles is not particularly limited, and may be spherical (including oval spheres), flake-shaped, irregular, etc.
  • the second metal particles may include particles of one type of shape, or may include a combination of particles of two or more types of shapes.
  • the second metal particles may include at least one type selected from the group consisting of spherical particles and flake-shaped particles. It is preferable that the second metal particles include at least spherical particles.
  • the second metal particles are easily dispersed in the paste, and the second metal particles are easily highly filled in the second metal particle-containing layer.
  • many contact points between particles can be secured in the second metal particle-containing layer. Therefore, the second metal particle-containing layer can have a higher electrical conductivity. This tends to enhance the effect of suppressing the initial ESR low.
  • the second metal particles may include, for example, spherical particles and particles of other shapes.
  • the average particle diameter of the second metal particles may be, for example, 0.01 ⁇ m or more and 50 ⁇ m or less, and may be 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the aspect ratio and sphericity of the second metal particles may be selected from the ranges described for the first metal particles.
  • the aspect ratio, sphericity and average particle size of the second metal particles are each determined in the same manner as for the first metal particles.
  • Examples of the third metal particles other than the first metal particles and the second metal particles include metal particles that do not substantially contain precious metals such as silver or gold.
  • Examples of such third metal particles include copper particles, copper alloy particles, nickel particles, and nickel alloy particles. Note that metal particles (excluding the first metal particles and the second metal particles) that contain precious metals as impurities are included in the third metal particles.
  • the first metal particle-containing layer contains the third metal particles, it is advantageous in terms of reducing costs.
  • the total ratio of copper particles and copper alloy particles is low, and it is also preferable that the first metal particle-containing layer does not contain copper particles and copper alloy particles.
  • the content of the third metal particles in the entire metal particles contained in the first metal particle-containing layer is low.
  • the total content of the first metal particles and the second metal particles in the entire metal particles is, for example, 90 mass% or more, and may be 95 mass% or more.
  • the total content of the first metal particles and the second metal particles in the entire metal particles is 100 mass% or less.
  • the metal particles may be composed of only the first metal particles, or only the first metal particles and the second metal particles.
  • the resin binder examples include a thermoplastic resin material, a curable resin material, etc. From the viewpoint of relatively small deformation when exposed to high temperatures, it is preferable that the first metal particle-containing layer contains a cured product of the resin binder (specifically, a cured product of the curable resin material).
  • the first metal particle-containing layer is formed, for example, using a conductive paste containing metal particles and a resin binder. For example, a coating of the conductive paste is heated to harden the resin binder, thereby forming the first metal particle-containing layer.
  • the curable resin material may be a resin composition containing a curable resin (e.g., a thermosetting resin), a component involved in the curing of the curable resin, and, if necessary, at least one selected from the group consisting of additives and liquid media.
  • a curable resin e.g., a thermosetting resin
  • the components involved in the curing of the curable resin may be, for example, a polymerization initiator, a curing agent, a curing accelerator, a crosslinking agent, or a curing catalyst.
  • additives include known additives used in conductive pastes for solid electrolytic capacitors.
  • the curable resin include epoxy resin, polyamide-imide resin, polyimide resin, and phenol resin.
  • the resin binder may contain one type of curable resin or a combination of two or more types.
  • the amount of the resin binder or its cured product may be, for example, 2 parts by mass or more and 25 parts by mass or less, 5 parts by mass or more and 20 parts by mass or less, or 10 parts by mass or more and 20 parts by mass or less, per 100 parts by mass of the metal particles. However, it is not limited to these ranges.
  • the content of metal particles in the first metal particle-containing layer is determined, for example, taking into consideration the balance between electrical conductivity and adhesion.
  • the content of metal particles may be, for example, 80% by mass or more and 98% by mass or less, or 85% by mass or more and 96% by mass or less.
  • the ratio of metal particles is not limited to these ranges.
  • the content of metal particles in the first metal particle-containing layer corresponds to the ratio (mass%) of metal particles to the total dry solid content (total amount of components other than the liquid medium (i.e., solvent)) contained in the paste for forming the first metal particle-containing layer.
  • the liquid medium does not include raw materials (monomers, etc.) of the cured product of the resin binder.
  • the thickness of the first metal particle-containing layer is, for example, 0.5 ⁇ m or more and 100 ⁇ m or less, or may be 1 ⁇ m or more and 50 ⁇ m or less, or may be 1 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the first metal particle-containing layer is determined by measuring the thickness of the first metal particle-containing layer at multiple locations (e.g., 10 locations) in a cross-sectional image taken by SEM and averaging the measurements.
  • a cross-sectional image taken by SEM of the part of the capacitor element that includes the first metal particle-containing layer is used.
  • the cross-sectional image is prepared, for example, by the same procedure as when determining sphericity.
  • the first metal particle-containing layer can be formed by applying a conductive paste containing at least the first metal particles, the second metal particles, and a resin binder so as to cover at least a portion of at least one member (also called a constituent member) constituting the capacitor element (more specifically, the cathode portion), and then performing a heat treatment.
  • the constituent member to which the conductive paste is applied includes layers in the cathode portion that come into contact with the first metal particle-containing layer, such as the solid electrolyte layer, the cathode lead layer, the first or second layer constituting the cathode lead layer, and the cathode lead.
  • the conductive paste can be obtained by mixing the components.
  • a known method can be used for mixing.
  • the liquid medium used to prepare the conductive paste may be a medium that is liquid at the temperature at which the conductive paste is prepared or applied, and may be a medium that is liquid at room temperature (e.g., 20°C to 35°C).
  • an organic solvent is used as the liquid medium.
  • An organic solvent and water may be used in combination as the liquid medium.
  • the liquid medium is selected depending on the type of curable resin, the components involved in curing, and the additives.
  • the solid electrolytic capacitor may be of a wound type, and may be either a chip type or a laminated type.
  • each capacitor element may be, for example, of a wound type or a laminated type.
  • a laminated type solid electrolytic capacitor includes a plurality of laminated capacitor elements.
  • the configuration of the capacitor element may be selected according to the type of the solid electrolytic capacitor.
  • one end of the cathode lead is electrically connected to the cathode lead layer.
  • one end of the anode lead is electrically connected to the anode body (specifically, the anode lead).
  • the other end of the anode lead and the other end of the cathode lead are each drawn out from the exterior body.
  • the other end of each lead exposed from the exterior body is used for solder connection with the substrate on which the solid electrolytic capacitor is to be mounted, and is electrically connected to the external electrode.
  • At least a part of the external electrode constitutes an external terminal of the solid electrolytic capacitor.
  • Each lead may be a lead wire or a lead frame.
  • the end face of the anode lead part may be exposed from the exterior body and connected to the external electrode.
  • a cathode foil may be connected to the cathode lead layer, and the end face of the cathode foil may be exposed from the exterior body and connected to the external electrode.
  • the end face of the other end of the lead connected to the cathode lead layer may be exposed from the exterior body and connected to the external electrode.
  • the capacitor element is sealed, for example, by an exterior body.
  • the capacitor element and the resin material of the exterior body e.g., uncured thermosetting resin and filler
  • the capacitor element and the resin material of the exterior body may be placed in a mold, and the capacitor element may be sealed in the resin exterior body by transfer molding, compression molding, or the like.
  • transfer molding, compression molding, or the like the other end side of the anode lead and the other end side of the cathode lead pulled out from the capacitor element are each exposed from the mold.
  • the capacitor element may be placed in a bottomed case such that the other end side of the anode lead and the other end side of the cathode lead are positioned on the opening side of the bottomed case, and the opening of the bottomed case may be sealed with a sealant to form a solid electrolytic capacitor.
  • FIG. 1 is a cross-sectional view that shows a schematic structure of a solid electrolytic capacitor according to one embodiment of the present disclosure.
  • solid electrolytic capacitor 1 includes a capacitor element 2, a resin exterior body 3 that seals capacitor element 2, and an anode terminal 4 and a cathode terminal 5, at least a portion of which is exposed to the outside of resin exterior body 3.
  • Anode terminal 4 and cathode terminal 5 can be made of a metal such as copper or a copper alloy.
  • Resin exterior body 3 has an approximately rectangular parallelepiped outer shape
  • solid electrolytic capacitor 1 also has an approximately rectangular parallelepiped outer shape.
  • the capacitor element 2 comprises an anode body 6, a dielectric layer 7 covering the anode body 6, and a cathode portion 8 covering the dielectric layer 7.
  • the cathode portion 8 comprises a solid electrolyte layer 9 covering the dielectric layer 7, and a cathode lead layer 10 covering the solid electrolyte layer 9.
  • the cathode lead layer 10 comprises a first layer 11 covering the solid electrolyte layer 9, and a second layer 12 covering the first layer.
  • the anode body 6 includes an area facing the cathode portion 8 and an area not facing the cathode portion 8.
  • an insulating separation portion 13 is formed in a band shape covering the surface of the anode body 6 in the portion adjacent to the cathode portion 8, and contact between the cathode portion 8 and the anode body 6 is restricted.
  • Another part of the area of the anode body 6 not facing the cathode portion 8 is electrically connected to the anode terminal 4 by welding.
  • the cathode terminal 5 is electrically connected to the cathode portion 8 via a first conductive adhesive layer 14.
  • At least one of the second layer 12 and the first conductive adhesive layer 14 may be a first metal particle-containing layer that contains first metal particles.
  • first metal particles ensure high conductivity of the first metal particle-containing layer, so that the initial ESR can be kept low.
  • An anode body was prepared by roughening both surfaces of an aluminum foil (thickness: 100 ⁇ m) used as a substrate by etching.
  • the anode body on which the dielectric layer was formed in (2) above and the counter electrode were immersed in the resulting aqueous solution, and electrolytic polymerization was performed at 25°C with a polymerization voltage of 3 V (polymerization potential relative to the silver reference electrode) to form a solid electrolyte layer.
  • a conductive paste containing the metal particles shown in the table was applied to the surface of the first layer, and a heat treatment was performed at 210°C for 10 minutes to form the second layer, which is a metal particle-containing layer.
  • a cathode extraction layer composed of the first layer and the second layer was formed.
  • the thickness of the second layer was approximately 10 ⁇ m. In this way, a capacitor element was produced.
  • the conductive paste used to form the second layer was prepared by mixing the metal particles, resin binder, and liquid medium (or a dispersion or solution containing the resin binder) shown in the table.
  • An epoxy resin composition was used as the resin binder.
  • the ratio of the metal particles to the total amount of components other than the liquid medium in the conductive paste (total dry solid content) was 87.5 mass%.
  • the ratio of the resin binder to 100 mass parts of the total amount of the metal particles was 14 mass parts.
  • the following metal particles were used as each metal particle in the table. For each example, the density of the conductive paste was determined from the composition of the conductive paste.
  • First metal particle Silver-coated particle including a core particle made of fused silica and a silver coating layer coating the core particle (silver coating ratio: about 20% by mass, average particle size: 4.1 ⁇ m, spherical (sphericity: 0.9), aspect ratio of core particle: about 1, sphericity of core particle: 0.9)
  • Second metal particles silver particles (aspect ratio: about 3, spherical (sphericity: 0.6), average particle diameter: 2.0 ⁇ m)
  • Third metal particles copper particles (average particle size: about 2 ⁇ m, sphericity: 0.4) The sphericity of each particle corresponds to the sphericity determined from the cross-sectional image of the metal particle-containing layer by the procedure already described.
  • the mass ratio of silica to silver (metal) in the cross section of the first metal particle-containing layer was determined according to the procedure described above and was found to be within the range of approximately 0.2 to 3.0.
  • the area ratio of the first metal particles to the total metal particles in the cross section of the first metal particle-containing layer was within the range of approximately 0.50 to 1.00.
  • the solid electrolytic capacitor was then left to stand at 185°C for 4 hours, and then left to stand in a humidified environment of 85°C and 85% RH for 12 hours.
  • the solid electrolytic capacitor was then left to stand again at 185°C for 4 hours, and then left to stand in a humidified environment of 85°C and 85% RH for 12 hours.
  • the solid electrolytic capacitor was then heated at 295°C for 6 minutes to simulate a reflow process.
  • the leakage current after this heating (reflow) was measured in the same manner as for the initial leakage current, and the average value (leakage current after reflow (post-reflow LC)) of the 30 solid electrolytic capacitors was calculated.
  • the capacitor elements were randomly divided into two groups of 40 elements each. A heat resistance test was conducted on the capacitor elements in one group by leaving them at 145°C for 450 hours. After the heat resistance test, the ESR of the capacitor elements was measured in the same manner as for the initial ESR, and the average value of the 40 capacitor elements (ESR after heat resistance test) was calculated.
  • the capacitor elements of the other group were subjected to a moisture resistance test in which they were left in a humid environment of 85°C and 85% RH for 450 hours. After the moisture resistance test, the ESR of the capacitor elements was measured in the same manner as for the initial ESR, and the average value (ESR after moisture resistance test) of the 40 capacitor elements was calculated.
  • the evaluation results of the solid electrolytic capacitor are shown in Table 1, and the evaluation results of the capacitor element are shown in Table 2.
  • E1 to E3 are Examples 1 to 3
  • C1 is Comparative Example 1. Note that the ESR value after the heat resistance test and the moisture resistance test for C1 in Table 2, as well as the density of the conductive paste, are estimated values obtained through simulation.
  • the initial LC of the solid electrolytic capacitor E1 which uses the first metal particles in the cathode, and C1, which uses copper particles, do not differ much.
  • the leakage current (post-reflow LC) remains low and almost the same as the initial LC.
  • the proportion of solid electrolytic capacitors that show a large leakage current exceeding 1 mA (LC defect rate) is 0%.
  • the post-reflow LC of C1 is about 40 times that of E1, and the LC defect rate is also very high at 36.7%.
  • the core particles are coated with a silver-containing coating layer, which suppresses the movement of the constituent ions of the first metal particles in a high-temperature environment or during the above-mentioned heating.
  • the silver coating layer ensures high conductivity that is comparable to that when silver particles or silver alloy particles are used.
  • the first metal particles have a smaller specific gravity than silver particles, silver alloy particles, copper particles, etc., because the core particles are silica. Therefore, the cost per unit volume can be reduced, and the solid electrolyte layer can be coated with a small mass of paste. Therefore, by using the first metal particles, costs can be reduced, leakage current after exposure to high temperatures can be reduced, and high reliability can be obtained.
  • the initial ESR of the capacitor element is significantly lower in E1 than in C1.
  • the first metal particles used in E1 ensure high conductivity due to the silver coating layer, and the high conductivity of the metal particle-containing layer can be ensured. Therefore, the initial ESR of the capacitor element can be kept low.
  • the initial ESR can be further reduced due to the high conductivity of the second metal particles while keeping the specific gravity of the entire metal particles low to a certain extent (comparison of E1 with E2 and E3).
  • E1 to E3 which use the first metal particles (and second metal particles), oxidation deterioration of the metal particles is suppressed even in heat resistance tests and moisture resistance tests, so the ESR of the capacitor element after heat resistance tests or moisture resistance tests can be kept low, and high reliability can be obtained.
  • E2 and E3 use silver particles as the first metal particles in combination with the second metal particles, which suppresses the movement of the metal components that make up the metal particles as in the case of C1, which uses copper particles. Therefore, E2 and E3 also achieve a leakage current suppression effect that is equal to or better than that of E1 in Table 1.
  • the solid electrolytic capacitor of the present disclosure can suppress leakage current after exposure to high temperatures while suppressing costs. It can suppress leakage current after reflow processing. Furthermore, the solid electrolytic capacitor of the present disclosure has a low initial ESR, and can suppress fluctuations in ESR even after exposure to a high temperature environment or a high temperature and high humidity environment. Thus, the present disclosure can provide a highly reliable solid electrolytic capacitor at low cost. Therefore, the solid electrolytic capacitor can be applied to a variety of applications, and is also suitable for applications requiring high reliability. However, these are merely examples, and the applications of the solid electrolytic capacitor are not limited to these examples.
  • Solid electrolytic capacitor 2 Capacitor element 3: Exterior body (resin exterior body) 4: Anode lead (anode terminal) 5: Cathode lead (cathode terminal) 6: anode body 7: dielectric layer 8: cathode portion 9: solid electrolyte layer 10: cathode lead layer 11: first layer 12: second layer 13: separator 14: first conductive adhesive layer

Abstract

固体電解コンデンサに含まれる固体電解コンデンサ素子は、陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を含む。前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を含むとともに、前記陰極部の少なくとも一部に、金属粒子含有層を含む。前記金属粒子含有層に含まれる金属粒子は、銀を含有する第1金属粒子を含む。前記第1金属粒子は、シリカを含むコア粒子と、前記コア粒子を被覆する銀含有被覆層と、を含む。

Description

固体電解コンデンサ素子および固体電解コンデンサ
 本開示は、固体電解コンデンサ素子および固体電解コンデンサに関する。
 固体電解コンデンサは、固体電解コンデンサ素子と、固体電解コンデンサ素子を封止する外装体と、固体電解コンデンサ素子に電気的に接続される外部電極とを備える。固体電解コンデンサ素子は、陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部とを備える。陰極部は、例えば、誘電体層の少なくとも一部を覆う導電性高分子を含む固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを備える。陰極引出層は、例えば、固体電解質層の少なくとも一部を覆うカーボン層と、カーボン層の少なくとも一部を覆う金属粒子含有層とを含む。陰極引出層は、陰極リードを介して、陰極側の外部電極と電気的に接続される。
 金属粒子含有層は、高い導電性を確保する観点から、銀粒子と樹脂バインダとを含む導電性ペーストを用いて形成されることが多い。しかし、銀粒子が高価でコスト高となるなどの欠点がある。
 金属粒子含有層に、銀粒子の代わりに銅粒子を用いることが提案されている。例えば、特許文献1は、弁作用金属の微粉末からなる焼結体を用い、この焼結体に酸化皮膜層、二酸化マンガン層、炭素の微粉からなる導電層を順次形成し、その上に銅粉を含む導電性ペーストを形成した、タンタル固体電解コンデンサを提案している。
特開平4-85915号公報
 固体電解コンデンサは、一般に、高温に晒されるリフロー工程を経て基板にはんだ接合される。陰極部に用いる導電性ペーストにおいて、銀粒子の代わりに銅粒子を用いた場合、コストを低減できるものの、導電性高分子を含む固体電解質層を有する固体電解コンデンサでは、高温に晒された後の漏れ電流が顕著に増加する。
 本開示の第1側面は、陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を含み、
 前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を含むとともに、前記陰極部の少なくとも一部に、金属粒子含有層を含み、
 前記固体電解質層は、導電性高分子を含み、
 前記金属粒子含有層に含まれる金属粒子は、銀を含有する第1金属粒子を含み、
 前記第1金属粒子は、シリカを含むコア粒子と、前記コア粒子を被覆する銀含有被覆層と、を含む、固体電解コンデンサ素子に関する。
 本開示の第2側面は、少なくとも1つの上記固体電解コンデンサ素子と、前記固体電解コンデンサ素子を封止する外装体とを含む、固体電解コンデンサに関する。
 固体電解コンデンサの製造コストを低減できるとともに、高温に晒された後の漏れ電流を低減できる。
本開示の一実施形態に係る固体電解コンデンサの断面模式図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 固体電解コンデンサの陰極部の一部を構成する金属粒子含有層に使用される金属粒子には、高い導電性が求められる。金属粒子含有層に占める金属粒子の含有率は比較的高い(例えば、80質量%以上である)。そのため、高導電性の金属粒子として、銅粒子などを銀粒子に代えて用いると、コストを大きく低減できると期待される。
 固体電解コンデンサは、一般に、高温に晒されるリフロー工程を経て基板にはんだ接合される。また、固体電解コンデンサは、用途によっては、高温環境下で使用される場合もある。固体電解コンデンサにおいて、金属粒子含有層に銅粒子を用いた場合に、初期の漏れ電流は小さくても、固体電解コンデンサが高温に晒された後に漏れ電流が増大する場合がある。また、大きな漏れ電流によりショートが発生して、製品の不良率(以下、ショート不良率と称することがある)が増加する場合がある。
 銅粒子を含む金属粒子含有層を有する固体電解コンデンサにおいて、高温に晒された後に漏れ電流が増大するのは、次のような理由によると考えられる。固体電解コンデンサが高温に晒されると、熱の作用または重合膜から発生するガスの作用によって、銀粒子に比べてイオン化し易い銅粒子がイオン化し、金属粒子含有層から固体電解質層に移動する。銅イオンは、固体電解質層に含まれる導電性高分子の構成成分(例えば、ドーパント)と相互作用し易く、これにより、固体電解質層の内部まで銅イオンが移動する。銅イオンは、周囲に存在する成分(導電性高分子の構成成分など)と相互作用または反応したり、還元されたりする。そして、銅を含む成分が誘電体層にまで到達する。固体電解コンデンサが高温に晒されると、陰極部に含まれる樹脂バインダまたはその硬化物などの有機成分が膨張し、内部で応力が生じる。そのため、ごく薄い層である誘電体層に応力が伝わり、損傷し易い。誘電体層が損傷した部分に、銅成分(例えば、銅イオン、銅イオンが導電性高分子の構成成分などと相互作用した成分、金属銅、銅化合物などの銅を含む導電性成分)が存在すると、陽極体と陰極部とが銅成分を介して導通して、比較的大きな漏れ電流が生じることになる。固体電解コンデンサが、保管中に大気中の水分を吸収した状態であると、高温に晒された場合に誘電体層に、より大きな応力が加わることで誘電体層の損傷がさらに生じ易い。よって、この場合には、漏れ電流がさらに顕著になる。なお、導電性高分子を含む固体電解質層を有さないコンデンサでは、銅イオンと導電性高分子の構成成分との相互作用がほとんどないため、銅イオンの誘電体層側への移動自体が抑制される。
 上記に鑑み、(1)本開示の第1側面に係る固体電解コンデンサ素子は、陽極体と、陽極体の表面に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部と、を含む。陰極部は、誘電体層の少なくとも一部を覆う固体電解質層を含むとともに、陰極部の少なくとも一部に、金属粒子含有層を含む。固体電解質層は、導電性高分子を含む。金属粒子含有層に含まれる金属粒子は、銀を含有する第1金属粒子を含む。第1金属粒子は、シリカを含むコア粒子と、コア粒子を被覆する銀含有被覆層と、を含む。
 本開示の固体電解コンデンサ素子では、第1金属粒子がシリカを含むコア粒子を含むため、金属粒子含有層における銀の含有率を低減できる。よって、コストを低く抑えることができる。また、銀およびシリカの双方とも、イオン化し難く、導電性高分子の構成成分とほとんど相互作用しない。そのため、銅粒子の場合のような、第1金属粒子の構成成分のイオンが固体電解質層へ移動することが抑制される。よって、固体電解コンデンサが高温に晒された後の漏れ電流を低減できる。大きな漏れ電流が生じることが抑制されるため、ショート不良率を低減できる。また、本開示では、固体電解コンデンサが高湿度環境(高温高湿度環境も含む)に晒された場合でも、漏れ電流を小さく抑えることができる。換言すると、固体電解コンデンサの優れた耐湿性が得られ、高い信頼性を確保できる。本開示では、従来の銀粒子を含む銀ペースト層の場合に匹敵する高い耐湿性を確保することもできる。
 第1金属粒子は、被覆層が銀を含むため、金属粒子含有層の高い導電性を確保し易い。第1金属粒子は、コア粒子がシリカであることで、全体が金属で形成された粒子に比べて、比重が小さい。そのため、金属粒子含有層を形成するためのペーストにおいて、少ない質量で固体電解質層を覆うことができる。このようなペーストを用いることで、単位体積当たりのコストを抑えて、高い導電性を有した金属粒子含有層が形成可能となる。よって、固体電解コンデンサの初期の等価直列抵抗(ESR)を低く抑えることもできる。加えて、第1金属粒子の被覆層が銀を含むことで、銅粒子の場合に比較すると、高温環境または高温高湿度環境に晒された場合でも第1金属粒子の酸化劣化が抑制される。そのため、第1金属粒子を用いることで、銅粒子の場合に比較して、高温に晒された場合または高温高湿度環境に晒された場合のESRの増加を抑制できる。よって、固体電解コンデンサの高い信頼性を確保することができる。
(2)上記(1)において、金属粒子全体に占める第1金属粒子の比率は、10質量%以上であってもよい。第1金属粒子の比率に応じて、コスト低減効果が得られる。また、銅粒子の場合に比較すると、第1金属の比率に応じて漏れ電流の抑制効果を高めることができる。
(3)上記(1)または(2)において、コア粒子のアスペクト比の平均は、1以上10以下であってもよい。コア粒子のアスペクト比がこのような範囲である場合、比較的、第1金属粒子同士の接触を確保し易く、ペーストに第1金属粒子を高分散させ易い。
(4)上記(1)~(3)のいずれか1つにおいて、第1金属粒子中の銀含有被覆層の比率の平均は、0.1質量%以上50質量%以下であってもよい。銀含有被覆層の比率がこのような範囲である場合、低コストと高導電性とのバランスを取りやすい。
(5)上記(1)~(4)のいずれか1つにおいて、金属粒子は、銀を含有する第2金属粒子を含んでもよい。ここで、第2金属粒子は、銀粒子および銀合金粒子からなる群より選択される少なくとも一種である。金属粒子が銀を含有する第2金属粒子を含むことで、金属粒子含有層のより高い導電性を確保することができ、固体電解コンデンサのESRを低く抑えることができる。また、高温環境または高温高湿度環境に晒された後でも固体電解コンデンサのESRの増加を抑制でき、高い信頼性を確保することができる。
(6)本開示には、少なくとも1つの、上記(1)~(5)のいずれか1つの固体電解コンデンサ素子と、固体電解コンデンサ素子を封止する外装体とを含む、固体電解コンデンサも包含される。
(7)上記(6)において、固体電解コンデンサは、積層された複数の固体電解コンデンサ素子を含んでもよい。
 本明細書では、第1金属粒子を含む金属粒子含有層を第1金属粒子含有層と称することがある。また、固体電解コンデンサ素子を、単にコンデンサ素子と称する場合がある。
 陰極部は、例えば、固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを含んでいる。陰極引出層と陰極リードとが導電性接着剤により接続される場合、本明細書では、陰極引出層と陰極リードとの間に介在する導電性接着剤層(以下、第1導電性接着剤層と称することがある)も陰極部に包含される。複数のコンデンサ素子を含む固体電解コンデンサにおいて、複数のコンデンサ素子が導電性接着剤により固定される場合、本明細書では、隣接するコンデンサ素子間を固定する導電性接着剤層(以下、第2導電性接着剤層と称することがある)も陰極部(より具体的には、いずれか一方のコンデンサ素子の陰極部)に包含される。
 上記(1)~(7)のいずれか1つにおいて、陰極部は、例えば、陰極引出層、第1導電性接着剤層、および第2導電性接着剤層からなる群より選択される少なくとも1つの少なくとも一部に第1金属粒子含有層を含んでもよい。例えば、陰極引出層が、導電性カーボンを含むとともに固体電解質層の少なくとも一部を覆う第1層(カーボン層とも称される)と、第1層の少なくとも一部を覆う第2層としての第1金属粒子含有層を含んでもよい。陰極部は、第1金属粒子含有層以外の金属粒子含有層(以下、第2金属粒子含有層または第3金属粒子含有層と称することがある)を含んでもよい。例えば、陰極引出層が、第1層としてのカーボン層と、第2層としての第2金属粒子含有層を含み、第2金属粒子含有層と陰極リードとの間に介在する第1導電性接着剤層として第1金属粒子含有層を含んでもよい。また、固体電解コンデンサは、第1層と、第2層としての第2金属粒子含有層を含む陰極引出層を含む複数のコンデンサ素子が、第2導電性接着剤層としての第1金属粒子含有層を介して積層された積層体を含んでもよい。このような積層体において、各コンデンサ素子の陰極引出層と陰極リードとは、第1導電性接着剤層としての第3金属粒子含有層または第1金属粒子含有層を介して接続されていてもよい。
 以下、上記(1)~(7)を含めて、本開示のコンデンサ素子および固体電解コンデンサについてより具体的に説明する。以下に記載する構成要素から選択される少なくとも1つは、技術的に組み合わせが可能である限り、本開示の固体電解コンデンサ素子に係る上記(1)~(5)および固体電解コンデンサに係る(6)~(7)の少なくとも1つと任意に組み合わせられる。
[固体電解コンデンサ]
 固体電解コンデンサは、1つまたは2つ以上のコンデンサ素子を備える。
(コンデンサ素子)
 (陽極体)
 コンデンサ素子に含まれる陽極体は、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含んでもよい。陽極体は、これらの材料を一種含んでもよく、二種以上を組み合わせて含んでもよい。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが挙げられる。
 陽極体は、少なくとも表層に多孔質部を有する。このような多孔質部によって、陽極体は、少なくとも表面に、微細な凹凸形状を有する。表層に多孔質部を有する陽極体は、例えば、弁作用金属を含む基材(シート状(例えば、箔状、板状)の基材など)の表面を、粗面化することで得られる。粗面化は、例えば、エッチング処理などにより行ってもよい。また、陽極体は、弁作用金属を含む粒子の成形体またはその焼結体でもよい。成形体および焼結体のそれぞれは、全体が多孔質部を構成していてもよい。成形体および焼結体のそれぞれは、シート状の形状であってもよく、直方体、立方体またはこれらに類似の形状などであってもよい。
 陽極体は、通常、陽極引出部および陰極形成部を有する。多孔質部は、陰極形成部に形成されていてもよく、陰極形成部および陽極引出部に形成されていてもよい。陰極部は、陽極体の陰極形成部に、通常、誘電体層を介して形成される。陽極引出部は、例えば、陽極側の外部電極と電気的接続に利用される。
 (誘電体層)
 誘電体層は、例えば、陽極体の少なくとも一部の表面を覆うように形成される。誘電体層は、誘電体として機能する絶縁性の層である。誘電体層は、陽極体の表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。誘電体層は、陽極体の多孔質の表面に形成されるため、誘電体層の表面は、上述のように微細な凹凸形状を有する。
 誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTaを含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAlを含む。尚、誘電体層はこれらの例に限らず、誘電体として機能すればよい。
 (陰極部)
 陰極部は、陽極体の表面に形成された誘電体層の少なくとも一部を覆うように形成される。陰極部を構成する各層は、陰極部の層構成に応じて、公知の方法で形成できる。
 陰極部は、例えば、誘電体層の少なくとも一部を覆う固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを含んでいる。陰極部は、さらに、陰極引出層と陰極リードとの間に介在する第1導電性接着剤層を含んでもよい。また、陰極部は、隣接するコンデンサ素子間を固定する第2導電性接着剤層を含んでもよい。
 上述のように、第1金属粒子含有層は、陰極引出層、第1導電性接着剤層、および第2導電性接着剤層からなる群より選択される少なくとも1つの少なくとも一部に含まれていてもよい。漏れ電流への影響は、第1導電性接着剤層および第2導電性接着剤層に比較すると、固体電解質層に近い陰極引出層の方が大きい。本開示では、陰極部が、少なくとも陰極引出層に第1金属粒子含有層を含む場合に、固体電解コンデンサが高温に晒された後の漏れ電流を低減する効果が、より顕著に得られる。
 以下、陰極部の構成要素について説明する。
 (固体電解質層)
 固体電解質層は、陽極体の表面に、誘電体層を介して、誘電体層を覆うように形成される。固体電解質層は、必ずしも誘電体層の全体(表面全体)を覆う必要はなく、誘電体層の少なくとも一部を覆うように形成されていればよい。固体電解質層は、固体電解コンデンサにおける陰極部の少なくとも一部を構成する。
 固体電解質層は、導電性高分子を含む。導電性高分子は、例えば、共役系高分子およびドーパントを含んでいる。固体電解質層は、必要に応じて、さらに、添加剤を含んでもよい。
 共役系高分子としては、固体電解コンデンサに使用される公知の共役系高分子、例えば、π共役系高分子が挙げられる。共役系高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、およびポリチオフェンビニレンを基本骨格とする高分子が挙げられる。これらのうち、ポリピロール、ポリチオフェン、またはポリアニリンを基本骨格とする高分子が好ましい。上記の高分子は、基本骨格を構成する少なくとも一種のモノマー単位を含んでいればよい。モノマー単位には、置換基を有するモノマー単位も含まれる。上記の高分子には、単独重合体、二種以上のモノマーの共重合体も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などが含まれる。
 固体電解質層は、共役系高分子を、一種含んでもよく、二種以上組み合わせて含んでもよい。
 共役系高分子の重量平均分子量(Mw)は、特に限定されないが、例えば1,000以上1,000,000以下である。
 なお、本明細書中、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の値である。なお、GPCは、通常は、ポリスチレンゲルカラムと、移動相としての水/メタノール(体積比8/2)とを用いて測定される。
 ドーパントとしては、例えば、アニオンおよびポリアニオンからなる群より選択される少なくとも一種が挙げられる。
 アニオンとしては、例えば、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、有機スルホン酸イオン、カルボン酸イオンなどが挙げられるが、特に制限されない。スルホン酸イオンを生成するドーパントとしては、例えば、ベンゼンスルホン酸、p-トルエンスルホン酸、およびナフタレンスルホン酸などが挙げられる。
 ポリアニオンとしては、ポリマーアニオンなどが挙げられる。固体電解質層は、例えば、チオフェン化合物に対応するモノマー単位を含む共役系高分子と、ポリマーアニオンとを含んでもよい。
 ポリマーアニオンとしては、例えば、複数のアニオン性基を有するポリマーが挙げられる。このようなポリマーとしては、アニオン性基を有するモノマー単位を含むポリマーが挙げられる。アニオン性基としては、スルホン酸基、カルボキシ基などが挙げられる。
 固体電解質層において、ドーパントのアニオン性基は、遊離の形態、アニオンの形態、または塩の形態で含まれていてもよく、共役系高分子と結合または相互作用した形態で含まれていてもよい。本明細書中、これらの全ての形態を含めて、単に「アニオン性基」、「スルホン酸基」、または「カルボキシ基」などと称することがある。
 カルボキシ基を有するポリマーアニオンとしては、例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸およびメタクリル酸の少なくとも一方を用いた共重合体が挙げられるが、これらに限定されない。
 スルホン酸基を有するポリマーアニオンとしては、例えば高分子タイプのポリスルホン酸が挙げられる。高分子タイプのポリスルホン酸の具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸(共重合体および置換基を有する置換体なども含む)、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリエステルスルホン酸(芳香族ポリエステルスルホン酸など)、フェノールスルホン酸ノボラック樹脂が挙げられるが、これらに限定されない。
 固体電解質層に含まれるドーパントの量は、共役系高分子100質量部に対して、例えば、10~1000質量部であり、20~500質量部または50~200質量部であってもよい。
 固体電解質層は、必要に応じて、さらに、公知の添加剤、および導電性高分子以外の公知の導電性材料からなる群より選択される少なくとも一種を含んでもよい。導電性材料としては、例えば、二酸化マンガンなどの導電性無機材料、およびTCNQ錯塩からなる群より選択される少なくとも一種が挙げられる。
 なお、誘電体層と固体電解質層との間には、密着性を高める層などを介在させてもよい。
 固体電解質層は、単層であってもよく、複数の層で構成してもよい。例えば、固体電解質層を、誘電体層の少なくとも一部を覆う第1固体電解質層と、第1固体電解質層の少なくとも一部を覆う第2固体電解質層とを含むように構成してもよい。各層に含まれる共役系高分子、ドーパント、添加剤などの種類、組成、含有量などは各層で異なっていてもよく、同じであってもよい。
 固体電解質層は、例えば、共役系高分子の前駆体およびドーパントを含む処理液を用いて、前駆体を誘電体層上で重合させることにより形成される。重合は、化学重合、および電解重合の少なくともいずれかにより行うことができる。共役系高分子の前駆体としては、モノマー、オリゴマーまたはプレポリマーなどが挙げられる。固体電解質層は、誘電体層に、導電性高分子を含む処理液(例えば、分散液または溶液)を付着させた後、乾燥させることにより形成してもよい。分散媒(または溶媒)としては、例えば、水および有機溶媒からなる群より選択される少なくとも一種が挙げられる。処理液は、さらに、他の成分(ドーパント、および添加剤からなる群より選択される少なくとも一種など)を含んでもよい。例えば、導電性高分子(例えば、PEDOT)、ドーパント(例えば、ポリスチレンスルホン酸などのポリアニオン)、および必要に応じて添加剤を含む処理液を用いて、固体電解質層を形成してもよい。
 共役系高分子の前駆体を含む処理液を用いる場合、前駆体を重合させるために酸化剤が使用される。酸化剤は、添加剤として処理液に含まれていてもよい。また、酸化剤は、誘電体層が形成された陽極体に処理液を接触させる前または後に、陽極体に塗布してもよい。このような酸化剤としては、Fe3+を生成可能な化合物(硫酸第二鉄など)、過硫酸塩(過硫酸ナトリウム、過硫酸アンモニウムなど)、過酸化水素が例示できる。酸化剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。
 処理液への浸漬と重合(または乾燥)とにより固体電解質層を形成する工程は、1回行なってもよいが、複数回繰り返してもよい。各回において、処理液の組成および粘度などの条件を同じにしてもよく、少なくとも1つの条件を変化させてもよい。
 (陰極引出層)
 陰極引出層は、固体電解質層と接触するとともに固体電解質層の少なくとも一部を覆う第1層を少なくとも備えていればよく、第1層と第1層の少なくとも一部を覆う第2層とを備えていてもよい。
 第1層としては、例えば、導電性粒子を含む層、金属箔などが挙げられる。導電性粒子としては、例えば、導電性カーボンおよび金属粉から選択される少なくとも一種が挙げられる。例えば、第1層としての導電性カーボンを含む層(カーボン層)と、第2層としての金属粉を含む層または金属箔とで陰極引出層を構成してもよい。第1層として金属箔を用いる場合には、この金属箔で陰極引出層を構成してもよい。
 導電性カーボンとしては、例えば、黒鉛(人造黒鉛、天然黒鉛など)が挙げられる。
 第2層としての金属粉を含む層は、例えば、金属粉を含む組成物を第1層の表面に積層することにより形成できる。このような第2層としては、例えば、金属粉と樹脂バインダとを含むペーストを用いて形成される金属粒子含有層が挙げられる。樹脂バインダとしては、熱可塑性樹脂を用いることもできるが、イミド系樹脂、エポキシ樹脂などの熱硬化性樹脂を用いることが好ましい。第2層の高い導電性が得られ易い観点から、金属粉としては、銀含有粒子を用いてもよい。銀含有粒子としては、第1金属粒子、第2金属粒子(具体的には、銀粒子、および銀合金粒子)などが挙げられる。第2層は、銀含有粒子を一種含んでもよく、二種以上組み合わせて含んでもよい。第2層のより高い導電性を確保し観点からは、銀含有粒子としては、銀粒子、第1金属粒子が好ましい。銀粒子は、少量の不純物を含み得る。銀含有粒子を含む第2層は、第1金属粒子含有層であってもよく、第2金属粒子含有層であってもよい。第2層は、例えば、銀粒子と銀合金粒子とを含んでもよく、第1金属粒子を含んでもよく、第1金属粒子と、銀粒子および銀合金粒子の少なくとも一方とを含んでもよい。
 第1層として金属箔を用いる場合、金属の種類は特に限定されない。金属箔には、弁作用金属(アルミニウム、タンタル、ニオブなど)または弁作用金属を含む合金を用いることが好ましい。必要に応じて、金属箔の表面を粗面化してもよい。金属箔の表面には、化成皮膜が設けられていてもよく、金属箔を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタンのような金属またはカーボン(導電性カーボンなど)のような非金属などを挙げることができる。
 上記の異種金属または非金属(例えば、導電性カーボン)の被膜を第1層として、上記の金属箔を第2層としてもよい。
 陰極引出層が第1金属粒子含有層を含む場合、陰極引出層全体を第1金属粒子含有層で構成してもよく、第1層を第1金属粒子含有層で構成してもよく、第2層を第1金属粒子含有層で構成してもよい。例えば、陰極引出層は、導電性カーボンを含む第1層(カーボン層)と、第1層の少なくとも一部を覆う第1金属粒子含有層を含む第2層とを含んでもよい。
 陰極引出層は、その層構成に応じて、公知の方法により形成される。例えば、陰極引出層が第1層または第2層として金属箔を含む場合には、固体電解質層または第1層の少なくとも一部を覆うように金属箔を積層することによって、第1層または第2層が形成される。導電性粒子を含む第1層は、例えば、導電性粒子と必要に応じて樹脂バインダ(水溶性樹脂、硬化性樹脂など)とを含む導電性ペーストまたは液状分散体を、固体電解質層の表面に付与することによって形成される。金属粉を含む第2層は、例えば、金属粉と樹脂バインダとを含むペーストを第1層の表面に付与することによって形成される。陰極引出層の形成過程では、必要に応じて、乾燥処理、加熱処理などを行ってもよい。
 高温環境下での銅イオンの移動に伴う漏れ電流の増加を抑制する観点からは、陰極引出層(金属粒子含有層など)は、銅粒子および銅合金粒子を含まないことが好ましい。同様の観点から、陰極引出層が銅粒子および銅合金粒子の少なくとも一方を含む場合でも、これらの粒子の合計比率が少ないことが好ましい。例えば、金属粒子含有層中に含まれる金属粒子全体に占める銅粒子および銅合金粒子の合計比率は、例えば、10質量%未満であり、5質量%以下または1質量%以下がより好ましい。陰極引出層が金属箔を含む場合にも、金属箔は銅を含まないか、金属箔が銅を含む場合でも、金属箔中の銅の含有率は少ない方が好ましい。金属箔中の銅の含有率は、例えば、10質量%未満であり、5質量%以下または1質量%以下がより好ましい。また、陰極引出層を構成する金属含有層(第1層および第2層など)が銅を含まないか、もしくは、銅を含む場合でも、金属含有層に含まれる金属全体に占める銅の比率が、10質量%未満、5質量%以下または1質量%以下であってもよい。
 (第1導電性接着剤層)
 固体電解コンデンサは、陰極リードを含んでもよい。固体電解コンデンサにおいて、陰極リードは、第1導電性接着剤層を介して、陰極引出層と接続されている。固体電解コンデンサが複数のコンデンサ素子を含む場合、一部のコンデンサ素子の陰極引出層と陰極リードとが第1導電性接着剤層を介して接続されていてもよい。第1導電性接着剤層によって、コンデンサ素子の陰極引出層と陰極リードとが電気的に接続される。
 第1導電性接着剤層は、公知の導電性接着剤を用いて形成してもよい。公知の導電性接着剤としては、例えば、導電性粒子と樹脂バインダ(硬化性樹脂など)とを含むペーストが挙げられる。公知の導電性接着剤を用いて形成される第1導電性接着剤層は、公知の銀含有接着剤(例えば、銀含有ペースト)を用いて形成される第2金属粒子含有層であってもよい。このような第1導電性接着剤層は、例えば、上記のペースト(銀含有ペーストを含む)を、陰極引出層と陰極リードとの間に挟持されるように配置することによって形成される。例えば、上記のペーストを陰極引出層の表面の一部に塗布または転写し、形成されたペーストの塗膜に陰極リードの一端部側の部分を重ねてもよい。第1導電性接着剤層の形成過程では、必要に応じて、乾燥処理、加熱処理などを行ってもよい。
 第1導電性接着剤層は、第1金属粒子含有層であってもよい。この場合、陰極部は、陰極引出層と陰極リードとの間に介在する第1金属粒子含有層を含む。
 (第2導電性接着剤層)
 固体電解コンデンサが複数のコンデンサ素子を含む場合、複数のコンデンサ素子は、第2導電性接着剤層を介して固定されていてもよい。例えば、固体電解コンデンサが、複数のコンデンサ素子の積層体を含む場合、複数のコンデンサ素子は、第2導電性接着剤層を介して積層されていてもよい。第2導電性接着剤層は各コンデンサ素子の陰極引出層と接触していてもよい。第2導電性接着剤層によって、複数のコンデンサ素子が電気的に接続される。
 第2導電性接着剤層は、公知の導電性接着剤を用いて形成してもよい。公知の導電性接着剤としては、例えば、導電性粒子と樹脂バインダ(硬化性樹脂など)とを含むペーストが挙げられる。公知の導電性接着剤を用いて形成される第2導電性接着剤層は、公知の銀含有接着剤(例えば、銀含有ペースト)を用いて形成される第3金属粒子含有層であってもよい。このような第2導電性接着剤層は、例えば、上記のペースト(銀含有ペーストを含む)を、隣接するコンデンサ素子間に挟持されるように配置することによって形成される。例えば、上記のペーストをコンデンサ素子の陰極引出層の表面の一部に塗布または転写し、形成されたペーストの塗膜に別のコンデンサ素子を重ねてもよい。第2導電性接着剤層の形成過程では、必要に応じて、乾燥処理、加熱処理などを行ってもよい。
 第2導電性接着剤層は、第1金属粒子含有層であってもよい。この場合、隣接する固体電解コンデンサ素子は、第1金属粒子含有層を介して固定されている。
 陰極部に含まれる第1金属粒子含有層について、以下により詳細に説明する。
(第1金属粒子含有層)
 第1金属粒子含有層は、金属粒子を含む。第1金属粒子含有層は、通常、樹脂バインダまたはその硬化物を含む。
 金属粒子は、第1金属粒子を含む。金属粒子は、さらに第2金属粒子を含んでもよい、第2金属粒子は、具体的には、銀粒子および銀合金粒子からなる群より選択される少なくとも一種である。金属粒子は、第1金属粒子、または第1金属粒子および第2金属粒子に加えて、さらに第1金属粒子および第2金属粒子以外の第3金属粒子を含んでもよい。
 (第1金属粒子)
 第1金属粒子は、コア粒子と、コア粒子を被覆する銀含有被覆層とを含む。コア粒子は、例えば、シリカを含む。シリカは、結晶性であってもよく、非晶質であってもよい。また、シリカは、多孔質であってもよく、非多孔質であってもよい。コア粒子は、溶融シリカであってもよい。
 コア粒子のアスペクト比の平均は、例えば、1以上100以下であり、1以上20以下であってもよい。比較的均一な銀含有被覆層が形成され易い観点からは、アスペクト比の平均は、1以上10以下が好ましく、1以上5以下がより好ましい。また、アスペクト比の平均がこのような範囲である場合、第1金属粒子含有層を形成するためのペーストに分散させ易く、第1金属粒子含有層中に、第1金属粒子を高い充填性で配置し易い。
 コア粒子の形状は、特に制限されず、球状(楕円球状なども含む)、フレーク状、不定形状などであってもよい。比較的均一な銀含有被覆層が形成され易く、ペースト中に分散させ易く、第1金属粒子含有層中に高充填させ易い観点からは、コア粒子の形状は、球状(楕円球状なども含む)であることが好ましい。
 本明細書中、球状粒子とは、0.6以上1以下の球形度を有する粒子を言う。フレーク状粒子とは、扁平形状または薄片状の粒子を言う。
 銀含有被覆層は、銀で構成されていてもよく、銀合金で構成されていてもよい。高い導電性が得られる観点からは、銀含有被覆層は、銀で構成することが好ましい。この場合、銀は、少量の不純物を含んでもよい。
 第1金属粒子中の銀含有被覆層の比率の平均は、例えば、0.1質量%以上50質量%以下であってもよく、1質量%以上40質量%以下であってもよく、5質量%以上30質量%以下であってもよく、10質量%以上30質量%以下であってもよい。銀含有被覆層の比率がこのような範囲である場合、コア粒子の表面の大部分が銀含有被覆層で覆われ、第1金属粒子の高い導電性を確保し易い。また、第1金属粒子の比重を適度な範囲に調節し易く、ペースト中に第1金属粒子を高分散し易い。よって、コストの低減効果と、第1金属粒子含有層の高い導電性とをバランスよく確保し易い。
 第1金属粒子は、1種の粒子を含んでもよく、コア粒子および銀含有被覆層の少なくとも一方の組成が異なる2種以上の粒子を組み合わせて含んでもよい。
 第1金属粒子の形状は、特に制限されず、球状(楕円球状なども含む)、フレーク状、不定形状などであってもよい。第1金属粒子は、1種の形状の粒子を含んでもよく、2種以上の形状の粒子を組み合わせて含んでもよい。第1金属粒子は、少なくとも球状粒子を含むことが好ましい。この場合、ペースト中に分散させ易く、第1金属粒子含有層中に第1金属粒子を高い充填性で配置させ易い。また、第1金属粒子含有層では、粒子間の多くの接点を確保することができる。よって、第1金属粒子含有層のより高い導電性を確保することができる。これによって、初期のESRを低く抑える効果が高まる傾向がある。第1金属粒子は、例えば、球状粒子と他の形状の粒子とを含んでもよい。
 本明細書中、粒子の球形度は、複数の粒子(例えば、10個以上)を含む断面画像を取得し、画像に含まれる粒子の輪郭線を解析することにより推定できる。輪郭線により形成される閉曲線内の面積に等しい円(以下において、「相当円」という)の直径の、輪郭線に外接する最小の円の直径に対する比を求める。この比の複数の粒子に対する平均値を粒子の球形度とする。例えば、球状粒子とそれ以外の形状の粒子とを含む場合、球状粒子から複数の粒子を選択して、上記の手順で球形度が求められる。断面画像は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)により得られる画像であってもよい。
 上記の断面画像は、例えば、次の手順で得られる。まず、固体電解コンデンサを、硬化性樹脂に埋め込んで硬化性樹脂を硬化させる。硬化物を湿式研磨または乾式研磨して、陰極部の厚み方向に平行な断面(陰極部の各層の積層状態を確認可能な断面)を露出させる。露出した断面を、イオンミリングで平滑化することによって、撮影用のサンプルが得られる。必要に応じて、画像解析式の粒度分布測定ソフトウェア(例えば、MAC-View(株式会社マウンテック))を用いて断面画像を分析し、各粒子の輪郭を特定してもよい。
 コア粒子のアスペクト比の平均についても、上記の断面画像から求められる。より具体的に説明すると、断面画像において、コア粒子を観測可能な第1金属粒子を任意に複数個(例えば、10個以上)選択し、各コア粒子の最大長aを求める。各コア粒子について、最大長aと直交する方向におけるの最大長bを求め、比a/bを各コア粒子のアスペクト比とする。複数個のコア粒子について、比a/bを平均化することによって、コア粒子のアスペクト比の平均が求められる。
 第1金属粒子の平均粒子径は、例えば、1μm以上20μm以下であってもよく、1μm以上10μm以下であってもよい。平均粒子径がこのような範囲である場合、第1金属粒子同士の接触を確保し易く、第1金属粒子含有層のより高い導電性が得られ易い。
 本明細書中、粒子の平均粒子径は、複数の粒子(例えば、10個以上)を含む断面画像を取得し、画像に含まれる粒子の輪郭線を解析することにより推定できる。輪郭線により形成される閉曲線内の面積に等しい相当円の直径を求め、平均化することによって求められる。断面画像用のサンプルの作製および画像の分析は、例えば、球形度を求める場合と同様の手順で行われる。必要に応じて、上記のソフトウェアを用いて断面画像を分析し、各粒子の輪郭を特定し、輪郭で囲まれた面積と同じ面積の相当円または外接する最小の円の直径を求めてもよい。
 第1金属粒子含有層に含まれる金属粒子全体に占める第1金属粒子の比率は、例えば、10質量%以上であり、30質量%以上であってもよく、50質量%以上または60質量%以上であってもよい。第1金属粒子の比率が多くなると、金属粒子の平均的な比重が小さくなることで、単位体積当たりのコストが低くなる効果がある。このような観点から、第1金属粒子含有層に含まれる金属粒子全体に占める第1金属粒子の比率は、80質量%以上であってもよく、90質量%より多くてもよい。第1金属粒子含有層に含まれる金属粒子全体に占める第1金属粒子の比率は、100質量%以下である。
 第1金属粒子は、公知の方法またはそれに準じる方法によって得られる。また、第1金属粒子として市販品を用いてもよい。コア粒子の銀含有被覆層による被覆は、めっき法、気相法(蒸着、スパッタリングなど)などによって行ってもよい。
 第1金属粒子含有層において、SiのAg等の金属に対する質量比(=Si/金属(Ag等))は、0.1以上10以下、0.2以上5.0以下、または0.2以上3.0以下であってもよい。なお、Siの金属に対する質量比は、上記の第1金属粒子含有層の断面について、電子プローブマイクロアナライザー(EPMA:Electron Probe Micro Analyzer)を用いて求められる。
 第1金属粒子含有層の断面において、第1金属粒子が占める面積が、金属粒子が占める面積全体に対する比(=第1金属粒子の面積/金属粒子全体の面積)は、0.20以上1.00以下(例えば、0.50以上1.00以下)であってもよく、0.40以上1.00以下(例えば、0.40以上0.95以下)であってもよい。なお、この面積比は、上記の断面画像を用いて、エネルギー分散型X線分光法(EDX:Energy Dispersive X-ray Spectroscopy)により求められる。
 (第2金属粒子)
 上記の第2金属粒子のうち、銀粒子が好ましい。銀粒子は少量の不純物を含んでもよい。第2金属粒子は銀粒子と銀合金粒子とを含んでもよい。第2金属粒子に占める銀粒子の含有率は、例えば、80質量%以上であり、90質量%以上であってもよい。第2金属粒子に占める銀粒子の含有率は、100質量%以下である。第2金属粒子を銀粒子のみで構成してもよい。
 第2金属粒子の形状は、特に制限されず、球状(楕円球状なども含む)、フレーク状、不定形状などであってもよい。第2金属粒子は、1種の形状の粒子を含んでもよく、2種以上の形状の粒子を組み合わせて含んでもよい。例えば、第2金属粒子は、球状粒子およびフレーク状粒子からなる群より選択される少なくとも一種を含んでもよい。第2金属粒子は、少なくとも球状粒子を含むことが好ましい。この場合、ペースト中に分散させ易く、第2金属粒子含有層中に第2金属粒子を高充填させ易い。また、第2金属粒子含有層では、粒子間の多くの接点を確保することができる。よって、第2金属粒子含有層のより高い導電性を確保することができる。これによって、初期のESRを低く抑える効果が高まる傾向がある。第2金属粒子は、例えば、球状粒子と他の形状の粒子とを含んでもよい。
 第2金属粒子の平均粒子径は、例えば、0.01μm以上50μm以下であり、0.1μm以上20μm以下であってもよい。
 第2金属粒子のアスペクト比および球形度は、第1金属粒子について記載した範囲から選択してよい。第2金属粒子のアスペクト比、球形度および平均粒子径は、それぞれ、第1金属粒子の場合に準じて求められる。
 (第3金属粒子)
 第1金属粒子および第2金属粒子以外の第3金属粒子としては、例えば、銀または金などの貴金属を実質的に含まない金属粒子が挙げられる。このような第3金属粒子としては、例えば、銅粒子、銅合金粒子、ニッケル粒子、ニッケル合金粒子が挙げられる。なお、不純物として貴金属が含まれる金属粒子(第1金属粒子および第2金属粒子は除く)は、第3金属粒子に包含される。
 第1金属粒子含有層が第3金属粒子を含む場合、コストを低減する上で有利である。しかし、前述のように、銅粒子および銅合金粒子の合計比率は低い方が好ましく、銅粒子および銅合金粒子を含まない場合も好ましい。また、より高い導電性を確保し易い観点からは、第1金属粒子含有層に含まれる金属粒子全体に占める第3金属粒子の含有率は低い方が好ましい。金属粒子全体に占める第1金属粒子および第2金属粒子の含有率の合計は、例えば、90質量%以上であり、95質量%以上であってもよい。金属粒子全体に占める第1金属粒子および第2金属粒子の含有率の合計は、100質量%以下である。金属粒子を、第1金属粒子のみ、または第1金属粒子および第2金属粒子のみで構成してもよい。
 (樹脂バインダ)
 樹脂バインダとしては、熱可塑性樹脂材料、硬化性樹脂材料などが挙げられる。高温に晒された場合の変形が比較的小さい観点から、第1金属粒子含有層は、樹脂バインダの硬化物(具体的には、硬化性樹脂材料の硬化物)を含むことが好ましい。
 第1金属粒子含有層は、例えば、金属粒子と樹脂バインダとを含む導電性ペーストを用いて形成される。例えば、導電性ペーストの塗膜を、加熱することによって樹脂バインダが硬化し、第1金属粒子含有層が形成される。
 硬化性樹脂材料としては、硬化性樹脂(例えば、熱硬化性樹脂)と、硬化性樹脂の硬化に関与する成分と、必要に応じて添加剤および液状媒体からなる群より選択される少なくとも一種とを含む樹脂組成物が挙げられる。硬化性樹脂の硬化に関与する成分としては、硬化性樹脂の種類に応じて、例えば、重合開始剤、硬化剤、硬化促進剤、架橋剤、硬化触媒が挙げられる。このような成分は一種用いてもよく、二種以上組み合わせて用いてもよい。添加剤としては、例えば、固体電解コンデンサの導電性ペーストに使用される公知の添加剤が挙げられる。
 硬化性樹脂としては、エポキシ樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、フェノール樹脂などが好ましい。樹脂バインダは、硬化性樹脂を一種含んでもよく、二種以上組み合わせて含んでもよい。
 第1金属粒子含有層において、樹脂バインダまたはその硬化物の量は、金属粒子100質量部に対して、例えば、2質量部以上25質量部以下であってもよく、5質量部以上20質量部以下であってもよく、10質量部以上20質量部以下であってもよい。しかし、これらの範囲に限定されない。
 (その他)
 第1金属粒子含有層中の金属粒子の含有率は、例えば、導電性と密着性とのバランスを考慮して決定される。金属粒子の含有率は、例えば、80質量%以上98質量%以下であってもよく、85質量%以上96質量%以下であってもよい。しかし、金属粒子の比率は、これらの範囲に限定されない。なお、第1金属粒子含有層中の金属粒子の含有率は、第1金属粒子含有層を形成するためのペーストに含まれる乾燥固形分全体(液状媒体(つまり、溶媒)以外の成分の総量)に占める金属粒子の比率(質量%)に相当する。液状媒体には、樹脂バインダの硬化物の原料(モノマーなど)は包含されない。
 第1金属粒子含有層の厚さは、例えば、0.5μm以上100μm以下であり、1μm以上50μm以下であってもよく、1μm以上20μm以下であってもよい。
 第1金属粒子含有層の厚さは、SEMによる断面画像において、第1金属粒子含有層の厚さを、複数箇所(例えば、10箇所)について計測し、平均化することによって求められる。
 第1金属粒子含有層の厚さの測定には、例えば、コンデンサ素子の第1金属粒子含有層を含む部分のSEMによる断面画像が用いられる。断面画像は、例えば、球形度を求める場合と同様の手順で作製される。
 第1金属粒子含有層は、第1金属粒子、第2金属粒子、および樹脂バインダを少なくとも含む導電性ペーストを、コンデンサ素子(より具体的には陰極部)を構成する少なくとも1つの部材(構成部材とも称される)の少なくとも一部を覆うように付与し、加熱処理することによって形成することができる。導電性ペーストが付与される構成部材としては、陰極部において第1金属粒子含有層と接触する層、例えば、固体電解質層、陰極引出層、陰極引出層を構成する第1層または第2層、および陰極リードが挙げられる。
 導電性ペーストは、構成成分を混合することにより得ることができる。混合には、公知の方法を採用できる。導電性ペーストの調製に使用される液状媒体は、導電性ペーストを調製または付与する温度において液状の媒体であればよく、室温(例えば、20℃~35℃)で液状の媒体であってもよい。液状媒体としては、例えば、有機溶媒が用いられる。液状媒体として、有機溶媒と水とを併用してもよい。液状媒体は、硬化性樹脂、硬化に関与する成分、および添加剤の種類などに応じて選択される。
(その他)
 固体電解コンデンサは、巻回型であってもよく、チップ型または積層型のいずれであってもよい。固体電解コンデンサが複数のコンデンサ素子を含む場合、各コンデンサ素子は、例えば、巻回型であってもよく、積層型であってもよい。例えば、積層型の固体電解コンデンサは、積層された複数のコンデンサ素子を含んでいる。コンデンサ素子の構成は、固体電解コンデンサのタイプに応じて、選択すればよい。
 コンデンサ素子において、陰極引出層には、例えば、陰極リードの一端部が電気的に接続される。陽極体(具体的には、陽極引出部)には、例えば、陽極リードの一端部が電気的に接続される。陽極リードの他端部および陰極リードの他端部は、それぞれ外装体から引き出される。外装体から露出した各リードの他端部は、固体電解コンデンサを搭載すべき基板との半田接続などに用いられ、外部電極と電気的に接続される。外部電極の少なくとも一部は、固体電解コンデンサの外部端子を構成する。各リードとしては、リード線を用いてもよく、リードフレームを用いてもよい。また、リードを用いる場合に限らず、陽極引出部の端面を外装体から露出させて外部電極と接続してもよい。陰極引出層に陰極箔接続し、陰極箔の端面を外装体から露出させて外部電極と接続してもよい。陰極引出層に接続したリードの他端部の端面を外装体から露出させて外部電極と接続してもよい。
 コンデンサ素子は、例えば、外装体によって封止される。例えば、コンデンサ素子および外装体の材料樹脂(例えば、未硬化の熱硬化性樹脂およびフィラー)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子を樹脂外装体で封止してもよい。このとき、コンデンサ素子から引き出された、陽極リードの他端部側の部分および陰極リードの他端部側の部分を、それぞれ金型から露出させる。また、コンデンサ素子を、陽極リードの他端部側の部分および陰極リードの他端部側の部分が有底ケースの開口側に位置するように有底ケースに収納し、封止体で有底ケースの開口を封口することにより固体電解コンデンサを形成してもよい。
 図1は、本開示の一実施形態に係る固体電解コンデンサの構造を概略的に示す断面図である。図1に示すように、固体電解コンデンサ1は、コンデンサ素子2と、コンデンサ素子2を封止する樹脂外装体3と、樹脂外装体3の外部にそれぞれ少なくともその一部が露出する陽極端子4および陰極端子5と、を備えている。陽極端子4および陰極端子5は、例えば銅または銅合金などの金属で構成することができる。樹脂外装体3は、ほぼ直方体の外形を有しており、固体電解コンデンサ1もほぼ直方体の外形を有している。
 コンデンサ素子2は、陽極体6と、陽極体6を覆う誘電体層7と、誘電体層7を覆う陰極部8とを備える。陰極部8は、誘電体層7を覆う固体電解質層9と、固体電解質層9を覆う陰極引出層10とを備えている。陰極引出層10は、固体電解質層9を覆う第1層11と、第1層を覆う第2層12とを備える。
 陽極体6は、陰極部8と対向する領域と、対向しない領域とを含む。陽極体6の陰極部8と対向しない領域のうち、陰極部8に隣接する部分には、陽極体6の表面を帯状に覆うように絶縁性の分離部13が形成され、陰極部8と陽極体6との接触が規制されている。陽極体6の陰極部8と対向しない領域のうち、他の一部は、陽極端子4と、溶接により電気的に接続されている。陰極端子5は、第1導電性接着剤層14を介して、陰極部8と電気的に接続している。
 図示例では、第2層12および第1導電性接着剤層14の少なくとも一方(好ましくは、少なくとも第2層12)が、第1金属粒子を含む第1金属粒子含有層であってもよい。このように、陰極部が第1金属粒子含有層を含むことで、コストを抑えながら、固体電解コンデンサが高温に晒された後の漏れ電流を低く抑えることができる。また、第1金属粒子により、第1金属粒子含有層の高い導電性を確保できるため、初期のESRを低く抑えることができる。
 以下、本発明を実施例および参考例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1~3および比較例1》
 下記の要領で、コンデンサ素子または固体電解コンデンサを作製し、評価を行った。
 (1)陽極体の準備
 基材としてのアルミニウム箔(厚み:100μm)の両方の表面をエッチングにより粗面化することで、陽極体を作製した。
 (2)誘電体層の形成
 陽極体の他端部側の部分を、化成液に浸漬し、2.5Vの直流電圧を、20分間印加し
て、酸化アルミニウムを含む誘電体層を形成した。
 (3)固体電解質層の形成
 ピロールモノマーとp-トルエンスルホン酸とを含む水溶液を調製した。この水溶液中のモノマー濃度は、0.5mol/Lであり、p-トルエンスルホン酸の濃度は0.3mol/Lとした。
 得られた水溶液に、上記(2)で誘電体層が形成された陽極体と、対電極とを浸漬し、25℃で、重合電圧3V(銀参照電極に対する重合電位)で電解重合を行うことにより、固体電解質層を形成した。
 (4)陰極部の形成
 上記(3)で得られた陽極体を、黒鉛粒子を水に分散した分散液に浸漬し、分散液から取り出し後、乾燥することにより、少なくとも固体電解質層の表面に第1層(カーボン層)を形成した。乾燥は、150℃で30分間行った。
 次いで、第1層の表面に、表に示す金属粒子を含む導電性ペーストを塗布し、210℃で10分間加熱処理を行うことによって金属粒子含有層である第2層を形成した。このようにして第1層と第2層とで構成される陰極引出層を形成した。第2層の厚さは、約10μmであった。このようにして、コンデンサ素子を作製した。
 第2層の形成に用いた導電性ペーストは、表に示す金属粒子、樹脂バインダ、および液状媒体(もしくは、樹脂バインダを含む分散液または溶液)を混合することによって調製した。樹脂バインダとしてはエポキシ樹脂組成物を用いた。導電性ペースト中の液状媒体以外の成分の総量(乾燥固形分全体)に占める金属粒子の比率は、87.5質量%であった。金属粒子の総量100質量部に対する樹脂バインダの比率は、14質量部であった。表中の各金属粒子としては下記の金属粒子を用いた。各例について、導電性ペーストの組成から、導電性ペーストの密度を求めた。
 (a)第1金属粒子:溶融シリカからなるコア粒子と、コア粒子を被覆する銀被覆層とを含む銀被覆粒子(銀の被覆率約20質量%、平均粒子径4.1μm、球状(球形度:0.9)、コア粒子のアスペクト比:約1、コア粒子の球形度:0.9)
 (b)第2金属粒子:銀粒子(アスペクト比:約3、球状(球形度:0.6)、平均粒子径2.0μm)
 (c)第3金属粒子:銅粒子(平均粒子径:約2μm、球形度:0.4)
 なお、各粒子の球形度は、既述の手順で金属粒子含有層の断面画像から求められる球形度に相当する。
 (5)固体電解コンデンサの組み立て
 実施例1および比較例1については、上記(4)で得られたコンデンサ素子を用いてさらに、以下の手順で、固体電解コンデンサを組み立てた。
 コンデンサ素子の陰極引出層と、陰極リードの一端部とを導電性接着剤を用いて接合した。陽極体の、固体電解質層および陰極引出層に覆われていない部分の一端部と、陽極リードの一端部とをレーザ溶接により接合した。そして、コンデンサ素子の周囲に、モールド成形によって、絶縁性樹脂で形成された樹脂外装体を形成した。このとき、陽極リードの他端部と、陰極リードの他端部とは、樹脂外装体から引き出した状態とした。このようにして、固体電解コンデンサを完成させた。
 なお、実施例1~3のコンデンサ素子について、第1金属粒子含有層の断面におけるシリカの銀(金属)に対する質量比を、既述の手順に準じて求めたところ、おおよそ0.2~3.0の範囲内であった。また、第1金属粒子含有層の断面において、第1金属粒子の金属粒子全体に対する面積比は、おおよそ0.50~1.00の範囲内であった。
[評価]
 固体電解コンデンサまたはコンデンサ素子を用いて、下記の評価を行った。
(a)固体電解コンデンサの漏れ電流(LC)
 実施例1および比較例1の固体電解コンデンサについて、下記の手順で、漏れ電流(LC)を評価した。
 25℃にて、固体電解コンデンサに1kΩの抵抗を直列につなぎ、直流電源にて2Vの定格電圧を1分間印加した後の漏れ電流(μA)を測定し、30個の固体電解コンデンサの平均値(初期の漏れ電流(初期LC))を求めた。
 次いで、固体電解コンデンサを、185℃で4時間静置し、85℃で85%RHの加湿環境下で12時間静置した。次いで、固体電解コンデンサを、再度、185℃で4時間静置し、85℃で85%RHの加湿環境下で12時間静置した。その後、固体電解コンデンサを、リフロー工程を想定して295℃で6分間加熱した。この加熱(リフロー)後の漏れ電流を、初期の漏れ電流の場合と同様にして、30個の固体電解コンデンサの平均値(リフロー後の漏れ電流(リフロー後LC))を求めた。
(b)固体電解コンデンサのショート不良率
 上記(a)のリフロー後の漏れ電流の測定において、1mAを超える漏れ電流が測定された固体電解コンデンサの個数が、30個に占める比率(%)を求めた。この比率を、ショート不良率とした。
(c)ESR
 実施例1~3および比較例1で得られたコンデンサ素子について、25℃の環境下で、4端子測定用のLCRメータを用いて、コンデンサ素子の周波数100kHzにおける初期のESR(mΩ)を測定した。そして、初期のESRについて40個のコンデンサ素子の平均値を求めた。
 コンデンサ素子を、40個ずつの2つのグループに無作為に分けた。一方のグループのコンデンサ素子について、145℃で450時間静置する耐熱試験を行った。耐熱試験後のコンデンサ素子について、初期のESRの場合に準じて、ESRを測定し、40個のコンデンサ素子の平均値(耐熱試験後のESR)を求めた。
 他方のグループのコンデンサ素子について、85℃で85%RHの加湿環境下で450時間静置する耐湿試験を行った。耐湿試験後のコンデンサ素子について、初期のESRの場合に準じて、ESRを測定し、40個のコンデンサ素子の平均値(耐湿試験後のESR)を求めた。
 固体電解コンデンサの評価結果を表1に、コンデンサ素子の評価結果を表2に、それぞれ示す。表中、E1~E3は実施例1~3であり、C1は比較例1である。なお、表2中のC1の耐熱試験後および耐湿試験後のESR値、ならびに導電性ペーストの密度は、シミュレーションによる推測値である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、陰極部に第1金属粒子を用いたE1と、銅粒子を用いたC1とでは、固体電解コンデンサの初期LCは、それほど変わらない。E1では、固体電解コンデンサを、高温および高湿度環境に晒した後にリフロー工程を想定した加熱した後でも、漏れ電流(リフロー後LC)は、初期LCとほとんど変わらず、低く抑えられている。また、E1では、1mAを超える大きな漏れ電流を示す固体電解コンデンサの比率(LC不良率)は、0%である。このようなE1の結果に対して、C1では、リフロー後LCは、E1の約40倍であり、LC不良率も36.7%と非常に高くなった。
 C1でリフロー後LCが大きくなったのは、次のような理由によると考えられる。C1では、高温環境下やリフロー工程を想定した加熱の際に、銅粒子の一部がイオン化して、固体電解質層に移動し、銅成分が絶縁性の誘電体層まで到達すると考えられる。そして、誘電体層にまで移動した銅成分によって、陽極体と陰極部との間に電流が流れ、漏れ電流が大きくなったと考えられる。
 また、E1で用いた第1金属粒子では、コア粒子が銀含有被覆層で被覆されていることで、高温環境下や上記の加熱の際の第1金属粒子の構成成分イオンの移動が抑制される。しかも、第1金属粒子を用いる場合、銀被覆層により、銀粒子や銀合金粒子を用いた場合と比較して遜色のない高い導電性を確保できる。加えて、第1金属粒子は、コア粒子がシリカであることで、銀粒子、銀合金粒子、または銅粒子などと比べて、比重が小さい。よって、単位体積当たりのコストを抑えることができ、少ない質量のペーストで固体電解質層を被覆することができる。従って、第1金属粒子を用いることで、コストを低減できるとともに、高温に晒された後の漏れ電流を低減でき、高い信頼性が得られる。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、E1では、C1に比較して、コンデンサ素子の初期のESRが顕著に低い。E1で用いた第1金属粒子では、銀被覆層により、高い導電性を確保でき、金属粒子含有層の高い導電性を確保できる。そのため、コンデンサ素子の初期のESRを低く抑えることができる。また、第1金属粒子と第2金属粒子(銀粒子など)とを併用した場合には、金属粒子全体の比重をある程度低く抑えながら、第2金属粒子の高い導電性によって初期のESRをさらに低く抑えることができる(E1とE2およびE3との比較)。また、第1金属粒子(および第2金属粒子)を用いたE1~E3では、耐熱試験や耐湿試験でも金属粒子の酸化劣化が抑制されるため、耐熱試験または耐湿試験後のコンデンサ素子のESRを低く抑えることができ、高い信頼性が得られる。
 なお、E2およびE3では、第1金属粒子と第2金属粒子としての銀粒子とを併用しているため、銅粒子を用いたC1の場合のような金属粒子を構成する金属成分の移動が抑制される。よって、E2およびE3でも、表1のE1と同等かまたはそれよりも優れる漏れ電流抑制効果が得られる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示の固体電解コンデンサは、コストを抑えながら、高温に晒された後の漏れ電流を低く抑えることができる。リフロー処理後の漏れ電流を低く抑えることができる。また、本開示の固体電解コンデンサでは、初期のESRが低く、高温環境または高温高湿度環境に晒された後もESRの変動を抑えることができる。よって、本開示では、高い信頼性を有する固体電解コンデンサを安価に提供できる。そのため、固体電解コンデンサは、様々な用途に適用でき、高い信頼性が求められる用途にも適している。しかし、これらは単なる例示であり、固体電解コンデンサの用途はこれらの例のみに限定されない。
1:固体電解コンデンサ
2:コンデンサ素子
3:外装体(樹脂外装体)
4:陽極リード(陽極端子)
5:陰極リード(陰極端子)
6:陽極体
7:誘電体層
8:陰極部
9:固体電解質層
10:陰極引出層
11:第1層
12:第2層
13:分離部
14:第1導電性接着剤層

Claims (7)

  1.  陽極体と、前記陽極体の表面に形成された誘電体層と、前記誘電体層の少なくとも一部を覆う陰極部と、を含み、
     前記陰極部は、前記誘電体層の少なくとも一部を覆う固体電解質層を含むとともに、前記陰極部の少なくとも一部に、金属粒子含有層を含み、
     前記固体電解質層は、導電性高分子を含み、
     前記金属粒子含有層に含まれる金属粒子は、銀を含有する第1金属粒子を含み、
     前記第1金属粒子は、シリカを含むコア粒子と、前記コア粒子を被覆する銀含有被覆層と、を含む、固体電解コンデンサ素子。
  2.  前記金属粒子全体に占める前記第1金属粒子の比率は、10質量%以上である、請求項1に記載の固体電解コンデンサ素子。
  3.  前記コア粒子のアスペクト比の平均は、1以上10以下である、請求項1または2に記載の固体電解コンデンサ素子。
  4.  前記第1金属粒子中の前記銀含有被覆層の比率の平均は、0.1質量%以上50質量%以下である、請求項1~3のいずれか1項に記載の固体電解コンデンサ素子。
  5.  前記金属粒子は、銀を含有する第2金属粒子を含み、
     前記第2金属粒子は、銀粒子および銀合金粒子からなる群より選択される少なくとも一種である、請求項1~4のいずれか1項に記載の固体電解コンデンサ素子。
  6.  少なくとも1つの、請求項1~5のいずれか1項に記載の固体電解コンデンサ素子と、前記固体電解コンデンサ素子を封止する外装体とを含む、固体電解コンデンサ。
  7.  積層された複数の前記固体電解コンデンサ素子を含む、請求項6に記載の固体電解コンデンサ。
PCT/JP2023/026234 2022-09-30 2023-07-18 固体電解コンデンサ素子および固体電解コンデンサ WO2024070142A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157325 2022-09-30
JP2022157325 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070142A1 true WO2024070142A1 (ja) 2024-04-04

Family

ID=90476947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026234 WO2024070142A1 (ja) 2022-09-30 2023-07-18 固体電解コンデンサ素子および固体電解コンデンサ

Country Status (1)

Country Link
WO (1) WO2024070142A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017618A1 (ja) * 2010-08-02 2012-02-09 パナソニック株式会社 固体電解コンデンサ
JP2014511029A (ja) * 2012-03-27 2014-05-01 エイブルスティック・(シャンハイ)・リミテッド コンデンサ用導電性コーティングおよびそれを用いたコンデンサ
JP2016110939A (ja) * 2014-12-10 2016-06-20 住友電気工業株式会社 導電性ペースト、その導電性ペーストが用いられた配線基板及び固体電解コンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017618A1 (ja) * 2010-08-02 2012-02-09 パナソニック株式会社 固体電解コンデンサ
JP2014511029A (ja) * 2012-03-27 2014-05-01 エイブルスティック・(シャンハイ)・リミテッド コンデンサ用導電性コーティングおよびそれを用いたコンデンサ
JP2016110939A (ja) * 2014-12-10 2016-06-20 住友電気工業株式会社 導電性ペースト、その導電性ペーストが用いられた配線基板及び固体電解コンデンサ

Similar Documents

Publication Publication Date Title
TWI478189B (zh) 固體電解電容器及其製造方法
JP2019047130A (ja) 密封されたコンデンサアセンブリ
JP4955000B2 (ja) 固体電解コンデンサ
JP2009505412A (ja) ポリマーベースの固体コンデンサおよびその製造方法
WO2018221096A1 (ja) 電解コンデンサおよびその製造方法
JP5333674B2 (ja) 固体電解コンデンサ
WO2013088845A1 (ja) 固体電解コンデンサ
WO2016174818A1 (ja) 電解コンデンサおよびその製造方法
JP5623214B2 (ja) 固体電解コンデンサ
JP5020020B2 (ja) 固体電解コンデンサの製造方法
WO2024070142A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2023119843A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP4624017B2 (ja) 固体電解コンデンサの製造方法
WO2023127251A1 (ja) 固体電解コンデンサ
US20230178306A1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
WO2023032603A1 (ja) 固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ
JP2022156883A (ja) 固体電解コンデンサ用導電性ペースト、固体電解コンデンサおよびその製造方法
WO2022158350A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP3168584B2 (ja) 固体電解コンデンサ
JP2022131169A (ja) 固体電解コンデンサおよびその製造方法
US20230074619A1 (en) Electrolytic capacitor and paste for forming conductive layer of electrolytic capacitor
WO2024057931A1 (ja) 有機導電体用の添加剤
WO2021193330A1 (ja) 電解コンデンサおよびコンデンサ素子
WO2020137548A1 (ja) 電解コンデンサおよびその製造方法
JP2023123115A (ja) 固体電解コンデンサ素子およびその製造方法、ならびに固体電解コンデンサおよびその製造方法