WO2023032603A1 - 固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ - Google Patents

固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ Download PDF

Info

Publication number
WO2023032603A1
WO2023032603A1 PCT/JP2022/030229 JP2022030229W WO2023032603A1 WO 2023032603 A1 WO2023032603 A1 WO 2023032603A1 JP 2022030229 W JP2022030229 W JP 2022030229W WO 2023032603 A1 WO2023032603 A1 WO 2023032603A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolytic
electrolytic capacitor
foil
layer
porous
Prior art date
Application number
PCT/JP2022/030229
Other languages
English (en)
French (fr)
Inventor
正理 井上
大輔 宇佐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280057590.4A priority Critical patent/CN117836885A/zh
Priority to JP2023545393A priority patent/JPWO2023032603A1/ja
Publication of WO2023032603A1 publication Critical patent/WO2023032603A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to electrode foils for solid electrolytic capacitors, solid electrolytic capacitor elements using the same, and solid electrolytic capacitors.
  • a solid electrolytic capacitor includes a capacitor element having a solid electrolyte layer, electrode terminals electrically connected to the capacitor element, and an exterior body that seals the capacitor element.
  • the capacitor element includes, for example, an anode foil having a porous portion on its surface, a dielectric layer formed on at least a portion of the surface of the anode foil, a solid electrolyte layer covering at least a portion of the dielectric layer, a solid a cathode extraction layer covering at least a portion of the electrolyte layer.
  • Patent Literature 2 describes a solid electrolytic capacitor in which a plurality of capacitor elements are laminated, in which a foil having a noble metal portion on the surface of a conductive foil made of a conductive material is attached between the ends of the anode portion. It proposes to electrically connect the metal parts to each other and electrically connect the noble metal parts to each other via a conductive adhesive.
  • Patent Document 3 discloses a solid electrolytic capacitor in which at least part of the cathode layer is composed of a silver layer, and the silver layer is composed of a combination of silver nanoparticles, silver particles, and an organic binder, and the average particle diameter of the silver particles is It is proposed that the ratio be 100 to 2500 times that of the silver nanoparticles.
  • JP-A-9-148200 Japanese Unexamined Patent Application Publication No. 2008-205108 JP 2006-253169 A
  • a first aspect of the present disclosure is an electrode foil for a solid electrolytic capacitor including a metal foil having a first portion on which a solid electrolyte layer is formed and a second portion on which the solid electrolyte layer is not formed,
  • the metal foil has, in at least the first portion, a porous portion and a core portion continuous with the porous portion, and in a cross section in a direction parallel to the thickness direction of the first portion, the core It relates to an electrode foil for a solid electrolytic capacitor, in which the area ratio of the portion is 40% or more.
  • a second aspect of the present disclosure is the above electrode foil for a solid electrolytic capacitor, a dielectric layer formed on at least part of the surface of the anode foil; a cathode portion covering at least a portion of the dielectric layer;
  • the cathode portion relates to a solid electrolytic capacitor element including at least the solid electrolyte layer covering at least a portion of the dielectric layer in the first portion.
  • a third aspect of the present disclosure relates to a solid electrolytic capacitor including at least one solid electrolytic capacitor element described above.
  • the ESR of solid electrolytic capacitors can be reduced.
  • FIG. 1 is a cross-sectional schematic diagram of a solid electrolytic capacitor according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view schematically showing a solid electrolytic capacitor element included in the solid electrolytic capacitor of FIG. 1;
  • FIG. 1 is a cross-sectional schematic diagram of a solid electrolytic capacitor according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view schematically showing a solid electrolytic capacitor element included in the solid electrolytic capacitor of FIG. 1;
  • the present inventors have found that the ESR of a solid electrolytic capacitor can be reduced by adjusting the area ratio of the core portion in the cross section of the metal foil that constitutes the electrode foil for a solid electrolytic capacitor. More specifically, in the metal foil that constitutes the electrode foil for a solid electrolytic capacitor of the present disclosure, the core portion occupies an area ratio of 40% or more in at least the cross section parallel to the thickness direction of the first portion. In other words, the volume ratio of the core to the metal foil is relatively large. By using such a metal foil as an electrode foil (anode foil), high conductivity of the electrode foil can be obtained and ESR can be reduced.
  • a solid electrolytic capacitor electrode foil includes a metal foil having a first portion formed with a solid electrolyte layer and a second portion not formed with the solid electrolyte layer.
  • An electrode foil for The metal foil has, in at least the first portion, a porous portion and a core portion continuous with the porous portion, and in a cross section in a direction parallel to the thickness direction of the first portion, the core The area ratio occupied by the part is 40% or more.
  • the metal foil has a porous portion in addition to the core portion, it is possible to secure an appropriate capacitance of the solid electrolytic capacitor.
  • the solid electrolytic capacitor can ensure excellent charge/discharge responsiveness.
  • the area ratio (volume ratio) of the core portion is relatively large, the amount of air passing through the porous portion from the second portion side becomes relatively small. Therefore, deterioration of the solid electrolyte layer due to the influence of oxygen or moisture contained in the air is reduced. Such deterioration of the solid electrolyte layer becomes remarkable especially when the solid electrolytic capacitor is exposed to a high temperature environment.
  • deterioration of the solid electrolyte layer is reduced even when the solid electrolytic capacitor is exposed to a high-temperature environment, so that a decrease in capacitance can be reduced.
  • the present disclosure also includes (2) a solid electrolytic capacitor element including the above electrode foil for a solid electrolytic capacitor as an anode foil, and (3) a solid electrolytic capacitor including at least one such solid electrolytic capacitor element.
  • the solid electrolytic capacitor element according to (2) above comprises the electrode foil for a solid electrolytic capacitor of (1) above as an anode foil, a dielectric layer formed on at least part of the surface of the anode foil, a cathode portion covering at least a portion of the dielectric layer, the cathode portion including at least a solid electrolyte layer covering at least a portion of the dielectric layer in the first portion.
  • the total thickness of the porous portion may be 60 ⁇ m or less.
  • the thickness of the core portion may be 30 ⁇ m or more.
  • the porous portion in the first portion of the electrode foil for a solid electrolytic capacitor, has a thickness of 60% or more and 80% at the central portion of the thickness of the porous portion. % or less porosity.
  • the solid capacitor electrode foil, the solid electrolytic capacitor element, and the solid electrolytic capacitor of the present disclosure including the above (1) to (6), will be described more specifically with reference to the drawings as necessary.
  • At least one of the above (1) to (6) may be combined with at least one of the elements described below within a technically consistent range.
  • a solid electrolytic capacitor includes one or more solid electrolytic capacitor elements.
  • the solid electrolytic capacitor element may be simply referred to as a capacitor element.
  • the anode foil included in the capacitor element is made of, for example, a metal foil containing a valve metal, an alloy containing a valve metal, a compound containing a valve metal, or the like.
  • the metal foil may contain one kind of these materials, or may contain two or more kinds in combination.
  • valve metals include aluminum, tantalum, niobium, and titanium.
  • the metal foil preferably contains aluminum (including alloys and compounds).
  • the metal foil has a first portion on which a solid electrolyte layer is formed and a second portion on which no solid electrolyte layer is formed. Since the cathode portion including the solid electrolyte layer is formed in the first portion via the dielectric layer, the first portion is sometimes called a cathode forming portion. The second portion is sometimes called the anode lead-out. An anode lead is connected to the second portion.
  • At least the first portion of the metal foil has a porous portion and a core portion that is continuous with the porous portion.
  • the porous portion is formed in a portion including at least the surface layer of the metal foil.
  • the metal foil may have, for example, a layered core portion and a porous portion formed on the surface of the core portion.
  • the porous portion may be formed on one surface of the core portion, or may be formed on both surfaces.
  • the porous portion is preferably formed along the entire length of the first portion.
  • the core is usually formed over the entire length of the first portion (preferably over the entire length of the metal foil).
  • the core portion can be said to be a non-porous portion of the metal foil (or electrode foil).
  • the core portion may be said to be a portion of the metal foil (or electrode foil) other than the porous portion.
  • the end of the first portion of the anode foil opposite to the second portion is referred to as the first end, and the side opposite to the first end of the second portion (that is, the first end is opposite side) is referred to as the second end.
  • the direction from the first end to the second end of the metal foil constituting the anode foil is defined as the length direction of the metal foil (anode foil).
  • the direction perpendicular to the length direction of the anode foil is defined as the width direction of the anode foil.
  • the width direction of the anode foil is also perpendicular to the thickness direction of the anode foil.
  • the direction from the first end to the second end is a direction parallel to a straight line connecting the center of the end surface of the anode foil on the first end side and the center of the end surface on the second end side.
  • the length direction of the first portion and the length direction of the second portion are parallel to the length direction of the metal foil (or anode foil).
  • the thickness direction of the first portion and the thickness direction of the second portion are parallel to the thickness direction of the metal foil (or anode foil).
  • the area ratio occupied by the core portion is 40%, and may be 43% or more.
  • the area ratio of the core is preferably 60% or less, and may be 50% or less or 48% or less. These upper and lower limits can be combined arbitrarily.
  • the area ratio of the core is, for example, 40% or more and 60% or less (or 50% or less), and may be 43% or more and 48% or less.
  • the area ratio of the core portion is obtained for the entire cross section parallel to the thickness direction of the first portion of the metal foil.
  • This cross section is a cross section passing through the center of the metal foil in the width direction.
  • the area ratio of the core and the thickness of the core and the porous part are determined by scanning electron microscope (SEM) of the metal foil (anode foil), solid electrolytic capacitor or capacitor element before forming the solid electrolyte layer. It can be obtained from the cross-sectional image by
  • the area ratio of the core portion may be within the above range at least in the first portion, and the area ratio of the core portion in the second portion is not particularly limited.
  • the area ratio of the core portion in the second portion may be the same as that in the first portion.
  • the second portion may not have a porous portion (that is, the entire second portion may be the core portion).
  • the entire portion on the second end side of the second portion may be composed of the core portion, and the portion on the first end portion side may be provided with the core portion and the porous portion like the first portion.
  • the thickness of the core is, for example, 28 ⁇ m or more. From the viewpoint of further increasing the ESR reduction effect and charge/discharge responsiveness, the thickness of the core portion in the first portion is preferably 30 ⁇ m or more.
  • the thickness of the core is preferably 60 ⁇ m or less, more preferably 56 ⁇ m or less, from the viewpoint of easily balancing high capacitance and low ESR. These lower and upper limits can be combined arbitrarily.
  • the thickness of the core in the first portion may be, for example, 28 ⁇ m or more and 60 ⁇ m or less, 30 ⁇ m or more and 60 ⁇ m or less, or 30 ⁇ m or more and 56 ⁇ m or less.
  • the thickness of the core portion may be an average value of values measured at arbitrary multiple locations (for example, 5 locations) in the cross section for measuring the area ratio of the core portion.
  • the total thickness of the porous portion is, for example, 75 ⁇ m or less.
  • the total thickness of the porous portions in the first portion is preferably 60 ⁇ m or less, and may be 55 ⁇ m or less or 52 ⁇ m or less, from the viewpoint of easily ensuring higher charge/discharge responsiveness. From the viewpoint of easily securing a higher capacitance, the total thickness of the porous portions in the first portion is preferably 35 ⁇ m or more, more preferably 40 ⁇ m or more. These upper and lower limits can be combined arbitrarily.
  • the total thickness of the porous portion in the first portion may be, for example, 35 ⁇ m or more and 75 ⁇ m or less, 40 ⁇ m or more and 55 ⁇ m or less, or 40 ⁇ m or more and 52 ⁇ m or less.
  • the total thickness of the porous portion is the thickness of the porous portion when the porous portion is formed on one surface of the core portion, and the porous portion is formed on both surfaces of the core portion. is formed, it is the sum of the thicknesses of the porous portions on both surfaces.
  • the total thickness of the porous portion may be an average value of values measured at arbitrary multiple locations (for example, 5 locations) in the cross section for measuring the area ratio of the core.
  • the area ratio of the core portion is increased in the first portion, the area ratio of the porous portion is relatively small. Therefore, from the viewpoint of ensuring a higher capacitance, it is preferable that the porosity of the porous layer is large.
  • the specific surface area of the anode foil is increased, making it easier to secure a higher capacitance, and the solid electrolyte layer is formed in the porous portion.
  • the porosity at the central portion of the thickness of the porous portion of the first portion is preferably 60% or more. Since the porous portion has such a high porosity even at the central portion of the thickness, the solid electrolyte layer is easily formed in the interior of the porous portion, ensuring a higher capacitance. In addition, higher reliability can be ensured.
  • the porosity at the central portion of the thickness of the porous portion is preferably 80% or less, and may be 76% or less. When the porosity is within such a range, the solid electrolyte layer can be easily retained in the pores of the porous portion, which is advantageous from the viewpoint of increasing the capacity. These lower and upper limits can be combined arbitrarily.
  • the porosity at the central portion of the thickness of the porous portion of the first portion may be, for example, 60% or more and 80% or less, or 60% or more and 76% or less.
  • the porosity near the surface layer of the porous portion is, for example, 75% or more and 85% or less, and may be 80% or more and 85% or less.
  • the porosity in the vicinity of the core of the porous portion may be, for example, 40% or more and 55% or less.
  • the porosity in the vicinity of the core is preferably 45% or more and 55% or less.
  • the porosity of the central portion, the vicinity of the surface layer, and the vicinity of the core portion in the thickness direction of the porous portion can be measured by the following procedure.
  • the porosity can be obtained using a cross-sectional image used for measuring the area ratio of the core. More specifically, first, a cross-sectional image is binarized for the metal (including alloys or metal compounds) constituting the anode foil and other portions corresponding to voids (corresponding to pores (pits)). distinguish by In the cross-sectional image after the binarization process, the area S0 of the porous portion formed on one surface of the core portion in the first portion is obtained, and the surface of this porous portion has a thickness of 0%.
  • the ratio of the area S1 of the portion having a thickness of 40% or more and 50% or less to S0 S1/S0 x 100 (%).
  • This area ratio is regarded as the volume-based porosity at the center of the thickness of the porous portion in the first portion of the metal foil (or anode foil).
  • the porosity in the vicinity of the surface layer of the porous portion is determined as the ratio (%) of the area S2 of the portion having a thickness of 20% or more and 30% or less to S0, similarly to the case of the central portion.
  • the porosity in the vicinity of the core portion of the porous portion is obtained as the ratio (%) of the area S3 of the portion having a thickness of 90% or more and 100% or less to S0, similarly to the case of the central portion.
  • the metal foil has a region where no porous portion is formed, a region where a part of the porous portion is removed, a porous portion, and a porous portion.
  • a portion of the mass may have a compressed region or the like. The thickness of the core portion and the thickness of the porous portion are measured for portions other than these regions.
  • the shape of the pores (pits) of the porous portion may be, for example, sponge-like or tunnel-like.
  • the tunnel-shaped pits include pits extending from the surface side of the porous portion toward the core portion side.
  • the core part can also be said to be the part of the anode foil that does not have such pores.
  • An insulating separation portion may be provided between the first end and the second end of the anode foil to ensure insulation between the anode side and the cathode side.
  • the porous portion may be compressed, or at least a portion of the porous portion may be removed, if necessary.
  • the separating portion may be formed by attaching an insulating tape or the like, or may be formed by applying an insulating resin (such as a thermosetting resin composition) or the like to the anode foil. may be formed by The separation portion may be formed on the surface of the anode foil, or may be formed in a state in which it is soaked into the porous portion of the anode foil, or both.
  • the area ratio of the core portion, the thickness of the porous portion, the thickness of the core portion, and the pore size of the porous portion are preferably measured in areas other than the portion where the separating portion is provided.
  • the electrode foil is formed, for example, by roughening the surface of a base material (such as a sheet-like (for example, foil-like, plate-like) base material) containing a valve action metal.
  • the surface roughening can be performed, for example, by an etching treatment or the like.
  • the porous portion of the electrode foil is the outer portion of the metal foil made porous by the etching process, and the remaining inner portion of the metal foil is the core portion.
  • the etching treatment may be performed by, for example, chemical etching. Electrolytic etching facilitates increasing the porosity inside the porous portion. By adjusting the etching conditions, it is possible to adjust the area ratio of the core, the thickness of each of the core and the porous portion, the porosity of the porous portion, the state of the voids, and the like.
  • etching solutions include aqueous solutions containing hydrochloric acid and at least one selected from the group consisting of sulfuric acid, nitric acid, phosphoric acid, and oxalic acid.
  • the aqueous solution may contain various additives such as a chelating agent.
  • the concentration of hydrochloric acid in the etching liquid is, for example, 1 mol/L or more and 10 mol/L or less.
  • the concentration of other acids in the etchant is, for example, 0.01 mol/L or more and 1 mol/L or less.
  • the current density of electrolytic etching is, for example, 0.01 A/cm 2 or more and 10 A/cm 2 or less, and may be 0.05 A/cm 2 or more and 5 A/cm 2 or less. Etching may be performed at a constant current density or with varying current densities.
  • Electrolytic etching may be performed by direct current etching, but from the viewpoint of easily increasing the porosity inside the porous portion, it is preferable to perform by alternating current etching.
  • the frequency is, for example, 5 Hz or more and 50 Hz or less, and may be 10 Hz or more and 35 Hz or less.
  • the temperature of the etchant during the electrolytic etching process is, for example, 5°C or higher and 60°C or lower.
  • the etching time is, for example, 1 minute or more and 30 minutes or less, and may be 1 minute or more and 15 minutes or less.
  • the metal foil to be subjected to etching treatment may be pretreated as necessary. Pretreatment can be performed, for example, by immersing the metal foil in an aqueous solution containing an acid such as phosphoric acid.
  • the temperature of the aqueous solution may be, for example, 50° C. or higher and 100° C. or lower.
  • the immersion time is, for example, 10 seconds or more and 5 minutes or less.
  • the metal foil after etching may be post-treated as necessary.
  • Post-treatment can be performed, for example, by immersion in an aqueous solution containing an acid such as sulfuric acid.
  • the temperature of the aqueous solution may be, for example, 50° C. or higher and 100° C. or lower.
  • the immersion time is, for example, 10 seconds or more and 5 minutes or less.
  • the metal foil after post-treatment may be subjected to heat treatment, if necessary. In the heat treatment, for example, the metal foil is heated at a temperature of 150° C. or higher and 280° C. or lower.
  • the heating time is, for example, 10 seconds or more and 5 minutes or less.
  • the dielectric layer is an insulating layer that functions as a dielectric and is formed so as to cover at least part of the surface of the anode foil.
  • the dielectric layer is formed by anodizing the valve action metal on the surface of the anode foil by chemical conversion treatment or the like.
  • the dielectric layer may be formed so as to cover at least part of the anode foil.
  • a dielectric layer is usually formed on the surface of the anode foil. Since the dielectric layer is formed on the porous surface of the anode foil, the surface of the dielectric layer has fine irregularities as described above.
  • the dielectric layer contains an oxide of a valve metal.
  • the dielectric layer contains Ta 2 O 5 when tantalum is used as the valve metal, and the dielectric layer contains Al 2 O 3 when aluminum is used as the valve metal. Note that the dielectric layer is not limited to this, as long as it functions as a dielectric.
  • the solid electrolyte layer is formed on the surface of the anode foil so as to cover the dielectric layer with the dielectric layer interposed therebetween.
  • the solid electrolyte layer does not necessarily need to cover the entire dielectric layer (entire surface), and may be formed to cover at least a portion of the dielectric layer.
  • the solid electrolyte layer constitutes at least part of the cathode portion in the solid electrolytic capacitor.
  • the solid electrolyte layer contains a conductive polymer.
  • the solid electrolyte layer may further contain at least one of a dopant and an additive, if necessary.
  • conductive polymer a known one used in solid electrolytic capacitors, such as a ⁇ -conjugated conductive polymer, can be used.
  • conductive polymers include polymers having polypyrrole, polythiophene, polyaniline, polyfuran, polyacetylene, polyphenylene, polyphenylenevinylene, polyacene, and polythiophenevinylene as a basic skeleton.
  • polymers having a basic skeleton of polypyrrole, polythiophene, or polyaniline are preferred.
  • the above polymers also include homopolymers, copolymers of two or more monomers, and derivatives thereof (substituents having substituents, etc.).
  • polythiophenes include poly(3,4-ethylenedioxythiophene) and the like.
  • the conductive polymer may be used singly or in combination of two or more.
  • the solid electrolyte layer can further contain a dopant.
  • a dopant for example, at least one selected from the group consisting of anions and polyanions is used.
  • anions include sulfate ions, nitrate ions, phosphate ions, borate ions, organic sulfonate ions, and carboxylate ions, but are not particularly limited.
  • Dopants that generate sulfonate ions include, for example, benzenesulfonic acid, p-toluenesulfonic acid, and naphthalenesulfonic acid.
  • Polyanions include, for example, high-molecular-type polysulfonic acid and high-molecular-type polycarboxylic acid.
  • Polymeric types of polysulfonic acids include polyvinylsulfonic acid, polystyrenesulfonic acid, polyallylsulfonic acid, polyacrylsulfonic acid, and polymethacrylsulfonic acid.
  • Polymer-type polycarboxylic acids include polyacrylic acid and polymethacrylic acid.
  • Polyanions also include polyestersulfonic acid, and phenolsulfonic acid novolak resins, and the like. However, polyanions are not limited to these.
  • the dopant may be contained in the solid electrolyte layer in a free form, an anionic form, or a salt form, or may be contained in a form bound or interacting with the conductive polymer.
  • the amount of the dopant contained in the solid electrolyte layer is, for example, 10 parts by mass or more and 1000 parts by mass or less, or 20 parts by mass or more and 500 parts by mass or less, or 50 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of the conductive polymer. It may be less than parts by mass.
  • the solid electrolyte layer may be a single layer or may be composed of multiple layers.
  • the conductive polymer contained in each layer may be the same or different.
  • the dopant contained in each layer may be the same or different.
  • the solid electrolyte layer may further contain known additives and known conductive materials other than the conductive polymer component.
  • a conductive material include at least one selected from the group consisting of conductive inorganic materials such as manganese dioxide and TCNQ complex salts.
  • a layer for enhancing adhesion may be interposed between the dielectric layer and the solid electrolyte layer.
  • the solid electrolyte layer is formed, for example, by using a treatment liquid containing a conductive polymer precursor and polymerizing the precursor on the dielectric layer. Polymerization can be carried out by at least one of chemical polymerization and electrolytic polymerization. Precursors of conductive polymers include monomers, oligomers, prepolymers, and the like.
  • the solid electrolyte layer may be formed by applying a treatment liquid (for example, a dispersion or solution) containing a conductive polymer to the dielectric layer and then drying.
  • Dispersion media include, for example, water, organic solvents, or mixtures thereof.
  • the treatment liquid may further contain other components (such as at least one selected from the group consisting of dopants and additives).
  • an oxidizing agent is usually used to polymerize the precursor.
  • the oxidizing agent may be contained in the treatment liquid as an additive.
  • the oxidizing agent may be applied to the anode foil before or after contacting the treatment liquid with the anode foil on which the dielectric layer is formed.
  • examples of such oxidizing agents include compounds capable of generating Fe 3+ (ferric sulfate, etc.), persulfates (sodium persulfate, ammonium persulfate, etc.), and hydrogen peroxide.
  • the oxidizing agents can be used singly or in combination of two or more.
  • the step of forming a solid electrolyte layer by immersion in a treatment liquid and polymerization (or drying) may be performed once or may be repeated multiple times. Each time, conditions such as the composition and viscosity of the treatment liquid may be the same, or at least one condition may be changed.
  • the cathode extraction layer may include at least the first layer that contacts the solid electrolyte layer and covers at least a portion of the solid electrolyte layer, or may include the first layer and the second layer that covers the first layer. good.
  • the first layer include a layer containing conductive particles, a metal foil, and the like.
  • the conductive particles include, for example, at least one selected from conductive carbon and metal powder.
  • the cathode extraction layer may be composed of a layer containing conductive carbon (also referred to as a carbon layer) as the first layer and a layer containing metal powder or metal foil as the second layer. When a metal foil is used as the first layer, the metal foil may constitute the cathode extraction layer.
  • Examples of conductive carbon include graphite (artificial graphite, natural graphite, etc.).
  • the layer containing metal powder as the second layer can be formed, for example, by laminating a composition containing metal powder on the surface of the first layer.
  • a composition containing metal powder such as silver particles and resin (binder resin).
  • resin a thermoplastic resin can be used, but it is preferable to use a thermosetting resin such as an imide resin or an epoxy resin.
  • the type of metal is not particularly limited, but it is preferable to use a valve action metal such as aluminum, tantalum, or niobium, or an alloy containing a valve action metal. If necessary, the surface of the metal foil may be roughened.
  • the surface of the metal foil may be provided with a chemical conversion coating, or may be provided with a coating of a metal (dissimilar metal) different from the metal constituting the metal foil (dissimilar metal) or a non-metal coating. Examples of dissimilar metals and non-metals include metals such as titanium and non-metals such as carbon (such as conductive carbon).
  • the coating of the dissimilar metal or nonmetal may be used as the first layer, and the metal foil may be used as the second layer.
  • a separator When a metal foil is used for the cathode extraction layer, a separator may be arranged between the metal foil and the anode foil.
  • the separator is not particularly limited, and for example, a nonwoven fabric containing fibers of cellulose, polyethylene terephthalate, vinylon, polyamide (eg, aromatic polyamide such as aliphatic polyamide and aramid) may be used.
  • the solid electrolytic capacitor may be of wound type, chip type or laminated type.
  • a solid electrolytic capacitor may include at least one capacitor element, and may include a plurality of capacitor elements.
  • solid electrolytic capacitors may include stacks of two or more capacitor elements.
  • each capacitor element may be, for example, wound type or laminated type.
  • the configuration of the capacitor element may be selected according to the type of solid electrolytic capacitor.
  • one end of the cathode lead is electrically connected to the cathode extraction layer.
  • One end of the anode lead is electrically connected to the anode foil.
  • the other end of the anode lead and the other end of the cathode lead are pulled out from the resin exterior body or the case, respectively.
  • the other end of each lead exposed from the resin outer package or the case is used for solder connection with a board on which the solid electrolytic capacitor is to be mounted.
  • a lead wire or a lead frame may be used as each lead.
  • the capacitor element is sealed using a resin outer package or case.
  • the material resin (e.g., uncured thermosetting resin and filler) of the capacitor element and the exterior body is placed in a mold, and the capacitor element is sealed with the resin exterior body by transfer molding, compression molding, or the like. may At this time, the other end side portion of the anode lead and the other end side portion of the cathode lead, which are pulled out from the capacitor element, are exposed from the mold.
  • the capacitor element is housed in a bottomed case so that the other end portion of the anode lead and the other end portion of the cathode lead are positioned on the opening side of the bottomed case, and the bottomed case is sealed with the sealing body.
  • a solid electrolytic capacitor may be formed by sealing the opening of the case.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the solid electrolytic capacitor according to the first embodiment of the present disclosure.
  • FIG. 2 is an enlarged sectional view schematically showing capacitor element 2 included in the solid electrolytic capacitor of FIG.
  • a solid electrolytic capacitor 1 includes a capacitor element 2 , an exterior body 3 that seals the capacitor element 2 , and an anode lead terminal 4 and a cathode lead terminal 5 that are at least partially exposed to the outside of the exterior body 3 . ing.
  • the exterior body 3 has a substantially rectangular parallelepiped outer shape, and the solid electrolytic capacitor 1 also has a substantially rectangular parallelepiped outer shape.
  • the capacitor element 2 includes an anode foil 6, a dielectric layer (not shown) covering the surface of the anode foil 6, and a cathode section 8 covering the dielectric layer.
  • the dielectric layer may be formed on at least part of the surface of anode foil 6 .
  • the cathode section 8 includes a solid electrolyte layer 9 and a cathode extraction layer 10 .
  • a solid electrolyte layer 9 covers at least a portion of the dielectric layer.
  • Cathode extraction layer 10 is formed to cover at least a portion of solid electrolyte layer 9 .
  • the cathode extraction layer 10 has, for example, a first layer 11 that is a carbon layer and a second layer 12 that is a metal paste layer.
  • the cathode lead terminal 5 is electrically connected to the cathode portion 8 via an adhesive layer 14 made of a conductive adhesive.
  • the anode foil 6 includes a layered core portion 6a and porous portions 6b formed on both surfaces of the layered core portion 6a. Porous portion 6 b is formed in a region including the surface layer of anode foil 6 .
  • the anode foil 6 includes a first portion I (in other words, a portion facing the cathode portion 8) where the solid electrolyte layer 9 (or the cathode portion 8) is formed, and a second portion II other than the first portion I (in other words, , a portion not facing the cathode portion 8).
  • An anode lead terminal 4 is electrically connected to the second portion II by welding.
  • the anode foil 6 has a first end Ie of the first portion I opposite the second portion II and a second end IIe of the second portion II opposite the first portion I.
  • the second end IIe is connected to the anode lead terminal 4 .
  • an insulating separation portion 13 is formed on the surface of the anode foil 6 to restrict contact between the cathode portion 8 and the second portion II. It is
  • the exterior body 3 partially covers the capacitor element 2 and the lead terminals 4 and 5 . From the viewpoint of suppressing air intrusion into the exterior body 3 , it is desirable that the capacitor element 2 and part of the lead terminals 4 and 5 are sealed with the exterior body 3 .
  • FIG. 1 shows the case where the exterior body 3 is a resin exterior body. The resin sheathing body is formed by sealing part of the capacitor element 2 and the lead terminals 4 and 5 with a resin material.
  • One ends of the anode lead terminal 4 and the cathode lead terminal 5 are electrically connected to the capacitor element 2 , and the other ends are drawn out of the exterior body 3 .
  • the solid electrolytic capacitor 1 one end sides of the lead terminals 4 and 5 are covered together with the capacitor element 2 by the exterior body 3 .
  • Solid electrolytic capacitor A1>> A solid electrolytic capacitor 1 shown in FIG. 1 was produced in the following manner, and its characteristics were evaluated.
  • Anode Foil 6 An aluminum foil (thickness: 108 ⁇ m, purity: 99.98%) was pretreated by immersing it in a phosphoric acid aqueous solution (phosphoric acid concentration: 1.0% by mass) at 90° C. for 60 seconds.
  • the pretreated aluminum foil was subjected to electrolytic etching using an AC power supply while being immersed in the etching solution.
  • the etching solution an aqueous solution containing 5% by mass of hydrochloric acid, 2% by mass of aluminum chloride, 0.1% by mass of sulfuric acid, 0.5% by mass of phosphoric acid, and 0.2% by mass of nitric acid was used, and the liquid temperature was 35°C. .
  • the etching time was 5 minutes.
  • the frequency of alternating current was about 24 Hz.
  • the average current density of alternating current was kept constant at 0.2 A/cm 2 .
  • the aluminum foil was immersed in an aqueous solution containing 10% by mass of sulfuric acid at 60°C for 60 seconds, and then heat-treated at 250°C for 120 seconds. In this manner, anode foil 6 having porous portions 6b formed on both surfaces of core portion 6a was produced.
  • a polymerization liquid containing pyrrole (a monomer of a conductive polymer), naphthalenesulfonic acid (dopant), and water was prepared.
  • the first portion I of the anode foil 6 on which the precoat layer is formed and the Ti electrode as the counter electrode are immersed in the polymerization liquid, and the potential of the anode foil 6 becomes 2.8 V with respect to the silver/silver chloride reference electrode.
  • a voltage was applied to the anode foil to perform electrolytic polymerization, and the solid electrolyte layer 9 was formed on the first portion I.
  • cathode extraction layer 10 The anode foil 6 formed with the solid electrolyte layer 9 obtained in (3) above is immersed in a dispersion of graphite particles dispersed in water, removed from the dispersion, and then dried. By doing so, a first layer (carbon layer) 11 was formed at least on the surface of the solid electrolyte layer 9 . Drying was carried out at 130-180° C. for 10-30 minutes.
  • a silver paste containing silver particles and a binder resin (epoxy resin) is applied to the surface of the first layer 11 and heated at 150 to 200° C. for 10 to 60 minutes to cure the binder resin, forming a second layer.
  • (Metal paste layer) 12 was formed.
  • the cathode lead layer 10 composed of the first layer 11 and the second layer 12 was formed, and the cathode portion 8 composed of the solid electrolyte layer 9 and the cathode lead layer 10 was formed.
  • Capacitor element 2 was produced as described above.
  • the initial ESR of the solid electrolytic capacitor was obtained by the following procedure. In an environment of 20 ° C., using an LCR meter for four-terminal measurement, the ESR value (m ⁇ ) of the solid electrolytic capacitor at a frequency of 100 kHz was measured as the initial ESR value (X 0 ) (m ⁇ ). An average value was obtained.
  • the initial ESR of the solid electrolytic capacitor B1 is shown as a relative value when the initial ESR value of the solid electrolytic capacitor A1 is taken as 100%.
  • Table 1 also shows the thickness of the anode foil.
  • Solid electrolytic capacitor A1 is an example, and solid electrolytic capacitor B1 is a comparative example.
  • the solid electrolytic capacitor A1 has a lower initial ESR than the solid electrolytic capacitor B1. This is presumably because in the solid electrolytic capacitor A1, the area ratio of the core is as large as 40% or more, so that the anode foil has high conductivity. In the solid electrolytic capacitors A1 and B1, the state of the porous portion remained almost unchanged, and the same level of capacitance could be secured.
  • Solid electrolytic capacitor A2 In the case of solid electrolytic capacitor A1, aluminum foil (thickness 70 ⁇ m, purity 99.98%) was used, and etching conditions (more specifically, at least one of etching time and alternating current frequency) were adjusted. Anode foil 6 was prepared in the same manner as above. A total of 20 solid electrolytic capacitors A2 were produced in the same manner as the solid electrolytic capacitor A1, except that the obtained anode foil 6 was used.
  • the initial capacitances of the solid electrolytic capacitors A1, A2 and B2 were obtained by the following procedure.
  • the capacitance ( ⁇ F) of the solid electrolytic capacitor at a frequency of 120 Hz was measured as the initial capacitance (Z 0 ) (m ⁇ ).
  • Individual average values were obtained.
  • a high temperature test was performed by placing the solid electrolytic capacitor whose initial capacitance was measured in an environment of 125° C. for 1000 hours.
  • the capacitance (Z 1 ) ( ⁇ F) of the solid electrolytic capacitor after the high temperature test was measured in the same manner as Z 0 .
  • Table 2 shows the evaluation results.
  • the area ratio of the core is as high as 40% or more, the change in capacitance when the solid electrolytic capacitor is exposed to a high temperature environment is small, and excellent reliability can be ensured.
  • the porosity of the central portion in the thickness direction of the porous portion is high, and many voids are formed to the inside, so that a relatively high initial capacitance can be secured.
  • the solid electrolytic capacitors A1 and A2 can ensure excellent charge/discharge responsiveness by obtaining appropriate capacitance.
  • a solid electrolytic capacitor with reduced ESR is obtained.
  • the solid electrolytic capacitor of the present disclosure has high charge/discharge responsiveness.
  • the solid electrolytic capacitor of the present disclosure can suppress a decrease in capacitance even when the solid electrolytic capacitor is exposed to high temperatures. Therefore, solid electrolytic capacitors can be used in various applications that require high reliability.
  • Solid electrolytic capacitor 2 Capacitor element 3: Armor body 4: Anode lead terminal 5: Cathode lead terminal 6: Anode foil 6a: Core portion 6b: Porous portion 8: Cathode portion 9: Solid electrolyte layer 10: Cathode extraction layer 11: First layer 12: Second layer 13: Separation part 14: Adhesive layer I: First part II: Second part Ie: First end IIe: Second end

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

固体電解コンデンサ用電極箔は、固体電解質層が形成される第1部分と前記固体電解質層が形成されない第2部分とを有する金属箔を含む。前記金属箔は、少なくとも前記第1部分に、多孔質部と、前記多孔質部に連続する芯部と、を有し、前記第1部分の厚さ方向に平行な方向の断面において、前記芯部が占める面積比率が40%以上である。

Description

固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ
 本開示は、固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサに関する。
 固体電解コンデンサは、固体電解質層を備えるコンデンサ素子と、コンデンサ素子と電気的に接続された電極端子と、コンデンサ素子を封止する外装体とを含む。コンデンサ素子は、例えば、表層に多孔質部を備えた陽極箔と、陽極箔の表面の少なくとも一部に形成された誘電体層と、誘電体層の少なくとも一部を覆う固体電解質層と、固体電解質層の少なくとも一部を覆う陰極引出層とを含む。
 電子部品の小型化および高性能化が進むに伴い、電子部品に搭載される固体電解コンデンサに対して、近年、小型化および高容量化の要求が高まっている。そこで、従来の固体電解コンデンサでは、陽極箔のサイズは変えずに、表面積を増大することによって静電容量を増大させ、電解コンデンサの小形化と静電容量の増大とを実現してきた(例えば、特許文献1)。
 一方、固体電解コンデンサでは、等価直列抵抗(ESR)が低いことが求められる。例えば、特許文献2は、複数のコンデンサ素子が積層された固体電解コンデンサにおいて、陽極部の端部間で、導電性材料からなる導電性箔の表面に貴金属部を有する箔を、陽極部の端部に電気的に接続し、貴金属部同士は導電性接着剤を介して電気的に接続することを提案している。特許文献3は、固体電解コンデンサにおいて、陰極層の少なくとも一部が銀層からなり、この銀層が銀ナノ粒子と銀粒子と有機バインダとが結合したものからなり、上記銀粒子の平均粒径比を上記銀ナノ粒子に対し100~2500倍とすることを提案している。
特開平9-148200号公報 特開2008-205108号公報 特開2006-253169号公報
 固体電解コンデンサにおいて、静電容量が大きくなるとESRが大きくなる傾向がある。そのため、静電容量への影響を軽減しながら、ESRを低減するには、特許文献2のように接続方法を改良したり、特許文献3のように陰極引出層を低抵抗化したりする場合が多い。
 本開示の第1側面は、固体電解質層が形成される第1部分と前記固体電解質層が形成されない第2部分とを有する金属箔を含む固体電解コンデンサ用電極箔であって、
 前記金属箔は、少なくとも前記第1部分に、多孔質部と、前記多孔質部に連続する芯部と、を有し、前記第1部分の厚さ方向に平行な方向の断面において、前記芯部が占める面積比率が40%以上である、固体電解コンデンサ用電極箔に関する。
 本開示の第2側面は、上記の固体電解コンデンサ用電極箔と、
 前記陽極箔の表面の少なくとも一部に形成された誘電体層と、
 前記誘電体層の少なくとも一部を覆う陰極部と、を含み、
 前記陰極部は、前記第1部分において、前記誘電体層の少なくとも一部を覆う前記固体電解質層を少なくとも含む、固体電解コンデンサ素子に関する。
 本開示の第3側面は、上記の固体電解コンデンサ素子を少なくとも1つ含む、固体電解コンデンサに関する。
 固体電解コンデンサのESRを低減することができる。
本開示の一実施形態に係る固体電解コンデンサの断面模式図である。 図1の固体電解コンデンサに含まれる固体電解コンデンサ素子を模式的に示す断面図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 ESRを低減するには、陰極引出層を低抵抗化したり、固体電解コンデンサの構成要素間の電気的接続を改良したりすることが多い。これまで、ESRを低減する観点から、陽極箔として使用する電極箔を改良することはほとんど行われてこなかった。
 このような技術常識に対し、本発明者らは、固体電解コンデンサ用電極箔を構成する金属箔の断面における芯部が占める面積比率によって、固体電解コンデンサのESRを低減できることを見出した。より詳しくは、本開示の固体電解コンデンサ用電極箔を構成する金属箔では、少なくとも第1部分の厚さ方向に平行な方向の断面において、芯部が占める面積比率が40%以上である。換言すると、金属箔に占める芯部の体積比率が比較的大きい。このような金属箔を電極箔(陽極箔)として用いることで、電極箔の高い導電性が得られ、ESRを低減できる。(1)本開示の第1側面に係る固体電解コンデンサ用電極箔は、固体電解質層が形成される第1部分と前記固体電解質層が形成されない第2部分とを有する金属箔を含む固体電解コンデンサ用電極箔であって、
 前記金属箔は、少なくとも前記第1部分に、多孔質部と、前記多孔質部に連続する芯部と、を有し、前記第1部分の厚さ方向に平行な方向の断面において、前記芯部が占める面積比率が40%以上である。
 また、金属箔は、芯部に加えて、多孔質部を有するため、固体電解コンデンサの適度な静電容量を確保することができる。これによって、固体電解コンデンサでは、優れた充放電の応答性を確保することができる。また、芯部の面積比率(体積比率)が比較的大きいことで、第2部分側から多孔質部を通過する空気の量が相対的に少なくなる。よって、空気中に含まれる酸素または水分の影響による固体電解質層の劣化が低減される。このような固体電解質層の劣化は、固体電解コンデンサが高温環境に晒された場合に特に顕著になる。本開示では、固体電解コンデンサが高温環境に晒された場合でも、固体電解質層の劣化が低減されるため、静電容量の低下を軽減できる。
 本開示には、(2)陽極箔として上記の固体電解コンデンサ用電極箔を含む固体電解コンデンサ素子、および(3)このような固体電解コンデンサ素子を少なくとも1つ含む固体電解コンデンサも包含される。上記(2)に係る固体電解コンデンサ素子は、より詳しくは、陽極箔としての上記(1)の固体電解コンデンサ用電極箔と、陽極箔の表面の少なくとも一部に形成された誘電体層と、誘電体層の少なくとも一部を覆う陰極部と、を含み、陰極部は、第1部分において、誘電体層の少なくとも一部を覆う固体電解質層を少なくとも含む。
 (4)上記(1)~(3)のいずれか1つにおいて、固体電解コンデンサ用電極箔の第1部分では、多孔質部の総厚さは、60μm以下であってもよい。
 (5)上記(1)~(4)のいずれか1つにおいて、固体電解コンデンサ用電極箔の第1部分では、芯部の厚さは、30μm以上であってもよい。
 (6)上記(1)~(5)のいずれか1つにおいて、固体電解コンデンサ用電極箔の第1部分では、多孔質部は、多孔質部の厚さの中心部において、60%以上80%以下の空隙率を有してもよい。
 以下、必要に応じて図面を参照しながら、上記(1)~(6)を含めて、本開示の固体コンデンサ用電極箔、固体電解コンデンサ素子、および固体電解コンデンサについてより具体的に説明する。技術的に矛盾のない範囲で、上記(1)~(6)の少なくとも1つと、以下に記載する要素の少なくとも1つとを組み合わせてもよい。
[固体電解コンデンサ]
 固体電解コンデンサは、1つまたは2つ以上の固体電解コンデンサ素子を含む。以下、固体電解コンデンサ素子を、単にコンデンサ素子と称することがある。
(コンデンサ素子)
 (固体電解コンデンサ用電極箔(陽極箔))
 コンデンサ素子に含まれる陽極箔は、例えば、弁作用金属、弁作用金属を含む合金、および弁作用金属を含む化合物などを含む金属箔で構成される。金属箔は、これらの材料を一種含んでもよく、二種以上を組み合わせて含んでもよい。弁作用金属としては、例えば、アルミニウム、タンタル、ニオブ、チタンが挙げられる。中でも、金属箔は、アルミニウムを含むこと(合金、化合物も含む)が好ましい。
 金属箔は、固体電解質層が形成される第1部分と、固体電解質層が形成されない第2部分とを有する。第1部分には、誘電体層を介して、固体電解質層を含む陰極部が形成されるため、第1部分は陰極形成部と呼ばれることもある。第2部分は、陽極引出部と呼ばれることがある。第2部分には、陽極リードが接続される。
 金属箔は、少なくとも第1部分に、多孔質部と多孔質部に連続する芯部とを有する。多孔質部は、少なくとも金属箔の表層を含む部分に形成される。金属箔は、例えば、層状の芯部と芯部の表面に形成された多孔質部とを有していてもよい。多孔質部は、芯部の一方の表面に形成されていてもよく、双方の表面に形成されていてもよい。多孔質部は、第1部分の長さ方向全体に形成されていることが好ましい。芯部は、通常、第1部分の長さ方向全体(好ましくは金属箔の長さ方向全体)に形成されている。なお、芯部は、金属箔(または電極箔)の非多孔性の部分ということができる。芯部は、金属箔(または電極箔)の多孔質部以外の部分と言ってもよい。
 本明細書中、陽極箔の第1部分の第2部分とは反対側の端部を第1端部と称し、第2部分の第1端部とは反対側(つまり第1端部とは反対側)の端部を第2端部と称する。陽極箔を構成する金属箔の第1端部から第2端部に向かう方向を金属箔(陽極箔)の長さ方向とする。また、金属箔(陽極箔)の主面を当該主面に垂直な方向から見たときに、陽極箔の長さ方向と垂直な方向を陽極箔の幅方向とする。陽極箔の幅方向は、陽極箔の厚さ方向とも垂直である。第1端部から第2端部に向かう方向とは、陽極箔の第1端部側の端面の中心と第2端部側の端面の中心とを結ぶ直線方向に平行な方向である。第1部分の長さ方向および第2部分の長さ方向は、それぞれ、金属箔(または陽極箔)の長さ方向と平行な方向である。第1部分の厚さ方向および第2部分の厚さ方向は、金属箔(または陽極箔)の厚さ方向と平行な方向である。
 本開示では、第1部分の厚さ方向に平行な方向の断面において、芯部が占める面積比率が40%であり、43%以上であってもよい。芯部の面積比率がこのような範囲であることで、固体電解コンデンサにおいてESRの低減効果が得られるとともに、優れた充放電応答性が得られる。また、固体電解コンデンサが高温環境に晒された後の静電容量の低下を軽減できる。高い静電容量を確保し易い観点からは、芯部の面積比率は、60%以下が好ましく、50%以下または48%以下であってもよい。これらの上限値と下限値とは任意に組み合わせることができる。芯部の面積比率は、例えば、40%以上60%以下(または50%以下)であり、43%以上48%以下であってもよい。
 なお、芯部の面積比率は、金属箔の第1部分における厚さ方向に平行な断面全体について求められる。この断面は、金属箔の幅方向の中心を通る断面とする。芯部の面積比率、芯部および多孔質部の厚さは、固体電解質層を形成する前の金属箔(陽極箔)、固体電解コンデンサまたはコンデンサ素子の走査型電子顕微鏡(SEM:Scanning Electron Microscope)による断面画像から求めることができる。
 芯部の面積比率は、少なくとも第1部分において上記のような範囲であればよく、第2部分における芯部の面積比率は特に制限されない。第2部分における芯部の面積比率は、第1部分と同じであってもよい。また、第2部分は、多孔質部を有さなくてもよい(つまり、第2部分全体が芯部であってもよい)。例えば、第2部分の第2端部側の部分全体を芯部で構成し、第1端部側の部分には、第1部分のような芯部と多孔質部とを設けてもよい。
 第1部分において、芯部の厚さは、例えば、28μm以上である。ESRの低減効果および充放電応答性がさらに高まる観点からは、第1部分における芯部の厚さは、30μm以上が好ましい。高い静電容量と低ESRとのバランスを取り易い観点からは、芯部の厚さは、60μm以下が好ましく、56μm以下がより好ましい。これらの下限値と上限値とは任意に組み合わせることができる。第1部分における芯部の厚さは、例えば、28μm以上60μm以下、30μm以上60μm以下、または30μm以上56μm以下であってもよい。芯部の厚さは、芯部の面積比率を測定するための断面において、任意の複数箇所(例えば、5箇所)について測定した値の平均値であってもよい。
 第1部分において、多孔質部の総厚さは、例えば、75μm以下である。より高い充放電応答性を確保し易い観点からは、第1部分における多孔質部の総厚さは、60μm以下であることが好ましく、55μm以下または52μm以下であってもよい。より高い静電容量を確保し易い観点からは、第1部分における多孔質部の総厚さは、35μm以上が好ましく、40μm以上がより好ましい。これらの上限値と下限値とは任意に組み合わせることができる。第1部分における多孔質部の総厚さは、例えば、35μm以上75μm以下、40μm以上55μm以下、あるいは40μm以上52μm以下であってもよい。なお、多孔質部の総厚さとは、芯部の一方の表面に多孔質部が形成されている場合には、この多孔質部の厚さであり、芯部の双方の表面に多孔質部が形成されている場合には、双方の表面の多孔質部の厚さの合計である。多孔質部の総厚さは、芯部の面積比率を測定するための断面において、任意の複数箇所(例えば、5箇所)について測定した値の平均値であってもよい。
 本開示では、第1部分において、芯部の面積比率を大きくするため、多孔質部の面積比率が相対的に小さくなる。そのため、より高い静電容量を確保する観点からは、多孔質層の空隙率が大きいことが好ましい。特に、多孔質部の表層だけでなく内部まで多くの空隙が形成されることで、陽極箔の比表面積が大きくなり、より高い静電容量を確保し易くなるとともに、固体電解質層が多孔質部の内部に浸透した状態で形成されることで、第2部分側からの空気の侵入を低減する効果が高まる。よって、固体電解コンデンサが高温環境に晒された場合の静電容量の低下をさらに抑制することができ、高い信頼性を確保する上でより有利である。
 より具体的には、第1部分の多孔質部の厚さの中心部における空隙率は、60%以上が好ましい。多孔質部が、厚さの中心部においてもこのような高い空隙率を有することで、多孔質部のより内部に固体電解質層が導入された状態で形成されやすく、より高い静電容量を確保できるとともに、より高い信頼性を確保することができる。多孔質部の厚さの中心部における空隙率は、80%以下が好ましく、76%以下であってもよい。空隙率がこのような範囲である場合、多孔質部の細孔内に固体電解質層を保持し易く、高容量化の観点から有利である。これらの下限値と上限値とは任意に組み合わせることができる。第1部分の多孔質部の厚さの中心部における空隙率は、例えば、60%以上80%以下、あるいは60%以上76%以下であってもよい。
 第1部分において、多孔質部の表層近傍の空隙率は、例えば、75%以上85%以下であり、80%以上85%以下であってもよい。
 第1部分において、多孔質部の芯部近傍における空隙率は、例えば、40%以上55%以下であってもよい。芯部近傍における空隙率は、45%以上55%以下が好ましい。芯部近傍でも45%以上の高い空隙率が得られることで、多孔質部の芯部近傍から表層まで高い空隙率が確保され易い。よって、固体電解質層が多孔質部の芯部近傍まで形成され易く、より高容量が得られる。
 多孔質部の厚さ方向の中心部、表層近傍および芯部近傍の空隙率は、次のような手順で測定することができる。
 空隙率は、芯部の面積比率の測定に使用する断面画像を利用して、求めることができる。より具体的には、まず、断面画像を、陽極箔を構成する金属(合金または金属化合物も含む)とそれ以外の空隙に相当する部分(細孔(ピット)に相当)とを二値化処理により区別する。二値化処理後の断面画像において、第1部分における芯部の一方の表面に形成された多孔質部の面積S0を求めるとともに、この多孔質部の表面を厚さ0%、多孔質部と芯部との界面を厚さ100%としたとき、厚さが40%以上50%以下の部分の面積S1のS0に対する比率=S1/S0×100(%)を求める。この面積比率を、金属箔(または陽極箔)の第1部分における、多孔質部の厚さの中心部における体積基準の空隙率と見なす。多孔質部の表層近傍の空隙率は、中心部の場合に準じて、厚さが20%以上30%以下の部分の面積S2のS0に対する比率(%)として求められる。多孔質部の芯部近傍における空隙率は、中心部の場合に準じて、厚さが90%以上100%以下の部分の面積S3のS0に対する比率(%)として求められる。
 金属箔は、第1端部と第2端部との間において、必要に応じて、厚さ方向において多孔質部が形成されていない領域、多孔質部の一部が除去された領域、多孔質部の一部が圧縮された領域などを有していてもよい。なお、芯部の厚さおよび多孔質部の厚さは、これらの領域以外の部分について測定する。
 多孔質部の細孔(ピット)の形状は、例えば、スポンジ状であってもよく、トンネル状であってもよい。トンネル状ピットは、多孔質部の表面側から芯部側に向かって延びるピットを含む。芯部は、陽極箔の、このような細孔を有さない部分であるとも言える。
 陽極箔の第1端部と第2端部との間には、陽極側と陰極部側との絶縁を確保するための絶縁性の分離部が設けられていてもよい。分離部が設けられる部分では、必要に応じて、多孔質部が圧縮されていてもよく、多孔質部の少なくとも一部が除去されていてもよい。分離部は、絶縁テープなどを貼付することにより形成してもよく、絶縁性の樹脂(熱硬化性樹脂組成部物など)などを陽極箔に塗布することによって形成してもよく、これらの双方により形成してもよい。分離部は、陽極箔の表面に形成されていてもよく、陽極箔の多孔質部に染み込んだ状態で形成されていてもよく、これらの双方であってもよい。芯部の面積比率、多孔質部の厚さ、芯部の厚さ、多孔質部の細孔径は、分離部が設けられる部分以外について測定することが好ましい。
 電極箔は、例えば、弁作用金属を含む基材(シート状(例えば、箔状、板状)の基材など)の表面を粗面化することによって形成される。粗面化は、例えば、エッチング処理などにより行うことができる。電極箔の多孔質部は、エッチング処理により多孔質化された金属箔の外側部分であり、金属箔の内側部分である残部が芯部である。
 エッチング処理は、例えば、化学エッチングによって行ってもよい。電解エッチングによって行うと、多孔質部の内部の空隙率を高め易い。エッチングの条件を調節することによって、芯部の面積比率、芯部および多孔質部のそれぞれの厚さ、多孔質部の空隙率、空隙の状態などを調節することができる。
 エッチング液として、硫酸、硝酸、リン酸、およびシュウ酸からなる群より選択される少なくとも一種と、塩酸とを含む水溶液などが挙げられる。水溶液には、キレート剤等の各種添加剤が含まれていてもよい。エッチング液における塩酸の濃度は、例えば、1モル/L以上、10モル/L以下である。エッチング液におけるその他の酸の濃度は、例えば、0.01モル/L以上、1モル/L以下である。
 電解エッチングの電流密度は、例えば、0.01A/cm以上10A/cm以下であり、0.05A/cm以上5A/cm以下であってもよい。エッチングは、一定の電流密度で行ってもよく、電流密度を変化させて行ってもよい。
 電解エッチングは、直流エッチングで行ってもよいが、多孔質部の内部の空隙率を高め易い観点からは、交流エッチングで行うことが好ましい。
 交流エッチングにおいて、周波数は、例えば、5Hz以上50Hz以下であり、10Hz以上35Hz以下であってもよい。
 電解エッチング工程中のエッチング液の温度は、例えば、5℃以上60℃以下である。
 エッチング時間は、例えば、1分以上30分以下であり、1分以上15分以下であってもよい。
 エッチング処理に供する金属箔は、必要に応じて、前処理を行ってもよい。前処理は、例えば、リン酸などの酸を含む水溶液に金属箔を浸漬することによって行うことができる。水溶液の温度は、例えば、50℃以上100℃以下であってもよい。浸漬時間は、例えば、10秒以上5分以下である。
 エッチング処理後の金属箔は、必要に応じて、後処理を行ってもよい。後処理は、例えば、硫酸などの酸を含む水溶液に浸漬することによって行うことができる。水溶液の温度は、例えば、50℃以上100℃以下であってもよい。浸漬時間は、例えば、10秒以上5分以下である。後処理後の金属箔は、必要に応じて、熱処理を行ってもよい。熱処理では、例えば、150℃以上280℃以下の温度で金属箔を加熱する。加熱時間は、例えば、10秒以上5分以下である。
 (誘電体層)
 誘電体層は、陽極箔の少なくとも一部の表面を覆うように形成された誘電体として機能する絶縁性の層である。誘電体層は、陽極箔の表面の弁作用金属を、化成処理などにより陽極酸化することで形成される。誘電体層は、陽極箔の少なくとも一部を覆うように形成されていればよい。誘電体層は、通常、陽極箔の表面に形成される。誘電体層は、陽極箔の多孔質の表面に形成されるため、誘電体層の表面は、上述のように微細な凹凸形状を有する。
 誘電体層は弁作用金属の酸化物を含む。例えば、弁作用金属としてタンタルを用いた場合の誘電体層はTaを含み、弁作用金属としてアルミニウムを用いた場合の誘電体層はAlを含む。尚、誘電体層はこれに限らず、誘電体として機能すればよい。
 (固体電解質層)
 固体電解質層は、陽極箔の表面に、誘電体層を介して、誘電体層を覆うように形成される。固体電解質層は、必ずしも誘電体層の全体(表面全体)を覆う必要はなく、誘電体層の少なくとも一部を覆うように形成されていればよい。固体電解質層は、固体電解コンデンサにおける陰極部の少なくとも一部を構成する。
 固体電解質層は、導電性高分子を含む。固体電解質層は、必要に応じて、さらに、ドーパントおよび添加剤の少なくとも一方を含んでもよい。
 導電性高分子としては、固体電解コンデンサに使用される公知のもの、例えば、π共役系導電性高分子などが使用できる。導電性高分子としては、例えば、ポリピロール、ポリチオフェン、ポリアニリン、ポリフラン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、およびポリチオフェンビニレンを基本骨格とする高分子が挙げられる。これらのうち、ポリピロール、ポリチオフェン、またはポリアニリンを基本骨格とする高分子が好ましい。上記の高分子には、単独重合体、二種以上のモノマーの共重合体、およびこれらの誘導体(置換基を有する置換体など)も含まれる。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
 導電性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 固体電解質層は、さらにドーパントを含むことができる。ドーパントとしては、例えば、アニオンおよびポリアニオンからなる群より選択される少なくとも一種が使用される。
 アニオンとしては、例えば、硫酸イオン、硝酸イオン、燐酸イオン、硼酸イオン、有機スルホン酸イオン、カルボン酸イオンが挙げられるが、特に制限されない。スルホン酸イオンを生成するドーパントとしては、例えば、ベンゼンスルホン酸、p-トルエンスルホン酸、およびナフタレンスルホン酸が挙げられる。
 ポリアニオンとしては、例えば、高分子タイプのポリスルホン酸および高分子タイプのポリカルボン酸が挙げられる。高分子タイプのポリスルホン酸としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、およびポリメタクリルスルホン酸などが挙げられる。高分子タイプのポリカルボン酸としては、ポリアクリル酸、ポリメタクリル酸などが挙げられる。ポリアニオンには、ポリエステルスルホン酸、およびフェノールスルホン酸ノボラック樹脂なども含まれる。しかし、ポリアニオンは、これらに制限されない。
 ドーパントは、固体電解質層に、遊離の形態、アニオンの形態、または塩の形態で含まれていてもよく、導電性高分子と結合または相互作用した形態で含まれていてよい。
 固体電解質層に含まれるドーパントの量は、導電性高分子100質量部に対して、例えば、10質量部以上1000質量部以下であり、20質量部以上500質量部以下または50質量部以上200質量部質量部以下であってもよい。
 固体電解質層は、単層であってもよく、複数の層で構成してもよい。固体電解質層が複数層で構成される場合、各層に含まれる導電性高分子は同じであってもよく、異なっていてもよい。また、各層に含まれるドーパントは同じであってもよく、異なっていてもよい。
 固体電解質層は、必要に応じて、さらに、公知の添加剤、および導電性高分子成分以外の公知の導電性材料を含んでもよい。このような導電性材料としては、例えば、二酸化マンガンなどの導電性無機材料、およびTCNQ錯塩からなる群より選択される少なくとも一種が挙げられる。
 なお、誘電体層と固体電解質層との間には、密着性を高める層などを介在させてもよい。
 固体電解質層は、例えば、導電性高分子の前駆体を含む処理液を用いて、前駆体を誘電体層上で重合させることにより形成される。重合は、化学重合、および電解重合の少なくともいずれかにより行うことができる。導電性高分子の前駆体としては、モノマー、オリゴマーまたはプレポリマーなどが挙げられる。固体電解質層は、誘電体層に、導電性高分子を含む処理液(例えば、分散液または溶液)を付着させた後、乾燥させることにより形成してもよい。分散媒(または溶媒)としては、例えば、水、有機溶媒、またはこれらの混合物が挙げられる。処理液は、さらに、他の成分(ドーパント、および添加剤からなる群より選択される少なくとも一種など)を含んでもよい。
 導電性高分子の前駆体を含む処理液を用いる場合、通常、前駆体を重合させるために酸化剤が使用される。酸化剤は、添加剤として処理液に含まれていてもよい。また、酸化剤は、誘電体層が形成された陽極箔に処理液を接触させる前または後に、陽極箔に塗布してもよい。このような酸化剤としては、Fe3+を生成可能な化合物(硫酸第二鉄など)、過硫酸塩(過硫酸ナトリウム、過硫酸アンモニウムなど)、過酸化水素が例示できる。酸化剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。
 処理液への浸漬と重合(または乾燥)とにより固体電解質層を形成する工程は、1回行なってもよいが、複数回繰り返してもよい。各回において、処理液の組成および粘度などの条件を同じにしてもよく、少なくとも1つの条件を変化させてもよい。
 (陰極引出層)
 陰極引出層は、固体電解質層と接触するとともに固体電解質層の少なくとも一部を覆う第1層を少なくとも備えていればよく、第1層と第1層を覆う第2層とを備えていてもよい。第1層としては、例えば、導電性粒子を含む層、金属箔などが挙げられる。導電性粒子としては、例えば、導電性カーボンおよび金属粉から選択される少なくとも一種が挙げられる。例えば、第1層としての導電性カーボンを含む層(カーボン層とも称する)と、第2層としての金属粉を含む層または金属箔とで陰極引出層を構成してもよい。第1層として金属箔を用いる場合には、この金属箔で陰極引出層を構成してもよい。
 導電性カーボンとしては、例えば、黒鉛(人造黒鉛、天然黒鉛など)が挙げられる。
 第2層としての金属粉を含む層は、例えば、金属粉を含む組成物を第1層の表面に積層することにより形成できる。このような第2層としては、例えば、銀粒子などの金属粉と樹脂(バインダ樹脂)とを含む組成物を用いて形成される金属ペースト層が挙げられる。樹脂としては、熱可塑性樹脂を用いることもできるが、イミド系樹脂、エポキシ樹脂などの熱硬化性樹脂を用いることが好ましい。
 第1層として金属箔を用いる場合、金属の種類は特に限定されないが、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。必要に応じて、金属箔の表面を粗面化してもよい。金属箔の表面には、化成皮膜が設けられていてもよく、金属箔を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタンのような金属やカーボン(導電性カーボンなど)のような非金属などを挙げることができる。
 上記の異種金属または非金属(例えば、導電性カーボン)の被膜を第1層として、上記の金属箔を第2層としてもよい。
(セパレータ)
 金属箔を陰極引出層に用いる場合、金属箔と陽極箔との間にはセパレータを配置してもよい。セパレータとしては、特に制限されず、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。
(その他)
 固体電解コンデンサは、巻回型であってもよく、チップ型または積層型のいずれであってもよい。固体電解コンデンサは、少なくとも1つのコンデンサ素子を含んでいればよく、複数のコンデンサ素子を含んでもよい。例えば、固体電解コンデンサは、2つ以上のコンデンサ素子の積層体を含んでもよい。固体電解コンデンサが複数のコンデンサ素子を含む場合、各コンデンサ素子は、例えば、巻回型であってもよく、積層型であってもよい。コンデンサ素子の構成は、固体電解コンデンサのタイプに応じて、選択すればよい。
 コンデンサ素子において、陰極引出層には、陰極リードの一端部が電気的に接続される。陽極箔には、陽極リードの一端部が電気的に接続される。陽極リードの他端部および陰極リードの他端部は、それぞれ樹脂外装体またはケースから引き出される。樹脂外装体またはケースから露出した各リードの他端部は、固体電解コンデンサを搭載すべき基板との半田接続などに用いられる。各リードとしては、リード線を用いてもよく、リードフレームを用いてもよい。
 コンデンサ素子は、樹脂外装体またはケースを用いて封止される。例えば、コンデンサ素子および外装体の材料樹脂(例えば、未硬化の熱硬化性樹脂およびフィラー)を金型に収容し、トランスファー成型法、圧縮成型法等により、コンデンサ素子を樹脂外装体で封止してもよい。このとき、コンデンサ素子から引き出された、陽極リードの他端部側の部分および陰極リードの他端部側の部分を、それぞれ金型から露出させる。また、コンデンサ素子を、陽極リードの他端部側の部分および陰極リードの他端部側の部分が有底ケースの開口側に位置するように有底ケースに収納し、封止体で有底ケースの開口を封口することにより固体電解コンデンサを形成してもよい。
 図1は、本開示の第1実施形態に係る固体電解コンデンサの構造を概略的に示す断面図である。図2は、図1の固体電解コンデンサに含まれるコンデンサ素子2を概略的に示す拡大断面図である。
 固体電解コンデンサ1は、コンデンサ素子2と、コンデンサ素子2を封止する外装体3と、外装体3の外部にそれぞれ少なくともその一部が露出する陽極リード端子4および陰極リード端子5と、を備えている。外装体3は、ほぼ直方体の外形を有しており、固体電解コンデンサ1もほぼ直方体の外形を有している。
 コンデンサ素子2は、陽極箔6と、陽極箔6の表面を覆う誘電体層(図示せず)と、誘電体層を覆う陰極部8とを備える。誘電体層は、陽極箔6の表面の少なくとも一部に形成されていればよい。
 陰極部8は、固体電解質層9と、陰極引出層10とを備える。固体電解質層9は、誘電体層の少なくとも一部を覆っている。陰極引出層10は、固体電解質層9の少なくとも一部を覆うように形成されている。陰極引出層10は、例えば、カーボン層である第1層11および金属ペースト層である第2層12を有する。陰極リード端子5は、導電性接着剤により形成される接着層14を介して、陰極部8と電気的に接続されている。
 陽極箔6は、層状の芯部6aと、層状の芯部6aの双方の表面に形成された多孔質部6bとを備えている。多孔質部6bは、陽極箔6の表層を含む領域に形成されている。陽極箔6は、固体電解質層9(または陰極部8)が形成される第1部分I(換言すると、陰極部8と対向する部分)と、第1部分I以外の第2部分II(換言すると、陰極部8と対向しない部分)とを備える。第2部分IIには、陽極リード端子4が溶接により電気的に接続されている。陽極箔6は、第1部分Iの第2部分IIとは反対側の第1端部Ieと、第2部分IIの第1部分Iとは反対側の第2端部IIeとを有する。第2端部IIeは、陽極リード端子4と接続される。陽極箔6の第1端部Ieと第2端部IIeとの間には、陽極箔6の表面に絶縁性の分離部13が形成され、陰極部8と第2部分IIとの接触が規制されている。
 本開示では、図2に示すような、陽極箔6を構成する金属箔の厚さ方向に平行な方向の断面において、少なくとも第1部分Iでは、芯部6aが占める面積比率が40%以上である。これにより、ESRを低減できるとともに、優れた充放電応答性が得られる。また、固体電解コンデンサが高温環境に晒された場合の静電容量の低下を抑制することができ、高い信頼性が得られる。
 外装体3は、コンデンサ素子2およびリード端子4,5の一部を覆う。外装体3内への空気の侵入を抑制する観点からは、コンデンサ素子2およびリード端子4,5の一部が外装体3で封止されていることが望ましい。図1には、外装体3が樹脂外装体である場合を示したが、この場合に限らず、外装体3は、コンデンサ素子2を収容可能なケースなどであってもよい。樹脂外装体は、コンデンサ素子2およびリード端子4,5の一部を樹脂材料で封止することにより形成される。
 陽極リード端子4および陰極リード端子5の一端部は、コンデンサ素子2に電気的に接続され、他端部は外装体3の外部に引き出される。固体電解コンデンサ1において、リード端子4,5の一端部側は、コンデンサ素子2とともに外装体3によって覆われている。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《固体電解コンデンサA1》
 下記の要領で、図1に示す固体電解コンデンサ1を作製し、その特性を評価した。
(1)陽極箔6の準備
 アルミニウム箔(厚さ108μm、純度99.98%)を、90℃のリン酸水溶液(リン酸濃度1.0質量%)に60秒間浸漬し、前処理した。
 前処理したアルミニウム箔を、エッチング液に浸漬した状態で、交流電源を用いて電解エッチング処理した。エッチング液としては、塩酸5質量%、塩化アルミニウム2質量%、硫酸0.1質量%、リン酸0.5質量%、硝酸0.2質量%を含む水溶液を用い、液温は35℃とした。エッチング時間は5分であった。交流電流の周波数は、約24Hzとした。交流電流の平均電流密度は、0.2A/cmで一定にした。
 アルミニウム箔を、硫酸10質量%を含む60℃の水溶液に60秒間浸漬した後、250℃で120秒間の熱処理を行った。このようにして、芯部6aの双方の表面に多孔質部6bが形成された陽極箔6を作製した。
(2)誘電体層の形成
 上記(1)で得られた陽極箔6の全体を、化成液に浸漬し、70Vの直流電圧を、20分間印加して、酸化アルミニウムを含む誘電体層を形成した。
(3)固体電解質層9の形成
 上記(2)で得られた誘電体層が形成された陽極箔6の、第2部分IIの第1部分I側の端部付近に絶縁性のレジストテープを貼り付けることにより、分離部13を形成した。分離部13が形成された陽極箔6の第1部分Iを、導電性材料を含む液状組成物に浸漬し、取り出して乾燥することにより、プレコート層(図示せず)を形成した。
 ピロール(導電性高分子のモノマー)と、ナフタレンスルホン酸(ドーパント)と、水とを含む重合液を調製した。重合液中に、プレコート層が形成された陽極箔6の第1部分Iと、対電極としてのTi電極とを浸漬し、銀/塩化銀参照電極に対する陽極箔6の電位が2.8Vとなるように、陽極箔に電圧を印加して電解重合を行い、第1部分Iに固体電解質層9を形成した。
(4)陰極引出層10の形成
 上記(3)で得られた固体電解質層9が形成された陽極箔6を、黒鉛粒子を水に分散した分散液に浸漬し、分散液から取り出し後、乾燥することにより、少なくとも固体電解質層9の表面に第1層(カーボン層)11を形成した。乾燥は、130~180℃で10~30分間行った。
 次いで、第1層11の表面に、銀粒子とバインダ樹脂(エポキシ樹脂)とを含む銀ペーストを塗布し、150~200℃で10~60分間加熱することでバインダ樹脂を硬化させ、第2層(金属ペースト層)12を形成した。こうして、第1層11と第2層12とで構成される陰極引出層10を形成し、固体電解質層9と陰極引出層10とで構成される陰極部8を形成した。
 上記のようにして、コンデンサ素子2を作製した。
(5)固体電解コンデンサの組み立て
 上記(4)で得られたコンデンサ素子2の陰極部8と、陰極リード端子5の一端部とを導電性接着剤の接着層14で接合した。コンデンサ素子2から突出した陽極箔6の第2部分IIと、陽極リード端子4の一端部とをレーザー溶接により接合した。
 次いで、モールド成形により、コンデンサ素子2の周囲に、絶縁性樹脂で形成された樹脂外装体3を形成した。このとき、陽極リード端子4の他端部と、陰極リード端子5の他端部とは、樹脂外装体3から引き出した状態とした。
 このようにして、固体電解コンデンサ1(A1)を完成させた。上記と同様にして、固体電解コンデンサA1を合計20個作製した。
《固体電解コンデンサB1》
 アルミニウム箔(厚さ82μm、純度99.98%)を用い、エッチング条件(より具体的には、エッチング時間および交流電流の周波数の少なくとも一方)を調節することによって、芯部6aと芯部6aの双方の表面に形成された多孔質部6bとを有する陽極箔6を形成した。得られた陽極箔を用いたこと以外は、固体電解コンデンサA1の場合と同様にして固体電解コンデンサB1を合計20個作製した。
[評価]
 固体電解コンデンサA1およびB1のそれぞれについて、芯部6aの厚さ、多孔質部6bの総厚さ、芯部6aの面積比率をそれぞれ既述の手順で求めた。
 また、固体電解コンデンサの初期のESRを下記の手順で求めた。
 20℃の環境下で、4端子測定用のLCRメータを用いて、固体電解コンデンサの周波数100kHzにおけるESR値(mΩ)を、初期のESR値(X)(mΩ)として測定し、20個の平均値を求めた。固体電解コンデンサB1の初期のESRは、固体電解コンデンサA1の初期のESR値を100%としたときの相対値で示した。
 結果を表1に示す。表1には、陽極箔の厚さも合わせて示す。固体電解コンデンサA1は実施例であり、固体電解コンデンサB1は比較例である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、固体電解コンデンサA1では、固体電解コンデンサB1に比較して、初期のESRが低く抑えられている。これは、固体電解コンデンサA1では、芯部の面積比率が40%以上と大きいことで、陽極箔において高い導電性が得られることによるものと考えられる。固体電解コンデンサA1およびB1では、多孔質部の状態はほとんど変わらず、同程度の静電容量が確保できた。
《固体電解コンデンサA2》
 アルミニウム箔(厚さ70μm、純度99.98%)を用いるとともに、エッチング条件(より具体的には、エッチング時間および交流電流の周波数の少なくとも一方)を調節したこと以外は、固体電解コンデンサA1の場合と同様にして、陽極箔6を準備した。得られた陽極箔6を用いたこと以外は、固体電解コンデンサA1の場合と同様にして、固体電解コンデンサA2を合計20個作製した。
《固体電解コンデンサB2》
 エッチング条件(より具体的には、エッチング時間および交流電流の周波数の少なくとも一方)を調節したこと以外は、固体電解コンデンサA1の場合と同様にして陽極箔6を形成した。得られた陽極箔を用いたこと以外は、固体電解コンデンサA1の場合と同様にして固体電解コンデンサB2を合計20個作製した。
[評価]
 固体電解コンデンサA2およびB2のそれぞれについて、芯部6aの厚さ、多孔質部6bの総厚さ、芯部6aの面積比率、多孔質部6bの厚さの中心部、表層、芯部近傍における空隙率をそれぞれ既述の手順で求めた。
 また、固体電解コンデンサA1、A2およびB2の初期の静電容量を下記の手順で求めた。
 20℃の環境下で、4端子測定用のLCRメータを用いて、固体電解コンデンサの周波数120Hzにおける静電容量(μF)を、初期の静電容量(Z)(mΩ)として測定し、20個の平均値を求めた。
 初期の静電容量を測定した固体電解コンデンサを、125℃の環境に1000時間置くことで高温試験を行った。高温試験後の固体電解コンデンサの静電容量(Z)(μF)を、Zと同様の方法で測定した。そして、下記式より静電容量の変化率を求め、固体電解コンデンサの信頼性評価の指標とした。
 静電容量の変化率=(Z-Z)/Z×100(%)
 なお、静電容量の変化率が0%に近いほど高温環境に晒された場合の静電容量の変化が少なく、信頼性に優れることを示している。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、芯部の面積比率が40%以上と高い場合には、固体電解コンデンサが高温環境に晒された場合の静電容量の変化が小さく、優れた信頼性を確保できる。固体電解コンデンサA1およびA2では、多孔質部の厚さ方向の中心部の空隙率も高く内部まで多くの空隙が形成されており、比較的高い初期の静電容量を確保できる。固体電解コンデンサA1およびA2では、適度な静電容量が得られることで、優れた充放電応答性を確保することができる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示によれば、ESRが低減された固体電解コンデンサが得られる。また、本開示の固体電解コンデンサは、充放電の応答性が高い。加えて、本開示の固体電解コンデンサは、固体電解コンデンサが高温に晒された場合でも静電容量の低下を抑制できる。よって、固体電解コンデンサは、高い信頼性が求められる様々な用途に用いることができる。
1:固体電解コンデンサ
2:コンデンサ素子
3:外装体
4:陽極リード端子
5:陰極リード端子
6:陽極箔
6a:芯部
6b:多孔質部
8:陰極部
9:固体電解質層
10:陰極引出層
11:第1層
12:第2層
13:分離部
14:接着層
I:第1部分
II:第2部分
Ie:第1端部
IIe:第2端部
 

Claims (6)

  1.  固体電解質層が形成される第1部分と前記固体電解質層が形成されない第2部分とを有する金属箔を含む固体電解コンデンサ用電極箔であって、
     前記金属箔は、少なくとも前記第1部分に、多孔質部と、前記多孔質部に連続する芯部と、を有し、前記第1部分の厚さ方向に平行な方向の断面において、前記芯部が占める面積比率が40%以上である、固体電解コンデンサ用電極箔。
  2.  前記第1部分において、前記多孔質部の総厚さは、60μm以下である、請求項1に記載の固体電解コンデンサ用電極箔。
  3.  前記第1部分において、前記芯部の厚さは、30μm以上である、請求項1または2に記載の固体電解コンデンサ用電極箔。
  4.  前記第1部分において、前記多孔質部は、前記多孔質部の厚さの中心部において、60%以上80%以下の空隙率を有する、請求項1~3のいずれか1項に記載の固体電解コンデンサ用電極箔。
  5.  陽極箔としての請求項1~4のいずれか1項に記載の固体電解コンデンサ用電極箔と、
     前記陽極箔の表面の少なくとも一部に形成された誘電体層と、
     前記誘電体層の少なくとも一部を覆う陰極部と、を含み、
     前記陰極部は、前記第1部分において、前記誘電体層の少なくとも一部を覆う前記固体電解質層を少なくとも含む、固体電解コンデンサ素子。
  6.  請求項5に記載の固体電解コンデンサ素子を少なくとも1つ含む、固体電解コンデンサ。
     
PCT/JP2022/030229 2021-08-30 2022-08-08 固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ WO2023032603A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280057590.4A CN117836885A (zh) 2021-08-30 2022-08-08 固体电解电容器用电极箔、使用该固体电解电容器用电极箔的固体电解电容器元件以及固体电解电容器
JP2023545393A JPWO2023032603A1 (ja) 2021-08-30 2022-08-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-140421 2021-08-30
JP2021140421 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032603A1 true WO2023032603A1 (ja) 2023-03-09

Family

ID=85412193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030229 WO2023032603A1 (ja) 2021-08-30 2022-08-08 固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ

Country Status (3)

Country Link
JP (1) JPWO2023032603A1 (ja)
CN (1) CN117836885A (ja)
WO (1) WO2023032603A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137482A1 (ja) * 2005-06-23 2006-12-28 Showa Denko K. K. 固体電解コンデンサ及びその製造方法
JP2008177237A (ja) * 2007-01-16 2008-07-31 Nec Tokin Corp 表面実装薄型コンデンサ
JP2008300407A (ja) * 2007-05-29 2008-12-11 Nec Tokin Corp 表面実装薄型コンデンサ
JP2010040960A (ja) * 2008-08-08 2010-02-18 Nec Tokin Corp 固体電解コンデンサ
WO2020174751A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 電解コンデンサ用電極箔、電解コンデンサおよびそれらの製造方法
WO2021085350A1 (ja) * 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137482A1 (ja) * 2005-06-23 2006-12-28 Showa Denko K. K. 固体電解コンデンサ及びその製造方法
JP2008177237A (ja) * 2007-01-16 2008-07-31 Nec Tokin Corp 表面実装薄型コンデンサ
JP2008300407A (ja) * 2007-05-29 2008-12-11 Nec Tokin Corp 表面実装薄型コンデンサ
JP2010040960A (ja) * 2008-08-08 2010-02-18 Nec Tokin Corp 固体電解コンデンサ
WO2020174751A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 電解コンデンサ用電極箔、電解コンデンサおよびそれらの製造方法
WO2021085350A1 (ja) * 2019-10-31 2021-05-06 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法

Also Published As

Publication number Publication date
JPWO2023032603A1 (ja) 2023-03-09
CN117836885A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
TWI478189B (zh) 固體電解電容器及其製造方法
US10629383B2 (en) Solid electrolytic capacitor
JP2009505413A (ja) 固体コンデンサおよびその製造方法
WO2020153242A1 (ja) 電解コンデンサおよびその製造方法
WO2022044939A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
CN110678946A (zh) 电解电容器及其制造方法
US20170330692A1 (en) Solid electrolytic capacitor
US10325728B2 (en) Electrolytic capacitor and production method for same
JP5623214B2 (ja) 固体電解コンデンサ
WO2013088845A1 (ja) 固体電解コンデンサ
JP5321964B2 (ja) 固体電解コンデンサおよびその製造方法
JP5020020B2 (ja) 固体電解コンデンサの製造方法
WO2023032603A1 (ja) 固体電解コンデンサ用電極箔、それを用いた固体電解コンデンサ素子、および固体電解コンデンサ
JP4610382B2 (ja) 固体電解コンデンサおよびその製造方法
WO2022158350A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JP2019075582A (ja) 固体電解コンデンサ
US20230105494A1 (en) Electrolytic capacitor and capacitor element
WO2024070142A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
WO2022220235A1 (ja) 電解コンデンサおよびその製造方法
US20230268136A1 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and method for producing same
WO2024004721A1 (ja) 固体電解コンデンサ
US20240161985A1 (en) Electrolytic capacitor and method for producing same
WO2022185999A1 (ja) 固体電解コンデンサおよびその製造方法
WO2023119843A1 (ja) 固体電解コンデンサ素子および固体電解コンデンサ
JPWO2016174817A1 (ja) 電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545393

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280057590.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE