WO2024060240A1 - 显示面板与制造显示面板的方法 - Google Patents

显示面板与制造显示面板的方法 Download PDF

Info

Publication number
WO2024060240A1
WO2024060240A1 PCT/CN2022/121070 CN2022121070W WO2024060240A1 WO 2024060240 A1 WO2024060240 A1 WO 2024060240A1 CN 2022121070 W CN2022121070 W CN 2022121070W WO 2024060240 A1 WO2024060240 A1 WO 2024060240A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
organic film
layer
organic material
base substrate
Prior art date
Application number
PCT/CN2022/121070
Other languages
English (en)
French (fr)
Inventor
李超
张良维
张春旭
陈亮
陆文涛
张伟
李会
Original Assignee
京东方科技集团股份有限公司
合肥京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/121070 priority Critical patent/WO2024060240A1/zh
Publication of WO2024060240A1 publication Critical patent/WO2024060240A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a method of manufacturing a display panel.
  • a variety of metal wires such as gate lines and data lines are arranged in the array substrate. These metal wires may form a fringe electric field, affecting the deflection of the liquid crystal, causing light leakage problems.
  • a black matrix Black Mask
  • the black matrix needs to have a certain width, and in related technologies, such a width will affect the transmittance of the display panel.
  • a display panel including a base substrate and signal lines arranged on the base substrate, wherein the base substrate includes at least one display area, and each display area includes a plurality of A pixel area and a spacer area between any two adjacent pixel areas in the plurality of pixel areas, and the signal line is located in the spacer area.
  • the display panel further includes an organic film layer, the organic film layer is arranged on a side of the signal line facing away from the base substrate, and an orthographic projection of the organic film layer on the base substrate covers the The orthographic projection of the signal line on the base substrate.
  • the organic film layer includes a top region and a side surface, the top region is located on a side of the organic film layer away from the signal line, and the side surface is located between the top region and the signal line, wherein the inclination angle of the side surface relative to the plane where the substrate is located is greater than or equal to 15°. In some more specific embodiments, the inclination angle of the side surface relative to the plane where the substrate is located is greater than or equal to 20°.
  • the organic film layer extends from the spacer area to the pixel area, wherein the organic film layer includes a first organic film portion and a second organic film portion, the first organic film portion is located in the spacer area, and the second organic film portion is located in the pixel area, wherein an average thickness of the first organic film portion is greater than an average thickness of the second organic film portion.
  • the first organic film portion has an average thickness greater than or equal to 15,000 angstroms.
  • the second organic film portion has an average thickness less than or equal to 8000 angstroms.
  • the display panel further includes a common electrode layer.
  • the common electrode layer includes a plurality of strip-shaped common electrodes arranged parallel to each other and spaced apart, wherein a part of the plurality of strip-shaped common electrodes is arranged in the spacing area.
  • the organic film layer is located between the strip-shaped common electrode arranged in the separation area and the signal line.
  • the at least one display area includes a plurality of display areas
  • the base substrate further includes a plurality of non-display areas, each of the plurality of non-display areas surrounds the plurality of non-display areas.
  • the base substrate further includes a cutting area located between any two adjacent non-display areas in the plurality of non-display areas, wherein the organic film layer is formed from the The display area extends to the non-display area and the cutting area.
  • the organic film layer includes a first organic film part, a second organic film part, a third organic film part and a fourth organic film part, and the first organic film part is located in the separation area, so The second organic film part is located in the pixel area, the third organic film part is located in the cutting area, and the fourth organic film part is located in the non-display area, wherein the average thickness of the third organic film part is greater than or equal to the average thickness of the first organic film portion, and the average thickness of the third organic film portion is greater than the average thickness of at least one of the second organic film portion and the fourth organic film portion.
  • the fourth organic film part includes a groove part and edge parts located on both sides of the groove part, and the average thickness of the groove part is less than the average thickness of the edge part, wherein,
  • the display panel further includes a frame sealing glue, and the frame sealing glue is located in the groove part.
  • the display panel further includes a spacer, wherein the spacer is located on a side of the organic film layer facing away from the base substrate.
  • the organic film layer includes a via hole, the via hole includes a first opening, a second opening, and an inner wall between the first opening and the second opening, the inner wall includes a first inner wall gradient gradient zone, a second inner wall gradient gradient zone, and an inner wall gradient stabilization zone between the first inner wall gradient gradient zone and the second inner wall gradient gradient zone, wherein the inner wall gradient stabilization zone has an inclination angle of less than or equal to 20° relative to the plane where the substrate is located. In some more specific embodiments, the inner wall gradient stabilization zone has an inclination angle of less than or equal to 15° relative to the plane where the substrate is located.
  • a method of manufacturing a display panel includes: providing a base substrate, wherein the base substrate includes at least one display area, each display area includes a plurality of pixel areas and any two adjacent pixel areas located in the plurality of pixel areas. a spacing area between; forming a signal line on the base substrate, wherein the signal line is located in the spacing area; forming an organic film layer on the side of the signal line facing away from the base substrate, wherein the The orthographic projection of the organic film layer on the base substrate covers the orthographic projection of the signal line on the base substrate.
  • forming an organic film layer on a side of the signal line facing away from the base substrate includes: forming an organic material layer on a side of the signal line facing away from the base substrate; using a half-tone mask , exposing and developing the organic material layer to form the organic material layer into an organic material pattern layer, wherein the organic material pattern layer includes an organic material completely retained area and an organic material partially retained area, the organic material The completely retained area is located in the spacer area, and the partially retained area of organic material is located in the pixel area, wherein the thickness of the completely retained area of organic material is greater than the thickness of the partially retained area of organic material; solidify the organic material pattern layer to obtain the organic film layer.
  • curing the organic material pattern layer to obtain the organic film layer includes: heating at a first temperature and irradiating the organic material pattern layer with ultraviolet light having a first radiation illuminance to obtain a pre-cured layer, wherein the first temperature is within a range of 120°C to 140°C, and the first light intensity radiation illuminance is within a range of 700mw /cm2-1000mw/ cm2 ; and, heating the pre-cured layer at a second temperature to obtain the organic film layer, wherein the second temperature is within a range of 230°C to 250°C.
  • the at least one display area includes a plurality of display areas
  • the base substrate further includes a plurality of non-display areas, each of the plurality of non-display areas surrounds the plurality of non-display areas.
  • the base substrate further includes a cutting area located between any two adjacent non-display areas in the plurality of non-display areas, wherein, using a half-tone mask,
  • the organic material partially retained area includes a first organic material partially retained area and a second organic material partially retained area. area, wherein the organic material completely retained area is located in the spacing area and the cutting area, the first organic material partially retained area is located in the non-display area, and the second organic material partially retained area is located in the pixel district.
  • the first organic material partial retention area includes a groove portion and edge portions located on both sides of the groove portion, and the average thickness of the groove portion is less than the average thickness of the edge portion, wherein , the method further includes: providing frame sealing glue in the groove part.
  • the organic film layer includes a via hole
  • forming the organic film layer on a side of the signal line facing away from the base substrate includes: forming an organic film layer on a side of the signal line facing away from the base substrate. Form an organic material layer on the side; use a half-tone mask to expose and develop the organic material layer to form the organic material layer into an organic material pattern layer, wherein the organic material pattern layer includes a via pattern, so
  • the via pattern includes a first opening, a second opening, and an inner wall pattern located between the first opening and the second opening, the first opening being located on the organic material pattern layer away from the base substrate
  • the second opening is located on the surface of the organic material pattern layer close to the base substrate, and the inner wall pattern includes a first climbing area, a second climbing area, and is located in the first climbing area and the second climbing area.
  • the step portion is parallel to the first opening and the second opening; the organic material pattern layer is cured to obtain the organic film layer.
  • the ratio of the distance from the step portion to the first opening and the distance from the step portion to the second opening is in the range of 90%-110%.
  • Figure 1 schematically shows a partial top view of a display panel according to an embodiment of the present application
  • Figure 2A schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application
  • FIG. 2B schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application
  • Figure 3 schematically shows the inclination angle of the side surface of the organic film layer relative to the plane of the base substrate according to an embodiment of the present application
  • Figure 4 schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application
  • FIG5 schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application
  • Figure 6 schematically shows a top view of a display panel according to an embodiment of the present application
  • Figure 7 schematically shows the stress change curve of the relevant display panel
  • Figure 8 schematically shows the edge light leakage phenomenon of the relevant display panel
  • Figures 9A and 9B schematically show stress variation curves of a related display panel with a step improvement layer
  • Figure 10 schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application
  • Figure 11 schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application
  • Figure 12A schematically shows a partial top view of a display panel according to an embodiment of the present application
  • Figure 12B schematically shows a partial cross-sectional view of the relevant display panel
  • FIG12C schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application.
  • Figure 13 schematically shows a cross-sectional view of a via hole in an organic film layer of a display panel according to an embodiment of the present application
  • Figure 14 schematically shows a flow chart of a method of manufacturing a display panel according to an embodiment of the present application
  • Figure 15 schematically shows the visible light transmittance of the organic film layer after being irradiated with different doses of ultraviolet light
  • Figure 16A schematically shows the morphology of each stage of the organic film layer in the related process of forming the organic film layer
  • 16B schematically shows the morphology of each stage of the organic film layer in the process of forming the organic film layer in the method of manufacturing a display panel according to an embodiment of the present application;
  • Figure 17A schematically shows a step image of an organic film layer obtained using a related method
  • FIG. 17B schematically shows a step image of an organic film layer obtained by using a method for manufacturing a display panel according to an embodiment of the present application
  • FIG. 18 schematically shows a top view of a half-tone mask used to form via holes in a method of manufacturing a display panel according to an embodiment of the present application
  • Figure 19 schematically shows a cross-sectional view of a via pattern obtained when the organic material layer is exposed using a half-tone mask
  • FIG. 20 schematically shows a cross-sectional image of a via pattern.
  • FIG. 1 schematically shows a partial top view of a display panel according to an embodiment of the present application.
  • FIG. 2A schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application. Specifically, FIG. 2A is a cross-sectional view of the display panel along line A-A′ of FIG. 1 according to an embodiment of the present application.
  • FIG. 2B schematically shows another partial cross-sectional view of a display panel according to an embodiment of the present application. Specifically, FIG. 2B is a cross-sectional view of the display panel along line B-B′ of FIG. 1 according to an embodiment of the present application. As shown in FIGS.
  • the display panel 100 includes a base substrate 105 and signal lines 110 arranged on the base substrate.
  • the base substrate 105 includes at least one display area 115 .
  • the display area refers to the area in the display panel used to display images.
  • Each display area 115 includes a plurality of pixel areas 116 and a spacer area 117 located between any two adjacent pixel areas 116 in the multiple pixel areas. It should be understood that the image displayed on the display panel is formed by pixels emitting light one by one.
  • the area where each pixel is located is a pixel area, and the pixel area allows light to pass through (ie, transmits light).
  • Each pixel area 116 may be arranged in an array according to rows and columns. There is a spacer 117 between two adjacent pixel areas. Spacer area 117 is generally light-tight.
  • the signal line 110 is located in the spacing area 117 .
  • Each pixel area 116 is equipped with a corresponding signal line for controlling the light transmittance of the pixel area 116
  • the signal line 110 may specifically be a data line. Data lines are used to provide display signals to pixels. The data line is passed to the pixel electrode through the active layer 109 of the drive transistor of the pixel electrode. As shown in FIG. 2A , the pixel electrode 106 is arranged on the base substrate 105 . The gate insulating layer 107 covers the pixel electrode 106. The active layer 109 and the signal line 110 are formed on the gate insulating layer 107. The passivation layer 111 covers the signal line 110 . The material of the passivation layer 111 may be an inorganic insulating material, such as silicon nitride (SiNx). The common electrode 108 is formed on the passivation layer 111 .
  • SiNx silicon nitride
  • the signal line 110 may specifically be a gate line.
  • the gate lines are used to provide drive signals to the pixels to turn on/off the drive transistors that control the pixel electrodes.
  • the pixel electrode 106 is arranged on the base substrate 105 , and a part of the pixel electrode 106 exists in the spacer region 117 .
  • the gate line is disposed on the pixel electrode located in the space area 117 .
  • the gate insulating layer 107 covers the pixel electrode 106 and the gate line.
  • the passivation layer 111 covers the gate insulation layer 107 .
  • the common electrode 108 is formed on the passivation layer 111 .
  • the display panel 100 also includes a counter substrate 124 .
  • the liquid crystal layer 102 is provided between the array substrate 101 and the counter substrate 124.
  • the counter substrate 124 also includes a base substrate 126, and a black matrix 125 is arranged at a position corresponding to the spacer region 117.
  • the inventor of this application pointed out that when the display panel is a liquid crystal panel, the signal line may cause a fringe electric field around it, thereby affecting the deflection of the liquid crystal molecules, causing a series of problems such as dark-state light leakage.
  • the black matrix 125 needs to have a large width, which will affect the transmittance of the display panel.
  • the display panel 100 further includes an organic film layer 120 .
  • the organic film layer 120 is arranged on a side of the signal line 110 facing away from the base substrate 105 . and.
  • the orthographic projection of the organic film layer 120 on the base substrate 105 covers the orthographic projection of the signal line 110 on the base substrate.
  • the term "orthographic projection" should be understood as the projection of the projected object on the target plane in a direction perpendicular to the target plane.
  • the material of the organic film layer may have the following characteristics. First, the organic material forming the organic film layer can be electrically insulating to effectively shield interference from signal lines.
  • the organic material can be photosensitive, so that the exposed organic material can be dissolved in the developer, so that the etching process can be eliminated, but exposure (using a mask with a specific pattern to expose the material of the organic film layer) and development can be directly used. (Cleaning organic materials to remove exposed areas) process to form the required organic film layer pattern.
  • the organic material should also have thermosetting properties to fix its shape after exposure and development.
  • the material of the organic film layer may be organic materials such as resin material, acrylic acid, polyimide, naphthoquinone diazide compound, etc.
  • the thickness of the organic film layer can be set to at least 1.5 ⁇ m, for example, between 1.5 ⁇ m and 3.0 ⁇ m. At this time, the thickness of the organic film layer can effectively shield the electric field of the signal line, but it is not too thick to cause As a result, the panel step difference is too large, affecting the surface flatness of the array substrate 101 .
  • the organic film layer can shield the interference of the signal line on the liquid crystal electric field and reduce the width of light leakage, which can bring about various changes that affect the transmittance.
  • the reduction of the light leakage width allows the ratio of the width W of the strip electrode to the spacing S to be increased and the slit inclination angle to be reduced. Moreover, the width of the black matrix corresponding to the signal line can be reduced, thereby increasing the aperture ratio of the panel.
  • Table 1 shows a parameter comparison between a display panel according to related technologies in the art and a display panel according to embodiments of the present application.
  • the ratio of the width W of the strip electrode to the spacing S increases, and the slit angle decreases.
  • the transmittance is increased by 3.2%.
  • the width of the black matrix corresponding to the gate lines and data lines is reduced, resulting in an increase in the aperture ratio, which in turn increases the transmittance.
  • the panel transmittance increased by 16.43% (3.2% + 13.23%).
  • the embodiment of the present application can be applied to the i-ADS type (inverse Advanced Super Dimension Switch, inverted ADS technology) panel.
  • ADS type panel a block pixel electrode with a slit and a whole layer of plate-like common electrodes are included.
  • the pixel electrode and the common electrode are located on the same side of the liquid crystal layer, and the pixel electrode is closer to the liquid crystal layer than the common electrode.
  • the ADS panel is an advanced panel with a wide viewing angle.
  • a multi-dimensional electric field is formed by the electric field generated by the edge of the slit electrode in the same plane and the electric field generated between the slit electrode layer and the plate-like electrode layer, so that all liquid crystal molecules in the liquid crystal box can rotate, thereby improving the working efficiency of the liquid crystal and increasing the light transmission efficiency, improving the picture quality, and having the advantages of high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low color difference, and no push water ripple (push Mura) compared to the traditional TN type panel.
  • the ADS type panel also has disadvantages in some aspects. For example, in a vertical electric field type liquid crystal display panel taking a TN type panel as an example, the liquid crystal molecules are oriented vertically.
  • the vertical electric field type liquid crystal display panel is not easy to leak light in the dark state.
  • the liquid crystal molecules are oriented horizontally.
  • the horizontal electric field type liquid crystal display panel is prone to light leakage in the dark state.
  • the aperture ratio of common ADS panels is still small and cannot meet the needs of high-quality display.
  • a whole layer of multiple strip common electrodes and block pixel electrodes arranged in parallel and spaced apart is included, and the pixel electrode is farther away from the liquid crystal layer than the common electrode.
  • a portion of the strip-shaped common electrode 108 can be arranged in the spacing area 117 between adjacent pixel areas 116, and is located between the signal line 110 (data line) and the liquid crystal layer 102, that is, the common electrode 108 covers the signal line 110, so as to shield the electric field of the signal line 110 and avoid the light leakage problem caused by the presence of the electric field near the signal line 110.
  • the common electrode is close to the signal line, resulting in a large coupling capacitance.
  • this coupling capacitance During the pixel charging and discharging process, it is easy to be pulled by this coupling capacitance, resulting in a decrease in the charging rate, and the occurrence of poor image quality such as residual image and crosstalk. This problem is particularly serious in large-size products.
  • the organic film layer 120 can be arranged between the common electrode 108 and the signal line 110, that is, it is padded above the signal line 110, which increases the distance between the common electrode 108 and the signal line 110, reduces the coupling capacitance, and is conducive to improving the problems of residual image and crosstalk.
  • the display panel of the present application combines i-ADS technology and an organic film layer to improve the panel transmittance.
  • the display panel of the present application is not limited to ADS type display panels, and can also be applied to other planar electric field type panels (IPS, In-Plane Switching, Planar Switching) and vertical electric field type panels (such as VA, Vertical Alignment, Vertical Alignment) other than ADS.
  • IPS planar electric field type panels
  • VA Vertical Alignment, Vertical Alignment
  • the transmittance can also be improved by selecting appropriate liquid crystal materials and polarizing layer surface treatment processes.
  • the display panel according to the embodiment of the present application has a transmittance improved by 27.5% compared to conventional display panels in the art.
  • the common electrode 108 may use ITO (indium tin oxide) as a material, and its thickness may be between to between, for example
  • the pixel electrode 108 can also use ITO as a material, and its thickness can be between to between, for example
  • the gate line can be made of copper, and its thickness can be to between, for example
  • the gate insulating layer 107 can be made of silicon nitride, and its thickness can be between arrive between, for example
  • the material of the active layer 109 may be single crystal silicon (A-Si), and its thickness may be between arrive between, for example
  • the data line can be composed of a laminate of molybdenum, copper, and molybdenum.
  • the thickness of the three layers can be
  • the passivation layer 111 can use silicon nitride as a material, and its thickness can be between arrive between, for example wait.
  • the heights of the array substrate are inconsistent everywhere. For example, where the organic film layer 120 is formed, the thickness of the array substrate may increase.
  • the alignment layer is not evenly coated on the surface of the array substrate, but has steps.
  • a friction roller is used to rub the alignment layer, the roller will experience uphill and downhill processes. For example, a roller will experience an uphill slope when reaching a thicker place and a downhill slope when leaving a thicker place.
  • the contact between the roller and the film surface of the alignment layer is weak, resulting in weak alignment, forming a weak alignment area.
  • the average anchoring energy of the liquid crystal molecules in the weak alignment area is weak and is more susceptible to electric field disturbance and alignment disorder. Therefore, the light leakage in the weak alignment area will be more serious and cannot be used as a display area, which actually affects the aperture ratio. In order to obtain a higher aperture ratio, it is necessary to reduce the range of the weak alignment region, such as reducing the width of the slope region.
  • the organic film layer 120 includes a top region 121 and a side surface 122 .
  • the top region 121 is located on the side of the organic film layer 120 away from the signal line 110 .
  • the term "top area" can be understood as a part of the film surface of the organic film layer 120 away from the signal line. This part of the area can be a plane or a slightly curved surface, which is basically the same as the plane of the base substrate. Parallel, or with only a small degree of inclination, the degree of inclination is much smaller than the inclination angle of the side surface 122 relative to the plane where the base substrate 105 is located.
  • the inclination angle of the top region 121 relative to the plane where the base substrate 105 is located is less than or equal to 5°.
  • the side surface 122 is located between the top area 121 and the signal line 110 .
  • the inclination angle ⁇ of the side surface 122 relative to the plane where the base substrate 105 is located is greater than or equal to 15°.
  • the inclination angle of the side surface relative to the plane where the substrate is located can be understood as, in the cross-sectional view of the organic film layer, a tangent line is drawn along the bottom of the side surface, and the angle of the tangent line relative to the plane where the substrate is located is the organic film The angle of inclination of the side surfaces of a layer relative to the plane of the base substrate.
  • the inclination angle ⁇ of the side surface 122 relative to the plane where the base substrate 105 is located may even reach 20° or higher.
  • Figure 3 schematically shows the inclination angle of the side surface of the organic film layer relative to the plane of the base substrate according to the embodiment of the present application. This figure and its measurement data are from the inventor's display obtained in actual production. Photography of the panel. Specifically, in FIG. 3 , the inclination angle ⁇ of the side surface of the organic film layer relative to the plane where the base substrate is located is approximately 22°. In contrast, in a conventional display panel, the inclination angle of the side surface of the organic film layer relative to the plane of the base substrate is very small and cannot reach 15°, and is generally only 12° or lower.
  • the side surface of the organic film layer 120 in the display panel according to the embodiment of the present application has a higher degree of inclination, which reduces the width along the direction of the plane of the base substrate without changing the step, thereby reducing the The range of weak alignment areas helps to increase the aperture ratio of the panel.
  • the organic film layer may be arranged only in the separation area 117, or may extend from the separation area 117 to the pixel area 116.
  • 4 and 5 respectively schematically illustrate partial cross-sectional views of a display panel according to embodiments of the present application.
  • the organic film layer 120 extends from the spacer area 117 to the pixel area 116 .
  • the organic film layer 120 includes a first organic film part 221 and a second organic film part 222 .
  • the first organic film portion 221 is located in the spacer area 117
  • the second organic film portion 222 is located in the pixel area 116 .
  • the average thickness of the first organic film portion 221 is different from the average thickness of the second organic film portion 222 .
  • the average thickness of the first organic film portion 221 is greater than the average thickness of the second organic film portion 222 . This is because the second organic film portion 222 located in the pixel area 116 will increase the thickness of the pixel area, thereby reducing the effective electric field used to drive the liquid crystal, resulting in a reduction in the deflection voltage of the liquid crystal. By thinning the average thickness of the second organic film portion 222, the thickness of the pixel area can be reduced and the electric field can be increased, thereby ensuring that the liquid crystal deflection voltage is maintained at a high level.
  • the average thickness of the first organic film portion 221 is greater than or equal to The average thickness of the second organic film portion 222 is less than or equal to The specific method of forming the first organic film part 221 and the second organic film part 222 will be described later.
  • the display panel of the present application may be a large-sized panel, such as a panel with a diagonal size of at least 65 inches.
  • multiple LCD panels can be cut out of one glass substrate to improve glass utilization efficiency and production efficiency.
  • the size of the glass substrate as the substrate can reach 2940mm ⁇ 3370mm, which can produce six 75-inch LCD panels.
  • Figure 6 schematically shows a top view of the base substrate.
  • the base substrate 105 includes a plurality of display areas 115 , a plurality of non-display areas 118 and cuts between any two adjacent non-display areas in the plurality of non-display areas. District 119.
  • Each display area 115 of the plurality of display areas is surrounded by a corresponding non-display area 118 of the plurality of non-display areas. That is to say, each display area 115 is surrounded by a circle of non-display areas 118, and a cutting area 119 is left between the non-display areas 118.
  • the signal lines of the display area 115 will extend to the non-display area 118 .
  • the gate driver circuit also called GOA circuit, Gate Driver on Array
  • the sealant used to bond the array substrate 101 and the opposite substrate 124 will also be arranged in the non-display area 118 .
  • the cutting operation is generally performed within the cutting area 119 .
  • a step improvement layer 235 can be added to the non-display area 118 to minimize the stress between the display area 115 and the non-display area 118, as shown in FIG. 9A.
  • a step improvement layer 235 can be added in the cutting area 119 to reduce the stress in the non-display area 118 and the cutting area 119, as shown in FIG. 9B.
  • these solutions require additional formation of the step improvement layer 235, and the coating of these layers increases production time and reduces production efficiency.
  • the organic film layer 120 extends from the display area 115 to the non-display area 118 and the cutting area 119 .
  • the step difference between the display area 115, the non-display area 118, and the cutting area 119 can be compensated for without providing an additional step improvement layer, so as to reduce uneven edge stress caused by jitter deformation of large-size substrates during rapid transportation. problem, improve the flatness of the array substrate, and thereby improve the peripheral light leakage of the display panel.
  • the organic film layer 120 extending from the display area 115 to the non-display area 118 and the cutting area 119 includes a first organic film portion 221, a second organic film portion 222, The third organic film part 241 and the fourth organic film part 242.
  • the third organic film portion 241 is located in the cutting area 119
  • the fourth organic film portion 242 is located in the non-display area 118 .
  • the average thickness of the third organic film part 241 is greater than or equal to the average thickness of the first organic film part 221
  • the average thickness of the third organic film part 241 is greater than the fourth organic film part 242 and the second organic film part 242 .
  • FIG. 10 schematically shows a partial cross-sectional view of a display panel according to the present application.
  • generally only one electrode material layer such as the material layer of the pixel electrode 106 in the embodiment of the present application
  • other insulating material layers such as the material layer of the gate insulating layer 107 and passivation material
  • the thickness of the array substrate corresponding to the cutting area 119 is generally the thinnest.
  • the non-display area 118 is also disposed with a conductive material layer forming the signal line 110 .
  • the thickness of the array substrate corresponding to the non-display area 118 is generally higher than the thickness of the array substrate corresponding to the cutting area 119 .
  • the display area (including the spacer area and the pixel area) has the most layer structures and is generally the thickest. Therefore, by making the average thickness of the third organic film portion 241 greater than or equal to the average thickness of the first organic film portion 221 and greater than that of the fourth organic film portion 242 and the second organic film portion 222 At least one average thickness, the thinnest position in the array substrate is supplemented with the largest thickness of the organic film layer, thus improving the step difference between each area, reducing the difference between the stresses at each position, effectively improving Solved the above edge light leakage problem.
  • the frame sealant 253 is used to connect the array substrate and the opposite substrate.
  • the thickness of frame sealant 253 is approximately to
  • the existing method of applying frame sealing glue relies on controlling the speed and height of the glue coating head to control the amount of glue applied at each position, and then curing the box to achieve rounded corners. Therefore, it is very difficult to control the coating accuracy of the rounded corners of the frame sealant, and it is also difficult to monitor.
  • width deviations and positional accuracy deviations are more likely to occur during coating. Especially at corners and other locations, there is often a problem of large coating deviations due to difficulty in monitoring.
  • the portion of the organic film layer located in the non-display area 118 includes a groove portion 251 and a portion located in the groove.
  • the edge portions 252 on both sides of the groove portion 251.
  • the average thickness of the groove portion 251 is smaller than the average thickness of the edge portion 252 .
  • the display panel also includes frame sealing glue 253 .
  • the thickness of the frame sealant 253 is approximately The frame sealing glue 253 is located in the groove portion 251 .
  • the frame sealant 253 can be restricted to a predetermined position by the fourth organic film portion 242 during coating, thereby reducing deviations in coating position and width, which is particularly important for frame sealant coating at corners.
  • the coating accuracy of the frame sealant can be controlled.
  • the frame sealing glue is limited by thinning the local thickness of the organic film layer.
  • the thinning of the organic film layer also helps to improve the heat dissipation performance.
  • a display panel may have multiple transistors arranged within each pixel, which dissipates a large amount of heat when operating.
  • the thickness of the organic film layer at a position corresponding to the transistor may be thinned to improve heat dissipation performance.
  • the transistor in the shift register unit connected between the clock signal terminal and the output terminal generates more heat, so the corresponding position of the transistor can be Thin the thickness of the organic film layer to help dissipate heat from the transistor.
  • a spacer (photo space, PS) is usually provided between an array substrate and a counter substrate to support the two substrates so as to maintain the distance between the two substrates.
  • a spacer support platform matching the spacer can be provided at the corresponding position of the opposite substrate.
  • a conventional liquid crystal display panel may contain two kinds of spacers, namely primary spacers and auxiliary spacers.
  • the main spacer mainly plays the role of supporting the thickness of the box. Therefore, the axial length (that is, the height) of the main spacer is set longer and is greater than the axial length of the auxiliary spacer.
  • the auxiliary spacers mainly play a role in increasing the pressure resistance of the panel.
  • the distribution density of the auxiliary spacers can be set to be greater than the distribution density of the main spacers.
  • the spacer 150 is located on the side of the organic film layer 120 facing away from the base substrate. In this way, the distance between the array substrate and the opposite substrate will be maintained by the organic film layer 120 and the spacer 150, reducing the height of the spacer and reducing the "spacer-black matrix" offset distance, which greatly Improved the overall opening rate and transmittance.
  • spacers may be disposed on the organic film layer 120 corresponding to the gate line.
  • FIG. 12A schematically shows a top view of a display panel according to an embodiment of the present application. As shown in FIG. 12A , spacers 150 may be disposed in the spacing areas 117 of the array substrate.
  • Figure 12B schematically shows a partial cross-sectional view of the relevant display panel.
  • FIG. 12C schematically shows a partial cross-sectional view of a display panel according to an embodiment of the present application. The left side of FIG. 12B schematically shows a cross-sectional view of the pixel area, and the right side of FIG. 12B schematically shows a cross-sectional view of the spacer area.
  • the pixel area of the array substrate includes structures such as pixel electrodes 106 and common electrodes 108, and the pixel area of the counter substrate includes structures such as a color resist layer 128 and a protective layer 127.
  • the spacing area of the array substrate includes the material of the pixel electrode 106 and the signal line 110 and other structures, and the spacing area of the counter substrate includes the black matrix 125 and the protective layer 127 and other structures.
  • the spacers 150 are arranged in the separation area and have a height between 3 ⁇ m and 4 ⁇ m. For example, in the panel of Figure 12B, the spacer height reaches 3.16 ⁇ m.
  • the display panel of the present application also includes the above-mentioned structure.
  • FIG. 12C schematically shows a cross-sectional view of the pixel area
  • the right side of FIG. 12C schematically shows a cross-sectional view of the spacer area.
  • the spacer height is 1.4 ⁇ m to 2 ⁇ m.
  • the spacer height may be 1.49 ⁇ m.
  • the spacer-black matrix offset distance of the main spacer and the auxiliary spacer can reach 51.5 ⁇ m and 43 ⁇ m respectively, while the spacer of the display panel according to the embodiment of the present application- —Black matrix offset distance is 30 ⁇ m. Therefore, the display panel of the embodiment of the present application reduces the spacer-black matrix offset distance by reducing the height of the spacer, further improving the aperture ratio of the display panel.
  • vias are a means of establishing electrical connections for stacked structures with gaps in between.
  • via holes 260 in order to electrically connect the layer structures above and below the organic film layer 120 , via holes 260 also need to be provided in the organic film layer 120 .
  • Figure 13 schematically shows a cross-sectional view of a via according to an embodiment of the present application.
  • the via hole 260 includes a first opening 261 , a second opening 262 , and an inner wall 263 located between the first opening 261 and the second opening 262 .
  • the first opening 261 is a cross section of the via hole 260 on one surface of the organic film layer 120
  • the second opening 262 is a cross section of the via hole 260 on the other surface of the organic film layer 120.
  • the inventor believes that the inclination of the inner wall of the via hole should not be too large, otherwise when the ITO electrode material is deposited into the via hole, the ITO material may be thinly covered on the inner wall of the via hole, which increases the contact resistance of the via hole and causes overflow. Problems such as poor hole overlap and other problems.
  • the inner wall 263 of the via hole 230 includes a first inner wall gradient gradient area 2631, a second inner wall gradient gradient area 2632, and an area between the first inner wall gradient gradient area 2631 and the second inner wall gradient gradient area 2632.
  • the inclination angle of the inner wall of the obtained via hole relative to the plane of the base substrate can be as low as 15°, or even lower, for example, as low as 13°.
  • the display panel provided by the embodiment of the present application has an organic film layer on the side of the signal line facing away from the base substrate, which can shield the fringe electric field generated by the signal line, reduce the width of the required black matrix, and increase the Panel opening ratio. Moreover, the organic film layer also increases the distance between the common electrode line and the signal line, reduces the capacitance between the two, and improves problems such as crosstalk and afterimages.
  • the thickness of the organic film layer arranged in the pixel area is smaller than the thickness of the organic film layer arranged in the spacer area, which maintains the electric field in the pixel area and maintains the liquid crystal deflection power supply.
  • the organic film layer can also be arranged in the non-display area and the cutting area to reduce the step difference, improve the stress, and reduce the light leakage problem caused by the stress difference.
  • the frame sealing glue can be limited.
  • FIG. 14 schematically shows a flow chart of a method of manufacturing a display panel according to an embodiment of the present application. As shown in Figure 14, the method includes:
  • a base substrate is provided, wherein the base substrate includes at least one display area, each display area includes a plurality of pixel areas and any two adjacent pixel areas located in the multiple pixel areas. the space between;
  • step S310 a signal line is formed on the base substrate, wherein the signal line is located in the spacing area;
  • step S315 an organic film layer is formed on a side of the signal line away from the base substrate, wherein the orthographic projection of the organic film layer on the base substrate covers the orthographic projection of the signal line on the base substrate.
  • the base substrate 105 includes at least one display area 115. Each display area 115 is divided into a pixel area 116 and a spacer area 117. Different structures will be formed in each area in subsequent steps. Some layer structures may have been formed on the base substrate 105 . For example, on the base substrate 105, a layer of ITO material may have been formed by a method such as sputtering. The thickness of ITO material can be to For example Then, the ITO material layer is etched to obtain the pixel electrode 106.
  • a signal line 110 is formed on the base substrate 105 , wherein the signal line 110 is located in the spacing area 117 .
  • the signal line 110 may include at least one of a gate line and a data line, so the step of forming the signal line 110 includes at least one of a step of forming a gate line and a step of forming a data line.
  • a copper layer is formed on the base substrate, and the thickness of the copper layer may be arrive For example Then, the copper layer is etched to obtain a gate line, which should be located in the spacer area 117 of the base substrate. Then, a gate insulating layer 107 may be formed on the gate line.
  • the material of the gate insulating layer 107 may be silicon nitride, and its thickness may be arrive For example Then, continue to form an active material layer on the gate insulating layer 107 by a method such as sputtering and etching to obtain the active layer 109 .
  • the material of the active layer 109 may be single crystal silicon, and the thickness may be to For example
  • a metal material layer is provided on the active layer 109 and etched to obtain data lines.
  • the data lines should also be located in the spacer areas 117 of the base substrate.
  • the data line can adopt a laminated structure of molybdenum, copper, and molybdenum.
  • the thickness of the three layers can be For example Then, a passivation layer 111 is formed on the data line.
  • the material of the passivation layer can be silicon nitride, and its thickness can be arrive For example wait. At required locations, via holes may be formed in the passivation layer 111 by etching.
  • an organic film layer 120 is formed on the side of the signal line 110 facing away from the base substrate 105 , wherein the orthographic projection of the organic film layer 120 on the base substrate 105 covers the signal line 110 .
  • An orthographic projection on the base substrate 105 Specifically, an organic material layer is coated on the passivation layer 111, and the thickness of the organic material layer can be greater than The organic material layer is then exposed and developed, so that the organic film layer exists at least in the spacer area 117, so that the orthographic projection of the organic film layer on the base substrate covers the signal line on the substrate. Orthographic projection on the substrate.
  • the organic material needs to have properties such that exposed and developed portions of the organic material are removed from the organic material layer.
  • an organic material layer is formed on the side of the signal line facing away from the base substrate.
  • the organic material may be resin material, acrylic, polyimide, naphthoquinonediazide compound, etc.
  • the organic material can be coated on the base substrate by spin coating. In some embodiments, the thickness of the coated organic film is at least
  • the organic material layer is exposed using a half-tone mask.
  • the halftone mask is provided with areas of different transmittances according to the pattern to be formed. In this way, the dose of light hitting different parts of the organic material layer is different, and after development, the organic film layer will have different thicknesses in different areas.
  • a halftone mask may include completely light-blocking areas and partially light-transmitting areas. After exposure and development, the organic material corresponding to the complete light-shielding area in the organic material layer will not be removed, and this part of the organic material becomes the complete organic material retention area in the organic material pattern layer.
  • the organic material corresponding to the partial light-transmitting area will be partially removed, and the remaining portion becomes the organic material partial retention area in the organic material pattern layer. That is to say, the organic material in the completely retained area of the organic material has not been removed and is completely retained. A part of the organic material in the partially retained area of the organic material is removed, and the remaining part of the organic material is retained. Therefore, it can be understood that the organic material The thickness of the completely retained area is greater than the thickness of the partially retained area of the organic material. After the organic material pattern layer is obtained, the organic material pattern layer can be cured to obtain the organic film layer.
  • the completely light-shielding area corresponds to the position of the spacer area 117
  • the partial light-transmitting area corresponds to the position of the pixel area 116. Therefore, after the organic material layer is exposed and developed, the organic material completely retained area is located at the In the spacer area 117, the partially reserved area of organic material is located in the pixel area 116, and the thickness of the organic material in the pixel area is smaller than the thickness of the organic material in the spacer area. In this way, through only one exposure, organic film layers with different thicknesses can be formed at different positions.
  • the organic film layer located in the spacer area 117 is thick enough to shield the edge electric field of the signal line and reduce the gap between the common electrode and the signal line.
  • the step difference between the organic material completely retained area and the organic material partially retained area is very important.
  • it is difficult to achieve a large step difference mainly because when the organic material is cured, there will be obvious flow under heating conditions, causing the organic material in the fully retained area of the organic material to flow to the partially retained area of the organic material. , causing the step difference to be significantly reduced.
  • the step difference originally greater than 1.5 ⁇ m may be reduced to approximately 1.1 ⁇ m.
  • the organic film layer in the spacer area cannot shield the fringe electric field of the signal line, cannot reduce the capacitance between the signal line and the common electrode, and cannot effectively support the spacer.
  • the liquid crystal deflection voltage of the pixel will also increase. Affect product yield.
  • the organic material pattern layer can be cured to obtain the organic film layer.
  • this application improves the process of curing the organic material pattern layer.
  • the organic material is first heated at a first temperature and irradiated with ultraviolet light having a first radiation intensity. Pattern the layer to obtain a pre-cured layer, wherein the first temperature is in the range of 120°C to 140°C, and the first light intensity irradiation is in the range of 700mw/ cm2 to 1000mw/ cm2 . This step pre-cures the organic material pattern layer through a combination of low temperature and ultraviolet light.
  • FIG. 15 schematically shows the transmittance of the obtained organic film layer to visible light of various wavelengths after being irradiated with different doses of ultraviolet light. As shown in Figure 15, when the ultraviolet irradiation dose reaches 500mJ, the transmittance of the organic film layer for visible light of each wavelength can reach 90%. The visible light transmittance can reach 92%.
  • the pre-cured layer is heated at a second temperature to obtain the organic film layer, wherein the second temperature is within the range of 230°C to 250°C.
  • the obtained organic film layer has a large step difference between the portion located in the spacer area and the portion located in the pixel area.
  • the organic film layer located in the spacer area can effectively shield the electric field of the signal line, and the organic film layer located in the pixel area will not significantly affect the liquid crystal driving voltage.
  • the sidewalls of the organic film layer located in the spacer area have a steeper slope, which reduces the width of the weak alignment area and increases the aperture ratio of the panel.
  • Figure 16A schematically shows the morphological changes of the organic film layer in the conventional method of only using a single high-temperature heating and curing.
  • Figure 16B schematically shows the organic film layer in the method of manufacturing a display panel according to an embodiment of the present application. morphological changes.
  • Figure 16A in the method of only using a single high-temperature heating and curing method, due to the thermal flow of the organic material, the step difference of the organic film layer is severely reduced.
  • Figure 16B although in the two processes of low-temperature heating, ultraviolet irradiation and high-temperature heating, the degree of step difference reduction in each process is very small, the final degree of step difference reduction is also smaller than that of only high-temperature heating.
  • FIG. 17A schematically shows a structural image of an organic film layer obtained by a conventional method of only single high-temperature heating and curing.
  • FIG. 17B schematically shows a structural image of an organic film layer obtained by a method of manufacturing a display panel according to an embodiment of the present application. It can be seen from the comparison between Figure 17A and Figure 17B that when there is no pre-curing treatment, the heat flow of the organic material is relatively serious.
  • the thickness of the organic film layer above the signal line is reduced to 1.6515 ⁇ m.
  • the organic film layer in the display area The thickness increases to 1.0988 ⁇ m, and the step difference is 1.0563 ⁇ m.
  • the side surface of the organic film layer will be relatively flat, and the inclination angle of the side surface relative to the plane of the base substrate can generally only reach 12° and cannot reach 15°.
  • the heat flow of the organic material is significantly reduced, and the thickness of the organic film layer located above the signal line is maintained at a high level, reaching 1.7411 ⁇ m.
  • the organic film in the display area The thickness of the layer is maintained at a low level, only 0.7366 ⁇ m, and the step difference reaches 1.9172 ⁇ m.
  • the inclination angle of the side surface of the organic film layer relative to the plane of the base substrate can reach more than 15°, or even reach more than 20°, for example, 22° as shown in FIG. 3 .
  • Figures 17A and 17B are images taken directly after the organic film layer is produced. In the production process of the display panel, there are other subsequent steps, whether it is a conventional display panel production process or according to this According to the manufacturing process of the display panel of the application embodiment, the inclination angle of the side surface of the final product display panel will be reduced to a certain extent.
  • the organic film layer 120 extends from the display area 115 to the non-display area 118 and the cutting area 119 to bridge the gap between the display area 115, the non-display area 118, and the cutting area 119.
  • the step difference can reduce stress unevenness and improve the peripheral light leakage of the display panel.
  • the organic material partially retained region includes A first organic material partially retained area and a second organic material partially retained area, wherein the organic material completely retained area is located in the spacing area and the cutting area, and the first organic material partially retained area is located in the non-display area , the second organic material partially retained area is located in the pixel area.
  • organic materials are provided in the display area (including the pixel area and the spacer area), the non-display area and the cutting area, and since the organic material is completely retained in the spacer area and the cutting area, that is The thickness of the organic film layer in these two areas is the thickest.
  • the organic film layer can effectively shield the electric field of the signal line and reduce the capacitance between the signal line and the common electrode, and in the cutting area, due to the cutting area
  • the thickness is the lowest, and a thicker organic film layer can more effectively compensate for the step difference, reduce stress, and improve light leakage in the peripheral area of the panel.
  • the portion of the organic film layer located in the non-display area 118 includes a groove portion 251 and edge portions 252 located on both sides of the groove portion 251 .
  • the average thickness of the groove portion 251 is smaller than the average thickness of the edge portion 252 .
  • the frame sealant 253 of the display panel is located in the groove portion 251 . In this way, the frame sealing glue 253 can be well stuck in the predetermined position during coating.
  • the first organic material partial retention area includes a groove portion and two portions located on both sides of the groove portion.
  • the average thickness of the groove portion is smaller than the average thickness of the edge portion, wherein the method further includes: providing a frame sealing glue on the groove portion.
  • the frame sealing glue can be limited by the first organic material partial retention area having the groove portion in the non-display area.
  • the via hole 260 also needs to be provided in the organic film layer 120, and the slope of the inner wall 263 of the via hole should not be too large, otherwise when the ITO electrode material is deposited into the via hole, the ITO material may be covered thinly.
  • the contact resistance of the via hole is increased, causing problems such as poor overlapping of the via hole.
  • the embodiment of the present application uses a half-tone mask to expose the organic material layer, so that the resulting via hole has a step portion. The existence of the step portion causes the inner wall of the via hole to decrease in stages. In this way, after high-temperature solidification, the inner wall of the finally formed via hole has a lower slope by utilizing the high-temperature fluidity of the organic material.
  • FIG. 18 schematically shows a partial top view pattern of a half-tone mask.
  • the halftone mask includes a completely light-shielding area 161 , a partially light-transmitting area 162 , and a completely light-transmitting area 163 .
  • the completely light-transmitting area 163 corresponds to the second opening of the via hole.
  • the partially light-transmitting area 162 is an annular area surrounding the completely light-transmitting area 163.
  • the inner ring of the partially light-transmitting area 162 corresponds to the second opening of the via hole, and the outer ring corresponds to the first opening of the via hole.
  • the completely light-shielding area 161 surrounds the partially light-transmitting area 162 .
  • FIG. 19 exemplarily shows the exposure process. After the organic material layer is exposed and developed using such a halftone mask, the resulting organic material pattern layer will include a via pattern. Therefore, the term "via pattern" can be understood as a structure obtained after the organic material is exposed and developed. It should be noted that the structure has not yet been annealed, and heat flow may still occur in the organic material during annealing, so the via pattern is not the final via.
  • FIG. 20 schematically shows a cross-sectional view of a via pattern.
  • the via pattern includes a first opening 261, a second opening 262, and an inner wall pattern 264 located between the first opening and the second opening.
  • the first opening is located on the surface of the organic material pattern layer away from the base substrate
  • the second opening is located on the surface of the organic material pattern layer close to the base substrate
  • the inner wall pattern 264 includes a first climbing area 2641, a second climbing area 2642, and a step portion 2643 located between the first climbing area 2641 and the second climbing area 2642, and the step portion 2643 is substantially parallel to the first opening 261 and the second opening 262.
  • the ratio of the distance from the step portion to the first opening to the distance from the step portion to the second opening is in the range of 90%-110%. In this way, the vertical position of the step portion is relatively centered in the via hole, which is conducive to reducing the overall inclination of the via hole inner wall.
  • the organic material pattern layer is cured to obtain the organic film layer.
  • the curing can be performed by high-temperature heating, for example, heating in an environment of 230°C to 250°C, thereby utilizing the high-temperature fluidity of the organic material to fuse the first climbing area 2641, the second climbing area 2642, and the step portion 2643 with each other.
  • the inner wall of the final formed via hole is flatter, further forming a via hole with an inner wall having a lower degree of slope.
  • the inner wall of the obtained via hole is very smooth, and its inclination is very small, which can be less than 20°, or even as low as 15° or lower, such as as low as 13°.
  • the slope of the inner wall of the via hole is generally 40°, and the minimum is 30°, which cannot reach the 20° or lower level of the embodiment of the present application.
  • the method for manufacturing a display panel according to the embodiment of the present application can be used to obtain the display panel according to the embodiment of the present application, which display panel has all the features mentioned above.
  • the method of the present application adopts a pre-curing method to reduce the high-temperature fluidity of organic materials and prevent the problem of reducing the step difference of organic film layers of different thicknesses due to high-temperature fluidity.
  • the via hole is made using a half-tone mask, and the inner wall of the via hole has a smaller slope.

Abstract

本申请公开了一种显示面板与制造显示面板的方法。显示面板(100)包括衬底基板(105)和布置在衬底基板上的信号线(110),其中,衬底基板包括至少一个显示区(115),每个显示区包括多个像素区(116)以及位于多个像素区中的任意两个相邻的像素区之间的间隔区(117),信号线位于间隔区内,其中,显示面板还包括有机膜层(120),有机膜层布置在信号线背离衬底基板的一侧,并且有机膜层在衬底基板上的正投影覆盖信号线在衬底基板上的正投影。

Description

显示面板与制造显示面板的方法 技术领域
本申请涉及显示技术的领域,尤其涉及一种显示面板与制造显示面板的方法。
背景技术
在常见的液晶显示面板,尤其是大尺寸面板中,阵列基板中布置有诸如栅线和数据线的多种金属导线。这些金属导线可能形成边缘电场,影响液晶的偏转,从而引发漏光的问题。为了解决该问题,可以在与阵列基板对置的彩膜基板中在与这些金属导线对应的位置设置黑矩阵(Black Mask),以遮挡漏光。但是,为了实现较高程度的阻挡漏光,需要黑矩阵具有一定的宽度,而在相关技术中,这样的宽度又会影响显示面板的透过率。
发明内容
根据本申请的一方面,提供了一种显示面板,包括衬底基板和布置在所述衬底基板上的信号线,其中,所述衬底基板包括至少一个显示区,每个显示区包括多个像素区以及位于所述多个像素区中的任意两个相邻的像素区之间的间隔区,所述信号线位于所述间隔区内。所述显示面板还包括有机膜层,所述有机膜层布置在所述信号线背离所述衬底基板的一侧,并且所述有机膜层在所述衬底基板上的正投影覆盖所述信号线在所述衬底基板上的正投影。
在一些实施例中,所述有机膜层包括顶部区域和侧表面,所述顶部区域位于所述有机膜层背离所述信号线的一侧,所述侧表面位于所述顶部区域和所述信号线之间,其中,所述侧表面相对于所述衬底基板所在平面的倾斜角度大于或等于15°。在一些更具体的实施例中,所述侧表面相对于所述衬底基板所在平面的倾斜角度大于或等于20°。
在一些实施例中,所述有机膜层从所述间隔区延伸到所述像素区,其中,所述有机膜层包括第一有机膜部分和第二有机膜部分,所述第一有机膜部分位于所述间隔区,所述第二有机膜部分位于所述像素区, 其中所述第一有机膜部分的平均厚度大于所述第二有机膜部分的平均厚度。
在一些实施例中,所述第一有机膜部分的平均厚度大于或等于15000埃米。
在一些实施例中,所述第二有机膜部分的平均厚度小于或等于8000埃米。
在一些实施例中,显示面板还包括公共电极层,所述公共电极层包括彼此平行并间隔布置的多个条状公共电极,其中所述多个条状公共电极的一部分布置在所述间隔区,并且所述有机膜层位于布置在所述间隔区的条状公共电极和所述信号线之间。
在一些实施例中,所述至少一个显示区包括多个显示区,所述衬底基板还包括多个非显示区,所述多个非显示区中的每个非显示区包围所述多个显示区中的对应的显示区,所述衬底基板还包括位于所述多个非显示区中的任意两个相邻的非显示区之间的切割区,其中,所述有机膜层从所述显示区延伸到所述非显示区和所述切割区。
在一些实施例中,所述有机膜层包括第一有机膜部分、第二有机膜部分、第三有机膜部分和第四有机膜部分,所述第一有机膜部分位于所述间隔区,所述第二有机膜部分位于所述像素区,所述第三有机膜部分位于所述切割区,所述第四有机膜部分位于所述非显示区,其中所述第三有机膜部分的平均厚度大于或等于所述第一有机膜部分的平均厚度,并且所述第三有机膜部分的平均厚度大于所述第二有机膜部分和所述第四有机膜部分中的至少一个的平均厚度。
在一些实施例中,所述第四有机膜部分包括凹槽部和位于所述凹槽部两侧的边缘部,所述凹槽部的平均厚度小于所述边缘部的平均厚度,其中,所述显示面板还包括封框胶,所述封框胶位于所述凹槽部内。
在一些实施例中,显示面板还包括隔垫物,其中所述隔垫物位于所述有机膜层背离所述衬底基板的一侧。
在一些实施例中,所述有机膜层包括过孔,所述过孔包括第一开口、第二开口、和位于所述第一开口和所述第二开口之间的内壁,所述内壁包括第一内壁坡度渐变区、第二内壁坡度渐变区、和介于所述第一内壁坡度渐变区和所述第二内壁坡度渐变区之间的内壁坡度稳定 区,其中所述内壁坡度稳定区相对于所述衬底基板所在平面的倾斜角度小于或等于20°。在一些更具体的实施例中,所述内壁坡度稳定区相对于所述衬底基板所在平面的倾斜角度小于或等于15°。
根据本申请的另一方面,提供了一种制造显示面板的方法。该方法包括:提供衬底基板,其中,所述衬底基板包括至少一个显示区,每个显示区包括多个像素区以及位于所述多个像素区中的任意两个相邻的像素区之间的间隔区;在所述衬底基板上形成信号线,其中所述信号线位于所述间隔区内;在所述信号线背离所述衬底基板的一侧形成有机膜层,其中所述有机膜层在所述衬底基板上的正投影覆盖所述信号线在所述衬底基板上的正投影。
在一些实施例中,在所述信号线背离所述衬底基板的一侧形成有机膜层包括:在所述信号线背离所述衬底基板的一侧形成有机材料层;利用半色调掩模板,对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层,其中所述有机材料图案层包括有机材料完全保留区和有机材料部分保留区,所述有机材料完全保留区位于所述间隔区,所述有机材料部分保留区位于所述像素区,其中所述有机材料完全保留区的厚度大于所述有机材料部分保留区的厚度;固化所述有机材料图案层以得到所述有机膜层。
在一些实施例中,固化所述有机材料图案层以得到所述有机膜层包括:以第一温度加热、并以具有第一辐射照度的紫外光照射所述有机材料图案层以得到预固化层,其中所述第一温度在120℃到140℃的范围之内,所述第一光强辐射照度在700mw/cm 2-1000mw/cm 2的范围之内;以及,以第二温度加热所述预固化层以得到所述有机膜层,其中所述第二温度在230℃到250℃的范围之内。
在一些实施例中,所述至少一个显示区包括多个显示区,所述衬底基板还包括多个非显示区,所述多个非显示区中的每个非显示区包围所述多个显示区中的对应的显示区,所述衬底基板还包括位于所述多个非显示区中的任意两个相邻的非显示区之间的切割区,其中,在利用半色调掩模板,对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层的步骤中,所述有机材料部分保留区包括第一有机材料部分保留区和第二有机材料部分保留区,其中所述有机材料完全保留区位于所述间隔区和所述切割区,所述第一有机材 料部分保留区位于所述非显示区,所述第二有机材料部分保留区位于所述像素区。
在一些实施例中,所述第一有机材料部分保留区包括凹槽部和位于所述凹槽部两侧的边缘部,所述凹槽部的平均厚度小于所述边缘部的平均厚度,其中,所述方法还包括:在所述凹槽部提供封框胶。
在一些实施例中,所述有机膜层包括过孔,并且,在所述信号线背离所述衬底基板的一侧形成有机膜层包括:在所述信号线背离所述衬底基板的一侧形成有机材料层;利用半色调掩模板,对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层,其中所述有机材料图案层包括过孔图案,所述过孔图案包括第一开口、第二开口、和位于所述第一开口和所述第二开口之间的内壁图案,所述第一开口位于所述有机材料图案层远离所述衬底基板的表面,所述第二开口位于所述有机材料图案层靠近所述衬底基板的表面,所述内壁图案包括第一爬升区、第二爬升区、以及位于第一爬升区和第二爬升区之间的台阶部,所述台阶部与所述第一开口和所述第二开口平行;固化所述有机材料图案层以得到所述有机膜层。
在一些实施例中,所述台阶部到所述第一开口的距离与所述台阶部到所述第二开口的距离的比例在90%-110%的范围内。
附图说明
为了更清楚地描述本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中,相同或相似的元件可以由相同或相似的图案或符号来表示。应理解,除非有明确的描述,否则附图中的图案或符号仅用于对元件进行区分,但并不用于限定元件的形状。在本申请的附图中:
图1示意性地示出了根据本申请实施例的显示面板的局部俯视图;
图2A示意性地示出了根据本申请实施例的显示面板的局部截面图;
图2B示意性地示出了根据本申请实施例的显示面板的局部截面图;
图3示意性地示出了根据本申请实施例的有机膜层的侧表面相对于衬底基板所在平面的倾斜角度;
图4示意性地示出了根据本申请实施例的显示面板的局部截面图;
图5示意性地示出了根据本申请实施例的显示面板的局部截面图;
图6示意性地示出了根据本申请实施例的显示面板的俯视图;
图7示意性地示出了相关的显示面板的应力变化曲线;
图8示意性地示出了相关的显示面板的边缘漏光现象;
图9A和9B示意性地示出了相关的具有段差改善层的显示面板的应力变化曲线;
图10示意性地示出了根据本申请实施例的显示面板的局部截面图;
图11示意性地示出了根据本申请实施例的显示面板的局部截面图;
图12A示意性地示出了根据本申请实施例的显示面板的局部俯视图;
图12B示意性地示出了相关的显示面板的局部截面图;
图12C示意性地示出了根据本申请实施例的显示面板的局部截面图;
图13示意性地示出了根据本申请实施例的显示面板的有机膜层中的过孔的截面图;
图14示意性地示出了根据本申请实施例的制造显示面板的方法的流程图;
图15示意性地示出了经过不同剂量的紫外光照射后的有机膜层对可见光的透过率;
图16A示意性地示出了在相关的形成有机膜层的过程中的有机膜层的各阶段的形态;
图16B示意性地示出了在根据本申请实施例的制造显示面板的方法中的形成有机膜层的过程中的有机膜层的各阶段的形态;
图17A示意性地示出了采用相关方法得到的有机膜层的段差影像;
图17B示意性地示出了采用根据本申请实施例的制造显示面板的方法得到的有机膜层的段差影像;
图18示意性地示出了在根据本申请实施例的制造显示面板的方法中用于形成过孔的半色调掩模板的俯视图;
图19示意性地示出了利用半色调掩模板曝光有机材料层时得到的过孔图案的截面图;
图20示意性地示出了过孔图案的截面影像。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于所描述的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例都属于本申请的保护范围。
根据本申请的一方面,提供了一种显示面板。图1示意性地示出了根据本申请实施例的显示面板的局部俯视图。图2A示意性地示出了根据本申请实施例的显示面板的局部截面图。具体的,图2A是根据本申请实施例的显示面板沿图1的A-A′线的截面图。图2B示意性地示出了根据本申请实施例的显示面板的另一局部截面图。具体的,图2B是根据本申请实施例的显示面板沿图1的B-B′线的截面图。如图1至图2B所示,显示面板100包括衬底基板105和布置在所述衬底基板上的信号线110。衬底基板105包括至少一个显示区115。显示区是指显示面板中用于显示图像的区域。每个显示区115包括多个像素区116以及位于所述多个像素区中的任意两个相邻的像素区116之间的间隔区117。应理解,显示面板所显示的图像是由一个个像素发光来形成的,每个像素所在的区域即为一个像素区,像素区允许光线透过(即,透光)。各像素区116可以按照行列排布成阵列。相邻的两个像素区之间存在间隔区117。间隔区117一般是不透光的。所述信号线110位于所述间隔区117内。每个像素区116配有对应的信号线,以用于控制所述像素区116的透光程度。
在图2A所示的实施例中,信号线110具体可以是数据线。数据线用于为像素提供显示信号。数据线通过像素电极的驱动晶体管的有源层109传递到像素电极。如图2A所示,在衬底基板105上布置有像素电极106。栅极绝缘层107覆盖像素电极106。在栅极绝缘层107上形 成有所述有源层109和所述信号线110。钝化层111覆盖所述信号线110。钝化层111的材料可以是无机绝缘材料,例如硅的氮化物(SiNx)。公共电极108形成在钝化层111上。
在图2B所示的实施例中,信号线110具体可以是栅线。栅线用于为像素提供驱动信号,以打开/关闭控制像素电极的驱动晶体管。如图2B所示,在衬底基板105上布置有像素电极106,而且一部分像素电极106存在于间隔区117。栅线设置在位于间隔区117的像素电极之上。栅极绝缘层107覆盖像素电极106和栅线。钝化层111覆盖所述栅极绝缘层107。公共电极108形成在钝化层111上。
前述各个层结构都位于显示面板100的阵列基板101中。显示面板100还包括对置基板124。阵列基板101和对置基板124之间具有液晶层102。对置基板124也包括衬底基板126,并且在对应于间隔区117的位置布置了黑矩阵125。
本申请的发明人指出,当显示面板是液晶面板时,信号线可能在其周围引起边缘电场,从而影响液晶分子的偏转,使得出现暗态漏光等一系列的问题。虽然可以通过在对置基板124设置黑矩阵125的形式来阻挡漏光,但为实现有效地阻挡,需要黑矩阵125具有较大的宽度,这会影响显示面板的透过率。为了至少解决该问题,如图1至图2B所示,在根据本申请实施例的显示面板中,显示面板100还包括有机膜层120。所述有机膜层120布置在所述信号线110背离所述衬底基板105的一侧。并且。所述有机膜层120在所述衬底基板105上的正投影覆盖所述信号线110在所述衬底基板上的正投影。术语“正投影”应理解为被投影的目标物沿垂直于目标平面的方向在该目标平面上的投影。在一些实施例中,有机膜层的材料可以具有以下特性。首先,形成有机膜层的有机材料可以是电绝缘的,以便有效地屏蔽信号线的干扰。并且,有机材料可以是光敏的,使得受到曝光的有机材料能够溶于显影液,这样可以不用刻蚀工艺,而是直接采用曝光(利用具有特定图案的掩模板曝光有机膜层的材料)和显影(清洗有机材料以去掉被曝光的区域)工艺来形成需要的有机膜层图案。此外,有机材料还应具有热固性,以便在曝光显影后固定其形状。在更具体的实施例中,有机膜层的材料可以是树脂材料、丙烯酸、聚酰亚胺、萘醌二叠氮化合物等有机材料。为了有效地屏蔽电场,有机膜层的厚度可以设 置为至少1.5μm,例如1.5μm到3.0μm之间,此时有机膜层的厚度能够有效地屏蔽信号线的电场,但又不至于过厚从而导致面板段差过大,影响阵列基板101表面平整度。通过在该位置设置有机膜层,有机膜层可以屏蔽信号线对液晶电场的干扰,减少漏光的宽度,这能够带来多种影响透过率的改变。例如,从像素设计的角度来说,漏光宽度的减小允许条状电极的宽度W和间距S之比提高,狭缝倾角降低。并且,信号线对应的黑矩阵是宽度能够减小,使得面板的开口率因此得到增加。表1示出了根据本领域相关技术的显示面板和根据本申请实施例的显示面板的参数比较。
Figure PCTCN2022121070-appb-000001
表1:显示面板参数比较。
如表1所示,在这两种显示面板中,在像素设计方面,条状电极的宽度W和间距S之比提高,狭缝倾角降低。通过这种设计,将透过率提高了3.2%。并且,栅线和数据线对应的黑矩阵的宽度都得到减小,导致开口率提升,进而使得透过率提升。仅通过这几项改变就将面板透过率提升了16.43%(3.2%+13.23%)。
另外,还可以采用其他手段提高面板透过率。例如,相比于常规的ADS型(Advanced Super Dimension Switch,高级超维场转换技术)面板,本申请实施例可以适用于i-ADS型(inverse Advanced Super Dimension Switch,倒转ADS技术)面板。在ADS型面板中,包括具有狭缝的块状像素电极和一整层板状公共电极,像素电极和公共电极位于液晶层同侧,且像素电极相比于公共电极更靠近液晶层。ADS面板是一种先进的、具有宽视角的面板。在ADS型面板中,通过同一平 面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层间产生的电场形成多维电场,使液晶盒内的所有液晶分子都能够产生旋转,从而提高了液晶工作效率并增大了透光效率,提高了画面品质,相对于传统的TN型面板具有高分辨率、高透过率、低功耗、宽视角、高开口率、低色差、无挤压水波纹(push Mura)等优点。不过,ADS型面板在某些方面也有缺点。例如,在以TN型面板为例的垂直电场型液晶显示面板中,液晶分子垂直取向。在此情况下,即使阵列基板和对置基板受力而产生光学延迟,垂直电场型的液晶显示面板在暗态下也不容易漏光。但在以ADS型面板为例的水平电场型液晶显示面板中,液晶分子水平取向。在此情况下,在阵列基板和对置基板受力而产生光学延迟时,水平电场型的液晶显示面板在暗态下容易漏光。而且常见的ADS面板的开口率仍然较小,无法满足高品质显示的需求。而在i-ADS型面板中,包括一整层平行且间隔布置的多个条状公共电极和块状的像素电极,且像素电极相比于公共电极更远离液晶层。在i-ADS型面板中,一部分的条状的公共电极108可以设置在相邻像素区116之间的间隔区117中,并位于信号线110(数据线)和液晶层102之间,也就是公共电极108覆盖信号线110,以便屏蔽信号线110电场,避免信号线110附近由于电场存在而产生的漏光问题。不过,在常规的i-ADS型面板中,公共电极与信号线距离较近,导致耦合电容较大。在像素充放电过程中,容易受到此耦合电容的拉动,导致充电率下降,出现残像、串扰等画质不良现象。这个问题在大尺寸产品中尤为严重。而在本申请实施例的显示面板中,如图2A和图2B所示,可以将有机膜层120设置在公共电极108与信号线110之间,也就是在信号线110上方进行垫高,增加了公共电极108与信号线110间的距离,减小了耦合电容,有利于改善残像、串扰等问题。如表1所示,本申请的显示面板结合了i-ADS技术和有机膜层,提升了面板透过率。不过本申请的显示面板并不限于ADS型显示面板,其也可以应用于除ADS之外的其它平面电场型面板(IPS,In-PlaneSwitching,平面转换型)以及垂直电场型面板(如VA,Vertical Alignment,垂直取向型)。
除此之外,通过选择合适的液晶材料和偏振层表面处理工艺,也可以提升透过率。总体来看,根据本申请实施例的显示面板相对于本领域内常规的显示面板提升了27.5%的透过率。
应理解,表1所示出的各参数仅仅意图用于表明本申请实施例的显示面板具有较高的透过率,以及造成透过率提升的具体原因。这些参数并不应该被解读为对本申请实施例的显示面板的参数的限制。
下面以示例的方式描述本申请实施例的显示面板中的一些层的材料和尺寸。在一些实施例中,公共电极108可以采用ITO(氧化铟锡)作为材料,其厚度可以在
Figure PCTCN2022121070-appb-000002
Figure PCTCN2022121070-appb-000003
之间,例如
Figure PCTCN2022121070-appb-000004
像素电极108也可以采用ITO作为材料,其厚度可以在
Figure PCTCN2022121070-appb-000005
Figure PCTCN2022121070-appb-000006
之间,例如
Figure PCTCN2022121070-appb-000007
栅线可以采用铜作为材料,其厚度可以是
Figure PCTCN2022121070-appb-000008
Figure PCTCN2022121070-appb-000009
之间,例如
Figure PCTCN2022121070-appb-000010
栅极绝缘层107可以采用硅的氮化物作为材料,其厚度可以在
Figure PCTCN2022121070-appb-000011
Figure PCTCN2022121070-appb-000012
之间,例如
Figure PCTCN2022121070-appb-000013
有源层109的材料可以是单晶硅(A-Si),其厚度可以在
Figure PCTCN2022121070-appb-000014
Figure PCTCN2022121070-appb-000015
之间,例如
Figure PCTCN2022121070-appb-000016
数据线可以由钼、铜、钼的叠层构成,三个层的厚度可以分别为
Figure PCTCN2022121070-appb-000017
例如
Figure PCTCN2022121070-appb-000018
钝化层111可以采用硅的氮化物作为材料,其厚度可以在
Figure PCTCN2022121070-appb-000019
Figure PCTCN2022121070-appb-000020
之间,例如
Figure PCTCN2022121070-appb-000021
等。
由于阵列基板的不同区域布置了不同的层结构,阵列基板各处的高度是不一致的。例如,在形成了有机膜层120的位置,阵列基板的厚度会增加。这样,在为阵列基板提供配向层时,配向层并非平坦的涂覆在阵列基板的表面,而是存在段差。在利用摩擦滚轮摩擦配向层时,滚轮会经历上坡和下坡过程。例如,滚轮到达厚度较大处时会经历上坡,而离开厚度较大处时会经历下坡。在下坡时,滚轮与配向层的膜面的接触较弱,导致配向力度弱,形成了配向弱区。配向弱区内的液晶分子的平均锚定能较弱,更易受到电场扰动和出现配向紊乱现象,因此配向弱区的漏光会更严重,不能作为显示区,这实际上影响了开口率。为了获得较高的开口率,需要减小配向弱区的范围,例如减小坡度区域的宽度。
在一些实施例中,如图2A和图2B所示,所述有机膜层120包括顶部区域121和侧表面122。所述顶部区域121位于所述有机膜层120背离所述信号线110的一侧。术语“顶部区域”可以理解为,有机膜层120的膜面上远离信号线的一部分区域,此部分区域可以是平面,也可以是稍有弧度的曲面,其相对于衬底基板所在平面是基本平行的,或仅具有较小的倾斜程度,其倾斜程度远小于侧表面122相对于衬底 基板105所在平面的倾斜角度。例如,顶部区域121相对于衬底基板105所在平面的倾斜角度小于或等于5°。所述侧表面122位于所述顶部区域121和所述信号线110之间。所述侧表面122相对于所述衬底基板105所在平面的倾斜角度α大于或等于15°。“侧表面相对于衬底基板所在平面的倾斜角度”可以理解为,在有机膜层的截面图中,沿侧表面的底部做一切线,该切线相对于衬底所在平面的角度即为有机膜层的侧表面相对于衬底基板所在平面的倾斜角度。在一些更具体的实施例中,所述侧表面122相对于所述衬底基板105所在平面的倾斜角度α甚至可以达到20°或更高。例如,图3示意性地示出了根据本申请实施例的有机膜层的侧表面相对于衬底基板所在平面的倾斜角度,该图及其测量数据来自于发明人对实际生产中得到的显示面板的拍摄。具体的,在图3中,有机膜层的侧表面相对于衬底基板所在平面的倾斜角度α约为22°。相对的,在常规的显示面板中,有机膜层的侧表面相对于衬底基板所在平面的倾斜角度非常小,无法达到15°,一般仅为12°或更低。因此,根据本申请实施例的显示面板中的有机膜层120的侧面的倾斜程度较高,在段差不变的情况下减小了沿衬底基板所在平面的方向上的宽度,从而减小了配向弱区的范围,有助于提高面板的开口率。
在本申请实施例的显示面板中,有机膜层可以仅布置在间隔区117,也可以从间隔区117延伸到像素区116。图4和图5分别示意性地示出了根据本申请实施例的显示面板的局部截面图。在图4和图5的实施例中,所述有机膜层120从所述间隔区117延伸到所述像素区116。在这种情况下,所述有机膜层120包括第一有机膜部分221和第二有机膜部分222。所述第一有机膜部分221位于所述间隔区117,所述第二有机膜部分222位于所述像素区116。不过,所述第一有机膜部分221的平均厚度与所述第二有机膜部分222的平均厚度并不相同。在一些实施例中,所述第一有机膜部分221的平均厚度大于所述第二有机膜部分222的平均厚度。这是因为,第二有机膜部分222位于像素区116,会增加像素区的厚度,从而减小用于驱动液晶的有效电场,导致液晶的偏转电压降低。通过减薄第二有机膜部分222的平均厚度,能够降低像素区的厚度,增加电场,从而确保液晶偏转电压维持在较高水平。此外,减薄第二有机膜部分222的平均厚度还有助于提高像 素的散热能力。在更具体的实施例中,所述第一有机膜部分221的平均厚度大于或等于
Figure PCTCN2022121070-appb-000022
所述第二有机膜部分222的平均厚度小于或等于
Figure PCTCN2022121070-appb-000023
形成第一有机膜部分221和第二有机膜部分222的具体方法将在后文中描述。
本申请的显示面板可以是大尺寸面板,例如对角线尺寸至少65英寸的面板。在制造时,可以采用一张玻璃基板切出多张液晶显示面板,以提高玻璃利用效率和生产效率。例如,作为衬底基板的玻璃基板的尺寸可达到以2940mm×3370mm,其可以生产6张75寸液晶显示面板。图6示意性地示出了衬底基板的俯视图。如图6所示,衬底基板105上包括多个显示区115,还包括多个非显示区118和位于所述多个非显示区中的任意两个相邻的非显示区之间的切割区119。所述多个显示区中的每个显示区115被所述多个非显示区中的对应的非显示区118包围。也就是说,每个显示区115外都围绕着一圈非显示区118,且非显示区118之间留有切割区119。显示区115的信号线会延伸到非显示区118。阵列基板上的栅极驱动电路(也称为GOA电路,Gate Driver on Array)也布置在非显示区118。此外,用于粘结阵列基板101和对置基板124的封框胶也会布置在非显示区118。在将多个显示区115分隔成单独的显示面板时,切割操作一般在切割区119内进行。
为了追求更高的产能,衬底基板的自动化运送不断提速。在显示面板的制备过程中,较大尺寸的玻璃基板在机械手臂的快速运送过程中相较小尺寸的玻璃基板会产生的更大的抖动和变形。切割区119和非显示区118的厚度通常较薄,因此显示区115、非显示区118、切割区119的厚度存在段差,导致不同位置的应力存在差异。图7示意性地示出了面板各处的应力差异。从图7可以看出,显示区115的边界处的应力明显大于其内部应力,非显示区118的应力沿着从显示区115到切割区119的方向明显下降,而切割区119内的应力从外向内减小。这是因为,在切割区119及非显示区118会产生较大形变,以致产生较大应力。面板边缘位置的受力不均会造成面板弯曲,在应力集中的地方就会产生漏光。图8示意性地示出了显示面板的漏光情况,其中虚线椭圆圈出了漏光的位置
在一些实施例中,为了解决各处应力不同的问题,可以在非显示区118增加段差改善层235,以便尽量减少显示区115与非显示区118 之间的应力,如图9A所示。在另一些实施例中,可以在切割区119增加段差改善层235,以减少非显示区118与切割区119的应力,如图9B所示。不过,这些方案需要额外地形成段差改善层235,这些层的涂覆增加了生产时间,降低了生产效率。在另一些实施例中,所述有机膜层120从所述显示区115延伸到所述非显示区118和所述切割区119。这样,无需额外地提供段差改善层就能弥补显示区115、非显示区118、和切割区119之间的段差,以便减少大尺寸基板在快速运送过程中因为抖动变形带来的边缘应力不均的问题,提高阵列基板的平坦度,进而改善显示面板的周边漏光情况。
在更具体的实施例中,从所述显示区115延伸到所述非显示区118和所述切割区119的所述有机膜层120包括第一有机膜部分221、第二有机膜部分222、第三有机膜部分241、第四有机膜部分242。所述第三有机膜部分241位于所述切割区119,所述第四有机膜部分242位于所述非显示区118。所述第三有机膜部分241的平均厚度大于或等于第一有机膜部分221的平均厚度,并且所述第三有机膜部分241的平均厚度大于所述第四有机膜部分242和所述第二有机膜部分222中的至少一个的平均厚度。图10示意性地示出了根据本申请的显示面板的局部截面图。如图10所示,切割区119内一般仅布置一层电极材料层(如本申请实施例中的像素电极106的材料层)以及其它绝缘材料层(如栅极绝缘层107的材料层和钝化层111的材料层),因此切割区119对应的阵列基板的厚度一般是最薄的。非显示区118还布置有形成信号线110的导电材料层,因此非显示区118对应的阵列基板的厚度一般高于切割区119对应的阵列基板的厚度。显示区(包括间隔区和像素区)内的层结构最多,一般是厚度最厚的。因此,通过使所述第三有机膜部分241的平均厚度大于或等于所述第一有机膜部分221的平均厚度,且大于所述第四有机膜部分242和所述第二有机膜部分222中的至少一个的平均厚度,阵列基板中厚度最薄的位置被补充了最大厚度的有机膜层,因此改善了各个区之间的段差,减小了各个位置的应力之间的差异,有效地改善了上述边缘漏光问题。
在液晶显示面板中,封框胶253被用于连接阵列基板和对置基板。封框胶253的厚度约为
Figure PCTCN2022121070-appb-000024
Figure PCTCN2022121070-appb-000025
例如
Figure PCTCN2022121070-appb-000026
现有的涂布封框胶的方式是靠控制涂胶头的速度以及高度来控制各个位置的涂胶 量,然后再通过对盒固化实现边角的圆角。因此,封框胶的圆角的涂布控制精度非常难,监控也比较困难。对于大尺寸显示面板来说,由于封框胶的宽度和长度较大,在涂布时更容易出现宽幅偏差及位置精度偏差。尤其是在转角处等位置,由于不好监控,常存在涂布偏差较大的问题。
为了解决上述问题,如图11所示,在一些实施例中,位于非显示区118的有机膜层的部分,也就是所述第四有机膜部分242,包括凹槽部251和位于所述凹槽部251两侧的边缘部252。所述凹槽部251的平均厚度小于所述边缘部252的平均厚度。可见,所述第四有机膜部分242是中间低,两边高的形状。所述显示面板还包括封框胶253。在一些实施例中,封框胶253的厚度约为
Figure PCTCN2022121070-appb-000027
所述封框胶253位于所述凹槽部251内。这样,封框胶253在涂布时能够被第四有机膜部分242限制在预定位置,从而减少涂布位置及宽度的偏差,这对于拐角处的封框胶涂布尤其重要。通过位于非显示区118的所述第四有机膜部分242对封框胶进行限位,可以实现对封框胶涂布精度的控制。
上述实施例通过减薄有机膜层的局部厚度,实现了对封框胶的限位。除了限位的作用,有机膜层的减薄还有助于提高散热性能。例如,显示面板的每个像素内可能布置了多个晶体管,在工作时会散发大量热量。在一些实施例中,可以减薄对应于晶体管的位置处的有机膜层的厚度,以便提高散热性能。例如,在高刷新率(120Hz以上)或高分辨率(8k)面板中,移位寄存器单元中的连接在时钟信号端和输出端之间的晶体管发热较多,因此可以在该晶体管对应的位置减薄有机膜层的厚度,从而有助于晶体管的散热。
在液晶显示面板中,隔垫物(photo space,PS)通常设置在阵列基板和对置基板之间,用于支撑两个基板,以便维持两个基板之间的距离。在对置基板的对应位置,可以设置与隔垫物匹配的隔垫物支撑台。常规的液晶显示面板中可以包含两种隔垫物,即主隔垫物和辅助隔垫物。主隔垫物主要起支撑盒厚的作用,因此,主隔垫物的轴向长度(也就是高度)设置的较长,大于辅助隔垫物的轴向长度。辅助隔垫物主要起到增加面板的抗压能力的作用,因此,辅助隔垫物的分布密度可以设置成大于主隔垫物的分布密度。随着隔垫物的高度增加,容易增加“隔垫物——黑矩阵”偏移距离,降低了显示面板的开口率。在根 据本申请实施例的显示面板中,如图2B所示,所述隔垫物150位于所述有机膜层120背离所述衬底基板的一侧。这样,阵列基板和对置基板之间的距离将由有机膜层120和隔垫物150共同维持,缩减了隔垫物的高度,降低了“隔垫物——黑矩阵”偏移距离,极大提高了整体开口率及透过率。在更具体的实施例中,隔垫物可设置在栅线对应的有机膜层120上。图12A示意性地示出了根据本申请实施例所述的显示面板的俯视图。如图12A所示,隔垫物150可以设置在阵列基板的间隔区117中。图12B示意性地示出了相关显示面板的局部截面图。图12C示意性地示出了根据本申请实施例的显示面板的局部截面图。图12B的左侧示意性地示出了像素区的截面图,而图12B的右侧示意性地示出了间隔区的截面图。在本领域相关的显示面板中,阵列基板的像素区中包含了像素电极106和公共电极108等结构,对置基板的像素区包括色阻层128和保护层127等结构。阵列基板的间隔区包括像素电极106的材料和信号线110等结构,对置基板的间隔区包括黑矩阵125和保护层127等结构。隔垫物150布置在间隔区,高度为3μm到4μm之间。例如,在图12B的面板中,隔垫物高度达到了3.16μm。本申请的显示面板同样包括上述结构,此外,还在间隔区包括有机膜层120。图12C的左侧示意性地示出了像素区的截面图,而图12C的右侧示意性地示出了间隔区的截面图。在根据本申请实施例的显示面板中,隔垫物高度为1.4μm到2μm,例如在图12C的实施例中,隔垫物高度可以为1.49μm。在相关技术的显示面板中,主隔垫物和辅助隔垫物的隔垫物——黑矩阵偏移距离分别可以达到51.5μm和43μm,而根据本申请实施例的显示面板的隔垫物——黑矩阵偏移距离为30μm。因此,本申请实施例的显示面板通过缩减隔垫物高度来减小了隔垫物——黑矩阵偏移距离,进一步提升了显示面板的开口率。
在显示面板中,过孔是为中间存在间隔的层叠结构建立电连接的一种手段。在本申请实施例中,为了使有机膜层120上下的层结构之间电连接,有机膜层120中也需要设置过孔260。图13示意性地示出了根据本申请实施例的过孔的截面图。如图13所示,过孔260包括第一开口261、第二开口262、和位于所述第一开口261和所述第二开口262之间的内壁263。可以理解,第一开口261是过孔260在有机膜层120的一个表面上的截面,第二开口262是过孔260在有机膜层120的 另一个表面上的截面。发明人认为,过孔的内壁的倾斜程度不应过大,否则在向过孔内沉积ITO电极材料时,可能导致ITO材料较薄地覆盖在过孔内壁,增加了过孔的接触电阻,造成过孔搭接不良等问题。另外,如果过孔内壁斜率较大,在形成配向膜时,配向膜材料会出现扩散异常、涂布不均等现象,造成屏幕显示细横线、麻点等不良(即,M24不良)。因此,需要降低过孔内壁的倾斜程度。具体来说,过孔230的内壁263包括第一内壁坡度渐变区2631、第二内壁坡度渐变区2632、和介于所述第一内壁坡度渐变区2631和所述第二内壁坡度渐变区2632之间的内壁坡度稳定区2633,所述内壁坡度稳定区2633相对于所述衬底基板所在平面的倾斜角度小于或等于20°。在一些更具体的实施例中,所得到的过孔的内壁相对于所述衬底基板所在平面的倾斜角度可以低至15°,甚至更低,例如可低至13°。
这有助于避免上述过孔接触不良的问题,也有助于配向膜的正常扩散。
综上所述,本申请实施例提供的显示面板在信号线背离衬底基板的一侧设置了有机膜层,能够屏蔽信号线产生的边缘电场,减小了所需黑矩阵的宽度,增加了面板开口率。而且,有机膜层还增加了公共电极线与信号线之间距离,减少了两者之间的电容,改善了串扰及残像等问题。布置在像素区的有机膜层的厚度小于布置在间隔区的有机膜层的厚度,维持了像素区的电场,保持了液晶偏转电源。此外,有机膜层还可以布置在非显示区和切割区,以便减小段差,改善应力,减小了因应力差异而导致的漏光问题。此外,通过对非显示区的有机膜层进行厚度调整,可以实现对封框胶的限位。
根据本申请的另一方面,提供了一种制造显示面板的方法。图14示意性地示出根据本申请实施例的制造显示面板的方法的流程图。如图14所示,该方法包括:
在步骤S305,提供衬底基板,其中,所述衬底基板包括至少一个显示区,每个显示区包括多个像素区以及位于所述多个像素区中的任意两个相邻的像素区之间的间隔区;
在步骤S310,在所述衬底基板上形成信号线,其中所述信号线位于所述间隔区内;
在步骤S315,在所述信号线背离所述衬底基板的一侧形成有机膜层,其中所述有机膜层在所述衬底基板上的正投影覆盖所述信号线在所述衬底基板上的正投影。
下面对这些步骤进行描述。首先,提供衬底基板。该衬底基板105上包括至少一个显示区115,每个显示区115上又被划分出像素区116和间隔区117,各区内在后续步骤中会形成不同的结构。衬底基板105上可能已经形成了一些层结构。例如,在衬底基板105上,可能已经通过诸如溅射的方法形成了ITO材料层。ITO材料的厚度可以是
Figure PCTCN2022121070-appb-000028
Figure PCTCN2022121070-appb-000029
例如
Figure PCTCN2022121070-appb-000030
然后,对ITO材料层进行刻蚀,以得到像素电极106。
然后,在所述衬底基板105上形成信号线110,其中所述信号线110位于所述间隔区117内。信号线110可以包括栅线和数据线中的至少一个,所以形成信号线110的步骤包括了形成栅线的步骤和形成数据线的步骤中的至少一个。在一个实施例中,首先,在衬底基板上形成铜层,铜层的厚度可以是
Figure PCTCN2022121070-appb-000031
Figure PCTCN2022121070-appb-000032
例如
Figure PCTCN2022121070-appb-000033
然后,对铜层进行刻蚀,以得到栅线,栅线应该当位于衬底基板的间隔区117。然后,可以在栅线上形成栅极绝缘层107,栅极绝缘层107的材料可以是硅的氮化物,其厚度可以是
Figure PCTCN2022121070-appb-000034
Figure PCTCN2022121070-appb-000035
例如
Figure PCTCN2022121070-appb-000036
然后,继续在栅极绝缘层107上通过诸如溅射的方式形成有源材料层并进行刻蚀,以得到有源层109。有源层109的材料可以是单晶硅,厚度可以是
Figure PCTCN2022121070-appb-000037
Figure PCTCN2022121070-appb-000038
例如
Figure PCTCN2022121070-appb-000039
然后,在有源层109上提供金属材料层,并进行刻蚀,以得到数据线。数据线也应该当位于衬底基板的间隔区117。数据线可以采用钼、铜、钼的层叠结构,三个层的厚度可以分别为
Figure PCTCN2022121070-appb-000040
例如
Figure PCTCN2022121070-appb-000041
Figure PCTCN2022121070-appb-000042
然后,在数据线上形成钝化层111。钝化层的材料可以是硅的氮化物,其厚度可以是
Figure PCTCN2022121070-appb-000043
Figure PCTCN2022121070-appb-000044
例如
Figure PCTCN2022121070-appb-000045
等。在需要的位置,钝化层111中可以通过刻蚀的方式形成过孔。
然后,在所述信号线110背离所述衬底基板105的一侧形成有机膜层120,其中所述有机膜层120在所述衬底基板105上的正投影覆盖所述信号线110在所述衬底基板105上的正投影。具体的,在钝化层111上涂覆有机材料层,有机材料层的厚度可以大于
Figure PCTCN2022121070-appb-000046
然后对有机材料层进行曝光和显影,以使所述有机膜层至少存在于间隔区 117,以便所述有机膜层在所述衬底基板上的正投影覆盖所述信号线在所述衬底基板上的正投影。有机材料需要有这样的性质:经过曝光和显影的有机材料部分会从有机材料层中去除。通过上述步骤,可以在信号线上提供有机膜层,以便减小信号线造成的边缘电场。
下面更详细地描述在所述信号线背离所述衬底基板的一侧形成有机膜层的步骤。
首先,在所述信号线背离所述衬底基板的一侧形成有机材料层。有机材料可以是树脂材料、丙烯酸、聚酰亚胺、萘醌二叠氮化合物等。有机材料可以通过旋涂的方式涂布在衬底基板上。在一些实施例中,涂布的有机膜的厚度至少为
Figure PCTCN2022121070-appb-000047
为了使像素区的有机膜层的厚度小于间隔区的有机膜层的厚度,在一些实施例中,利用半色调掩模板,对所述有机材料层进行曝光。半色调掩模板按照所需要形成的图案而设置有不同透过率的区。这样,照到有机材料层各处的光的剂量不同,在经过显影后,有机膜层在不同的区域会具有不同的厚度。例如,半色调掩模板可以包括完全遮光区和部分透光区。经过曝光显影后,有机材料层中对应于完全遮光区的有机材料不会被移除,这部分的有机材料成为所述有机材料图案层中的有机材料完全保留区。经过曝光显影后,对应于部分透光区的有机材料会被部分地移除,剩余的部分成为了所述有机材料图案层中的有机材料部分保留区。也就是说,有机材料完全保留区的有机材料没有被移除而且完全得到保留,有机材料部分保留区的一部分有机材料被去除,剩下的一部分有机材料被保留,因此可以理解,所述有机材料完全保留区的厚度大于所述有机材料部分保留区的厚度。在得到有机材料图案层之后,可以固化所述有机材料图案层以得到所述有机膜层。
在半色调掩模板上,完全遮光区对应于间隔区117的位置,部分透光区对应于像素区116的位置,因此在有机材料层经过曝光显影后,所述有机材料完全保留区位于所述间隔区117,所述有机材料部分保留区位于所述像素区116,而且像素区的有机材料的厚度小于间隔区的有机材料的厚度。这样,仅通过一次曝光,就能形成在不同位置具有不同厚度的有机膜层,其中位于间隔区117的有机膜层足够厚,以屏蔽信号线的边缘电场,减小公共电极与信号线之间的电容,并且能够支 持隔垫物150,而位于像素区的有机材料的厚度得到一定的减薄,以维持像素内的液晶偏转电压。由于这种厚度的区别,有机材料完全保留区和有机材料部分保留区之间存在一定的段差。
从上面的实施例可以领会,对于显示面板来说,有机材料完全保留区和有机材料部分保留区之间段差是十分重要的。然而,在常规的技术中,难以实现较大段差,主要是因为有机材料在进行固化时,在受热条件下会出现有明显流动,导致有机材料完全保留区的有机材料会流向有机材料部分保留区,导致段差明显减小。在一示例中,原本大于1.5μm的段差可能缩减至约为1.1μm。这样,间隔区的有机膜层难以屏蔽信号线的边缘电场,无法降低信号线与公共电极之间的电容,而且无法有效支撑隔垫物,而相应的,像素的液晶偏转电压也会增大,影响产品良率。
在得到有机材料图案层之后,可以固化所述有机材料图案层以得到所述有机膜层。为了减少热流动导致的段差降低问题,本申请对固化有机材料图案层的过程进行了改进。具体的,在一些实施例中,在固化所述有机材料图案层以得到所述有机膜层的过程中,首先以第一温度加热、并以具有第一辐射照度的紫外光照射所述有机材料图案层以得到预固化层,其中所述第一温度在120℃到140℃的范围之内,所述第一光强辐射照度在700mw/cm 2至1000mw/cm 2的范围之内。此步骤通过低温加紫外线光照组合的方式,对有机材料图案层进行了预固化。此步骤有效地降低了有机材料的高温流动性,防止了因为有机材料的高温流动性而导致的有机材料完全保留区和有机材料部分保留区之间的段差较小的问题。而且,700mw/cm 2至1000mw/cm 2的紫外光能够提升有机膜层的透过率,使得成品的透过率进一步提高。图15示意性地示出了经过不同剂量的紫外光的照射之后,所得到的有机膜层对各种波长的可见光的透过率。如图15所示,当紫外光照射剂量达到500mJ后,有机膜层对于各个波长的可见光的透过率都能达到90%,而当紫外光照射剂量达到700mJ后,有机膜层对于各个波长的可见光的透过率都能达到92%。之后,以第二温度加热所述预固化层以得到所述有机膜层,其中所述第二温度在230℃到250℃的范围之内。通过上述两个过程,所得到的有机膜层位于间隔区中的部分和位于像素区中的部分的段差较大。位于间隔区中的有机膜层能够有效地屏蔽信号 线的电场,而且位于像素区中的有机膜层不会显著影响液晶驱动电压。而且,由于阻止了有机材料的热流动,位于间隔区中的有机膜层部分的侧壁的倾斜程度较陡,减少了配向弱区的宽度,增加了面板的开口率。还应指出,如果仅通过低温烘烤,达到相同段差所需时间较长(大于10min),难以满足实际生产中的速度需求。如果仅进行紫外光照,无法得到较大的段差(至少1.5μm)。本申请将低温烘烤与紫外光照进行结合,实现了更优的效果。
图16A示意性地示出了常规的仅采用单次高温加热固化的方法中有机膜层的形态变化,图16B示意性地示出了根据本申请实施例的制造显示面板的方法中有机膜层的形态变化。如图16A所示,在仅采用单次高温加热固化的方法中,由于有机材料的热流动,有机膜层的段差出现了比较严重的缩小。如图16B所示,虽然在低温加热紫外辐照和高温加热这两个过程中,每个过程中的段差缩小的程度都很小,最终的段差缩小程度也小于仅采用高温加热的方法。
图17A示意性地示出了常规的仅采用单次高温加热固化的方法所得到的有机膜层的结构图像。图17B示意性地示出了根据本申请实施例的制造显示面板的方法得到的有机膜层的结构图像。通过图17A与图17B的比较可以看出,在没有经过预固化处理时,有机材料的热流动比较严重,位于信号线上方的有机膜层的厚度降低,为1.6515μm,显示区的有机膜层的厚度增加,为1.0988μm,段差为1.0563μm。在常规方法中,由于严重的热流动,有机膜层的侧表面将比较平坦,该侧表面相对于衬底基板所在平面的倾斜角度一般只能达到12°,无法达到15°。而在本申请的方法中,经过了预固化之后,有机材料的热流动显著减小,位于信号线上方的有机膜层的厚度维持在较高的水平,达到了1.7411μm,显示区的有机膜层的厚度维持在较低的水平,仅为0.7366μm,段差达到了1.9172μm。而且,有机膜层的侧表面相对于衬底基板所在平面的倾斜角度可以达到15°以上,甚至达到20°以上,例如,如图3中所示的22°。这说明,本申请实施例的方法能够有效地抑制有机材料的热流动。应注意,图17A与图17B是制作完成有机膜层后直接进行拍摄所得到的图像,在显示面板的制作过程中,后续还有其它步骤,无论是常规的显示面板的制作过程,还是根据本申请实施例的显示面板的制作过程,最终的成品显示面板的侧表面的倾斜 角度会有一定减小。不过,这并不影响根据本申请实施例的制作显示面板的方法所得到的显示面板的有机膜层的侧表面的倾斜角度远大于常规的显示面板的有机膜层的侧表面的倾斜角度这一事实。
在一些实施例中,所述有机膜层120从所述显示区115延伸到所述非显示区118和所述切割区119,以弥补显示区115、非显示区118、和切割区119之间的段差,从而减少应力不均,改善显示面板的周边漏光情况。为了得到这样的显示面板,在一些实施例中,在对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层的步骤中,所述有机材料部分保留区包括第一有机材料部分保留区和第二有机材料部分保留区,其中所述有机材料完全保留区位于所述间隔区和所述切割区,所述第一有机材料部分保留区位于所述非显示区,所述第二有机材料部分保留区位于所述像素区。这样,在显示区(包括像素区和间隔区)、非显示区和切割区,都提供了有机材料,而且,由于所述有机材料完全保留区位于所述间隔区和所述切割区,也就是这两个区的有机膜层的厚度最厚,因此,在间隔区有机膜层能够有效地屏蔽信号线的电场和减小信号线与公共电极之间的电容,并且在切割区,由于切割区的厚度最低,更厚的有机膜层可以更有效地弥补段差,减小应力,改善面板周边区域的漏光。
在一些实施例中,位于非显示区118的有机膜层的部分包括凹槽部251和位于所述凹槽部251两侧的边缘部252。所述凹槽部251的平均厚度小于所述边缘部252的平均厚度。显示面板的封框胶253位于所述凹槽部251内。这样,封框胶253在涂布时能够很好的卡在预定位置。为了形成这样的结构,在一些实施例中,通过设置半色调掩模板的图案,可以使得在经过曝光显影后,所述第一有机材料部分保留区包括凹槽部和位于所述凹槽部两侧的边缘部,所述凹槽部的平均厚度小于所述边缘部的平均厚度,其中,所述方法还包括:在所述凹槽部提供封框胶。这样,通过非显示区的具有凹槽部的第一有机材料部分保留区,能够对封框胶进行限位。
在一些实施例中,有机膜层120中也需要设置过孔260,过孔的内壁263的倾斜程度不应过大,否则在向过孔内沉积ITO电极材料时,可能导致ITO材料较薄地覆盖在过孔内壁,增加了过孔的接触电阻,造成过孔搭接不良等问题。为了降低过孔内壁的倾斜程度,本申请实 施例采用了半色调掩模板对有机材料层进行曝光,使得所得到的过孔内具有台阶部。台阶部的存在使得过孔内壁实现阶段性的下降,这样,在经过高温固化后,利用有机材料的高温流动性,最终形成的过孔的内壁具有较低的倾斜程度。
在形成过孔的具体方法中,首先,在所述信号线背离所述衬底基板的一侧形成有机材料层。然后,利用半色调掩模板,对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层。图18示意性地示出了半色调掩模板的局部俯视图案。半色调掩模板包括完全遮光区161、部分透光区162、以及完全透光区163。完全透光区163对应于过孔的第二开口。部分透光区162是一个包围完全透光区163的环形区域,部分透光区162的内环对应于过孔的第二开口、外环对应于过孔的第一开口。完全遮光区161包围了部分透光区162。
图19示例性地示出了曝光过程。在利用这样的半色调掩模板对所述有机材料层进行曝光并显影后,所得到的有机材料图案层将包括过孔图案。因此,术语“过孔图案”可以理解为有机材料经过曝光和显影后得到的结构。应注意,该结构尚未经过退火,在退火中有机材料还可能出现热流动,所以过孔图案并不是最终的过孔。图20示意性地示出了过孔图案的截面图。所述过孔图案包括第一开口261、第二开口262、和位于所述第一开口和所述第二开口之间的内壁图案264。所述第一开口位于所述有机材料图案层远离所述衬底基板的表面,所述第二开口位于所述有机材料图案层靠近所述衬底基板的表面,所述内壁图案264包括第一爬升区2641、第二爬升区2642、以及位于第一爬升区2641和第二爬升区2642之间的台阶部2643,所述台阶部2643与所述第一开口261和所述第二开口262基本平行。在一些实施例中,所述台阶部到所述第一开口的距离与所述台阶部到所述第二开口的距离的比例在90%-110%的范围内。这样,台阶部的竖直位置在过孔内比较居中,有利于降低过孔内壁的整体倾斜程度。
在得到这样的有机材料图案层后,对所述有机材料图案层进行固化,以得到所述有机膜层。固化可以采用高温加热的方式,例如在230℃到250℃的环境内进行加热,从而利用有机材料的高温流动性,使得第一爬升区2641、第二爬升区2642和台阶部2643相互融合,让最终形成的过孔的内壁更加平缓,进一步形成具有较低倾斜程度的内壁的 过孔。经过本申请上述方法的制作,所得到的过孔的内壁非常平缓,其倾斜程度非常小,可以小于20°,甚至可以低至15°或更低,例如低至13°。而在常规的制作过孔的方法中,过孔内壁的坡度一般为40°,最低也为30°,无法达到本申请实施例的20°及更低的程度。
综上所述,根据本申请实施例的制造显示面板的方法可以用于获得根据本申请实施例的显示面板,该显示面板具有前文提到的所有特点。而且,本申请的方法采用预固化的方式,降低有机材料的高温流动性,防止因为高温流动性而导致不同厚度的有机膜层的段差减小的问题。而且,利用半色调掩模板制作过孔,所得到的过孔的内壁具有较小的倾斜程度。
如本领域技术人员将理解的,尽管在附图中以特定顺序描述了本公开实施例中方法的各个步骤,但是这并非要求或者暗示必须按照该特定顺序来执行这些步骤,除非上下文另有明确说明。附加的或可替换的,可以将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行。此外,在步骤之间可以插入其他方法步骤。插入的步骤可以表示诸如本文所描述的方法的改进,或者可以与该方法无关。此外,在下一步骤开始之前,给定步骤可能尚未完全完成。
在本公开实施例的描述中,术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例而不是要求本公开实施例必须以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种显示面板,包括衬底基板和布置在所述衬底基板上的信号线,其中,所述衬底基板包括至少一个显示区,每个显示区包括多个像素区以及位于所述多个像素区中的任意两个相邻的像素区之间的间隔区,所述信号线位于所述间隔区内,
    其中,所述显示面板还包括有机膜层,所述有机膜层布置在所述信号线背离所述衬底基板的一侧,并且所述有机膜层在所述衬底基板上的正投影覆盖所述信号线在所述衬底基板上的正投影。
  2. 如权利要求1所述的显示面板,其中,所述有机膜层包括顶部区域和侧表面,所述顶部区域位于所述有机膜层背离所述信号线的一侧,所述侧表面位于所述顶部区域和所述信号线之间,
    其中,所述侧表面相对于所述衬底基板所在平面的倾斜角度大于或等于15°。
  3. 如权利要求1所述的显示面板,其中,所述有机膜层从所述间隔区延伸到所述像素区,其中,所述有机膜层包括第一有机膜部分和第二有机膜部分,所述第一有机膜部分位于所述间隔区,所述第二有机膜部分位于所述像素区,其中所述第一有机膜部分的平均厚度大于所述第二有机膜部分的平均厚度。
  4. 如权利要求3所述的显示面板,其中,所述第一有机膜部分的平均厚度大于或等于15000埃米。
  5. 如权利要求3所述的显示面板,其中,所述第二有机膜部分的平均厚度小于或等于8000埃米。
  6. 如权利要求1所述的显示面板,还包括公共电极层,所述公共电极层包括彼此平行并间隔布置的多个条状公共电极,其中,所述多个条状公共电极的一部分布置在所述间隔区,并且所述有机膜层位于布置在所述间隔区的条状公共电极和所述信号线之间。
  7. 如权利要求1所述的显示面板,其中,所述至少一个显示区包括多个显示区,所述衬底基板还包括多个非显示区,所述多个非显示区中的每个非显示区包围所述多个显示区中的对应的显示区,所述衬底基板还包括位于所述多个非显示区中的任意两个相邻的非显示区之间的切割区,
    其中,所述有机膜层从所述显示区延伸到所述非显示区和所述切割区。
  8. 如权利要求7所述的显示面板,其中,所述有机膜层包括第一有机膜部分、第二有机膜部分、第三有机膜部分和第四有机膜部分,所述第一有机膜部分位于所述间隔区,所述第二有机膜部分位于所述像素区,所述第三有机膜部分位于所述切割区,所述第四有机膜部分位于所述非显示区,其中所述第三有机膜部分的平均厚度大于或等于所述第一有机膜部分的平均厚度,并且所述第三有机膜部分的平均厚度大于所述第二有机膜部分和所述第四有机膜部分中的至少一个的平均厚度。
  9. 如权利要求8所述的显示面板,其中,所述第四有机膜部分包括凹槽部和位于所述凹槽部两侧的边缘部,所述凹槽部的平均厚度小于所述边缘部的平均厚度,
    其中,所述显示面板还包括封框胶,所述封框胶位于所述凹槽部内。
  10. 如权利要求1所述的显示面板,还包括隔垫物,其中,所述隔垫物位于所述有机膜层背离所述衬底基板的一侧。
  11. 如权利要求1所述的显示面板,其中,所述有机膜层包括过孔,所述过孔包括第一开口、第二开口、和位于所述第一开口和所述第二开口之间的内壁,所述内壁包括第一内壁坡度渐变区、第二内壁坡度渐变区、和介于所述第一内壁坡度渐变区和所述第二内壁坡度渐变区之间的内壁坡度稳定区,其中所述内壁坡度稳定区相对于所述衬底基板所在平面的倾斜角度小于或等于20°。
  12. 一种制造显示面板的方法,包括:
    提供衬底基板,其中所述衬底基板包括至少一个显示区,每个显示区包括多个像素区以及位于所述多个像素区中的任意两个相邻的像素区之间的间隔区;
    在所述衬底基板上形成信号线,其中所述信号线位于所述间隔区内;
    在所述信号线背离所述衬底基板的一侧形成有机膜层,其中所述有机膜层在所述衬底基板上的正投影覆盖所述信号线在所述衬底基板上的正投影。
  13. 如权利要求12所述的方法,其中,在所述信号线背离所述衬底基板的一侧形成有机膜层包括:
    在所述信号线背离所述衬底基板的一侧形成有机材料层;
    利用半色调掩模板,对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层,其中所述有机材料图案层包括有机材料完全保留区和有机材料部分保留区,所述有机材料完全保留区位于所述间隔区,所述有机材料部分保留区位于所述像素区,其中所述有机材料完全保留区的厚度大于所述有机材料部分保留区的厚度;
    固化所述有机材料图案层以得到所述有机膜层。
  14. 如权利要求13所述的方法,其中,固化所述有机材料图案层以得到所述有机膜层包括:
    以第一温度加热、并以具有第一辐射照度的紫外光照射所述有机材料图案层以得到预固化层,其中所述第一温度在120℃到140℃的范围之内,所述第一光强辐射照度在700mw/cm 2-1000mw/cm 2的范围之内;以及,
    以第二温度加热所述预固化层以得到所述有机膜层,其中所述第二温度在230℃到250℃的范围之内。
  15. 如权利要求13所述的方法,其中,所述至少一个显示区包括多个显示区,所述衬底基板还包括多个非显示区,所述多个非显示区中的每个非显示区包围所述多个显示区中的对应的显示区,所述衬底基板还包括位于所述多个非显示区中的任意两个相邻的非显示区之间的切割区,
    其中,在利用半色调掩模板,对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层的步骤中,所述有机材料部分保留区包括第一有机材料部分保留区和第二有机材料部分保留区,其中所述有机材料完全保留区位于所述间隔区和所述切割区,所述第一有机材料部分保留区位于所述非显示区,所述第二有机材料部分保留区位于所述像素区。
  16. 如权利要求15所述的方法,其中,所述第一有机材料部分保留区包括凹槽部和位于所述凹槽部两侧的边缘部,所述凹槽部的平均厚度小于所述边缘部的平均厚度,其中,所述方法还包括:
    在所述凹槽部提供封框胶。
  17. 如权利要求12所述的方法,其中,所述有机膜层包括过孔,并且,在所述信号线背离所述衬底基板的一侧形成有机膜层包括:
    在所述信号线背离所述衬底基板的一侧形成有机材料层;
    利用半色调掩模板,对所述有机材料层进行曝光并显影,以将所述有机材料层形成为有机材料图案层,其中所述有机材料图案层包括过孔图案,所述过孔图案包括第一开口、第二开口、和位于所述第一开口和所述第二开口之间的内壁图案,所述第一开口位于所述有机材料图案层远离所述衬底基板的表面,所述第二开口位于所述有机材料图案层靠近所述衬底基板的表面,所述内壁图案包括第一爬升区、第二爬升区、以及位于第一爬升区和第二爬升区之间的台阶部,所述台阶部与所述第一开口和所述第二开口平行;
    固化所述有机材料图案层以得到所述有机膜层。
  18. 如权利要求17所述的方法,其中,所述台阶部到所述第一开口的距离与所述台阶部到所述第二开口的距离的比例在90%-110%的范围内。
PCT/CN2022/121070 2022-09-23 2022-09-23 显示面板与制造显示面板的方法 WO2024060240A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121070 WO2024060240A1 (zh) 2022-09-23 2022-09-23 显示面板与制造显示面板的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121070 WO2024060240A1 (zh) 2022-09-23 2022-09-23 显示面板与制造显示面板的方法

Publications (1)

Publication Number Publication Date
WO2024060240A1 true WO2024060240A1 (zh) 2024-03-28

Family

ID=90453776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121070 WO2024060240A1 (zh) 2022-09-23 2022-09-23 显示面板与制造显示面板的方法

Country Status (1)

Country Link
WO (1) WO2024060240A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873278A (zh) * 2017-04-25 2017-06-20 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN110109279A (zh) * 2019-04-22 2019-08-09 武汉华星光电技术有限公司 阵列基板
CN112859463A (zh) * 2021-01-19 2021-05-28 京东方科技集团股份有限公司 一种显示面板及显示装置
CN113031360A (zh) * 2021-04-12 2021-06-25 京东方科技集团股份有限公司 一种阵列基板、阵列基板母版、显示面板和显示装置
CN113109971A (zh) * 2021-03-15 2021-07-13 合肥京东方显示技术有限公司 显示面板与显示装置
CN114326233A (zh) * 2021-12-30 2022-04-12 惠科股份有限公司 阵列基板、显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873278A (zh) * 2017-04-25 2017-06-20 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN110109279A (zh) * 2019-04-22 2019-08-09 武汉华星光电技术有限公司 阵列基板
CN112859463A (zh) * 2021-01-19 2021-05-28 京东方科技集团股份有限公司 一种显示面板及显示装置
CN113109971A (zh) * 2021-03-15 2021-07-13 合肥京东方显示技术有限公司 显示面板与显示装置
CN113031360A (zh) * 2021-04-12 2021-06-25 京东方科技集团股份有限公司 一种阵列基板、阵列基板母版、显示面板和显示装置
CN114326233A (zh) * 2021-12-30 2022-04-12 惠科股份有限公司 阵列基板、显示面板及显示装置

Similar Documents

Publication Publication Date Title
JP3768367B2 (ja) 液晶表示装置
JP4376266B2 (ja) カラーフィルタ基板およびそれを備える液晶表示パネル
KR102363676B1 (ko) 표시장치 및 그 제조방법
TWI533065B (zh) 顯示面板
JP4299584B2 (ja) 液晶表示装置
JP4235576B2 (ja) カラーフィルタ基板及びそれを用いた表示装置
KR101031166B1 (ko) 액정 디스플레이 패널
WO2020224598A1 (zh) 彩膜基板及其制作方法和显示装置
WO2018228109A1 (zh) 一种coa基板及其制作方法、显示面板、显示装置
KR20170054598A (ko) 표시 장치 및 이의 제조 방법
US11894388B2 (en) Method adapted to manufacture array substrate and display panel
WO2014131238A1 (zh) 阵列基板及其制作方法、显示面板及其制作方法
US7310124B2 (en) Color filter substrate, method of manufacturing the color filter and display device
US11175541B2 (en) Display substrate and preparation method therefor, display panel and display device
WO2024060240A1 (zh) 显示面板与制造显示面板的方法
KR102304890B1 (ko) 액정 표시 장치 및 그 제조 방법
JPH11212048A (ja) 液晶ライトバルブおよび液晶プロジェクタ
JP2011107379A (ja) カラーフィルタとその製造方法、及びそのカラーフィルタを用いた液晶表示パネル
JP3929409B2 (ja) 液晶表示装置
JP2011252990A (ja) カラーフィルタ基板および液晶表示パネル
WO2010047307A1 (ja) 表示パネル用の基板、表示パネル、表示パネル用の基板の製造方法
JPH07175088A (ja) 液晶パネル用基板とその製造方法
JPH10325965A (ja) 液晶表示素子
KR20050114141A (ko) 액정표시장치 및 그 제조 방법
JP2007171620A (ja) 表示装置及びそれに用いるカラーフィルタ基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959243

Country of ref document: EP

Kind code of ref document: A1