WO2024060203A1 - Matériau d'injection de trous organiques et utilisation - Google Patents

Matériau d'injection de trous organiques et utilisation Download PDF

Info

Publication number
WO2024060203A1
WO2024060203A1 PCT/CN2022/120874 CN2022120874W WO2024060203A1 WO 2024060203 A1 WO2024060203 A1 WO 2024060203A1 CN 2022120874 W CN2022120874 W CN 2022120874W WO 2024060203 A1 WO2024060203 A1 WO 2024060203A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole injection
organic
chloroform
molecular formula
injection material
Prior art date
Application number
PCT/CN2022/120874
Other languages
English (en)
Chinese (zh)
Inventor
孟鸿
蔡瑜
陆科
闫朝一
贺耀武
胡钊
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to PCT/CN2022/120874 priority Critical patent/WO2024060203A1/fr
Publication of WO2024060203A1 publication Critical patent/WO2024060203A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the invention relates to the field of organic light emitting, and in particular to an organic hole injection material and its application.
  • OLEDs Organic Light-emitting Diodes
  • the hole injection layer serves as the key material connecting the anode and the organic functional layer. It can lower the barrier for hole injection from the anode, allowing holes to be efficiently injected from the anode into the OLED device. Therefore, when selecting the hole injection layer material, it is necessary to consider the matching of the material energy level and the anode material.
  • the function of the injection layer is to make a good match between the work function of the anode and the HOMO of the hole transport layer material, so that holes can flow smoothly from the electrode to the transport layer.
  • the luminescent material The highest occupied orbital energy level is close to the work function of the anode, lowering the hole injection energy barrier.
  • a hole injection layer is usually added between the anode and the hole transport layer, mainly because the energy barrier between the anode and the hole transport layer is large, which will cause the driving voltage of the component to increase, indirectly causing The life of the component is shortened, so a layer of material whose HOMO energy level is between the anode and the hole transport layer is added to improve the efficiency between the hole injection and the hole transport layer.
  • hole injection materials used in optoelectronic devices can be divided into two categories: inorganic hole injection materials and organic hole injection materials.
  • Inorganic hole injection materials easily react with organic layers at high temperatures, and the high evaporation temperature of inorganic hole injection materials is not conducive to the preparation of organic optoelectronic devices.
  • Organic hole injection materials can be divided into small molecule hole injection materials and polymer hole injection materials. Polymer hole injection materials are also very limited due to their purity and the inability to prepare devices by evaporation. Small molecule organic hole injection materials can produce very high-purity materials and can produce high-quality devices through evaporation methods. However, there are relatively few small molecules with suitable HOMO and LUMO energy levels, and the selection range is small. Therefore, it is necessary to develop new suitable organic small molecule hole injection materials. Developing suitable hole injection materials plays an important role in improving the device performance of OLEDs.
  • the present invention provides an organic hole injection material and its application.
  • an organic hole injection material is provided, the general structural formula of which is as follows:
  • X, Y, and Z are each independently selected from C, O, CO, S, Se, SO, SeO, SO 2 or SeO 2 ;
  • At least one of R 1 , R 2 , R 3 and R 4 is selected from F, CN, or The remainder is hydrogen.
  • Y or Z are different, and one of Y or Z is C.
  • At least two of R 1 , R 2 , R 3 and R 4 are selected from F, CN, or The same or different from each other.
  • some or all of the hydrogens in the molecular formula are replaced by deuterium.
  • the organic hole injection material is represented by any one of the following compounds:
  • the invention also provides an organic light-emitting device based on a double five-membered ring derivative substituted by a fluorine atom or a cyano group or a pentafluorophenyl group as a hole injection layer material.
  • the double five-membered ring is selected from thiophene, furan or selenophene double five-membered ring groups.
  • the specific structure of the device is a transparent substrate, anode, hole injection layer, hole transport layer, electron blocking layer, light emitting layer, electron transport layer and cathode.
  • the transparent substrate can be glass or plastic.
  • Anode materials are inorganic materials such as indium tin oxide, zinc oxide, tin zinc oxide, etc.;
  • the material of the hole injection layer can be any one of the above general formulas
  • the hole transport layer material can be any of the following:
  • the electron blocking layer material can be any organic compound.
  • the guest material in the light emitting layer can be BPH.
  • the hole blocking layer material can be any of the following:
  • the electron transport layer material can be any of the following:
  • the electron injection layer can be lithium fluoride, Liq, etc.
  • the cathode material is metal aluminum, magnesium silver alloy, etc.
  • the present invention also provides a perovskite solar cell, which includes a cathode, an anode and each organic layer; wherein, the hole injection layer uses any one of the aforementioned organic hole injection materials.
  • the hole injection material provided by the present invention is a double five-membered ring derivative substituted by an electron-deficient group.
  • the double five-membered ring includes but is not limited to thiophene, furan or selenium phenol double five-membered ring group. .
  • this type of material is relatively simple and is conducive to large-scale production; the HOMO and LUMO energy level structure of the material is suitable, which is conducive to the injection of carriers; the material has substituents and five-membered rings as the core, which is conducive to the transfer of carriers in the device Medium transmission; the material has a high LUMO/HOMO energy level, which is beneficial to transporting holes from the anode ITO to the hole transport layer.
  • the material has a suitable energy level structure and can be used as a hole injection layer material for organic light-emitting devices.
  • the organic light-emitting diode prepared by the present invention using the above hole injection layer material has high luminous efficiency and device life. When applied to perovskite solar cells, it can improve the photoelectric conversion efficiency and has high commercial value.
  • FIG1 is a schematic diagram of the structure of an organic light-emitting device according to an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a perovskite solar cell using one embodiment of the present invention.
  • the compounds whose synthesis methods are not mentioned in the present invention are all raw material products obtained through commercial channels.
  • the solvents and reagents used in the present invention can be purchased from the domestic chemical market. In addition, those skilled in the art can also synthesize them through known methods.
  • the synthesis method of the compound specifically includes the following steps:
  • the synthetic route of molecular formula 100 is as follows:
  • the synthesis method of the compound specifically comprises the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically comprises the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically comprises the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the toluene solution was then transferred to a solution of pentafluorobromobenzene (6 mL, 50 mmol) and tetrakis(triphenylphosphine)palladium (2.3 g, 1.9 mmol) in toluene (40 mL) and the mixture was refluxed at 140°C for 2 days. After cooling to room temperature, the mixture was filtered through a celite column with toluene. Finally, the toluene solutions were combined and concentrated, and recrystallized from chloroform to obtain the compound represented by molecular formula 270 (16.00 g, yield 90%). 1 H NMR (400MHz, Chloroform-d) ⁇ 7.86 (s, 1H).
  • the present invention provides an organic light-emitting device based on a hole injection material composed of thiophene derivatives, furan derivatives and selenium phenol derivatives substituted by electron-deficient groups such as cyano, fluorine, pentafluorophenyl, etc., as shown in Figure 1
  • the metal cathode 191, the electron injection layer 180, the electron transport layer 160, the light emitting layer 150, the hole transport layer 140, the hole injection layer 130, the anode 120 and the glass substrate 110 are stacked in sequence from top to bottom.
  • Device preparation The process is evaporation method.
  • the metal cathode is aluminum, with a deposition rate of 0.1-0.3nm/s and a thickness of 100nm;
  • the electron injection layer uses the material synthesized by this patent and the commercial hole injection material LMZ-2178, with an evaporation rate of 0.05-0.1nm/s and a thickness of 1nm;
  • the electron transport layer uses the compound LET003 with the following structure, the evaporation rate is 0.05-0.1nm/s, and the thickness is 40nm;
  • the light-emitting layer is formed by co-doping host material and guest material.
  • the host material is the currently commercialized host material LBH001, and the guest material is LBD001 with the following structure.
  • the doping mass ratio of the host material to the guest material is 90:10.
  • the plating rate is 0.003-0.2nm/s, and the thickness is 40nm;
  • the electron blocking layer uses the compound LEB001 with the following structure, the evaporation rate is 0.05-0.1nm/s, and the thickness is 10nm;
  • the hole transport layer uses a compound NPB having the following structure, with a deposition rate of 0.05-0.1 nm/s and a thickness of 100 nm;
  • the anode 7 is made of indium tin oxide (ITO).
  • the hole injection layer materials provided by the present invention have lower turn-on voltage, higher current efficiency and longer lifespan of the device.
  • the present invention compares the HOMO and LUMO orbital energies of different materials with commercial LMZ-2178. Compare the hole injection layer material in the present invention with currently commercialized materials.
  • the hole injection layer material provided by the present invention has deeper HOMO and LUMO energy levels and a slightly higher energy band width, which is more conducive to hole injection from the anode into the organic layer. This shows that it can be better used in organic light-emitting devices to achieve better display effects.
  • the hole injection layer material provided by the present invention when applied to an organic light-emitting device, it can effectively improve the performance of the device, including efficiency and working life.
  • the structure of the perovskite solar cell provided in this embodiment is shown in FIG2 , and the specific preparation process is as follows:
  • the ITO conductive glass was washed ultrasonically with acetone, deionized water, and isopropyl alcohol in sequence, and dried under vacuum at 80°C for 12 hours.
  • a hole injection layer film is evaporated on ITO, and then PTAA is spin-coated as a hole transport layer.
  • Prepare the perovskite precursor solution dissolve it in DMSO, spin-coat it on the PTAA film, and anneal it at 100°C for 10 minutes.
  • Configure the electron transport layer solution dissolve PCBM in chlorobenzene at a concentration of 10 mg/ml, and prepare it on the perovskite film by spin coating.
  • the methanol solution of BCP was spin-coated on the PCBM, and finally the metallic silver electrode was vacuum evaporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

La présente invention concerne le domaine de l'émission de lumière organique, et en particulier, un matériau d'injection de trous organiques et son utilisation. Le matériau d'injection de trous organiques est un dérivé de cycle à cinq chaînons double substitué par un groupe déficient en électrons, et un cycle à cinq chaînons double comprend, mais n'est pas limité à, un cycle à cinq chaînons double composé de groupes thiophène, furane ou sélénophène. La synthèse du matériau est simple, et la production à grande échelle est facilitée. Des structures de niveau d'énergie HOMO et LUMO du matériau sont appropriées, ce qui facilite l'injection de supports. Le matériau prend un groupe substituant et le cycle à cinq chaînons double en tant que noyau, de telle sorte que la transmission de porteurs dans un dispositif est facilitée. Le matériau a un niveau d'énergie LUMO/HOMO élevé, de telle sorte que des trous peuvent être facilement transmis à partir d'une anode ITO à une couche de transport de trous. Une diode électroluminescente organique préparée à partir du matériau de couche d'injection de trous décrit est utilisée et présente une efficacité d'émission de lumière et une durée de vie de dispositif relativement élevées, peut améliorer l'efficacité de conversion photoélectrique lorsqu'elle est appliquée à une cellule solaire à pérovskite, et a une valeur commerciale relativement élevée.
PCT/CN2022/120874 2022-09-23 2022-09-23 Matériau d'injection de trous organiques et utilisation WO2024060203A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120874 WO2024060203A1 (fr) 2022-09-23 2022-09-23 Matériau d'injection de trous organiques et utilisation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120874 WO2024060203A1 (fr) 2022-09-23 2022-09-23 Matériau d'injection de trous organiques et utilisation

Publications (1)

Publication Number Publication Date
WO2024060203A1 true WO2024060203A1 (fr) 2024-03-28

Family

ID=90453644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120874 WO2024060203A1 (fr) 2022-09-23 2022-09-23 Matériau d'injection de trous organiques et utilisation

Country Status (1)

Country Link
WO (1) WO2024060203A1 (fr)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076928A (ja) * 2004-09-09 2006-03-23 Hiroshima Univ ペンタフルオロフェニル基を有する複素芳香族化合物の製造方法
CN102149750A (zh) * 2008-07-18 2011-08-10 芝加哥大学 半导体聚合物
CN102362314A (zh) * 2009-03-23 2012-02-22 巴斯夫欧洲公司 用于有机半导体器件的二酮吡咯并吡咯聚合物
CN102482402A (zh) * 2009-05-21 2012-05-30 破立纪元有限公司 共轭聚合物及其在光电子器件中的用途
JP2012234877A (ja) * 2011-04-28 2012-11-29 Konica Minolta Holdings Inc 有機光電変換素子及び太陽電池
KR20140047812A (ko) * 2012-10-15 2014-04-23 경상대학교산학협력단 신규한 유기 반도체 화합물 및 이의 제조방법
CN104530747A (zh) * 2014-12-02 2015-04-22 中国科学院化学研究所 基于不对称的吡咯并吡咯二酮为共轭桥的有机光敏染料
US20150344630A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Process of producing and applications of a multi-component benzo[1,2-b:4,5-b] difluorothienothiophene randomly substituted polymers for organic solar cells
US20150344608A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Composition and applications of a multi-component benzo[1,2-b:4,5-b] dithiophene-difluorothienothiophene randomly substituted polymers for organic solar cells
US20150344495A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Process of making difluorothienothiophene based conjugated polymers
US20150349261A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Difluorothienothiophene based conjugated polymers
KR20170116981A (ko) * 2016-04-12 2017-10-20 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
CN107936038A (zh) * 2017-11-22 2018-04-20 北京大学深圳研究生院 一种oled电子传输层材料及其制备方法和应用
JP2020100785A (ja) * 2018-12-25 2020-07-02 東洋インキScホールディングス株式会社 蛍光標識剤
CN113024579A (zh) * 2021-03-03 2021-06-25 北京大学深圳研究生院 类苯并噻吩并[3,2-b]苯并噻吩的空穴传输材料及其制备方法和应用
CN114195825A (zh) * 2021-11-30 2022-03-18 北京大学深圳研究生院 一种萘并五元杂环并苯并五元杂环电子传输材料及其制备方法与有机发光器件
CN114230770A (zh) * 2021-12-29 2022-03-25 河北科技大学 一种二噻吩并磷杂环戊二烯类聚合物及其制备方法和应用

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076928A (ja) * 2004-09-09 2006-03-23 Hiroshima Univ ペンタフルオロフェニル基を有する複素芳香族化合物の製造方法
CN102149750A (zh) * 2008-07-18 2011-08-10 芝加哥大学 半导体聚合物
CN102362314A (zh) * 2009-03-23 2012-02-22 巴斯夫欧洲公司 用于有机半导体器件的二酮吡咯并吡咯聚合物
CN102482402A (zh) * 2009-05-21 2012-05-30 破立纪元有限公司 共轭聚合物及其在光电子器件中的用途
JP2012234877A (ja) * 2011-04-28 2012-11-29 Konica Minolta Holdings Inc 有機光電変換素子及び太陽電池
KR20140047812A (ko) * 2012-10-15 2014-04-23 경상대학교산학협력단 신규한 유기 반도체 화합물 및 이의 제조방법
US20150344608A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Composition and applications of a multi-component benzo[1,2-b:4,5-b] dithiophene-difluorothienothiophene randomly substituted polymers for organic solar cells
US20150344630A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Process of producing and applications of a multi-component benzo[1,2-b:4,5-b] difluorothienothiophene randomly substituted polymers for organic solar cells
US20150344495A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Process of making difluorothienothiophene based conjugated polymers
US20150349261A1 (en) * 2014-05-30 2015-12-03 Solarmer Energy, Inc. Difluorothienothiophene based conjugated polymers
CN104530747A (zh) * 2014-12-02 2015-04-22 中国科学院化学研究所 基于不对称的吡咯并吡咯二酮为共轭桥的有机光敏染料
KR20170116981A (ko) * 2016-04-12 2017-10-20 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
CN107936038A (zh) * 2017-11-22 2018-04-20 北京大学深圳研究生院 一种oled电子传输层材料及其制备方法和应用
JP2020100785A (ja) * 2018-12-25 2020-07-02 東洋インキScホールディングス株式会社 蛍光標識剤
CN113024579A (zh) * 2021-03-03 2021-06-25 北京大学深圳研究生院 类苯并噻吩并[3,2-b]苯并噻吩的空穴传输材料及其制备方法和应用
CN114195825A (zh) * 2021-11-30 2022-03-18 北京大学深圳研究生院 一种萘并五元杂环并苯并五元杂环电子传输材料及其制备方法与有机发光器件
CN114230770A (zh) * 2021-12-29 2022-03-25 河北科技大学 一种二噻吩并磷杂环戊二烯类聚合物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DING SHANG, NI ZHENJIE, HU MENGXIAO, QIU GEGE, LI JIE, YE JUN, ZHANG XIAOTAO, LIU FENG, DONG HUANLI, HU WENPING: "An Asymmetric Furan/Thieno[3,2‐ b ]Thiophene Diketopyrrolopyrrole Building Block for Annealing‐Free Green‐Solvent Processable Organic Thin‐Film Transistors", MACROMOLECULAR RAPID COMMUNICATIONS, WILEY-VCH, DE, vol. 39, no. 15, 1 August 2018 (2018-08-01), DE , pages 1800225, XP093150051, ISSN: 1022-1336, DOI: 10.1002/marc.201800225 *
HUI‐JUN YUN; YUN‐JI LEE; SEUNG‐JIN YOO; DAE SUNG CHUNG; YUN‐HI KIM; SOON‐KI KWON: "Synthesis of Poly(benzothiadiazole‐co‐dithienobenzodithiophenes) and Effect of Thiophene Insertion for High‐Performance Polymer Solar Cells", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 19, no. 39, 12 August 2013 (2013-08-12), DE, pages 13242 - 13248, XP071838187, ISSN: 0947-6539, DOI: 10.1002/chem.201300445 *
KAZUO TAKIMIYA, NAOTO NIIHARA, TETSUO OTSUBO: "Syntheses of 2-(Pentafluorophenyl)thiophene Derivatives via the Palladium-Catalyzed Suzuki Reaction", SYNTHESIS, THIEME CHEMISTRY, no. 10, 1 January 2005 (2005-01-01), pages 1589 - 1592, XP055191042, ISSN: 00397881, DOI: 10.1055/s-2005-865335 *

Similar Documents

Publication Publication Date Title
CN110862381B (zh) 一种有机电致发光化合物及其制备方法和应用
EP2660300B1 (fr) Nouveau composé et dispositif électroluminescent organique l'utilisant
Zhu et al. Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties
Han et al. 1.42-fold enhancement of blue OLED device performance by simply changing alkyl groups on the acridine ring
CN110964021A (zh) 一种以芴为核心的化合物、制备方法及其应用
CN110156612B (zh) 一种具有高迁移率的有机化合物及其应用
KR20100033265A (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
US20220098213A1 (en) Organic compound, electroluminescent material, and use thereof
Qiu et al. Tuning the optoelectronic properties of phenothiazine-based D‒A-type emitters through changing acceptor pattern
WO2023193775A1 (fr) Matériau électronique organique comprenant du phénanthrène et de la phénanthroline et son utilisation
WO2019062686A1 (fr) Composé ayant du cyanobenzène en tant que noyau, et application d'un composé dans des dispositifs oled
WO2021237820A1 (fr) Matériau semi-conducteur organique de type p, procédé de préparation et panneau d'affichage
CN113549023A (zh) 一种有机化合物及其应用
CN107021925B (zh) 一种以氮杂二苯并环庚酮为核心的化合物及其在oled上的应用
Zhang et al. Efficient deep blue emitter based on carbazole-pyrene hybrid for non-doped electroluminescent device
CN110577488A (zh) 一种以咔唑为核心的化合物及其在有机电致发光器件上的应用
US20110163300A1 (en) Organic light-emitting material, organic light-emitting element using the same and method of forming the same
WO2024078287A1 (fr) Composé organique, dispositif électroluminescent organique et appareil électronique
CN106946878B (zh) 可采用环境友好溶剂加工的以烷基菲罗啉单元为核的双极性发光材料及其制备方法与应用
CN111320615B (zh) 一类基于s,s-二氧-二苯并噻吩和菲并咪唑的小分子及其在电致发光器件中的应用
WO2024060203A1 (fr) Matériau d'injection de trous organiques et utilisation
WO2019185060A1 (fr) Composé utilisant du bi-diméthylfluorène lié à l'arylamine en tant que noyau, et utilisation associée
CN109912564B (zh) 一种以氰基氮杂苯为核心的化合物及其在oled器件上的应用
CN115385898A (zh) 含氮化合物、有机电致发光器件和电子装置
CN111606853B (zh) 一种芳胺类化合物、有机发光器件及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959210

Country of ref document: EP

Kind code of ref document: A1