WO2024060030A1 - 雾化芯及雾化装置 - Google Patents

雾化芯及雾化装置 Download PDF

Info

Publication number
WO2024060030A1
WO2024060030A1 PCT/CN2022/120006 CN2022120006W WO2024060030A1 WO 2024060030 A1 WO2024060030 A1 WO 2024060030A1 CN 2022120006 W CN2022120006 W CN 2022120006W WO 2024060030 A1 WO2024060030 A1 WO 2024060030A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
channel
wall
base body
core according
Prior art date
Application number
PCT/CN2022/120006
Other languages
English (en)
French (fr)
Inventor
张后全
陈伟君
Original Assignee
深圳市卓力能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市卓力能技术有限公司 filed Critical 深圳市卓力能技术有限公司
Priority to PCT/CN2022/120006 priority Critical patent/WO2024060030A1/zh
Publication of WO2024060030A1 publication Critical patent/WO2024060030A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts

Definitions

  • the present application relates to the field of atomization technology, and in particular provides an atomization core and an atomization device having the atomization core.
  • Atomization devices are also called electronic atomization devices, electronic atomizers, etc.
  • Existing atomization devices can be used to atomize internally stored fluid media such as smoke liquid and medical liquids by heating to form a liquid that can be inhaled by the user. Aerosol.
  • an atomization device generally includes a power supply part and an atomization part.
  • the power supply part is used to supply power to the atomization part to make the atomization part work.
  • the atomization part is equipped with mutually isolated liquid storage chambers and air ducts.
  • An atomization core is installed in the air duct.
  • the atomization core is in fluid contact with the atomization liquid in the liquid storage chamber.
  • the atomization core is the core part of the electronic atomization device. When the atomizer core is powered on, it heats the atomization medium to form an aerosol that can be inhaled by the user.
  • atomizing cores have a columnar structure, with an atomizing channel extending along its axial direction and having the same inner diameter.
  • the heating wires are arranged in a spiral distribution on the inner wall of the atomizing channel to provide mist. heat required.
  • the design of a uniform inner diameter of the atomization channel can easily lead to problems of splashing and clogging of the atomized medium.
  • One of the purposes of the embodiments of the present application is to provide an atomizing core and an atomizing device, aiming to solve the problem that the existing atomizing core is prone to splashing of atomizing medium and the atomizing channel is prone to being blocked.
  • an atomizing core including:
  • the base body is used to contact the atomization medium.
  • the interior of the base body is provided with atomization channels penetrating to both ends.
  • the cross-section of the atomization channel perpendicular to its extension direction is a non-circular cross-section to prevent the The closed liquid film formed by the atomization medium in the atomization channel;
  • Heating element the heating element is arranged in the atomization channel and used to heat the atomization medium.
  • the minimum distance from the central axis of the atomization channel to the inner wall of the atomization channel is 1.5mm ⁇ 3.5mm.
  • the inner wall of the atomization channel is the atomization surface
  • the peripheral side of the base body is the liquid suction surface
  • the distance from the liquid suction surface to the atomization surface is the wall thickness of the base body
  • the wall thickness of the base body is at least partially unequal
  • the atomization surface includes at least one first inner wall, the first inner wall is a plane, and the heating element is disposed on the first inner wall.
  • the wall thickness of the base body is at least partially unequal in the circumferential direction of the base body; and/or,
  • the wall thickness of the base body is at least partially unequal.
  • the cross-sectional area of the outer contour of the base body is equal everywhere, and the size of the cross-sectional area of the atomization channel is from one end of the base body to the other end. Departments are reduced step by step.
  • the number of the first inner walls is two and they are arranged oppositely.
  • the heating element includes two heating parts, and the heating parts are arranged on the corresponding first inner walls.
  • the distance a between the two first inner walls is 1.5 mm to 2.8 mm.
  • each of the heating parts is provided with an embedded part that is parallel to the corresponding first inner wall and extends along the radial direction of the base body and is embedded in the base body.
  • the cross section of the atomization channel is polygonal.
  • the atomization surface further includes two second inner walls arranged oppositely, and the two first inner wall mirrors and the two second inner walls enclose to form the atomization channel.
  • the second inner wall is a plane, and the distance b between two second inner walls is 2.0mm ⁇ 3.5mm.
  • connection between the first inner wall and the second inner wall is chamfered.
  • the present application also provides an atomization device, including:
  • An oil storage component the oil storage component is provided with a liquid storage cavity
  • a breather tube, the breather tube is arranged in the oil storage chamber, and an air channel and an oil inlet hole connecting the air channel and the liquid storage chamber are provided in the breather tube;
  • the atomizing core as described above the atomizing core is placed in the air passage at a position corresponding to the oil inlet hole, and the peripheral side of the base body of the atomizing core is connected to the oil inlet hole through the oil inlet hole.
  • the atomized medium in the oil storage chamber is in contact.
  • the beneficial effect of the atomizing core is that: the interior of the base body has atomization channels that penetrate the opposite ends of the base body.
  • the atomization medium enters from the outer wall of the base body, passes through the core of the base body, and then adheres to the atomization core. on the inner wall of the channel.
  • the cross section of the atomization channel perpendicular to its extension direction is a non-circular cross section.
  • the atomization airflow in the atomization channel is centered on the central axis of the atomization channel, and forms a plurality of different airflow isobars from the inside to the outside with the central axis as the center in the radial direction of the atomization channel.
  • the cross-section of the atomization channel is circular, and the airflow isobars formed are evenly distributed, which makes it easier to form bubbles, making it easy to be taken out of the atomization channel when the atomization airflow flows. External rupture occurs, resulting in splashing of atomized media.
  • the uniformity of the air flow isobars near the inner wall in the atomization channel of the present application will be destroyed, which can reduce the formation of air bubbles in the atomization channel, thereby reducing the problem of splashing of the atomized medium.
  • the distance from the central axis to the inner peripheral wall of the atomization channel with a non-circular cross-section may also be unequal.
  • the liquid film formed by the atomization medium molecules cannot form a seal in the central area of the atomization channel.
  • when the liquid film is in an unstable state easily broken by the air flow, thus unable to block the atomization channel.
  • the beneficial effect of the atomization device provided by the embodiment of the present application is that on the basis of having the above-mentioned atomization core, the occurrence of hole blocking caused by the viscosity of the oil can be reduced.
  • Figure 1 is a schematic structural diagram of an atomizing core provided by an embodiment of the present application.
  • FIG2 is a top view of the atomizer core provided in Example 1 of the present application.
  • Figure 3 is a cross-sectional view of the atomizing core provided in Embodiment 2 of the present application.
  • Figure 4 is a top view of the atomizing core provided in Embodiment 3 of the present application.
  • Figure 5 is a top view of the atomizing core provided in Embodiment 4 of the present application.
  • Figure 6 is a schematic cross-sectional structural diagram of a liquid film of atomizing medium in the atomizing channel of the atomizing core provided by the embodiment of the present application;
  • Figure 7 is another schematic cross-sectional structural diagram of a liquid film of atomizing medium in the atomizing channel of the atomizing core provided by the embodiment of the present application;
  • Figure 8 is a schematic cross-sectional structural diagram of the air flow isobars formed in the atomization channel of the atomization core provided by the embodiment of the present application;
  • Figure 9 is a schematic structural diagram of the heating element of the atomizing core provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of an atomization device provided by an embodiment of the present application.
  • Figure 11 is a schematic cross-sectional structural diagram of a liquid film of atomizing medium in the atomizing channel of the atomizing core in the prior art
  • Figure 12 is another schematic cross-sectional structural diagram of a liquid film of atomizing medium in the atomizing channel of the atomizing core in the prior art
  • FIG. 13 is a schematic cross-sectional structure diagram of air flow isobars formed in an atomization channel of an atomization core in the prior art.
  • the atomizing core 01 is mostly a cylindrical structure, used to match the circular tube-shaped breather tube in the atomizing device.
  • an atomization channel 03 is opened in the atomization core 01 .
  • the atomization channel 03 extends along the axial direction of the cylindrical structure of the atomization core 01 .
  • the heating element is arranged in a spiral state and installed in the atomization channel 03 . Taking into account the structural strength and processing technology, the wall thickness of the atomization core 01 is consistent in the radial direction and the axial direction.
  • the airflow in the atomization channel 03 is centered on the central axis of the atomization channel 03, along the In the radial direction of the atomization channel 03, multiple different airflow isobars 04 are formed from the inside to the outside with the central axis as the center (the dotted line part shown in Figure 13). Each airflow isobars 04 are evenly distributed and atomized.
  • the aerosol formed by the medium and its atomization is easy to form bubbles in the atomization channel 03, so that when the air flow flows, it is easy to be taken out of the atomization channel 03 and rupture, resulting in the problem of oil splashing.
  • the radius of the liquid film molecules of the atomized medium can generally be considered as a fixed value.
  • the distance from the central axis to the inner peripheral wall of the atomization channel 03 is equal. On any cross-section perpendicular to the central axis, the liquid film molecules can easily form a closed liquid film 02 with balanced force in the atomization channel. (The black area shown in Figure 12), thereby blocking the atomization channel.
  • the present application provides an atomizing core 100.
  • the structure of the atomizing channel 20a and the thickness distribution of the wall thickness of the atomizing core 100 are adjusted so that the distance between the peripheral side wall of the atomizing core 100 and the inner wall of the atomizing channel 20a is There is a difference.
  • the atomizing core 100 of the present application includes a base 20 and a heating element 10.
  • the heating element 10 is used to provide the heat required for atomization of the atomizing medium; to heat the base body 20.
  • the base body 20 is used to carry and transmit the atomized medium.
  • the base body 20 is made of porous material, such as ceramics or porous glass, but is not limited thereto.
  • An atomization channel 20a is provided inside the base body 20 and extends to both ends.
  • the cross-section of the atomization channel 20a perpendicular to its extension direction is a non-circular cross-section to prevent the atomization medium from forming in the atomization channel 20a. closed liquid film.
  • the atomization channel 20a has a non-circular cross-section.
  • the atomization medium cannot form a stable liquid film 101 with balanced force in the atomization channel 20a (the dotted line portion shown in Figure 6 forms The liquid film molecules of the liquid film (the black area shown in Figure 7 is the liquid film), that is, it is difficult to form a stable closed liquid film 101 in the atomization channel 20a, thereby preventing the liquid film 101 of the atomized medium from misting The problem of clogging of chemical channels.
  • the distance from the inner wall of the base body 20 (ie, the inner wall of the atomization channel 20a) to the outer wall of the base body 20 is unequal, so that the thickness of the base body 20 is at least partially unequal.
  • the transmission distance of the atomized medium from the outer wall of the base 20 to the inner wall of the atomization channel 20a is different. That is, during heating and atomization, the transmission driving force or transmission amount of the atomized medium in different places is different, and the mist with different transmission speeds will be different.
  • the atomized medium will destroy the formation of the liquid film 101, making it impossible for the atomized medium to form a stable liquid film 101, and thus the closed liquid film 101 cannot be formed to block the atomization channel 20a.
  • the heating element 10 is arranged in the atomization channel 20a.
  • the shape and structure of the heating element 10 are not limited, and its installation position is not limited either.
  • the cross-section of the atomization channel 20a perpendicular to its extension direction is a non-circular cross-section, which means that the cross-section can be of any shape except a circular cross-section.
  • the cross-section of the atomization channel 20a perpendicular to its extension direction can be a square cross-section, an elliptical cross-section, a racetrack-shaped cross-section, etc.
  • the shape and size of the outer contour of the base 20 are consistent, and the shape and size of the inner contour of the atomization channel 20a are also consistent.
  • the atomization channel 20a and the base 20 adopt the The eccentric arrangement can result in at least partial unequal wall thicknesses of the base body 20 .
  • the cross-sectional shape of the outer contour of the base 20 may be a circle or a polygon that is the same as the cross-sectional shape of the atomization channel.
  • the shape and size of the outer contour of the base 20 are consistent, while the shape and size of the inner contour of the atomization channel 20a has a tendency to decrease, increase, first decrease and then Various changing trends that increase or first increase and then decrease.
  • the wall thickness of the base body 20 can also be at least partially unequal.
  • the atomizing core provided by this application has atomizing channels running through the opposite ends of the base 20 inside the base 20.
  • the atomizing medium enters from the outer wall of the base 20, passes through the core of the base 20, and then adheres to the atomizing channel 20a. on the inner wall.
  • the cross section of the atomization channel 20a perpendicular to its extension direction is a non-circular cross section.
  • the atomization airflow in the atomization channel 20a is centered on the central axis of the atomization channel 20a, and forms multiple different airflows from the inside to the outside with the central axis as the center in the radial direction along the atomization channel 20a. Press line 102 (dotted line shown in Figure 8).
  • the airflow isobars 102 formed are evenly distributed, which makes it easier to form bubbles, making it easier to bring out the mist when the atomization airflow flows.
  • the atomized medium is ruptured outside the atomization channel 20a, causing the atomized medium to splash.
  • the uniformity of the air flow isobars 102 near the inner wall in the atomization channel 20a of the present application will be destroyed, which can reduce the formation of air bubbles in the atomization channel 20a, thereby reducing the problem of atomized medium splashing.
  • the distance from the central axis to the inner peripheral wall of the atomization channel 20a with a non-circular cross-section may also be unequal.
  • the liquid film 101 formed by the atomization medium molecules cannot form a seal in the central area of the atomization channel 20a.
  • the liquid film 101 is in In an unstable state, it is easily broken by the air flow, so that the atomization channel 20a cannot be blocked.
  • the minimum distance from the central axis of the atomization channel 20a to the inner wall of the atomization channel 20a is 1.5mm ⁇ 3.5mm. It can be understood that the minimum distance from the central axis of the atomization channel 20a to the inner wall of the atomization channel 20a can be 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2.0mm, 2.1mm, 2.2mm, 2.3mm, 2.4 mm, 2.5mm, 2.6mm, 2.7mm, 2.8mm, 2.9mm, 3.0mm, 3.1mm, 3.2mm, 3.3mm, 3.4 mm, 3.5 mm, etc. Within this size range, the atomized medium is atomized to form a closed liquid film 101 .
  • the inner wall of the atomization channel 20a is the atomization surface
  • the peripheral side of the base 20 is the liquid suction surface.
  • the distance from the liquid suction surface to the atomization surface is the wall thickness of the base 20. Wall thicknesses are at least partially unequal;
  • the wall thickness of the base body 20 is at least partially unequal, that is, there are at least two atomization surfaces corresponding to The distance between the liquid suction surfaces is different, or the two positions of the same atomization surface and the corresponding two positions of the liquid suction surface.
  • the wall thickness of the base body 20 is at least partially unequal in the extending direction of the atomization channel 20a. It can be understood that when the base body 20 has a columnar structure, the extension direction of the atomization channel 20a is the axial direction of the base body 20. Then, no matter whether the outer contour of the peripheral side wall of the base body 20 remains consistent in this direction, only the mist
  • the inner wall profile of the atomization channel 20a changes in trend along this direction. For example, the inner wall profile size of the atomization channel 20a shows a decreasing trend, an increasing trend, first decreases and then increases, or first increases along the axial direction of the base body 20. Various changing trends that then decrease.
  • the wall thickness of the base body 20 is at least partially unequal in the direction of the liquid suction surface toward the atomization surface and in the extending direction of the atomization channel 20a. It can be understood that when the base body 20 has a columnar structure, the wall thickness of the base body 20 shows a certain variation trend in both the axial direction and the radial direction of the base body 20, so that the thicknesses are at least partially unequal.
  • the cross-sectional area of the outer contour of the base 20 is equal everywhere, and the size of the cross-sectional area of the atomization channel 20a extends from one end of the base 20 to the other. One end decreases step by step.
  • the base body 20 has a first end and a second end that are oppositely arranged, wherein the first end can be defined as corresponding to the air inlet end of the atomization channel 20a, and the second end can be defined as The end corresponds to the air outlet end of the atomization channel 20a.
  • the cross-sectional area of the atomization channel 20a decreases step by step from the air inlet end to the air outlet end, it can be seen that the cross-sectional area of the air outlet end of the atomization channel 20a is smaller than the cross-sectional area of the air inlet end.
  • the heating element 10 When heat is generated, the atomization surface of the atomization channel 20a heats up. Since the cross-sectional area of the air outlet is smaller, the atomized medium can be prevented from splashing outward from the air outlet.
  • the first end corresponds to the air outlet end of the atomizing channel 20a
  • the second end corresponds to the air inlet end of the atomizing channel 20a.
  • the heating element 10 makes the heat flux density of the air close to the air inlet end higher than the air far from the air inlet end, thereby reducing the airflow of the external air entering the atomizing channel 20a, and keeping the atomizing channel 20a warm.
  • the atomization surface includes at least one first inner wall 20a1, the first inner wall 20a1 is a plane, and the heating element 10 is disposed on the first inner wall 20a1.
  • the planar first inner wall 20a1 is more adapted to fit the heating element 10, that is, the contact surface between the two is larger, which improves the heat transmission efficiency of the heating element 10 to the first inner wall 20a1.
  • the number of first inner walls 20a1 is two and they are arranged oppositely.
  • the heating element 10 includes two heating parts 11 , and the heating parts 11 are arranged on the corresponding first inner walls 20a1 . It can be understood that symmetrically disposing the two heating parts 11 on the two opposite first inner walls 20a1 can form a symmetrical thermal field distribution, and uniformly heat and raise the atomization surface of the atomization channel 20a, thereby It can prevent the atomization medium from condensing and splashing during the atomization process.
  • the distance a between the two first inner walls 20a1 is 1.5mm ⁇ 2.8mm. It can be understood that the distance a between the two first inner walls 20a1 can be 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2.0mm, 2.1mm, 2.2mm, 2.3mm, 2.4mm, 2.5mm, 2.6mm, 2.7mm and 2.8mm etc.
  • the cross section of the atomization channel 20a is polygonal in the direction of the liquid suction surface toward the atomization surface. It can be understood that by utilizing the polygonal cross-section of the atomization channel 20a, the wall thickness of the base body 20 can be unequal in at least two places. Among them, polygons can be triangles, rectangles, pentagons, etc.
  • the atomization surface also includes two second inner walls 20a2 arranged opposite each other.
  • the two first inner walls 20a1 and the two second inner walls 20a2 enclose to form an atomization surface.
  • Channel 20a It can be understood that in this embodiment, the cross section of the atomization channel 20a is a quadrilateral.
  • the second inner wall 20a2 can also be a plane, and the connection point between the first inner wall 20a1 and the second inner wall 20a2 is perpendicular.
  • the cross section of the atomization channel 20a is rectangular, and the atomization surface of the atomization channel 20a is conducive to forming a symmetrical thermal field, making the temperature distribution more uniform, and improving the atomization effect.
  • the second inner wall 20a2 is a convex surface or a concave surface.
  • the two second inner walls 20a2 are both convex surfaces, or the two second inner walls 20a2 are both concave surfaces; or one second inner wall 20a2 is a convex surface, and one second inner wall 20a2 is a convex surface.
  • 20a2 is a concave surface.
  • the cross-section of the atomization channel 20a is quadrangular, and the atomization surface of the atomization channel 20a is conducive to forming a symmetrical thermal field, making the temperature distribution more uniform, and improving the atomization effect.
  • the second inner wall 20a2 is a plane, and the distance b between the two second inner walls 20a2 is 2.0mm ⁇ 3.5mm.
  • the distance b between the two second inner walls 20a2 may be 2.0mm, 2.1mm, 2.2mm, 2.3mm, 2.4mm, 2.5mm, 2.6mm, 2.7mm, 2.8mm, 2.9mm, 3.0mm, 3.1mm, 3.2 mm, 3.3mm, 3.4 mm, 3.5 mm, etc.
  • connection between the first inner wall 20a1 and the second inner wall 20a2 is chamfered. It can be understood that providing a chamfer at the connection between the two inner walls can avoid stress concentration at the connection between the two inner walls and improve the strength of the base body 20 .
  • the chamfer may be a rounded corner or a C-shaped corner.
  • each heating portion 11 is provided with an embedding portion 12 which is parallel to the corresponding first inner wall 20a1 and extends radially of the base 20 and is embedded in the base 20. It can be understood that the provision of the embedding portion 12 can improve the installation stability of the heating element 10 in the atomization channel 20a, and the heating portion 11 can also provide the embedding portion 12 to increase its heat transfer efficiency to the inner wall of the atomization channel 20a.
  • a plurality of embedded parts 12 are provided on opposite sides of the heating part 11 .
  • the installation stability of the heating element 10 in the atomization channel 20a is improved, and the heating part 11 can also provide embedded parts to increase its heat transfer efficiency to the inner wall of the atomization channel 20a.
  • This embodiment of the present application also provides an atomization device, including an oil storage assembly 201, a breather tube 202, and the atomization core 100 as described above.
  • the oil storage component 201 is provided with a liquid storage chamber 203; the breather pipe 202 is provided in the oil storage chamber 203, and the breather pipe 202 is provided with an air passage 204 and an oil inlet hole 205 connecting the air passage 204 and the liquid storage chamber 203; atomization
  • the core 100 is placed in the air passage 204 at a position corresponding to the oil inlet hole 205 , and the peripheral side of the base body 20 of the atomization core 100 contacts the atomization medium of the oil storage chamber 203 through the oil inlet hole 205 .
  • the atomization device provided by this application on the basis of having the above-mentioned atomization core 100, can reduce the occurrence of hole blocking caused by the viscosity of oil.

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

一种雾化芯(100)及雾化装置,雾化芯(100)包括发热体(10)和基体(20),基体(20)用于与雾化介质接触,基体(20)的内部设有贯穿至两端部的雾化通道(20a),雾化通道(20a)的与其延伸方向相垂直的截面为非圆形截面,以防止雾化介质在雾化通道(20a)内形成的封闭的液膜;发热体(10)设置于雾化通道(20a)内, 用于加热雾化介质。雾化芯(100)在具有雾化通道(20a)的基础上,能够降低雾化介质飞溅以及雾化通道(20a) 被封堵的概率。

Description

雾化芯及雾化装置 技术领域
本申请涉及雾化技术领域,尤其提供一种雾化芯以及具有该雾化芯的雾化装置。
背景技术
雾化装置又称电子雾化装置,电子雾化器等,现有雾化装置可用于通过加热的方式将内部存储的烟液、医疗用途的药液等流体介质雾化形成可用用户抽吸的气溶胶。
具体的,雾化装置一般包括供电部分和雾化部分,供电部分用于给雾化部分供电,以使雾化部分工作。雾化部分内设有相互隔离的储液腔和气道,气道内安装有雾化芯,雾化芯与储液腔的雾化液流体接触,雾化芯为电子雾化装置的核心部分,雾化芯在通电时将雾化介质加热形成可供用户抽吸的气溶胶。
目前,传统的雾化芯大多为柱状结构,其内部开设有沿自身轴向方向延伸且内径一致的雾化通道,发热丝呈螺旋分布地设置在雾化通道的内壁上,其用于提供雾化所需热量。然而,雾化通道的内径一致化的设计,易导致雾化介质飞溅和阻塞的问题。
技术问题
本申请实施例的目的之一在于:提供一种雾化芯及雾化装置,旨在解决现有的雾化芯易出现雾化介质飞溅以及雾化通道易被堵塞的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,本申请实施例提供一种雾化芯,包括:
基体,用于与雾化介质接触,所述基体的内部设有贯穿至两端部的雾化通道,所述雾化通道的与其延伸方向相垂直的截面为非圆形截面,以防止所述雾化介质在所述雾化通道内形成的封闭的液膜;
发热体,所述发热体设置于所述雾化通道内,用于加热所述雾化介质。
在一个实施例中,所述雾化通道的中轴线到所述雾化通道内壁的最小距离为1.5mm~3.5mm。
在一个实施例中,所述雾化通道的内壁为雾化面,所述基体的周侧面为吸液面,所述吸液面至所述雾化面的距离为所述基体的壁厚,所述基体的壁厚至少部分不相等;
其中,所述雾化面包括至少一个第一内壁,所述第一内壁为平面,所述发热体设于所述第一内壁上。
在一个实施例中,在所述基体的周向上,所述基体的壁厚至少部分不相等;和/或,
在所述雾化通道的延伸方向上,所述基体的壁厚至少部分不相等。
在一个实施例中,在所述雾化通道的延伸方向上,所述基体的外轮廓的横截面积处处相等,所述雾化通道的横截面积大小由所述基体的一端部向另一端部逐级递减。
在一个实施例中,所述第一内壁的数量为两个且相对设置,所述发热体包括两个发热部,所述发热部设置于对应的所述第一内壁上。
在一个实施例中,两个所述第一内壁之间的距离a为1.5mm~2.8mm。
在一个实施例中,每一所述发热部均设有平行于对应的所述第一内壁且沿所述基体的径向延伸嵌入所述基体内的嵌入部。
在一个实施例中,在所述吸液面向所述雾化面的方向上,所述雾化通道的横截面为多边形。
在一个实施例中,所述雾化面还包括相对设置的两个第二内壁,两个所述第一内壁镜和两个所述第二内壁围合形成所述雾化通道。
在一个实施例中,所述第二内壁为平面,两个所述第二内壁之间的距离b为2.0mm~3.5mm。
在一个实施例中,所述第一内壁和所述第二内壁的连接处进行倒角设置。
第二方面,本申请实施例还提供一种雾化装置,包括:
储油组件,所述储油组件内设有储液腔;
通气管,所述通气管设置于所述储油腔内,所述通气管内开设有气道以及连通所述气道和储液腔的进油孔;
如上述所述的雾化芯,所述雾化芯置于所述气道内与所述进油孔对应的位置,并且所述雾化芯的基体的周侧面通过所述进油孔与所述储油腔的雾化介质接触。
有益效果
本申请实施例提供的雾化芯的有益效果在于:其基体的内部开设贯穿基体相对两端部的雾化通道,雾化介质由基体的外壁进入,经过基体的芯部,进而附着在雾化通道的内壁上。并且,该雾化通道在垂直于其延伸方向上的截面为非圆形截面。具体地,雾化通道中的雾化气流以雾化通道的中轴线为中心,在沿雾化通道的径向方向上形成以中轴线为中心由内向外形成多个不同的气流等压线。相较于传统的雾化芯的雾化通道的截面呈圆形而言,形成的气流等压线均匀分布,则更容易形成气泡,使得在雾化气流流动时,容易被带出雾化通道外而发生破裂,从而发生雾化介质飞溅。本申请的雾化通道中的靠近内壁处的气流等压线的均匀性会被破坏,能够降低气流在雾化通道内气泡的形成,从而降低雾化介质飞溅的问题。同时,非圆形截面的雾化通道的中轴线到内周壁的距离也可以是非均等,雾化介质分子形成液膜无法在雾化通道的中心区域形成封闭,同时,液膜处于非稳定状态时,容易被气流所冲破,从而无法对雾化通道形成封堵。
本申请实施例提供的雾化装置的有益效果在于:在具有上述雾化芯的基础上,可减小因油液粘稠所导致的堵孔现象的发生。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的雾化芯的结构示意图;
图2为本申请实施例一提供的雾化芯的俯视图;
图3为本申请实施例二提供的雾化芯的剖面图;
图4为本申请实施例三提供的雾化芯的俯视图;
图5为本申请实施例四提供的雾化芯的俯视图;
图6为本申请实施例提供的雾化芯的雾化通道中存有雾化介质的液膜的剖面结构示意图;
图7为本申请实施例提供的雾化芯的雾化芯的雾化通道中存有雾化介质的液膜的另一剖面结构示意图;
图8为本申请实施例提供的雾化芯的雾化通道中形成气流等压线的剖面结构示意图;
图9为本申请实施例提供的雾化芯的发热体的结构示意图;
图10为本申请实施例提供的雾化装置的结构示意图;
图11为现有技术中的雾化芯的雾化通道中存有雾化介质的液膜的剖面结构示意图;
图12为现有技术中的雾化芯的雾化芯的雾化通道中存有雾化介质的液膜的另一剖面结构示意图;
图13为现有技术中的雾化芯的雾化通道中形成气流等压线的剖面结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
目前,如图11至图13所示,雾化芯01多为圆柱状结构,用于与雾化装置内的且呈圆管状的通气管相适配。同时,在雾化芯01内开设雾化通道03,该雾化通道03沿圆柱状结构的雾化芯01的轴向方向延伸,发热体呈螺旋状态设置在安装在雾化通道03内。考虑到结构强度以及加工工艺,雾化芯01的壁厚是在径向方向和轴向方向是一致的,这样,雾化通道03内的气流以雾化通道03的中轴线为中心,在沿雾化通道03的径向方向上,形成以中轴线为中心由内向外形成多个不同的气流等压线04(图13所示的虚线部分),各气流等压线04均匀分布,雾化介质及其雾化形成的气溶胶容易在雾化通道03内形成气泡,使得在气流流动时,容易被带出到雾化通道03外发生破裂,从而发生油液飞溅的问题。同时,雾化介质的液膜分子的半径一般可认为是个定值。而在雾化通道03的中轴线到内周壁的距离为均等,在与中轴线垂直的任一横截面上,液膜分子则容易在雾化通道内形成受力均衡的且封闭的液膜02(图12所示的黑色区域部分),从而对雾化通道形成封堵。
如此,本申请提供一种雾化芯100,调整雾化芯100的雾化通道20a结构以及壁厚的厚度分布等,使得雾化芯100的周侧壁至雾化通道20a的内壁之间距离存在差异化,这样,雾化介质在通过雾化芯100的内部至雾化通道20a的内壁传输驱动力或传输量则存在差异,进而减小雾化介质在雾化通道20a的内壁形成液膜,降低雾化介质飞溅以及因雾化介质的流动性低所引起的阻塞问题。
具体地,请参见如下实施过程:
请参考图1和图2、图6至图8,本申请的雾化芯100包括基体20和发热体10。其中,发热体10用于提供雾化介质雾化所需的热量;对基体20进行加热升温。而基体20用于承载和传输雾化介质,这里,基体20为多孔材质,例如,可为陶瓷或多孔玻璃等,但不限于此。
基体20的内部设有贯穿至两端部的雾化通道20a,雾化通道20a的与其延伸方向相垂直的截面为非圆形截面,以防止雾化介质在所述雾化通道20a内形成的封闭的液膜。截面为非圆形截面的雾化通道20a,在这种结构下,使得雾化介质在雾化通道20a内无法形成受力均衡的稳定的液膜101(如图6所示的虚线部分位形成液膜的液膜分子,图7所示的黑色区域部分为液膜),也即难以在雾化通道20a内形成稳定的封闭的液膜101,从而实现防止雾化介质的液膜101对雾化通道形成堵塞的问题。
在一个实施例中,基体20的内壁(即雾化通道20a的内壁)至基体20外壁的距离不等,使得基体20的厚度至少部分不相等。从而,造成雾化介质由基体20的外壁向雾化通道20a的内壁的传输距离不同,即,在加热雾化时,各处雾化介质的传输驱动力或传输量不同,不同传输速度的雾化介质会破坏液膜101的形成,使得雾化介质的无法形成稳定的液膜101,从而无法形成封闭的液膜101封堵雾化通道20a。
发热体10设置于雾化通道20a内。这里,发热体10的形状结构不做限位,以及其设置位置也不做限定。
需要说明地是,雾化通道20a的与其延伸方向相垂直的截面为非圆形截面,是指除圆形截面以外任意的形状的截面均可,例如,雾化通道20a的与其延伸方向相垂直的截面可为方形截面、椭圆形截面、跑道形截面等。
例如,在基体20的轴向方向上,基体20的外轮廓的形状大小是一致的,以及,雾化通道20a的内轮廓的形状大小也是一致的,此时,雾化通道20a与基体20采用偏心设置,从而可造成基体20的壁厚至少部分不相等。其中,基体20的外轮廓的截面形状可以为圆形、或与雾化通道的截面形状相同的多边形。
或者,例如,在基体20的轴向方向上,基体20的外轮廓的形状大小是一致的,而,雾化通道20a的内轮廓的形状大小存在减小趋势、增大趋势、先减小再增大或者先增大后减小的各类变化趋势。此时,也可造成基体20的壁厚至少部分不相等。
本申请提供的雾化芯,其基体20的内部开设贯穿基体20相对两端部的雾化通道,雾化介质由基体20的外壁进入,经过基体20的芯部,进而附着在雾化通道20a的内壁上。并且,该雾化通道20a在垂直于其延伸方向上的截面为非圆形截面。具体地,雾化通道20a中的雾化气流以雾化通道20a的中轴线为中心,在沿雾化通道20a的径向方向上形成以中轴线为中心由内向外形成多个不同的气流等压线102(如图8所示的虚线部分)。相较于传统的雾化芯的雾化通道20a的截面呈圆形而言,形成的气流等压线102均匀分布,则更容易形成气泡,使得在雾化气流流动时,容易被带出雾化通道20a外而发生破裂,从而发生雾化介质飞溅。本申请的雾化通道20a中的靠近内壁处的气流等压线102的均匀性会被破坏,能够降低气流在雾化通道20a内气泡的形成,从而降低雾化介质飞溅的问题。同时,非圆形截面的雾化通道20a的中轴线到内周壁的距离也可以是非均等,雾化介质分子形成液膜101无法在雾化通道20a的中心区域形成封闭,同时,液膜101处于非稳定状态时,容易被气流所冲破,从而无法对雾化通道20a形成封堵。
在一个实施例中,雾化通道20a的中轴线到雾化通道20a内壁的最小距离为1.5mm~3.5mm。可以理解地,雾化通道20a的中轴线到雾化通道20a内壁的最小距离可为1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2.0mm、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm、3.0mm、3.1mm、3.2mm、3.3mm、3.4 mm、3.5 mm等。在该尺寸范围内,雾化介质所雾化形成有封闭的液膜101。
请参考图,在一个实施例中,雾化通道20a的内壁为雾化面,基体20的周侧面为吸液面,吸液面至雾化面的距离为基体20的壁厚,基体20的壁厚至少部分不相等;
可以理解地,当基体20为柱状结构时,吸液面向雾化面的方向为基体20的径向方向,那么,基体20的壁厚至少部分不相等,即至少有两个雾化面与对应的吸液面之间距离不相同,或者,同一雾化面的两个位置与对应的吸液面的两个位置。
或者,在雾化通道20a的延伸方向上,基体20的壁厚至少部分不相等。可以理解地,当基体20为柱状结构时,雾化通道20a的延伸方向为基体20的轴向方向,那么,无论基体20的周侧壁的外轮廓是否在该方向上保持一致,只需雾化通道20a的内壁轮廓沿该方向发生趋势变化,例如,雾化通道20a的内壁轮廓大小沿基体20的轴向方向上呈减小趋势、增大趋势、先减小再增大或者先增大后减小的各类变化趋势。
再或者,在吸液面向雾化面的方向上,和,在雾化通道20a的延伸方向上,基体20的壁厚至少部分不相等。可以理解地,当基体20为柱状结构时,在基体20的轴向方向和径向方向两个方向,基体20的壁厚均呈一定的变化趋势,使得其厚度至少部分不相等。
请参考图3,在一个实施例中,在雾化通道20a的延伸方向上,基体20的外轮廓的横截面积处处相等,雾化通道20a的横截面积大小由基体20的一端部向另一端部逐级递减。可以理解地,在雾化通道20a的延伸方向上,基体20具有相对设置的第一端和第二端,其中,可限定为第一端与雾化通道20a的进气端相对应,第二端与雾化通道20a的出气端相对应。那么,当雾化通道20a的横截面积大小由进气端向出气端逐级递减时,可知,雾化通道20a的出气端的横截面积小于其进气端的横截面积,在发热体10工作发热时,雾化通道20a的雾化面升温,由于出气端的横截面积更小,可以防止雾化介质由出气端向外飞溅。
或者,可限定为第一端与雾化通道20a的出气端相对应,第二端与雾化通道20a的进气端相对应。那么,当雾化通道20a的横截面积大小由出气端向进气端逐级递减时,可知,雾化通道20a的出气端的横截面积大于其进气端的横截面积,这样,雾化通道20a的进气端的内部空间小,发热体10使得靠近进气端的空气的热流密度高于远离进气端的空气,进而可降低外部空气进入雾化通道20a内的气流量,对雾化通道20a进行保温。
以及,雾化面包括至少一个第一内壁20a1,第一内壁20a1为平面,发热体10设于第一内壁20a1上。可以理解地,呈平面的第一内壁20a1更容置与发热体10相贴合,即二者接触面更大,提高发热体10向第一内壁20a1的热传输效率。
请参考图4,在一个实施例中,第一内壁20a1的数量为两个且相对设置,发热体10包括两个发热部11,发热部11设置于对应的第一内壁20a1上。可以理解地,将两个发热部11对称地设置在相对设置的两个第一内壁20a1上,可形成对称式的热场分布,对雾化通道20a的雾化面进行均匀化加热升温,从而可防止雾化过程中的雾化介质冷凝和飞溅。
在一个实施例中,两个第一内壁20a1之间的距离a为1.5mm~2.8mm。可以理解地,两个第一内壁20a1之间的距离a可为1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2.0mm、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm以及2.8mm等。
在一个实施例中,在吸液面向雾化面的方向上,雾化通道20a的横截面为多边形。可以理解地,利用雾化通道20a的横截面呈多边形,可使基体20的壁厚存在至少两处不相等。其中,多边形可为三角形、矩形、五边形等。
具体地,请参考图4和图5,在一个实施例中,雾化面还包括相对设置的两个第二内壁20a2,两个第一内壁20a1和两个第二内壁20a2围合形成雾化通道20a。可以理解地,本实施例中,雾化通道20a的横截面为四边形。
优选地,第二内壁20a2也可为平面,并且,第一内壁20a1和第二内壁20a2相连接处相垂直。这样,雾化通道20a的横截面为矩形,该雾化通道20a的雾化面有利于形成对称热场,温度分布更加均匀,提升雾化效果。
优选地,第二内壁20a2为凸面或凹面,例如,两个第二内壁20a2均为凸面,或者,两个第二内壁20a2均为凹面;或者,一个第二内壁20a2为凸面,一个第二内壁20a2为凹面。同样地,雾化通道20a的横截面为四边形,该雾化通道20a的雾化面有利于形成对称热场,温度分布更加均匀,提升雾化效果。
在一个实施例中,第二内壁20a2为平面,两个第二内壁20a2之间的距离b为2.0mm~3.5mm。两个第二内壁20a2之间的距离b可为2.0mm、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm、3.0mm、3.1mm、3.2mm、3.3mm、3.4 mm、3.5 mm等。
在一个实施例中,第一内壁20a1和第二内壁20a2的连接处进行倒角设置。可以理解地,在两个内壁的连接处设置倒角,能够避免两个内壁的连接处的应力集中,提高基体20的强度。这里,倒角可为倒圆角或者倒C形角。
请参考图4、图5和图9,在一个实施例中,每一发热部11均设有平行于对应的第一内壁20a1且沿基体20的径向延伸嵌入基体20内的嵌入部12。可以理解地,嵌入部12的设置能够提高发热体10在雾化通道20a的安装稳定性,以及,发热部11还可提供嵌入部12增加其对雾化通道20a的内壁的热量传输效率。
优选地,在发热部11的相对两侧均设置多个嵌入部12。这样,通过增加数量嵌入部12的数量来提高发热体10在雾化通道20a的安装稳定性,以及,发热部11还可提供嵌入部增加其对雾化通道20a的内壁的热量传输效率。
请参考图10,本申请实施例还提供一种雾化装置,包括储油组件201、通气管202以及如上述的雾化芯100。
储油组件201内设有储液腔203;通气管202设置于储油腔203内,通气管202内开设有气道204以及连通气道204和储液腔203的进油孔205;雾化芯100置于气道204内与进油孔205对应的位置,并且雾化芯100的基体20的周侧面通过进油孔205与储油腔203的雾化介质接触。
本申请提供的雾化装置,在具有上述雾化芯100的基础上,可减小因油液粘稠所导致的堵孔现象的发生。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

  1. 一种雾化芯,其特征在于,包括:
    基体,用于与雾化介质接触,所述基体的内部设有贯穿至两端部的雾化通道,所述雾化通道的与其延伸方向相垂直的截面为非圆形截面,以防止所述雾化介质在所述雾化通道内形成的封闭的液膜;
    发热体,所述发热体设置于所述雾化通道内,用于加热所述雾化介质。
  2. 根据权利要求1所述的雾化芯,其特征在于:所述雾化通道的中轴线到所述雾化通道内壁的最小距离为1.5mm~3.5mm。
  3. 根据权利要求1所述的雾化芯,其特征在于:所述雾化通道的内壁为雾化面,所述基体的周侧面为吸液面,所述吸液面至所述雾化面的距离为所述基体的壁厚,所述基体的壁厚至少部分不相等;
    其中,所述雾化面包括至少一个第一内壁,所述第一内壁为平面,所述发热体设于所述第一内壁上。
  4. 根据权利要求1所述的雾化芯,其特征在于:在所述基体的周向上,所述基体的壁厚至少部分不相等;和/或,
    在所述雾化通道的延伸方向上,所述基体的壁厚至少部分不相等。
  5. 根据权利要求4所述的雾化芯,其特征在于:在所述雾化通道的延伸方向上,所述基体的外轮廓的横截面积处处相等,所述雾化通道的横截面积大小由所述基体的一端部向另一端部逐级递减。
  6. 根据权利要求3所述的雾化芯,其特征在于:所述第一内壁的数量为两个且相对设置,所述发热体包括两个发热部,所述发热部设置于对应的所述第一内壁上。
  7. 根据权利要求6所述的雾化芯,其特征在于:两个所述第一内壁之间的距离a为1.5mm~2.8mm。
  8. 根据权利要求3所述的雾化芯,其特征在于:每一所述发热部均设有平行于对应的所述第一内壁且沿所述基体的径向延伸嵌入所述基体内的嵌入部。
  9. 根据权利要求3所述的雾化芯,其特征在于:在所述吸液面向所述雾化面的方向上,所述雾化通道的横截面为多边形。
  10. 根据权利要求3所述的雾化芯,其特征在于:所述雾化面还包括相对设置的两个第二内壁,两个所述第一内壁镜和两个所述第二内壁围合形成所述雾化通道。
  11. 根据权利要求10所述的雾化芯,其特征在于:所述第二内壁为平面,两个所述第二内壁之间的距离b为2.0mm~3.5mm。
  12. 根据权利要求10所述的雾化芯,其特征在于:所述第一内壁和所述第二内壁的连接处进行倒角设置。
  13. 一种雾化装置,其特征在于,包括:
    储油组件,所述储油组件内设有储液腔;
    通气管,所述通气管设置于所述储油腔内,所述通气管内开设有气道以及连通所述气道和储液腔的进油孔;
    如权利要求1至12任一项所述的雾化芯,所述雾化芯置于所述气道内与所述进油孔对应的位置,并且所述雾化芯的基体的周侧面通过所述进油孔与所述储油腔的雾化介质接触。
PCT/CN2022/120006 2022-09-20 2022-09-20 雾化芯及雾化装置 WO2024060030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120006 WO2024060030A1 (zh) 2022-09-20 2022-09-20 雾化芯及雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120006 WO2024060030A1 (zh) 2022-09-20 2022-09-20 雾化芯及雾化装置

Publications (1)

Publication Number Publication Date
WO2024060030A1 true WO2024060030A1 (zh) 2024-03-28

Family

ID=90453734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120006 WO2024060030A1 (zh) 2022-09-20 2022-09-20 雾化芯及雾化装置

Country Status (1)

Country Link
WO (1) WO2024060030A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275521A (zh) * 2020-09-18 2021-01-29 深圳市华诚达精密工业有限公司 高效加强式加热组件和雾化装置
CN214547177U (zh) * 2020-12-08 2021-11-02 深圳市华诚达精密工业有限公司 雾化组件及雾化器
CN113712279A (zh) * 2021-08-27 2021-11-30 深圳麦克韦尔科技有限公司 电子雾化装置、雾化器、雾化芯及其雾化芯的制备方法
CN113712262A (zh) * 2021-10-14 2021-11-30 深圳伊卡普科技有限公司 一种陶瓷雾化芯
CN114158776A (zh) * 2022-01-12 2022-03-11 深圳市大迈发展有限公司 雾化组件、雾化器及气溶胶生成装置
CN216019106U (zh) * 2021-08-23 2022-03-15 深圳市新宜康科技股份有限公司 雾化芯、雾化器和电子雾化装置
CN217136845U (zh) * 2022-02-24 2022-08-09 深圳市艾维普思科技有限公司 雾化芯、雾化组件及其电子雾化装置
WO2022167477A1 (en) * 2021-02-03 2022-08-11 Nicoventures Trading Limited A non-combustible aerosol provision device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275521A (zh) * 2020-09-18 2021-01-29 深圳市华诚达精密工业有限公司 高效加强式加热组件和雾化装置
CN214547177U (zh) * 2020-12-08 2021-11-02 深圳市华诚达精密工业有限公司 雾化组件及雾化器
WO2022167477A1 (en) * 2021-02-03 2022-08-11 Nicoventures Trading Limited A non-combustible aerosol provision device
CN216019106U (zh) * 2021-08-23 2022-03-15 深圳市新宜康科技股份有限公司 雾化芯、雾化器和电子雾化装置
CN113712279A (zh) * 2021-08-27 2021-11-30 深圳麦克韦尔科技有限公司 电子雾化装置、雾化器、雾化芯及其雾化芯的制备方法
CN113712262A (zh) * 2021-10-14 2021-11-30 深圳伊卡普科技有限公司 一种陶瓷雾化芯
CN114158776A (zh) * 2022-01-12 2022-03-11 深圳市大迈发展有限公司 雾化组件、雾化器及气溶胶生成装置
CN217136845U (zh) * 2022-02-24 2022-08-09 深圳市艾维普思科技有限公司 雾化芯、雾化组件及其电子雾化装置

Similar Documents

Publication Publication Date Title
WO2022042654A1 (zh) 一种电子雾化装置及其雾化器、雾化芯
WO2022160909A1 (zh) 电子雾化装置、雾化器及其底座
WO2022048459A1 (zh) 一种防冷凝液雾化芯、雾化器及气溶胶产生装置
WO2023130767A1 (zh) 电子雾化装置及其雾化器
WO2023138216A1 (zh) 电子雾化装置、雾化器及其雾化芯
WO2024060030A1 (zh) 雾化芯及雾化装置
WO2022179233A1 (zh) 发热体组件、雾化器及电子雾化装置
WO2021082598A1 (zh) 雾化器组件及包括该雾化器组件的雾化器设备
CN220088592U (zh) 雾化芯及雾化装置
WO2023151326A1 (zh) 雾化芯、雾化器和电子雾化装置
CN218889286U (zh) 气溶胶发生组件及气溶胶发生装置
WO2022141550A1 (zh) 一种电子雾化装置及其雾化器、雾化芯
WO2023134245A1 (zh) 一种管式发热体、雾化器及电子雾化装置
WO2023035168A1 (zh) 雾化组件及雾化装置
WO2023070322A1 (zh) 一种电子雾化装置及其雾化器、雾化芯
WO2022040866A1 (zh) 电子雾化装置及其雾化器
WO2023005029A1 (zh) 电子雾化装置、雾化器及其雾化组件
WO2024012041A1 (zh) 雾化器及电子雾化装置
WO2024065742A1 (zh) 一种雾化器和电子雾化装置
WO2024065825A1 (zh) 气溶胶发生组件及气溶胶发生装置
CN220236041U (zh) 雾化器及电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
WO2023097618A1 (zh) 雾化组件及电子雾化装置
CN219125403U (zh) 一种雾化芯及雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959042

Country of ref document: EP

Kind code of ref document: A1