WO2024065825A1 - 气溶胶发生组件及气溶胶发生装置 - Google Patents

气溶胶发生组件及气溶胶发生装置 Download PDF

Info

Publication number
WO2024065825A1
WO2024065825A1 PCT/CN2022/123614 CN2022123614W WO2024065825A1 WO 2024065825 A1 WO2024065825 A1 WO 2024065825A1 CN 2022123614 W CN2022123614 W CN 2022123614W WO 2024065825 A1 WO2024065825 A1 WO 2024065825A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
aerosol generating
atomizing
carrier
groove structure
Prior art date
Application number
PCT/CN2022/123614
Other languages
English (en)
French (fr)
Inventor
张海波
翟公高
王鹏
别海涛
Original Assignee
深圳市卓力能技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市卓力能技术有限公司 filed Critical 深圳市卓力能技术有限公司
Priority to PCT/CN2022/123614 priority Critical patent/WO2024065825A1/zh
Publication of WO2024065825A1 publication Critical patent/WO2024065825A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to the field of atomization technology, and in particular to an aerosol generating assembly and an aerosol generating device having the aerosol generating assembly.
  • the atomizer core is a device that atomizes liquid into gas or tiny particles. It is widely used in medical equipment, electronic cigarettes and other devices; for example, the electronic cigarette atomizer core is the core component of the electronic cigarette, which can be used to heat the smoke oil to atomize the smoke oil, turning the smoke oil into a mist aerosol, and then allowing the smoker to inhale through the mouthpiece connected to the atomizer core to simulate the smoking process.
  • the existing aerosol generating components generally adopt two structural forms, square or cylindrical.
  • the heating element is arranged on the atomizing surface of the inner wall of the atomizing core, which is not conducive to the installation and fixation of the heating element, and the atomizing area cannot be enlarged when the outer dimensions are certain and the structural strength needs to be met; and for the atomizing core with a square structure, the heating element and the liquid absorption surface are usually arranged on the corresponding surfaces, and the remaining surfaces need to be used for contact with other structures of the aerosol generating device for fixation, or to form an air gap, and the atomizing area cannot be enlarged. Therefore, whether it is the existing columnar or square atomizing shape, due to the limited size structure, there is a problem of small atomizing area, resulting in small atomization volume.
  • One of the purposes of the embodiments of the present application is to provide an aerosol generating assembly and an aerosol generating device, aiming to solve the problem of small atomization volume caused by the small atomization area of the aerosol generating assembly.
  • an aerosol generating assembly comprising: an atomizing carrier, the atomizing carrier having a first end face, a second end face arranged opposite to the first end face, and a peripheral side face, the two opposite peripheral side faces are inwardly recessed to form a groove structure penetrating the first end face and the second end face, the groove structure is used for atomizing gas to pass through;
  • a heating element is arranged on a groove wall of the corresponding groove structure.
  • the outer contour of the atomizing carrier in the cross-sectional direction parallel to the first end surface is a polygonal structure, and the groove structure is opened on the peripheral side surface or the top corner of the atomizing carrier.
  • the polygonal structure is a rectangle, and the number of the groove structures is two; each of the groove structures is respectively opened on two opposite peripheral sides of the atomization carrier and is symmetrically arranged around the central axis of the atomization carrier.
  • the heating element includes a connecting portion and two heating portions connected to opposite ends of the connecting portion, and each of the heating portions is located at a position corresponding to the groove structure.
  • the connecting portion is at least partially arranged across the first end surface or the second end surface.
  • the distance from the groove side wall of the groove structure to the adjacent peripheral side surface of the atomization carrier is T1
  • the distance between the groove bottom walls of two groove structures is T2
  • T2 is greater than T1.
  • T2 1.5 mm, and T1 ⁇ 0.8 mm.
  • the groove width T3 of the groove structure is greater than the groove depth T4 of the groove structure.
  • the heating element has a heating area, and in the extension direction of the groove structure, the height H2 of the heating area is greater than half of the height H1 of the atomization carrier.
  • the peripheral side surface has at least one liquid absorption surface in contact with the atomized liquid; and/or the first end surface and/or the second end surface is a liquid absorption surface in contact with the atomized liquid.
  • an aerosol generating device comprising the aerosol generating assembly described above.
  • the beneficial effect of the aerosol generating assembly provided by the embodiment of the present application is that: the aerosol generating assembly provided by the present application forms a groove structure that penetrates the first end face and the second end face on any two opposite circumferential sides of the atomizing carrier, that is, the aerosol generating assembly has two atomizing channels for the atomized gas to rise or pass through, and the groove structure has a larger surface area, which is convenient for the installation and setting of the heating element.
  • the groove structure does not cause the atomization surface area to be reduced due to the assembly space.
  • the extension direction of the groove structure is the atomization rising direction of the atomized gas, which shortens the transmission path of the atomized gas and reduces the energy consumption of the atomized gas.
  • the atomization amount of the atomized gas generated by the aerosol generating assembly of the present application is larger, and the transmission path has no turns, and the entire transmission process is smoother, thereby reducing the probability of condensation of the atomized gas during the transmission process, ensuring the continuity of the atomization effect.
  • the beneficial effect of the aerosol generating device provided in the embodiment of the present application is that: the aerosol generating device provided in the present application, on the basis of having the above-mentioned aerosol generating component, the aerosol generating device obtains a higher atomization amount per unit time, and the user experience effect is better.
  • FIG1 is a schematic structural diagram of an aerosol generating assembly provided in Example 1 of the present application.
  • FIG2 is a front view of the aerosol generating assembly provided in Example 1 of the present application.
  • FIG3 is a top view of the aerosol generating assembly provided in Example 1 of the present application.
  • FIG4 is a top view of the aerosol generating assembly provided in Example 2 of the present application.
  • FIG5 is a top view of an aerosol generating assembly provided in Example 3 of the present application.
  • FIG6 is a schematic structural diagram of a heating element of an aerosol generating assembly provided in an embodiment of the present application.
  • FIG7 is a top view of an aerosol generating assembly provided in Example 4 of the present application.
  • FIG8 is a top view of an aerosol generating assembly provided in Example 5 of the present application.
  • FIG9 is a top view of an aerosol generating assembly provided in Example 6 of the present application.
  • FIG10 is a top view of an aerosol generating assembly provided in Example 7 of the present application.
  • FIG11 is a schematic diagram of the structure of an aerosol generating assembly provided in Example 8 of the present application.
  • FIG12 is a cross-sectional view of an aerosol generating device provided in an embodiment of the present application.
  • first and second are only used for the purpose of convenience of description, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features.
  • the meaning of “multiple” is two or more, unless otherwise clearly and specifically defined.
  • the atomizer core is mostly a cylindrical structure, which is used to match the circular tubular ventilation tube in the aerosol generating device.
  • an atomization channel is opened in the atomizer core, which extends along the axial direction of the cylindrical atomizer core, and the heating element 20 is installed in the atomization channel.
  • the inner diameter of the atomization channel cannot be too large, which leads to the limited contact area between the heating element 20 and the inner wall of the atomization channel, thereby affecting the amount of smoke of the atomized gas formed per unit time.
  • the present application provides an aerosol generating assembly 100, which is specifically described by the following embodiments:
  • the aerosol generating assembly 100 of the embodiment of the present application includes an atomizing carrier 10 and a heating element 20.
  • the atomizing carrier 10 is used for atomizing liquid such as atomizing liquid to adhere to, and the heating element 20 generates heat under the action of an external power supply to atomize the atomizing liquid attached to the surface of the atomizing carrier 10.
  • the atomizing carrier 10 has a first end face 10a, a second end face 10b arranged opposite to the first end face 10a, and a peripheral side face.
  • the two opposite peripheral side faces are inwardly recessed to form a groove structure 10c that penetrates the first end face 10a and the second end face 10b, and the groove structure 10c is used for the passage of the atomized gas.
  • the atomizing carrier 10 is assembled in the ventilation structure of the aerosol generating device. Usually, the atomizing carrier 10 is a cubic structure.
  • the first end face 10a and the second end face 10b of the atomizing carrier 10 are end faces perpendicular to the flow direction of the atomized gas, and the peripheral side face is a side face parallel to the flow direction of the atomized gas. Therefore, the groove structure 10c formed on the two opposite peripheral side faces and the accessories of the aerosol generating device, for example, the groove structure 10c and the inner wall of the ventilation structure are enclosed to form an atomizing channel, and the atomized gas is heated and atomized from the atomized liquid in the atomizing channel to form an aerosol, and then discharged to the outside by the ventilation structure. Furthermore, groove structures 10c are respectively provided on two opposite peripheral sides, that is, the notches of the groove structures 10c are oriented in opposite directions.
  • the heating element 20 is arranged on the groove wall of the corresponding groove structure 10c.
  • the atomized liquid is attached to the groove wall of the groove structure 10c of the atomizing carrier 10, and the atomized liquid is atomized and rises in the groove structure 10c under the heating effect of the heating element 20.
  • the first end face 10a, the second end face 10b and the surrounding side wall of the atomizing carrier 10 without forming the groove structure 10c can also be used as the adsorption surface of the atomized liquid.
  • the atomizing carrier 10 itself also adopts a porous material.
  • the atomizing carrier 10 is made of ceramic material, which has a certain storage capacity for the atomized liquid, which helps the atomized gas to be continuously atomized and rises, and avoids the phenomenon of "dry burning".
  • the porous material includes but is not limited to porous ceramics, porous glass, porous metal, cotton, fiber or a composite material composed of at least two of the above.
  • the atomizing carrier 10 is in a cubic structure and can be assembled with an aerosol generating device that is compatible with it.
  • the shape and structure of the atomizing carrier 10 are not limited, as long as it can be compatible and installed with the aerosol generating device.
  • the atomization carrier 10 is a columnar structure
  • the cross-sectional shape of the columnar structure in the radial direction is circular, elliptical, square, etc.
  • the cross-sectional shape of the columnar structure in the radial direction can also be an irregular polygonal structure, such as a star shape, etc.
  • the groove structure 10c forms a concave shape in a direction parallel to the first end surface 10a or the second end surface 10b, and there is no limitation on the size of the concave shapes of the two groove structures 10c.
  • the groove bottom wall of the groove structure 10c is a plane to meet the need for full contact with the heating element 20, and at the same time, the side wall of the groove structure 10c can also be used for laying the heating element 20.
  • the groove bottom wall of the groove structure 10c is also an arc surface, or a pit or a protrusion is formed on the groove bottom wall of the groove structure 10c to adapt to the shape structure of the current heating element 20.
  • the concave shapes of the two groove structures 10c are the same, and the sizes of the concave shapes are also the same.
  • the concave shapes of the two groove structures 10c are the same, but the sizes of the concave shapes of the two groove structures 10c are different.
  • the first end face 10a and the second end face 10b of the atomizing carrier 10 are perpendicular or substantially perpendicular to the flow direction of the atomizing gas, that is, the extension direction of the groove structure 10c is the flow direction of the atomizing gas.
  • the aerosol generating assembly 100 provided in the present application forms a groove structure 10c that penetrates the first end face 10a and the second end face 10b on any two opposite circumferential sides of the atomizing carrier 10, that is, the aerosol generating assembly 100 has two atomizing channels for heating and atomizing the atomized liquid to form an aerosol and for the aerosol to pass through, and the groove structure 10c has a larger surface area, which is convenient for the installation and setting of the heating element 20.
  • the groove structure 10c does not cause the atomization surface area to be reduced due to the assembly space.
  • the extension direction of the groove structure 10c is the flow direction of the atomizing gas, which shortens the transmission path of the atomizing gas and reduces the energy consumption of the atomizing gas.
  • the atomization amount of the atomizing gas generated by the aerosol generating assembly 100 of the present application is larger, and the transmission path has no turns, and the entire transmission process is smoother, thereby reducing the probability of condensation of the atomizing gas during the transmission process, ensuring the continuity of the atomization effect.
  • the outer contour of the atomizing carrier 10 in the cross-sectional direction parallel to the first end face 10a is a circular structure.
  • the atomizing carrier 10 is a cylindrical structure, which can be used to adapt to the ventilation structure in the aerosol generating device whose radial cross-section is also circular.
  • the groove structure 10c is opened on the arc-shaped peripheral side surface of the atomizing carrier 10. That is, the peripheral side surface of the atomizing carrier 10 in this embodiment is a continuous whole surface, so any two relative positions of the peripheral side surface can be recessed inward to form a groove structure 10c.
  • the groove walls of the two groove structures 10c and the inner wall of the ventilation structure enclose to form an atomizing channel.
  • the outer contour of the atomizing carrier 10 in the cross-sectional direction parallel to the first end face 10a is a polygonal structure. It can be understood that the polygonal structure can be a square, a rhombus, a regular hexagon, etc. Similarly, the atomizing carrier 10 is also adapted to a ventilation structure with the same cross-sectional shape. In this embodiment, the atomizing carrier 10 has multiple peripheral side surfaces, and the transition portion of two adjacent peripheral side surfaces also belongs to the peripheral side surface of the atomizing carrier 10. In this way, the groove structure 10c can be opened on the peripheral side surface or the vertex of the atomizing carrier 10. Here, the vertex is the transition portion of two adjacent peripheral side surfaces.
  • the outer contour of the atomization carrier 10 in the cross-sectional direction parallel to the first end surface 10 a is a square, and corresponding groove structures 10 c are provided at two opposite vertex corners.
  • the outer contour of the atomization carrier 10 in the cross-sectional direction parallel to the first end surface 10 a is a regular octagon, and corresponding groove structures 10 c are provided on two opposite peripheral side surfaces.
  • the polygonal structure is a rectangle, and the number of the groove structures 10c is two; each groove structure 10c is respectively provided on two opposite peripheral side surfaces of the atomizing carrier 10.
  • the concave shapes of the two groove structures 10c are the same, the sizes of the concave shapes are also the same, and the shape of the groove structure 10c in the cross-sectional direction of the first end surface 10a is "]"-shaped, and the two groove structures 10c are symmetrical about the central axis of the atomizing carrier 10, the shape of the atomizing carrier 10 in the cross-sectional direction of the first end surface 10a is "H"-shaped, or is similar to "H"-shaped, then, the atomizing carrier 10 with an "H"-shaped cross section has a high overall structural strength, especially in the direction of the peripheral side surface without the groove structure 10c, the compressive strength is higher, and the two peripheral side surfaces without the groove structure 10c are straight and parallel, which is convenient for matching with the
  • the heating element 20 includes a connecting portion 21 and two heating portions 22 connected to opposite ends of the connecting portion 21 , and each heating portion 22 is located at a corresponding groove structure 10 c.
  • the connecting portion 21 and the two heating portions 22 form an integral structure, that is, the three are connected in series.
  • the connecting portion 21 and the two heating portions 22 are arranged in a line, which is convenient for production and manufacturing, for example, by a stamping or etching process.
  • the manufacturing precision of the connecting portion 21 and the heating portion 22 is controllable, and the heating power of the connecting portion 21 and the heating portion 22 can be adjusted according to the needs of use.
  • the area, thickness and shape structure of the heating portion 22 and the connecting portion 21 are adjusted.
  • the two heating portions 22 are bent toward each other to form a roughly U-shaped structure with the connecting portion 21.
  • the connecting portion 21 can be embedded in the atomizing carrier 10 and penetrate the bottom wall of the two groove structures 10c relative to each other, and the connection relationship between the connecting portion 21 and the atomizing carrier 10 is used to improve the connection stability of the heating body 20 as a whole with the atomizing carrier 10.
  • connection portion 21 may also be arranged across the atomizing carrier 10. That is, the connection portion 21 is at least partially arranged across the first end surface 10a or the second end surface 10b. In this case, the connection portion 21 may be located above the first end surface 10a or the second end surface 10b of the atomizing carrier 10 without contacting the first end surface 10a or the second end surface 10b, or may be against the first end surface 10a or the second end surface 10b, or even partially embedded in the first end surface 10a or the second end surface 10b.
  • the connecting part 21 can preheat the air entering the groove structure 10c to prevent the overcooled air from cooling the heating part 22, thereby maintaining the heating temperature of the heating part 22 within a certain range.
  • the aerosol formed in the groove structure 10c condenses due to the sudden drop in air temperature when flowing out, and the formed condensate is heated and atomized again by the connecting part 21, thereby reducing the probability of condensation at the air outlet end of the atomization carrier 10.
  • the connecting portion 21 can preheat the atomized medium on the liquid absorption surface, improve the fluidity of the atomized medium, and reduce the occurrence of dry burning.
  • the components with a lower atomization temperature in the atomized medium can be atomized at the connecting portion 21 to form aerogel, thereby enriching the composition of the final aerogel and improving the smoking taste.
  • the distance from the groove side wall of the groove structure 10c to the adjacent side wall of the atomizing carrier 10 is T1, and the distance between the groove bottom walls of the two groove structures 10c is T2, and T2 is greater than T1.
  • the shape of the groove structure 10c in the cross-sectional direction of the first end face 10a is "]" type, and the shape structure of the atomizing carrier 10 in the cross-sectional direction of the first end face 10a is square.
  • the direction in which the atomizing carrier 10 is provided with the groove structure 10c is defined as the length direction, and the direction in which the atomizing carrier 10 is not provided with the groove structure 10c is the width direction.
  • the atomizing carrier 10 is composed of an abdomen and two wings protruding on the abdomen in the width direction of the atomizing carrier 10, and the thickness of the wing is T1, and the thickness of the abdomen is T2.
  • T2 is greater than T1
  • the structural strength of the wing of the atomizing carrier 10 can be guaranteed, which is convenient for production and manufacturing and the assembly support force required by the atomizing carrier 10, thereby improving the structural strength of the entire atomizing carrier 10.
  • T2 ⁇ 1.5mm, T1 ⁇ 0.8mm T2 ⁇ 1.5mm, T1 ⁇ 0.8mm.
  • the liquid conducting area of the atomizing carrier 10 is larger, and the area of the inner surface of the groove of the groove structure 10c is relatively reduced.
  • the area of the inner surface of the groove of the groove structure 10c is the atomization area of the atomizing carrier 10. In this way, on the whole, the liquid conducting area of the atomizing carrier 10 is larger than the atomization area, which can avoid the occurrence of the "dry burning" phenomenon caused by insufficient liquid supply.
  • the groove width T3 of the groove structure 10c is greater than the groove depth T4 of the groove structure 10c. It can be understood that the groove structure 10c forms a wide and shallow groove on the peripheral side of the atomizing carrier 10. In this way, the structural strength of the connection between the wing and the abdomen of the atomizing carrier 10 is higher and it is not easy to break at the connection between the two. In addition, the groove width of the groove structure 10c is wider. If the groove bottom wall of the groove structure 10c is used as the mounting surface of the heating element 20, then the heating area of the atomizing carrier 10 is relatively larger, and the overall heating of the atomizing carrier 10 is more uniform. At the same time, the heating element 20 can also obtain a larger mounting surface, which is also easier to install.
  • the heating element 20 has a heating area 20a, and in the extension direction of the groove structure 10c, the height H2 of the heating area 20a is greater than half of the height H1 of the atomizing carrier 10. It can be understood that the larger the heating area 20a of the heating element 20 is, the larger its own heating area is, so that heat can be transferred to the atomizing carrier 10.
  • the heating element 20 can be a heating sheet formed by etching or stamping.
  • the heating sheet can be pre-installed with the embryo of the atomizing carrier 10, and then the heating sheet and the embryo of the atomizing carrier 10 are sintered simultaneously to form the aerosol generating assembly 100.
  • the heating element 20 may also be provided with a thermally conductive slurry on the atomizing carrier 10 by a coating or printing process.
  • the atomizing carrier 10 may be a ceramic carrier after sintering.
  • the heating element 20 includes a connecting portion 21 and two heating portions 22 connected to the connecting portion 21.
  • the heating portions 22 are arranged in the groove structure 10c in a one-to-one correspondence.
  • the connecting portion 21 penetrates the atomization carrier 10 to the bottom wall of the two groove structures 10c and is connected to the same end of the two heating portions 22. It can be understood that the connecting portion 21 and the two heating portions 22 are connected in series, and the ends of the two heating portions 22 away from the connecting portion 21 are electrically connected to the positive and negative electrodes of the power supply battery, respectively, so as to ensure the working heat generation of the heating portion 22.
  • the connecting portion 21 passes through the atomizing carrier 10 and through the bottom walls of the two oppositely arranged groove structures 10c, so that all or most of the connecting portion 21 is restricted by the atomizing carrier 10. After the atomizing carrier 10 is sintered and hardened, the connecting portion 21 is restricted by the atomizing carrier 10 and cannot escape from the atomizing carrier 10 in the direction from the first end face 10a toward the second end face 10b. In addition, when the two heating portions 22 abut against the groove walls of the corresponding groove structures 10c, the connecting portion 21 also cannot escape from the atomizing carrier 10 in the opening direction of the two groove structures 10c. Finally, the heating body 20 can be firmly set on the atomizing carrier 10.
  • At least one heating portion 22 is laid flat on the bottom wall of the corresponding groove structure 10c.
  • the bottom wall of the groove structure 10c is compatible with the shape and structure of the heating portion 22.
  • the bottom wall of the groove structure 10c can be a plane, and the heating portion 22 is a sheet structure, so as to ensure that the two are fully in contact with each other and avoid warping or unevenness.
  • the bottom wall of the groove structure 10c can also be adaptively adjusted according to the shape design of the heating portion 22 of the heating element 20.
  • the heating portion 22 is set to an arc structure, then the bottom wall of the groove structure 10c can also be designed as a corresponding arc surface.
  • One of the heating parts 22 can be arranged flat on the bottom wall of the groove structure 10c, and both heating parts 22 can be laid flat on the bottom wall of the corresponding groove structure 10c.
  • the shape design of the two heating parts 22 is adapted to the bottom wall of the groove structure 10c, and the two can be the same or the same.
  • At least a portion of at least one heating portion 22 is embedded in the bottom wall of the corresponding groove structure 10c.
  • the heating portion 22 is embedded in the bottom wall of the groove structure 10c, that is, the plane where it is located is perpendicular to the plane where the bottom wall of the groove structure 10c is located. It should be noted that the perpendicularity here is not strictly absolute perpendicularity, but a vertical relationship defined in the processing process, and therefore, corresponding errors are allowed.
  • One of the heating parts 22 can be vertically embedded in the bottom wall of the groove structure 10c, and both heating parts 22 can be vertically embedded in the bottom wall of the corresponding groove structure 10c.
  • the partial embedding here means that the heating part 22 is partially located in the bottom wall of the groove structure 10c.
  • the part only needs to belong to the heating part 22, and the area embedded in the bottom wall of the groove structure 10c is not limited.
  • the heating part 22 can also be completely embedded in the bottom wall of the groove structure 10c, that is, in the atomization carrier 10.
  • the heating portion 22 can be laid flat on the bottom wall of the groove structure 10c, and the heating portion 22 extends toward the side wall of the groove structure 10c, and is embedded in the side wall of the groove structure 10c or the connection between the side wall of the groove structure 10c and the bottom wall of the groove structure 10c.
  • the heating portion 22 can be connected and fixed to the side wall of the groove structure 10c or the connection between the side wall and the bottom wall in a plane parallel to the bottom wall of the groove structure 10c, thereby reducing the phenomenon of the heating portion 22 warping outwards away from the bottom wall of the groove structure 10c and improving the stability of the heating portion 22 in the groove structure 10c.
  • the groove structure 10c has oppositely disposed side walls, then the opposite sides of the flat heating portion 22 extend toward the corresponding side walls of the groove structure 10c. It can be understood that at least two opposite sides of the heating portion 22 are connected to the side walls of the groove structure 10c or the connection between the side walls and the bottom wall, so that the connection between the heating portion 22 and the groove wall of the groove structure 10c is stable.
  • the peripheral side surface has at least one liquid absorption surface in contact with the atomized liquid. It can be understood that when the outer contour of the atomizing carrier 10 in the cross-sectional direction parallel to the first end surface 10a is a circular structure, then the peripheral side surface of the atomizing carrier 10 is a continuous whole surface, and the liquid absorption surface is formed on the peripheral side surface without the groove structure 10c.
  • the atomizing carrier 10 when the atomizing carrier 10 is a cylindrical structure, its outer contour in the cross-sectional direction parallel to the first end face 10a is a circular structure.
  • the liquid absorption surface is the arc-shaped peripheral side surface without the groove structure 10c.
  • the number of liquid absorption surfaces is also two, and they are arranged oppositely, so that the liquid absorption surface of the atomizing carrier 10 can correspond to the atomized liquid inlet of the aerosol generating device.
  • the atomizing carrier 10 when the atomizing carrier 10 is a cubic structure, its outer contour in the cross-sectional direction parallel to the first end face 10a is a square, and the groove structure 10c is provided on the peripheral side of the atomizing carrier 10. Then, the groove structure 10c is provided on two opposite peripheral side surfaces, and the other two opposite peripheral side surfaces are liquid absorption surfaces.
  • the atomizing carrier 10 when the atomizing carrier 10 is a cubic structure, its outer contour in the cross-sectional direction parallel to the first end face 10a is a square, and the groove structure 10c is provided at the vertex of the atomizing carrier 10. That is, the groove structure 10c is provided at two opposite vertexes, and then, at this time, the atomizing carrier 10 still has four peripheral side surfaces, and therefore, one or several peripheral side surfaces can be selected as the liquid absorption surface.
  • the first end face 10a and/or the second end face 10b serve as a liquid absorption surface in contact with the atomized liquid. It is understandable that after the aerosol generating assembly 100 is assembled with the aerosol generating device, the atomized liquid inlet of the aerosol generating device may be connected to the first end face 10a and/or the second end face 10b, that is, the atomized liquid may directly or indirectly contact the first end face 10a and/or the second end face 10b through the atomized liquid inlet.
  • At least one circumferential side surface of the atomizing carrier 10 may be selected as the liquid absorbing surface in contact with the atomized liquid, and the first end surface 10a and/or the second end surface 10b may be selected as the liquid absorbing surface in contact with the atomized liquid.
  • the two end faces of the atomizing carrier 10 namely, the first end and the second end face 10b, can be selectively used as liquid absorption surfaces.
  • the arc-shaped peripheral side surface without the groove structure 10c can also be selected as the liquid absorption surface.
  • the peripheral side surface of the atomization carrier 10 serves as a liquid absorption surface in contact with the atomized liquid.
  • a liquid collecting structure 10d is formed on the liquid absorption surface of the atomization carrier 10.
  • the liquid collecting structure 10d further absorbs and collects the atomized liquid.
  • liquid gathering structure 10d can increase the total amount of atomized liquid attached to the liquid absorption surface.
  • the liquid gathering structure 10d can gather liquid from the following perspectives:
  • the liquid collecting structure 10d can increase the contact area between the liquid absorption surface and the atomized liquid.
  • the liquid collecting structure 10d is a convex portion or a concave portion formed on the liquid absorption surface. Compared with the liquid absorption surface used for the liquid absorption plane opposite to the liquid inlet hole, forming multiple convex portions or concave portions on the liquid absorption plane further increases the liquid absorption area, that is, the total amount of atomized liquid that can be collected is larger.
  • the convex portion is not limited to structures such as convex teeth and convex ribs, and the concave portion is not limited to pits, grooves, etc.
  • the liquid collecting structure 10d can store the atomized liquid and increase the total amount of the atomized liquid on the aerosol generating assembly 100.
  • the liquid collecting structure 10d is a liquid collecting piece formed on the liquid absorbing surface, and the liquid collecting piece can be made of a capillary material, such as cotton material, etc. In this way, the liquid collecting piece first collects the atomized liquid and then transports it to the liquid absorbing surface.
  • the liquid collecting structure 10d is a non-planar structure formed on the liquid absorbing surface. It can be understood that the liquid collecting structure 10d is integrally formed with the liquid absorbing surface, that is, the non-planar structure is integrally formed with the liquid absorbing surface, and the liquid absorbing area can be increased.
  • the non-planar structure is the opposite structure of the planar structure, that is, any structure that can cause the liquid absorbing area to be in a non-planar structure state can be called a non-planar structure.
  • the non-planar structure may be a convex part and/or a concave part formed on the liquid absorbing surface, wherein the convex part may be a protrusion, a convex rib, etc., and the concave part may be a pit, a groove, etc.
  • the shape structure of the convex part and the concave part is not limited, the number is not limited, and the setting position on the liquid absorbing surface is not limited.
  • a plurality of convex parts distributed in an array may be formed on the liquid absorbing surface, or a plurality of concave parts distributed in an array may be formed on the liquid absorbing surface, or a plurality of concave parts and convex parts distributed in an array may be formed on the liquid absorbing surface.
  • the liquid collecting structure 10d is a concave structure or a convex structure formed on the liquid absorption surface.
  • the concave structure or the convex structure is integrally formed with the liquid absorption surface, and the convex structure or the concave structure can also increase the area of the liquid absorption surface.
  • the convex structure is a structure that protrudes from the liquid absorption surface and extends outward.
  • the protruding position and the protruding shape of the convex structure on the liquid absorption surface are not limited.
  • the convex structure can be convexly arranged in the middle of the liquid absorption surface, and the cross-section of the convex structure in the convex extension direction is arc-shaped.
  • the concave structure is opposite to the convex extension direction of the convex structure.
  • the concave structure is a structure formed by the inward depression of the liquid absorption surface.
  • the concave structure can be concavely arranged in the middle of the liquid absorption surface, and the cross-section of the concave structure in the concave direction is arc-shaped.
  • the atomization carrier 10 has two oppositely arranged liquid absorption surfaces, and a convex structure is respectively arranged in the middle of the two relatively outward surfaces of the two liquid absorption surfaces, and the two convex structures are symmetrical about the symmetry centers of the two liquid absorption surfaces. In this way, the two liquid absorption surfaces bulge outward to form convex arc-shaped surfaces.
  • the convex arc-shaped liquid absorption surfaces have a larger contact area with the oil, and can absorb and gather more mass of oil per unit time, so that the liquid supply of the aerosol generating component 100 is greater than or equal to its atomization amount.
  • the atomizing carrier 10 has two oppositely disposed liquid absorbing surfaces.
  • a concave structure is respectively disposed in the middle of the two oppositely outwardly facing surfaces of the two liquid absorbing surfaces.
  • the two concave structures are symmetrical about the symmetry centers of the two liquid absorbing surfaces.
  • the two liquid absorbing surfaces are concave inwardly concave arc-shaped surfaces.
  • the contact area between the concave arc-shaped liquid absorbing surfaces and the oil is larger, and more oil can be adsorbed and gathered per unit time, so that the liquid supply of the aerosol generating component 100 is greater than or equal to its atomization amount.
  • the distance that the liquid absorbing surface delivers the atomized liquid to the middle area of the atomizing carrier 10 is shortened, so that the aerosol generating component 100 can provide sufficient atomized liquid when working, and prevent the problem of dry burning due to insufficient liquid supply.
  • the temperature of the area defined by the bottom walls of the two groove structures 10c of the atomizing carrier 10 is relatively high, and the liquid absorption surface is sunken in the direction of this area, so that the temperature of the middle position of the atomizing carrier 10 can transfer excess heat to the atomized liquid and preheat it, which can not only improve the fluidity of the atomized liquid, but also prevent the dry burning problem caused by excessive local temperature.
  • the liquid collecting structure 10d is a groove array formed on the liquid absorbing surface, that is, the liquid collecting structure 10d has a groove array formed by a plurality of recesses. It can be understood that the groove array is a groove structure distributed in an array, and therefore, the form of the array distribution is not limited.
  • each groove structure can be arranged at intervals along the width or length direction of the liquid absorbing surface; or, each groove structure can be arranged at intervals along the width and length direction of the liquid absorbing surface; or, each groove structure can be arranged at intervals along the direction of the angle with the width or length direction of the liquid absorbing surface; or, each groove structure takes the center of the liquid absorbing surface as the center of the circle, and is arranged in concentric circles at intervals, etc.
  • the shape structure of the groove structure of the groove array is also not limited.
  • the cross-section of the groove structure of the groove array can be square, triangular, trapezoidal or arc-shaped, etc.
  • the groove structure of the groove array can also be a groove structure that penetrates the liquid absorbing surface along the width or length of the liquid absorbing surface, or a non-penetrating groove structure, etc.
  • the atomizing carrier 10 has two oppositely disposed liquid absorbing surfaces, and groove arrays are respectively formed on the two oppositely facing outward surfaces of the two liquid absorbing surfaces.
  • the groove arrays are arranged at intervals along the length direction of the liquid absorbing surface, and the cross-section of the groove structure of the groove array forms an arc shape. In this way, the area of the liquid absorbing surface is increased by using the groove array, and at the same time, each groove structure of the groove array also has the function of storing oil.
  • the installation position of the aerosol generating assembly 100 in the aerosol generating device is in a vertical state, so that when the extension direction of the groove array on the liquid absorbing surface is the same as the height direction of the aerosol generating device, the oil attached to the liquid absorbing surface can also flow along the groove structure of the groove array under the action of gravity, which is more conducive to increasing the speed at which the oil in the oil tank of the aerosol generating device adheres to the surface of the atomizing carrier 10, and the oil is continuously replenished to the atomizing carrier 10 to provide the atomizing carrier 10 with a liquid supply per unit time.
  • the embodiment of the present application also provides an aerosol generating device, including the above-mentioned aerosol generating assembly 100.
  • the aerosol generating device provided in the present application based on the above-mentioned aerosol generating assembly 100, can obtain a higher atomization amount per unit time, and the user experience effect is better.
  • the aerosol generating device includes a liquid storage chamber, a vent pipe 200 located in the liquid storage chamber, an air flow channel is defined in the vent pipe 200, an oil inlet hole 201 connecting the liquid storage chamber and the air flow channel is provided on the opposite side walls of the vent pipe 200, the aerosol generating assembly 100 is installed in the vent pipe 200, and the peripheral side surface of the aerosol generating assembly 100 without the groove structure 10c corresponds to the corresponding oil inlet hole 201, and the atomized liquid in the liquid storage chamber enters the vent pipe 200 through the oil inlet hole 201 and adheres to the peripheral side surface.
  • the groove surface of the groove structure 10c and the inner wall of the vent pipe 200 enclose to form an atomization channel, the heating element 20 heats the atomization carrier 10, and the atomized liquid is heated and atomized in the groove structure 10c, and then discharged to the outside from the outlet of the vent pipe 200.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种气溶胶发生组件(100)及气溶胶发生装置,气溶胶发生组件(100)包括雾化载体(10)和发热体(20)。雾化载体(10)具有第一端面(10a)、与第一端面(10a)相对设置的第二端面(10b)以及周侧面,相对的两个周侧面上向内凹陷形成贯穿第一端面(10a)和第二端面(10b)的凹槽结构(10c),凹槽结构(10c)用于供雾化气体通过;发热体(20)设置于对应的凹槽结构(10c)的槽壁上。采用气溶胶发生组件(100)所产生雾化气体的雾化量更大,并且,传输路径无转弯,整个传输过程更加顺畅,进而减小雾化气体在传输过程中出现冷凝的概率,确保雾化效果的持续性。

Description

气溶胶发生组件及气溶胶发生装置 技术领域
本申请涉及雾化技术领域,具体涉及一种气溶胶发生组件以及具有该气溶胶发生组件的气溶胶发生装置。
背景技术
雾化芯是一种将液体雾化成气体或微小颗粒的装置,其被广泛应用于医疗设备,电子烟等装置;比如,电子烟雾化芯是电子烟的核心部件,其可用于对烟油进行加热以雾化烟油,使烟油变成雾状气溶胶,然后使抽烟者通过与雾化芯连通的烟嘴吸入,以达到模拟吸烟的过程。
然而,现有的气溶胶发生组件一般采用方形或圆柱形两种结构形式,对于圆柱形结构的雾化芯,其发热体设置于雾化芯的内周壁的雾化面上,这样,不利于发热体的安装固定,并且在外形尺寸一定且需要满足其结构强度的情况下,其雾化面积无法做大;而对于方形结构的雾化芯,发热体和吸液面通常设置在相对应的表面上,其余表面需要用于与气溶胶发生装置的其他结构接触配以固定,或形成过气间隙,其雾化面积也无法做大。因此,不管是现有柱状还是方形雾化形均因尺寸结构受限,存在雾化面积小,导致雾化量小的问题。
技术问题
本申请实施例的目的之一在于:提供一种气溶胶发生组件及气溶胶发生装置,旨在解决气溶胶发生组件的雾化面积小所导致的雾化量小的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种气溶胶发生组件,包括:雾化载体,所述雾化载体具有第一端面、与所述第一端面相对设置的第二端面以及周侧面,相对的两个所述周侧面上向内凹陷形成贯穿所述第一端面和所述第二端面的凹槽结构,所述凹槽结构用于供雾化气体通过;
发热体,所述发热体设置于对应的所述凹槽结构的槽壁上。
在一个实施例中,所述雾化载体在平行于所述第一端面的截面方向上的外形轮廓为多边形结构,所述凹槽结构开设于所述雾化载体的所述周侧面上或顶角上。
在一个实施例中,所述多边形结构为矩形,所述凹槽结构的数量为两个;各所述凹槽结构分别开设于所述雾化载体的相对的两个所述周侧面上且关于所述雾化载体的中轴线为中心呈对称设置。
在一个实施例中,所述发热体包括连接部以及与所述连接部相对两端相连接的两个发热部,各所述发热部位于对应所述凹槽结构处。
在一个实施例中,所述连接部至少部分跨设于所述第一端面或所述第二端面。
在一个实施例中,所述凹槽结构的槽侧壁至所述雾化载体的相邻的所述周侧面的距离为T1,两个所述凹槽结构的槽底壁之间距离为T2,所述T2大于所述T1。
在一个实施例中,所述T2≥1.5mm,所述T1≥0.8mm。
在一个实施例中,所述凹槽结构的槽宽T3大于所述凹槽结构的槽深T4。
在一个实施例中,所述发热体具有发热区,在所述凹槽结构的延伸方向上,所述发热区的高度H2大于所述雾化载体的高度H1的二分之一。
在一个实施例中,所述周侧面至少具有一个与雾化液相接触的吸液面;和/或,所述第一端面和/或所述第二端面为与雾化液相接触的吸液面。
第二方面,提供了一种气溶胶发生装置,包括上述所述的气溶胶发生组件。
有益效果
本申请实施例提供的气溶胶发生组件的有益效果在于:本申请提供的气溶胶发生组件,在雾化载体的任意两个相对的周侧面上形成贯穿第一端面和第二端面的凹槽结构,即,该气溶胶发生组件具有两个供雾化气体升腾或通过的雾化通道,并且,凹槽结构具有更大的表面面积,便于发热体进行安装设置,同时,在气溶胶发生组件装配于气溶胶发生装置内时,该种凹槽结构不因装配空间而造成雾化表面面积的减小。以及,该凹槽结构的延伸方向即是雾化气的雾化升腾方向,缩短了雾化气体的传输路径,减小了雾化气体的能量耗损。综上,采用本申请的气溶胶发生组件所产生雾化气体的雾化量更大,并且,传输路径无转弯,整个传输过程更加顺畅,进而减小雾化气体在传输过程中出现冷凝的概率,确保雾化效果的持续性。
本申请实施例提供的气溶胶发生装置的有益效果在于:本申请提供的气溶胶发生装置,在具有上述气溶胶发生组件的基础上,该气溶胶发生装置在单位时间内获得更高的雾化量,用户的体验效果更佳。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例一提供的气溶胶发生组件的结构示意图;
图2为本申请实施例一提供的气溶胶发生组件的主视图;
图3为本申请实施例一提供的气溶胶发生组件的俯视图;
图4为本申请实施例二提供的气溶胶发生组件的俯视图;
图5为本申请实施例三提供的气溶胶发生组件的俯视图;
图6为本申请实施例提供的气溶胶发生组件的发热体的结构示意图;
图7为本申请实施例四提供的气溶胶发生组件的俯视图;
图8为本申请实施例五提供的气溶胶发生组件的俯视图;
图9为本申请实施例六提供的气溶胶发生组件的俯视图;
图10为本申请实施例七提供的气溶胶发生组件的俯视图;
图11为本申请实施例八提供的气溶胶发生组件的结构示意图;
图12为本申请实施例提供的气溶胶发生装置的剖面图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
目前,雾化芯多为圆柱状结构,用于与气溶胶发生装置内的且呈圆管状的通气管相适配。同时,在雾化芯内开设雾化通道,该雾化通道沿圆柱状结构的雾化芯的轴向方向延伸,发热体20安装在雾化通道内。考虑到圆柱状结构的雾化芯的结构强度,雾化通道的内径不能过大,从而导致发热体20与雾化通道的内壁相接触的面积受限,进而影响单位时间内所形成的雾化气体的烟雾量。
由此,为了解决上述问题,本申请提供一种气溶胶发生组件100,具体地,通过如下实施例进行说明:
请参考图1和图2,本申请实施例的气溶胶发生组件100,包括雾化载体10以及发热体20。其中,雾化载体10用于供雾化液等雾化液附着,发热体20则是在外设供电电源的作用进行发热,以对附着于雾化载体10的表面上的雾化液进行雾化。
雾化载体10具有第一端面10a、与第一端面10a相对设置的第二端面10b以及周侧面,相对的两个周侧面上向内凹陷形成贯穿第一端面10a和第二端面10b的凹槽结构10c,凹槽结构10c用于供雾化气体通过。雾化载体10是装配于气溶胶发生装置的通气结构内,通常,雾化载体10呈立方体结构,在使用状态下,雾化载体10的第一端面10a和第二端面10b是与雾化气体的流通方向相垂直的端面,周侧面则是与雾化气体的流通方向相平行的侧面。因此,在相对两个周侧面上形成的凹槽结构10c与气溶胶发生装置的配件,例如,凹槽结构10c与通气结构的内壁围合形成雾化通道,雾化气体在该雾化通道内从雾化液被加热雾化所形成的气溶胶,再由通气结构排出至外部。以及,在相对的两个周侧面上分别开设凹槽结构10c,即,各凹槽结构10c的槽口朝向是相反的。
发热体20设置于对应的凹槽结构10c的槽壁上。这里,雾化载体10的凹槽结构10c的槽壁处附着雾化液,在发热体20的加热作用,雾化液在凹槽结构10c进行雾化升腾。当然,雾化载体10的第一端面10a、第二端面10b以及未形成凹槽结构10c的周侧壁也可作为雾化液的吸附面,同时,雾化载体10本身也采用多孔材质,例如,雾化载体10采用陶瓷材质制造,对雾化液有一定的存储能力,有助于雾化气体持续性地雾化升腾,避免“干烧”的现象发生。其中,多孔材质包括但不限于多孔陶瓷、多孔玻璃、多孔金属、棉、纤维或以上至少两个所组成的复合材料。
通常,雾化载体10呈立方体结构,能够与之相适配的气溶胶发生装置进行装配,当然,依照实际的使用情况,雾化载体10的形状结构不做限定,以能够与气溶胶发生装置相适配安装为准。
示例地,雾化载体10呈柱状结构,并且,该柱状结构在径向方向的截面形状为圆形、椭圆形、方形等。当然,根据气溶胶发生装置的通气结构的内部构造的设计情况,该柱状结构在径向方向的截面形状还可为不规则的多边形结构,例如,星形等。
同时,凹槽结构10c在平行于第一端面10a或第二端面10b的方向上形成凹面形状也不做限定,以及,两个凹槽结构10c的凹面形状的大小也可不做限定。
示例地,为了方便发热体20进行铺设以及与发热体20进行充分地接触,凹槽结构10c的槽底壁是平面,以满足与发热体20充分接触的需要,同时,凹槽结构10c的侧壁也可同样供发热体20进行铺设。当然,根据发热体20的形状设计,凹槽结构10c的槽底壁也呈弧面,或者,凹槽结构10c的槽底壁上形成凹坑或凸起,以适应当前发热体20的形状结构。
示例地,两个凹槽结构10c的凹面形状相同,并且,凹面形状的大小也相同。或者,两个凹槽结构10c的凹面形状相同,然而,两个凹槽结构10c的凹面形状大小存在差异。
需要说明地是,在与气溶胶发生装置的装配状态下,雾化载体10的第一端面10a和第二端面10b与雾化气的流动方向相垂直或基本垂直,即,凹槽结构10c的延伸方向即是雾化气的流动方向。
本申请提供的气溶胶发生组件100,在雾化载体10的任意两个相对的周侧面上形成贯穿第一端面10a和第二端面10b的凹槽结构10c,即,该气溶胶发生组件100具有两个供雾化液加热雾化形成气溶胶以及供气溶胶通过的雾化通道,并且,凹槽结构10c具有更大的表面面积,便于发热体20进行安装设置,同时,在气溶胶发生组件100装配于气溶胶发生装置内时,该种凹槽结构10c不因装配空间而造成雾化表面面积的减小。以及,该凹槽结构10c的延伸方向即是雾化气的流动方向,缩短了雾化气体的传输路径,减小了雾化气体的能量耗损。综上,采用本申请的气溶胶发生组件100所产生雾化气体的雾化量更大,并且,传输路径无转弯,整个传输过程更加顺畅,进而减小雾化气体在传输过程中出现冷凝的概率,确保雾化效果的持续性。
请参考图4,在一个实施例中,雾化载体10在平行于第一端面10a的截面方向上的外形轮廓为圆形结构,可以理解地,该雾化载体10为圆柱状结构,可用于适配气溶胶发生装置中径向截面同样为圆形的通气结构。凹槽结构10c开设于雾化载体10的弧形的周侧面上。即,本实施例中的雾化载体10的周侧面为一个连续的整面,因此,该周侧面的任意两个相对位置上均可向内凹陷形成凹槽结构10c。两个凹槽结构10c的槽壁与通气结构的内壁围合形成雾化通道。
请参考图3和图5,在一个实施例中,雾化载体10在平行于第一端面10a的截面方向上的外形轮廓为多边形结构,可以理解地,多边形结构可为方形、菱形、正六边形等,同样地,该雾化载体10也适配于截面形状相同的通气结构。在本实施例中,雾化载体10则存在多个周侧面,并且,两个相邻的周侧面的过渡部分同样属于雾化载体10的周侧面,这样,凹槽结构10c可开设于雾化载体10的周侧面上或顶角上,这里,顶角则是相邻两个周侧面的过渡部分。
示例地,如图3所示,雾化载体10在平行于第一端面10a的截面方向上的外形轮廓为正方形,在相对的两个顶角上开设对应的凹槽结构10c。
示例地,如图5所示,雾化载体10在平行于第一端面10a的截面方向上的外形轮廓为正八边形,在相对的两个周侧面上开设对应的凹槽结构10c。
具体地,请参考图1,多边形结构为矩形,凹槽结构10c的数量为两个;各凹槽结构10c分别开设于雾化载体10的相对的两个周侧面上。可以理解地,当两个凹槽结构10c的凹面形状相同,凹面形状的大小也相同,以及,凹槽结构10c在第一端面10a的截面方向上的形状呈“]”型,并且,两个凹槽结构10c关于雾化载体10的中轴线相对称时,雾化载体10在第一端面10a的截面方向上的形状呈“H”字型,或者,近似于“H”字型,那么,该截面为“H”型的雾化载体10,整体的结构强度高,尤其是在未开设凹槽结构10c的周侧面的方向上的抗压强度更高,并且,两个未开设凹槽结构10c的周侧面是平直且相平行的,便于与气溶胶发生装置的通气结构相适配。当然,在其实施例中,两个凹槽结构10c的凹面形状、凹面形状的大小以及两个凹槽结构10c的具体设置位置可进行相应的调整。
清参考图6和图11,发热体20包括连接部21以及与连接部21相对两端相连接的两个发热部22,各发热部22位于对应凹槽结构10c处。
可以理解地,连接部21与两个发热部22形成一体结构,即,三者呈串联连接状态。在与雾化载体10未装配状态下,连接部21和两个发热部22呈一字排列,便于生产制造,例如,通过冲压或蚀刻的工艺方式进行制造。这样,连接部21和发热部22的制造精度可控,并且,可根据使用需要调整连接部21和发热部22的发热功率。例如,调整发热部22和连接部21的面积、厚度以及形状结构等。在与雾化载体10相装配时,将两个发热部22相向弯折,与连接部21形成大致的U型结构,此时,连接部21可嵌入雾化载体10内且贯穿相对两个凹槽结构10c的底壁,利用连接部21与雾化载体10的连接关系,来提高发热体20整体与雾化载体10的连接稳定性。
当然,连接部21也可跨设于雾化载体10。即,连接部21至少部分跨设于第一端面10a或第二端面10b。此时,连接部21可位于雾化载体10的第一端面10a或第二端面10b的上方,不予二者相接触,也可抵靠于第一端面10a或第二端面10b,甚至,连接部21有部分嵌入第一端面10a或第二端面10b。
如此,当第一端面10a或第二端面10b为凹槽结构10c的进气端时,连接部21可对进入凹槽结构10c内的空气进行预热,避免过冷的空气对发热部22进行降温,能够使发热部22的发热温度维持在一定范围内。
而当第一端面10a或第二端面10b为凹槽结构10c的出气端时,凹槽结构10c内形成的气溶胶在流出时,因空气温度骤降而出现冷凝现象,而形成的冷凝液被连接部21进行再次加热雾化,进而降低雾化载体10的出气端冷凝现象的发生概率。
若当第一端面10a或第二端面10b为与雾化介质直接接触的吸液面时,连接部21可对吸液面上的雾化介质预热,提高雾化介质的流动性,降低干烧现象的发生,同时,雾化介质中雾化温度较低的组分可在连接部21处发生雾化而形成气凝胶,从而可丰富最终气凝胶的组成,提升吸食口感。
请参考图3,具体地,在一个实施例中,凹槽结构10c的槽侧壁至雾化载体10的相邻侧壁的距离为T1,两个凹槽结构10c的槽底壁之间距离为T2,T2大于T1。可以理解地,在本实施例中,该凹槽结构10c在第一端面10a的截面方向上的形状呈“]”型,以及,雾化载体10在第一端面10a的截面方向上的形状结构为方形。这里限定雾化载体10开设有凹槽结构10c的方向为长度方向,以及,雾化载体10未开设有凹槽结构10c的方向为宽度方向,那么,雾化载体10由腹部以及在雾化载体10的宽度方向上凸设于腹部上的两个翼部所组成,并且,翼部的厚度为T1,腹部的厚度为T2。当T2大于T1时,可保证雾化载体10的翼部的结构强度,便于生产制造以及雾化载体10所需的装配支撑力,进而提升整个雾化载体10的结构强度。
具体地,T2≥1.5mm,T1≥0.8mm。可以理解地,雾化载体10的腹部的厚度大于等于1.5mm,以及,翼部的厚度大于等于0.8mm时,在保证雾化载体10的整体结构强度的基础上,雾化载体10的导液面积更大,以及,凹槽结构10c的槽内表面的面积则相对减小,这里,凹槽结构10c的槽内表面的面积为雾化载体10的雾化发生面积,这样,在整体上,雾化载体10的导液面积大于雾化发生面积,可避免由供液不足所导致的“干烧”现象的发生。
请参考图3,具体地,凹槽结构10c的槽宽T3大于凹槽结构10c的槽深T4。可以理解地,凹槽结构10c在雾化载体10的周侧面上形成宽而浅的槽道,这样,雾化载体10的翼部与腹部的连接处的结构强度更高,不易在二者连接处发生折断。以及,凹槽结构10c的槽宽较宽,若以凹槽结构10c的槽底壁作为发热体20的安装面时,那么,雾化载体10的发热面积相对更大,雾化载体10整体发热更加均匀,同时,发热体20也能够获得更大的安装面,也更加便于安装。
请参考图2,在一个实施例中,发热体20具有发热区20a,在凹槽结构10c的延伸方向上,发热区20a的高度H2大于雾化载体10的高度H1的二分之一。可以理解地,发热体20的发热区20a越大,则,其自身的发热面积越大,这样,能够将热量传递至雾化载体10上。
示例地,发热体20可为通过蚀刻或冲压工艺形成发热片。当雾化载体10为陶瓷材质时,该发热片可先与雾化载体10的胚体进行预安装,然后发热片与雾化载体10的胚体同时烧结形成气溶胶发生组件100。
或者,示例地,发热体20还可通过涂覆或印刷工艺,将导热浆料设置在雾化载体10上,此时,雾化载体10可为烧结成型后的陶瓷载体。
请参考图6,在一个实施例中,发热体20包括连接部21以及与连接部21连接的两个发热部22,发热部22一一对应地设置于凹槽结构10c内,连接部21贯穿雾化载体10至两个凹槽结构10c的底壁并连接于两个发热部22的同一端。可以理解地,连接部21与两个发热部22形成串联连接,在两个发热部22远离连接部21的一端分别与供电电池的正极和负极相电性连接,从而确保发热部22的工作产热。而将连接部21贯穿雾化载体10,并且穿过相对设置的两个凹槽结构10c的底壁,这样,使得连接部21全部或大部分的被雾化载体10所限制,在雾化载体10烧结硬化后,连接部21受到雾化载体10的限制,无法从第一端面10a朝向第二端面10b的方向上脱出于雾化载体10,以及,在两个发热部22抵靠于对应的凹槽结构10c的槽壁,连接部21同样也无法从两个凹槽结构10c的开设方向上脱出于雾化载体10,最终,发热体20能够稳固地设置在雾化载体10上。
请参考图1和图6,在一个实施例中,至少一个发热部22平铺于对应的凹槽结构10c的底壁上。可以理解地,凹槽结构10c的底壁与发热部22的形状结构是相适配的。例如,为了方便发热部22能够铺设于凹槽结构10c内,以及与发热体20的发热部22进行充分地接触于凹槽结构10c,凹槽结构10c的底壁可以是平面,而发热部22为片体结构,以满足二者充分相接触,避免发生翘曲或不平整的现象。当然,还可根据发热体20的发热部22的形状设计,将凹槽结构10c的底壁也可做适应性的调整。例如,将发热部22设置呈弧形结构,那么,凹槽结构10c的底壁也可设计为相应的弧面。
其中一个发热部22可采用平铺的方式设置在凹槽结构10c的底壁上,还可将两个发热部22均平铺置于对应的凹槽结构10c的底壁上,同时,两个发热部22的形状设计与凹槽结构10c的底壁相适配,二者可以相同,也可以相同。
或者,在垂直于凹槽结构10c的底壁的方向上,至少一个发热部22的至少部分嵌入对应的凹槽结构10c的底壁内。可以理解地,发热部22是嵌设在凹槽结构10c的底壁上,即,其所在平面与凹槽结构10c的底壁所在平面相垂直,需要说明的是,这里的相垂直并非严格意义上的绝对垂直,而是加工过程中所定义的垂直关系,因此,允许存在相应的误差。
其中一个发热部22可采用垂直嵌设的方式设置在凹槽结构10c的底壁上,还可将两个发热部22均垂直嵌设于对应的凹槽结构10c的底壁上,同时,这里的部分嵌设是指发热部22存在局部位于凹槽结构10c的底壁内,该局部只要属于发热部22即可,不限定其嵌入凹槽结构10c的底壁内的区域。当然,发热部22也可以完全嵌设入凹槽结构10c的底壁内,即雾化载体10内。
请参考图1,在一个实施例中,当凹槽结构10c具有底壁和与底壁相围合连接的侧壁时,发热部22可选择平铺在凹槽结构10c的底壁上,并且,发热部22朝向凹槽结构10c的侧壁延伸,并且,嵌设入凹槽结构10c的侧壁或凹槽结构10c的侧壁与凹槽结构10c的底壁的连接处。可以理解地,发热部22可选择在与凹槽结构10c的底壁相平行的平面内与凹槽结构10c的侧壁或侧壁与底壁的连接处进行连接固定,从而减小发热部22超远离凹槽结构10c的底壁向外发生翘曲的现象,提高发热部22在凹槽结构10c内的稳定性。
具体地,请参考图1,当凹槽结构10c具有相对设置的侧壁时,那么,呈平铺状态的发热部22的相对两侧向对应的凹槽结构10c的侧壁延伸。可以理解地,发热部22至少有相对的两侧与凹槽结构10c的侧壁或其侧壁与底壁的连接处发生连接关系,这样,发热部22与凹槽结构10c的槽壁之间连接稳定性。
在一个实施例中,周侧面至少具有一个与雾化液相接触的吸液面。可以理解地,当雾化载体10在平行于第一端面10a的截面方向上的外形轮廓为圆形结构,那么,该雾化载体10的周侧面为一个连续的整面,吸液面则形成于未开设凹槽结构10c的周侧面上。
示例地,雾化载体10为圆柱状结构时,其在平行于第一端面10a的截面方向上的外形轮廓为圆形结构,此时,吸液面为未开设凹槽结构10c的弧形的周侧面上。在示例中,吸液面的数量也为两个,并且呈相对设置,这样,雾化载体10的吸液面可与气溶胶发生装置的雾化液入口相对应。
示例地,雾化载体10为立方体结构时,其在平行于第一端面10a的截面方向上的外形轮廓为方形,凹槽结构10c开设于雾化载体10的周侧面上。那么,其中两个相对的周侧面上开设有凹槽结构10c,另外两个相对的周侧面为吸液面。
示例地,雾化载体10为立方体结构时,其在平行于第一端面10a的截面方向上的外形轮廓为方形,凹槽结构10c开设于雾化载体10的顶角上。即,选择其中两个相对的顶角上开设有凹槽结构10c,那么,此时,雾化载体10还是具有四个周侧面,因此,可以选择其中一个或几个周侧面作为吸液面。
或者,在其他实施例中,第一端面10a和/或第二端面10b作为与雾化液相接触的吸液面。可以理解地,气溶胶发生组件100在与气溶胶发生装置进行装配后,气溶胶发生装置的雾化液进入口可与第一端面10a和/或第二端面10b相连通,即,雾化液可由雾化液进入口直接或间接地与第一端面10a和/或第二端面10b相接触。
或者,在另一些实施例中,还可选择为雾化载体10的至少一个周侧面作为与雾化液相接触的吸液面,和,第一端面10a和/或第二端面10b作为与雾化液相接触的吸液面。
示例地,雾化载体10为圆柱状结构时,该雾化载体10的两个端面,即,第一端和第二端面10b可选择性地作为吸液面,同时,还可选择将未开设凹槽结构10c的弧形的周侧面作为吸液面。
可选的,雾化载体10的周侧面作为与雾化液相接触的吸液面。
请参考图7至图10,在一个实施例中,雾化载体10的吸液面上形成有聚液结构10d。这里,聚液结构10d对雾化液做进一步地吸附和聚集。
可以理解地,聚液结构10d能够提高吸液面上的雾化液的附着总量。聚液结构10d可从以下几个角度进行聚液:
聚液结构10d可增加吸液面与雾化液的接触面积。例如,聚液结构10d为形成吸液面上的凸部或凹部,相较于吸液面用于与进液孔相对的吸液平面,在吸液平面上形成多个凸部或凹部进一步地增加吸液面积,即,能够聚集雾化液的总量更多。这里,凸部不仅限于凸齿、凸筋等结构,以及,凹部不仅限于凹坑、凹槽等。
聚液结构10d可对雾化液进行储备,增加气溶胶发生组件100上的雾化液的总量。例如,聚液结构10d为形成吸液面上的聚液件,聚液件可由毛细材质制成的,如,棉质材料等。这样,聚液件先将雾化液进行聚集,然后再输送至吸液面。
请参考图7,在一个实施例中,聚液结构10d为形成于吸液面上的非平面结构。可以理解地,聚液结构10d与吸液面一体成型,即非平面结构与吸液面一体成型,并且,能够使得吸液面积增大。非平面结构是与平面结构相反的结构,即,能够导致吸液面积处于非平面结构状态的结构均可称为非平面结构。
具体地,非平面结构可为形成于吸液面上的凸部和/或凹部,其中,凸部可为凸起、凸筋等,凹部可为凹坑、凹槽等。该凸部和凹部的形状结构不做限定,数量不做限定,以及在吸液面的上的设置位置也不做限定。例如,可在吸液面上形成呈阵列分布地多个凸部,或者,在吸液面上形成呈阵列分布地多个凹部,或者,在吸液面上形成呈阵列分布地多个凹部和凸部。
请参考图8,在一个实施例中,聚液结构10d为形成于吸液面上的凹面结构或凸面结构。同理地,凹面结构或凸面结构与吸液面一体成型,凸面结构或凹面结构同样能够增加吸液面的面积。凸面结构是凸出于吸液面且向外延伸的结构。这里,凸面结构在吸液面上凸出位置、凸伸形状均不做限定。例如,凸面结构可为凸设于吸液面的中部,并且,凸面结构在凸伸方向的截面呈弧形。可以理解地,凹面结构则与凸面结构的凸伸方向相反,凹面结构是由吸液面向内凹陷形成的结构,例如,凹面结构可为凹设于吸液面的中部,并且,凹面结构在凹陷方向的截面呈弧形。
请参考图8,在一个实施例中,雾化载体10具有两个相对设置的吸液面,在两个吸液面的相对朝外的两个表面的中部分别设置一个凸面结构,并且,该两个凸面结构关于两个吸液面的对称中心相对称,这样,使得两个吸液面朝外凸伸而成外凸弧形面,相较于平面的吸液面,外凸弧形吸液面与油液的接触面积更大,单位时间内能够吸附和聚集质量更多的油液,从而使得气溶胶发生组件100的供液量大于或等于其雾化量。
请参考图9,在另一实施例中,雾化载体10具有两个相对设置的吸液面,在两个吸液面的相对朝外的两个表面的中部分别设置一个凹面结构,并且,该两个凹面结构关于两个吸液面的对称中心相对称,这样,使得两个吸液面朝内凹陷而成内凹弧形面,相较于平面的吸液面,内凹弧形吸液面与油液的接触面积更大,单位时间内能够吸附和聚集质量更多的油液,从而使得气溶胶发生组件100的供液量大于或等于其雾化量。同时缩短吸液面向雾化载体10中部区域输送雾化液的距离,以气溶胶发生组件100在工作时,可以提供足够的雾化液,防止因供液不足而干烧的问题。另外,由于通过吸液面向雾化载体10中部凹陷形成的凹部,雾化载体10在两个凹槽结构10c的底壁之间所界定的区域温度相对较高,吸液面向该区域的方向凹陷,使得雾化载体10中部位置的温度可以将多余的热量传递给雾化液并对其进行预热,既可以提高雾化液的流动性,同时也防止局部温度过高导致的干烧问题。
请参考图10,在一个实施例中,聚液结构10d为形成于吸液面上的槽阵列,也即聚液结构10d具有多个凹部形成的槽阵列。可以理解地,槽阵列是呈阵列分布的槽结构,因此,呈阵列分布的形式不做限定。例如,各槽结构可在沿吸液面的宽度或长度方向上间隔设置;或者,各槽结构在沿吸液面的宽度和长度方向上间隔设置;或者,各槽结构在沿与吸液面的宽度或长度方向呈夹角的方向上间隔设置;或者,各槽结构以吸液面的中心为圆心,且相间隔地呈同心圆设置等。同时,槽阵列的槽结构的形状结构也不做限制。例如,槽阵列的槽结构的截面形成可呈方形、三角形、梯形或者圆弧形等。以及,槽阵列的槽结构还可为沿吸液面的宽度或长度贯通该吸液面的槽结构,也可为非贯通的槽结构等。
优选地,请参考图10,在一个实施例中,雾化载体10具有两个相对设置的吸液面,在两个吸液面的相对朝外的两个表面上分别形成槽阵列。槽阵列在沿吸液面的长度方向上间隔设置,并且,槽阵列的槽结构的截面形成圆弧形。这样,利用槽阵列增加吸液面的面积,同时,槽阵列的各槽结构还具有存储油液的功能。尤其是,气溶胶发生组件100在气溶胶发生装置内的安装位置呈立设状态,使得吸液面上的槽阵列的延伸方向与气溶胶发生装置的高度方向相同时,附着于吸液面上油液,还可在重力作用下,沿槽阵列的槽结构流动,更有利于提高气溶胶发生装置的油仓内的油液附着于雾化载体10的表面的速度,油液则不断地向雾化载体10进行补充,提供雾化载体10在单位时间内的供液量。
本申请实施例还提供一种气溶胶发生装置,包括上述的气溶胶发生组件100。
本申请提供的气溶胶发生装置,在具有上述气溶胶发生组件100的基础上,该气溶胶发生装置在单位时间内获得更高的雾化量,用户的体验效果更佳。
请参考图11,在一些实施例中,气溶胶发生装置包括储液腔,位于储液腔内的通气管200,通气管200内界定有气流通道,在通气管200相对的侧壁上开设有连通储液腔和气流通道的进油孔201,气溶胶发生组件100安装于通气管200内,并且气溶胶发生组件100的未开设凹槽结构10c的周侧面与对应的进油孔201相对应,储液腔内的雾化液通过进油孔201进入通气管200内,并附着于在周侧面上。凹槽结构10c的槽面与通气管200的内壁则围合形成雾化通道,发热体20对雾化载体10进行加热,雾化液则在凹槽结构10c内被加热雾化,再从通气管200的出口排出至外部。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (11)

  1. 一种气溶胶发生组件,其特征在于,包括:
    雾化载体,所述雾化载体具有第一端面、与所述第一端面相对设置的第二端面以及周侧面,相对的两个所述周侧面上向内凹陷形成贯穿所述第一端面和所述第二端面的凹槽结构,所述凹槽结构用于供雾化气体通过;
    发热体,所述发热体设置于对应的所述凹槽结构的槽壁上。
  2. 根据权利要求1所述的气溶胶发生组件,其特征在于:所述雾化载体在平行于所述第一端面的截面方向上的外形轮廓为多边形结构,所述凹槽结构开设于所述雾化载体的所述周侧面上或顶角上。
  3. 根据权利要求3所述的气溶胶发生组件,其特征在于:所述多边形结构为矩形;各所述凹槽结构分别开设于所述雾化载体的相对的两个所述周侧面上且关于所述雾化载体的中轴线为中心呈对称设置。
  4. 根据权利要求3所述的气溶胶发生组件,其特征在于:所述发热体包括连接部以及与所述连接部相对两端相连接的两个发热部,各所述发热部位于对应所述凹槽结构处。
  5. 根据权利要求4所述的气溶胶发生组件,其特征在于:所述连接部至少部分跨设于所述第一端面或所述第二端面。
  6. 根据权利要求4所述的气溶胶发生组件,其特征在于:所述凹槽结构的槽侧壁至所述雾化载体的相邻的所述周侧面的距离为T1,两个所述凹槽结构的槽底壁之间距离为T2,所述T2大于所述T1。
  7. 根据权利要求6所述的气溶胶发生组件,其特征在于:所述T2≥1.5mm,所述T1≥0.8mm。
  8. 根据权利要求4所述的气溶胶发生组件,其特征在于:所述凹槽结构的槽宽T3大于所述凹槽结构的槽深T4。
  9. 根据权利要求1至7任一项所述的气溶胶发生组件,其特征在于:所述发热体具有发热区,在所述凹槽结构的延伸方向上,所述发热区的高度H2大于所述雾化载体的高度H1的二分之一。
  10. 根据权利要求1至7任一项所述的气溶胶发生组件,其特征在于:所述周侧面至少具有一个与雾化液相接触的吸液面;和/或,
    所述第一端面和/或所述第二端面为与雾化液相接触的吸液面。
  11. 一种气溶胶发生装置,其特征在于:包括如权利要求1至10任一项所述的气溶胶发生组件。
PCT/CN2022/123614 2022-09-30 2022-09-30 气溶胶发生组件及气溶胶发生装置 WO2024065825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123614 WO2024065825A1 (zh) 2022-09-30 2022-09-30 气溶胶发生组件及气溶胶发生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123614 WO2024065825A1 (zh) 2022-09-30 2022-09-30 气溶胶发生组件及气溶胶发生装置

Publications (1)

Publication Number Publication Date
WO2024065825A1 true WO2024065825A1 (zh) 2024-04-04

Family

ID=90475598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123614 WO2024065825A1 (zh) 2022-09-30 2022-09-30 气溶胶发生组件及气溶胶发生装置

Country Status (1)

Country Link
WO (1) WO2024065825A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209135478U (zh) * 2018-11-28 2019-07-23 深圳市华诚达精密工业有限公司 一种两侧进液多孔材料多表面的加热雾化结构和装置
CN210726705U (zh) * 2019-08-19 2020-06-12 常州市派腾电子技术服务有限公司 雾化组件、雾化器及气溶胶发生装置
WO2021233009A1 (zh) * 2020-05-20 2021-11-25 常州市派腾电子技术服务有限公司 雾化件、雾化器及其气溶胶发生装置
CN114259091A (zh) * 2021-12-30 2022-04-01 深圳市大迈发展有限公司 雾化结构件、雾化器及气溶胶生成装置
WO2022141063A1 (zh) * 2020-12-29 2022-07-07 深圳市华诚达发展有限公司 电子雾化装置及其雾化组件
CN217446685U (zh) * 2022-04-19 2022-09-20 深圳市华诚达精密工业有限公司 雾化装置及其雾化芯
CN218889286U (zh) * 2022-09-30 2023-04-21 深圳市卓力能技术有限公司 气溶胶发生组件及气溶胶发生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209135478U (zh) * 2018-11-28 2019-07-23 深圳市华诚达精密工业有限公司 一种两侧进液多孔材料多表面的加热雾化结构和装置
CN210726705U (zh) * 2019-08-19 2020-06-12 常州市派腾电子技术服务有限公司 雾化组件、雾化器及气溶胶发生装置
WO2021233009A1 (zh) * 2020-05-20 2021-11-25 常州市派腾电子技术服务有限公司 雾化件、雾化器及其气溶胶发生装置
WO2022141063A1 (zh) * 2020-12-29 2022-07-07 深圳市华诚达发展有限公司 电子雾化装置及其雾化组件
CN114259091A (zh) * 2021-12-30 2022-04-01 深圳市大迈发展有限公司 雾化结构件、雾化器及气溶胶生成装置
CN217446685U (zh) * 2022-04-19 2022-09-20 深圳市华诚达精密工业有限公司 雾化装置及其雾化芯
CN218889286U (zh) * 2022-09-30 2023-04-21 深圳市卓力能技术有限公司 气溶胶发生组件及气溶胶发生装置

Similar Documents

Publication Publication Date Title
CN211746949U (zh) 雾化器及气溶胶发生装置
CN210520094U (zh) 雾化器及电子烟
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
WO2023202196A1 (zh) 雾化装置及其雾化芯
WO2022179301A2 (zh) 发热体、雾化器及电子雾化装置
CN211657384U (zh) 一种导油陶瓷及超声波雾化器
WO2023035952A1 (zh) 电子雾化装置及其电源装置
WO2023124409A1 (zh) 发热组件、雾化器及电子雾化装置
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
CN218889286U (zh) 气溶胶发生组件及气溶胶发生装置
CN216568352U (zh) 雾化结构件、雾化装置及气溶胶生成装置
WO2021142640A1 (zh) 电子雾化装置及其雾化器和雾化组件
WO2024065825A1 (zh) 气溶胶发生组件及气溶胶发生装置
WO2024032151A1 (zh) 雾化装置及气溶胶发生装置
WO2022179642A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
CN219373808U (zh) 电子雾化装置及其雾化器
WO2023035168A1 (zh) 雾化组件及雾化装置
CN117837814A (zh) 气溶胶发生组件及气溶胶发生装置
WO2024065822A1 (zh) 发热组件及雾化器
US12070068B2 (en) Atomization device
CN221307237U (zh) 一种雾化芯结构及雾化器
WO2022179644A2 (zh) 发热组件、雾化器及电子雾化装置
CN218551340U (zh) 发热组件及雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960433

Country of ref document: EP

Kind code of ref document: A1