WO2021142640A1 - 电子雾化装置及其雾化器和雾化组件 - Google Patents

电子雾化装置及其雾化器和雾化组件 Download PDF

Info

Publication number
WO2021142640A1
WO2021142640A1 PCT/CN2020/072121 CN2020072121W WO2021142640A1 WO 2021142640 A1 WO2021142640 A1 WO 2021142640A1 CN 2020072121 W CN2020072121 W CN 2020072121W WO 2021142640 A1 WO2021142640 A1 WO 2021142640A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
atomization
assembly according
atomization assembly
rib
Prior art date
Application number
PCT/CN2020/072121
Other languages
English (en)
French (fr)
Inventor
王敏君
易长勇
张衡
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2020/072121 priority Critical patent/WO2021142640A1/zh
Priority to CN202022412722.1U priority patent/CN214127012U/zh
Publication of WO2021142640A1 publication Critical patent/WO2021142640A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present invention relates to the field of atomization, and more specifically, to an electronic atomization device and its atomizer and atomization components.
  • the electronic atomization device is mainly composed of an atomizer and a power supply device.
  • the atomizer mainly includes a liquid-absorbing body for absorbing the liquid substrate and a heating element for heating and atomizing the liquid substrate after being energized.
  • the liquid absorption is in close contact with the heating element, and is used to guide the liquid substrate and provide it to the heating element.
  • ceramic absorbing liquid overcomes the shortcomings of burnt smell and easy frying oil, and is widely accepted by the market.
  • the rate of drainage and the amount of smoke in a single puff are important indicators to measure the effect of atomization.
  • the method of adjusting the porosity and pore size of the ceramic is usually used to adjust the liquid-conducting rate of the ceramic absorbing liquid.
  • some high-viscosity liquid substrates tend to accumulate at the phase interface of the ceramic liquid to be atomized due to insufficient fluidity, and cannot be liquefied in time, which affects the fluid transfer rate and the amount of single-puffed smoking mist.
  • the existing atomizers on the market do not yet have a good solution to the above technical problems.
  • the technical problem to be solved by the present invention is to provide an improved atomization assembly, an atomizer and an electronic atomization device with the atomization assembly in view of the above-mentioned defects of the prior art.
  • the technical solution adopted by the present invention to solve its technical problems is: constructing an atomizing component for atomizing a high-viscosity liquid substrate, including a porous body type liquid absorbing, the liquid absorbing includes an atomizing surface for installing a heating element, and A liquid absorbing surface for introducing the liquid substrate; the liquid absorbing surface is provided with a concave-convex structure to increase the heat exchange area between the liquid absorbing liquid and the liquid substrate.
  • the liquid suction surface includes at least one liquid guiding groove recessed toward the atomizing surface, and the concave-convex structure is disposed on the groove bottom surface of the at least one liquid guiding groove.
  • the concave-convex structure includes at least one convex rib, the bottom of the at least one convex rib is in contact with the bottom surface of the groove, and the top of the at least one convex rib extends toward the liquid substrate.
  • the cross-sectional shape of the at least one rib includes at least one of a triangle, an arc, and a polygon.
  • the height h1 of the at least one rib is 0.1-0.6 times the depth h2 of the liquid guiding groove.
  • the bottom surface of the groove includes a long side, and the included angle ⁇ between the at least one protruding edge and the long side is 0-90 degrees.
  • the cross-sectional shape of the at least one rib is triangular.
  • the cross-sectional shape of the at least one rib is an isosceles triangle.
  • the apex angle ⁇ of the cross section is 10-60 degrees.
  • the concave-convex structure includes at least two convex ribs, and the at least two convex ribs are elongated and arranged in parallel at intervals.
  • the concave-convex structure includes at least three convex ribs, and the at least three convex ribs are elongated and arranged in parallel at equal intervals.
  • the distance d1 between two adjacent ribs is 0.2-0.3 times the base length d2 of the cross section of the ribs.
  • the number of the ribs is 2-10.
  • the liquid absorbing liquid has a rectangular parallelepiped shape, and the liquid absorbing liquid includes a first layer close to the atomizing surface and a second layer far from the atomizing surface, and the outer size of the first layer is larger than The outer dimensions of the second layer.
  • the liquid absorbent includes porous ceramics, and the porosity of the porous ceramics is 60-85%.
  • the atomization assembly further includes a heating element arranged on the atomization surface.
  • the present invention also provides an atomizer, including a liquid storage cavity and the atomization assembly as described in any one of the above, and the liquid suction surface faces the liquid storage cavity and is in fluid communication with the liquid storage cavity.
  • the present invention also provides an electronic atomization device, including the atomizer described above and a power supply device electrically connected to the atomizer.
  • the implementation of the present invention has at least the following beneficial effects: through the concave-convex structure provided on the liquid absorption surface, the heat exchange area between the liquid absorption surface and the liquid substrate is increased, and the heat of the heating element can be quickly transferred to the high viscosity liquid substrate. , Improve the fluidity of the liquid substrate and prevent the occurrence of dry burning.
  • FIG. 1 is a schematic diagram of a three-dimensional combined structure of an electronic atomization device in some embodiments of the present invention
  • FIG. 2 is a schematic diagram of a three-dimensional exploded structure of the electronic atomization device shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional structure diagram of the atomizer of the electronic atomization device shown in FIG. 2;
  • FIG. 4 is a schematic diagram of a three-dimensional structure of liquid absorbing in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the planar structure of the liquid absorption shown in FIG. 4;
  • Figure 6 is a schematic view of the A-A cross-sectional structure of the liquid absorbing shown in Figure 5;
  • Fig. 7 is a schematic diagram of a planar structure of liquid absorbing in a second embodiment of the present invention.
  • Figure 8 is a schematic diagram of the B-B cross-sectional structure of the liquid absorbing shown in Figure 7;
  • Fig. 9 is a schematic diagram of a planar structure of liquid absorbing in a third embodiment of the present invention.
  • Fig. 10 is a schematic diagram of the C-C cross-sectional structure of the liquid absorbing shown in Fig. 9;
  • FIG. 11 is a schematic diagram of a planar structure of liquid absorbing in a fourth embodiment of the present invention.
  • Figure 12 is a schematic diagram of the D-D cross-sectional structure of the liquid absorbing shown in Figure 11;
  • Fig. 13 is a schematic diagram of a three-dimensional structure of liquid absorption in the current technology.
  • FIGS 1-2 show the electronic atomization device in some embodiments of the present invention.
  • the electronic atomization device can be applied to the heating and atomization of liquid substrates such as e-liquid and medicinal liquid.
  • the atomizer 10 and the flat power device 50 electrically connected to the atomizer 10.
  • the atomizer 10 is used for accommodating the liquid substrate, heating and atomizing the liquid substrate, and delivering the mist.
  • the power supply device 50 is used for supplying power to the atomizer 10 and controlling the opening or closing of the entire electronic atomization device.
  • the atomizer 10 and the power supply device 50 may be detachably connected together by magnetic attraction, screw connection or the like. Understandably, the electronic atomization device is not limited to a flat shape, and it can also be in a cylindrical shape, an elliptical cylindrical shape, a square cylindrical shape, and other shapes.
  • the atomizer 10 may include an atomization assembly 1 and a housing 2 in some embodiments.
  • a liquid storage cavity 3 for storing a liquid substrate is formed in the casing 2, and the atomization assembly 1 is disposed in the casing 2 and communicates with the liquid storage cavity 3 in a liquid conducting manner.
  • the atomization assembly 1 may include a liquid absorption 12 for sucking a liquid substrate from the liquid storage cavity 3, a heating element 11 for heating and atomizing the liquid substrate adsorbed into the liquid absorption 12, and a heating element 11 connected to the heating element 11
  • the two electrode lead 13 are electrically connected to the positive and negative electrodes of the power supply device 50 respectively.
  • the absorbing liquid 12 may be sintered from hard porous materials such as porous ceramics, porous glass ceramics, and porous glass.
  • the liquid absorbing 12 is made of porous ceramics or a combination of porous ceramics and metal.
  • the pore size of the micropores on the porous ceramic may range from 1 ⁇ m to 100 ⁇ m.
  • the average pore diameter of the porous ceramic can be 10-35 ⁇ m.
  • the average pore diameter of the porous ceramic is 20-25 ⁇ m.
  • the porosity of the porous ceramic can be 40%-85%, and the porosity refers to the ratio of the total volume of the micro voids in the porous matrix to the total volume of the porous matrix.
  • the porosity can be adjusted according to the composition of the liquid matrix. For example, for a liquid matrix with a higher viscosity, the porosity can be higher to ensure the liquid guiding effect.
  • the porosity of the porous ceramic may be 60-85%.
  • FIGS 4-6 show the liquid absorbing 12 in the first embodiment of the present invention.
  • the liquid absorbing 12 can be roughly in the shape of a rectangular parallelepiped. It includes an elongated atomizing surface 122 for installing the heating element 11 and In the liquid-absorbing surface 121 introduced into the liquid substrate.
  • the liquid suction surface 121 faces the liquid storage cavity 3 and is in fluid communication with the liquid storage cavity 3 so that the liquid matrix stored in the liquid storage cavity 3 enters the liquid absorption 12. After the liquid substrate is heated and atomized in the absorbing liquid 12, it escapes through the atomizing surface 122.
  • the liquid absorption 12 may further include a concave-convex structure disposed on the liquid absorption surface 121 to increase the contact area between the liquid absorption 12 and the liquid substrate. It is understandable that in other embodiments, the cross-section of the liquid absorption 12 may also be circular, elliptical, trapezoidal, triangular, polygonal, or other shapes.
  • the liquid absorption 12 may have a stepped shape, which includes a first layer 125 close to the atomization surface 122 and a second layer 126 far away from the atomization surface 122. Both the first layer 125 and the second layer 126 may be substantially rectangular parallelepiped, and the outer size of the first layer 125 is smaller than the outer size of the second layer 126. In this embodiment, the length of the first layer 125 is less than the length of the second layer 126, and the width of the first layer 125 is equivalent to the width of the second layer 126.
  • the liquid suction 12 is arranged in a stepped shape, which can facilitate the installation of the liquid suction 12.
  • a side surface of the first layer 125 away from the second layer 126 forms a flat rectangular atomization surface 122.
  • the side surface of the second layer 126 away from the first layer 125 is recessed toward the atomizing surface 122 to form a liquid guiding groove 123, so that the liquid absorbent 12 is bowl-shaped as a whole.
  • the inner surface of the liquid guide groove 123 also forms a liquid suction surface 121, which can increase the area of the liquid suction surface 121; on the other hand, it can ensure that the distance between the liquid suction surface 121 and the atomization surface 122 is close enough to improve the liquid guide performance.
  • the number of the liquid guiding groove 123 is not limited to one, and it can also be two or more than two.
  • the cross-sectional shape of the liquid guiding groove 123 can match the cross-sectional shape of the liquid absorption 12.
  • the cross section of the liquid guiding groove 123 is rectangular, and the central axes of the liquid guiding groove 123, the first layer 125, the second layer 126, and the heating element 11 coincide.
  • the cross-sectional dimensions (length and width dimensions) of the liquid guiding groove 123 may gradually decrease from the side far away from the atomizing surface 122 to the side close to the atomizing surface 122.
  • the liquid guiding groove 123 has a groove bottom surface 1230 parallel to the atomizing surface 122, and the concave-convex structure can be disposed on the groove bottom surface 1230.
  • the present invention can increase the heat exchange area between the bottom of the tank and the liquid substrate by arranging the concave-convex structure on the bottom surface of the tank 1230, and it is more convenient to transfer the heating element.
  • the heat of 11 is quickly transferred to the liquid substrate to improve the fluidity of the liquid substrate and prevent the occurrence of dry burning.
  • the liquid absorption area at the bottom of the tank can be increased, heat utilization efficiency can be improved, and heat waste can be avoided.
  • the liquid guiding groove 123 is correspondingly opened on the side surface of the liquid suction 12, and the concave-convex structure is arranged on the liquid guiding groove 123 facing the atomizing surface 122.
  • the liquid-absorbing liquid 12 is a sheet-shaped liquid-absorbing liquid
  • the liquid-absorbing surface thereof is a flat surface
  • the concave-convex structure is disposed on the flat liquid-absorbing surface.
  • the bottom of the concave-convex structure is connected with the bottom surface 1230 of the groove, and the top extends toward the liquid substrate.
  • the distance (vertical distance) h3 between the bottom surface of the groove 1230 (ie the bottom of the concave-convex structure) and the atomization surface 122 is within 4mm to ensure that sufficient heat is conducted to the concave-convex structure, and then conduction Give the liquid substrate.
  • the distance h3 between the bottom surface of the tank 1230 and the atomizing surface 122 is more than 1 mm to avoid liquid leakage and ensure that the liquid absorption 12 has a certain strength.
  • the concave-convex structure may include at least one elongated rib 124, the bottom of the rib 124 is connected to the bottom surface 1230 of the groove, and the top extends toward the liquid substrate.
  • the number of ribs 124 can be 2-10.
  • the cross-sectional shape of the rib 124 may include at least one of a triangle, an arc (for example, a circular arc, an elliptic arc), and a polygon (for example, a trapezoid, a square, or a regular polygon). Understandably, the structural shape of the uneven structure is not limited.
  • the uneven structure may also include protrusions or depressions in a ring shape (for example, a circular ring, an elliptical ring, and a square ring), or it may also include Lattice-like distribution of protrusions or depressions.
  • a ring shape for example, a circular ring, an elliptical ring, and a square ring
  • Lattice-like distribution of protrusions or depressions for example, a circular ring, an elliptical ring, and a square ring
  • the concave-convex structure includes eight elongated ribs 124 arranged in parallel at equal intervals.
  • the cross section of the rib 124 is in the shape of an isosceles triangle, and the vertex angle ⁇ of the cross section may be 10-60 degrees.
  • the groove bottom surface 1230 includes a long side, and the angle ⁇ between the protruding edge 124 and the long side may be 0-90 degrees, preferably 60-90 degrees.
  • the height h1 of the rib 124 is 0.1-0.6 times the depth h2 of the liquid guiding groove 123, preferably 0.4-0.6 times.
  • the distance d1 between two adjacent ribs 124 is 0.2-0.3 times the length d2 of the bottom side of the cross section of the rib 124.
  • Performance test A mixed liquid of glycerol and 1,2-propanediol in a one-to-one mass ratio is used for the liquid-conducting performance test.
  • the cross-section of the rib 124 is an isosceles triangle, and the apex angle ⁇ of the cross-section is 10 degrees.
  • the angle ⁇ between the protruding rib 124 and the long side of the groove bottom surface 1230 is 60 degrees
  • the distance h3 between the groove bottom surface 1230 and the atomizing surface 122 is 2.05 mm
  • the depth h2 of the liquid guiding groove 123 is 2.58 mm
  • the height h2 of the protruding rib 124 is The height h1 is 1.45mm
  • the surface area of the groove bottom surface 1230 and the eight convex ribs 124 is 14mm 2 ;
  • the test result: the liquid infusion time is 30-50s, and the single-mouth smoking mist volume is 4.0-4.8mg/mouth.
  • the concave-convex structure of the liquid absorbing 12 includes ten elongated ribs 124 arranged in parallel at equal intervals.
  • Performance test A mixed liquid of glycerol and 1,2-propanediol in a one-to-one mass ratio is used for the liquid-conducting performance test.
  • the cross-section of the rib 124 is an isosceles triangle, and the apex angle ⁇ of the cross-section is 10 degrees.
  • the angle ⁇ between the convex edge 124 and the long side of the groove bottom surface 1230 is 90 degrees
  • the distance h3 between the groove bottom surface 1230 and the atomizing surface 122 is 2.05mm
  • the depth h2 of the liquid guiding groove 123 is 2.58mm
  • the convex edge 124 is height h1 of 1.5mm
  • the surface area of bottom surface 1230 and the rib 124 is ten 45mm 2; test results: catheter time 30-40s, single puff of smoke in an amount of 5.0-6.0mg / port.
  • the concave-convex structure of the liquid absorbing 12 includes two elongated ribs 124 arranged in parallel at intervals.
  • Performance test A mixed liquid of glycerol and 1,2-propanediol in a one-to-one mass ratio is used for the liquid-conducting performance test.
  • the cross-section of the rib 124 is an isosceles triangle, and the apex angle ⁇ of the cross-section is 40 degrees.
  • the angle ⁇ between the convex edge 124 and the long side of the groove bottom surface 1230 is 90 degrees
  • the distance h3 between the groove bottom surface 1230 and the atomizing surface 122 is 2.05mm
  • the depth h2 of the liquid guiding groove 123 is 2.58mm
  • the convex edge 124 is a height h1 is 1.45mm
  • the surface area of the bottom surface 1230 and two ribs 124 is 10.8mm 2; test results: catheter time 55-70s, single puff of smoke in an amount of 3.5-4.5mg / port.
  • the concave-convex structure of the liquid absorbing 12 only includes one elongated rib 124.
  • Performance test A mixed liquid of glycerol and 1,2-propanediol in a one-to-one mass ratio is used for the liquid-conducting performance test.
  • the cross-section of the rib 124 is an isosceles triangle, and the apex angle ⁇ of the cross-section is 60 degrees.
  • the bottom side length d2 of the cross section is 1.45mm
  • the angle ⁇ between the protruding edge 124 and the long side of the groove bottom surface 1230 is 90 degrees
  • the distance h3 between the groove bottom surface 1230 and the atomizing surface 122 is 2.05mm
  • the liquid guide groove 123 The depth h2 of the ridge is 2.58mm
  • the height h1 of the rib 124 is 1.25mm
  • the surface area of the bottom surface of the groove 1230 and the rib 124 is 7.82mm 2 ;
  • the test result the liquid infusion time is 60-70s, and the amount of mist for a single-mouth smoking is 3-4mg/mouth.
  • FIG. 13 shows the liquid absorbing 12 in some embodiments of the prior art, and the groove bottom surface 1230 of the liquid absorbing 12 is not provided with a concave-convex structure.
  • Performance test A mixed liquid of glycerol and 1,2-propanediol with a mass ratio of one to one is used for the liquid guiding performance test.
  • the distance h3 between the bottom surface of the tank 1230 and the atomizing surface 122 is 2.05mm, and the liquid guiding tank is less than 123mm.
  • the depth h2 is 2.58mm, and the surface area of the bottom 1230 of the groove is 4mm 2 ; the test result: the fluid infusion time is 70-80s, and the single-puffing smoking mist volume is 3-4mg/mouth.

Abstract

一种电子雾化装置及其雾化器和雾化组件(1),雾化组件(1)用于雾化高粘度液态基质,包括多孔体型吸液体(12),吸液体(12)包括用于安装发热体的雾化面(122)以及用于导入液态基质的吸液面(121);吸液面(121)上设置有凹凸结构,以增大吸液体(12)与液态基质之间的换热面积,从而更方便将发热体(11)的热量快速地传导给高粘度液态基质,提高液态基质的流动性,防止干烧的发生。

Description

电子雾化装置及其雾化器和雾化组件 技术领域
本发明涉及雾化领域,更具体地说,涉及一种电子雾化装置及其雾化器和雾化组件。
背景技术
随着近年来药液、烟液等液态基质雾化市场的蓬勃发展,电子雾化装置的需求量急剧增加。电子雾化装置主要由雾化器和电源装置组成。雾化器主要包括用于吸取液态基质的吸液体以及通电后加热雾化液态基质的发热体。吸液体与发热体紧密接触,用于引导液态基质并提供给发热体。与棉绳吸液体相比,陶瓷吸液体克服了焦味、易炸油等缺点从而被市场广泛接受。
导液速率和单口抽吸烟雾量是衡量雾化效果的重要指标。现有技术中通常采用调节陶瓷孔隙率和孔径大小的方法来调节陶瓷吸液体的导液速率。然而,一些高粘度的液态基质往往由于流动性不足而容易聚集在陶瓷吸液体的待雾化相界面处,不能及时液化,从而影响导液速率和单口抽吸烟雾量。市场上现有的雾化器还不具备针对以上技术问题的良好解决方案。
技术问题
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种改进的雾化组件以及具有该雾化组件的雾化器和电子雾化装置。
技术解决方案
本发明解决其技术问题所采用的技术方案是:构造一种雾化组件,用于雾化高粘度液态基质,包括多孔体型吸液体,所述吸液体包括用于安装发热体的雾化面以及用于导入所述液态基质的吸液面;所述吸液面上设置有凹凸结构,以增大所述吸液体与所述液态基质之间的换热面积。
在一些实施例中,所述吸液面包括朝向所述雾化面凹设的至少一个导液槽,所述凹凸结构设置于所述至少一个导液槽的槽底面上。
在一些实施例中,所述凹凸结构包括至少一个凸棱,所述至少一个凸棱的底部与所述槽底面相接,所述至少一个凸棱的顶部伸向所述液态基质。
在一些实施例中,所述至少一个凸棱的横截面形状包括三角形、弧形、多边形中的至少一个。
在一些实施例中,所述至少一个凸棱的高度h1是所述导液槽的深度h2的0.1-0.6倍。
在一些实施例中,所述槽底面包括一长边,所述至少一个凸棱与所述长边的夹角β为0-90度。
在一些实施例中,所述至少一个凸棱的横截面形状为三角形。
在一些实施例中,所述至少一个凸棱的横截面形状为等腰三角形。
在一些实施例中,所述横截面的顶角角度α为10-60度。
在一些实施例中,所述凹凸结构包括至少两个凸棱,所述至少两个凸棱呈长条状且间隔平行设置。
在一些实施例中,所述凹凸结构包括至少三个凸棱,所述至少三个凸棱呈长条状且等间距平行排列。
在一些实施例中,相邻两个凸棱之间的间距d1是所述凸棱的横截面的底边长d2的0.2-0.3倍。
在一些实施例中,所述凸棱的数量为2-10个。
在一些实施例中,所述吸液体呈长方体状,所述吸液体包括靠近所述雾化面的第一层和远离所述雾化面的第二层,所述第一层的外部尺寸大于所述第二层的外部尺寸。
在一些实施例中,所述吸液体包括多孔陶瓷,所述多孔陶瓷的孔隙率为60-85%。
在一些实施例中,所述雾化组件还包括设置于所述雾化面上的发热体。
本发明还提供一种雾化器,包括储液腔以及如上述任一项所述的雾化组件,所述吸液面朝向所述储液腔且与所述储液腔导液连通。
本发明还提供一种电子雾化装置,包括上述所述的雾化器以及与所述雾化器电性连接的电源装置。
有益效果
实施本发明至少具有以下有益效果:通过设置在吸液面上的凹凸结构,增加吸液面与液态基质之间的换热面积,可更方便将发热体的热量快速地传导给高粘度液态基质,提高液态基质的流动性,防止干烧的发生。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明一些实施例中电子雾化装置的立体组合结构示意图;
图2是图1所示电子雾化装置的立体分解结构示意图;
图3是图2所示电子雾化装置的雾化器的剖面结构示意图;
图4是本发明第一实施例中吸液体的立体结构示意图;
图5是图4所示吸液体的平面结构示意图;
图6是图5所示吸液体的A-A剖面结构示意图;
图7是本发明第二实施例中吸液体的平面结构示意图;
图8是图7所示吸液体的B-B剖面结构示意图;
图9是本发明第三实施例中吸液体的平面结构示意图;
图10是图9所示吸液体的C-C剖面结构示意图;
图11是本发明第四实施例中吸液体的平面结构示意图;
图12是图11所示吸液体的D-D剖面结构示意图;
图13是现在技术中吸液体的立体结构示意图。
本发明的实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
图1-2示出了本发明一些实施例中的电子雾化装置,该电子雾化装置可应用于烟液、药液等液态基质的加热雾化,其大致可呈扁平状,并包括扁平状雾化器10以及与雾化器10电性连接的扁平状电源装置50。雾化器10用于收容液态基质、加热雾化该液态基质以及输送雾气,电源装置50用于给雾化器10供电以及控制整个电子雾化装置的开启或关闭等操作。雾化器10和电源装置50在一些实施例中可以以磁吸、螺接等可拆卸的方式连接在一起。可以理解地,该电子雾化装置并不局限于呈扁平状,其也可以呈圆柱状、椭圆柱状、方形柱状等其他形状。
如图3所示,雾化器10在一些实施例中可包括雾化组件1和壳体2。壳体2内形成有一用于存储液态基质的储液腔3,雾化组件1设置于壳体2中并与储液腔3导液连通。雾化组件1可包括用于从储液腔3中吸取液态基质的吸液体12、用于对吸附到吸液体12中的液态基质进行加热雾化的发热体11、以及与该发热体11连接的两电极引线13。两电极引线13分别与电源装置50的正负极电性连接。
吸液体12在一些实施例中可以由多孔陶瓷、多孔玻璃陶瓷、多孔玻璃等硬质多孔材料烧结而成。优选地,吸液体12由多孔陶瓷或多孔陶瓷与金属的组合物制成。在一些实施例中,多孔陶瓷上的微孔的孔径范围可为1μm至100μm。多孔陶瓷的平均孔径可为10-35μm。优选地,多孔陶瓷的平均孔径为20-25μm。
多孔陶瓷的孔隙率可为40%-85%,孔隙率是指多孔基质内的微小空隙的总体积与该多孔基质的总体积的比值。孔隙率的大小可以根据液态基质的成分来调整,例如对于粘度较高的液态基质,孔隙率则可以高一些,以保证导液效果。优选地,对于高粘度液态基质,多孔陶瓷的孔隙率可以为60-85%。
图4-6示出了本发明第一实施例中的吸液体12,该吸液体12可大致呈长方体状,其包括一个用于安装发热体11的呈纵长型的雾化面122以及用于导入液态基质的吸液面121。吸液面121朝向储液腔3并与储液腔3导液连通,以让储液腔3中存储的液态基质进入到吸液体12中。液态基质在吸液体12中受热雾化后,再经由雾化面122逸出。该吸液体12在一些实施例中还可包括设置于吸液面121上的凹凸结构,以增加吸液体12与液态基质之间的接触面积。可以理解地,在其他实施例中,吸液体12的横截面也可以呈圆形、椭圆形、梯形、三角形、多边形等其他形状。
吸液体12在一些实施例中可呈阶梯状,其包括靠近雾化面122的第一层125和远离雾化面122的第二层126。第一层125、第二层126均可大致呈长方体状,且第一层125的外部尺寸小于第二层126的外部尺寸。在本实施例中,第一层125的长度小于第二层126的长度,第一层125的宽度与第二层126的宽度相当。该吸液体12设置呈阶梯状,可方便吸液体12的安装。
第一层125远离第二层126的一侧面形成平坦的长方形雾化面122。在一些实施例中,第二层126远离第一层125的一侧表面朝向雾化面122凹陷形成有一导液槽123,使得吸液体12整体呈碗型。一方面,导液槽123的内表面也形成吸液面121,从而可增加吸液面121的面积;另一方面,可保证吸液面121到雾化面122的距离足够近,提高导液性能。可以理解地,导液槽123的数量并不局限于一个,其也可以为两个或两个以上。
该导液槽123的横截面形状可与吸液体12的横截面形状相匹配。在本实施例中,导液槽123的横截面呈长方形,且导液槽123、第一层125、第二层126、发热体11的中轴线重合。在一些实施例中,该导液槽123的横截面尺寸(长度和宽度尺寸)可由远离雾化面122的一侧向靠近雾化面122的一侧逐渐减小。导液槽123具有一与雾化面122平行的槽底面1230,该凹凸结构可设置于槽底面1230上。由于一些高粘度的液态基质在加热后粘度会降低,流动性会变好。而相对来说,槽底面1230与雾化面122的距离更近,本发明通过将凹凸结构设置于槽底面1230上,可增加槽底与液态基质之间的换热面积,更方便将发热体11的热量快速地传导给液态基质,提高液态基质的流动性,防止干烧的发生。此外,由于导液槽123槽底的液态基质的体积相对较小,而该部分液态基质是即将流向雾化面122被加热雾化的液态基质,通过将凹凸结构设置于槽底面1230上,还可增加槽底的吸液面积,提高热量利用效率,避免热量浪费。可以理解地,在其他实施例中,当吸液体12采用侧面进液的方式时,导液槽123相应地开设于吸液体12的侧面,该凹凸结构设置于导液槽123朝向雾化面122的一侧面上。在另一些实施例中,当吸液体12为片状吸液体时,其吸液面为平面,该凹凸结构设置于该平面吸液面上。
该凹凸结构的底部与槽底面1230相接,顶部伸向液态基质。在一些实施例中,槽底面1230(即该凹凸结构的底部)与雾化面122之间的距离(垂直距离)h3在4mm以内,以保证有充足的热量传导至该凹凸结构处,进而传导给液态基质。槽底面1230到雾化面122之间的距离h3在1mm以上,以避免漏液,并保证吸液体12具有一定的强度。
该凹凸结构在一些实施例中可包括呈长条状的至少一个凸棱124,凸棱124的底部与槽底面1230相接,顶部伸向液态基质。通常,凸棱124的数量可以为2-10个。凸棱124的横截面形状可包括三角形、弧形(例如圆弧形、椭圆弧形)、多边形(例如梯形、方形、正多边形)中的至少一个。可以理解地,该凹凸结构的结构形状不受限制,例如该凹凸结构也可包括呈环状(例如圆环状、椭圆环状、方环状)的凸起或凹陷,或者其也可包括呈点阵状分布的凸起或凹陷。
在本实施例中,该凹凸结构包括呈等间距平行排列的八个长条状凸棱124。凸棱124的横截面呈等腰三角形状,该横截面的顶角角度α可以为10-60度。槽底面1230包括一长边,凸棱124与该长边的夹角β可以为0-90度,优选为60-90度。凸棱124的高度h1是导液槽123的深度h2的0.1-0.6倍,优选为0.4-0.6倍。相邻两个凸棱124之间的间距d1是凸棱124的横截面的底边长d2的0.2-0.3倍。
性能测试:采用丙三醇和1,2-丙二醇一比一质量比的混合液体作导液性能测试,其中,凸棱124的横截面为等腰三角形,该横截面的顶角角度α为10度,凸棱124与槽底面1230长边的夹角β为60度,槽底面1230与雾化面122之间的距离h3为2.05mm,导液槽123的深度h2为2.58mm,凸棱124的高度h1为1.45mm,槽底面1230和该八个凸棱124的表面积为14mm 2;测试结果:导液时间为30-50s,单口抽吸烟雾量为4.0-4.8mg/口。
图7-8示出了本发明第二实施例中的吸液体12,在本实施例中,吸液体12的凹凸结构包括呈等间距平行排列的十个长条状凸棱124。
性能测试:采用丙三醇和1,2-丙二醇一比一质量比的混合液体作导液性能测试,其中,凸棱124的横截面为等腰三角形,该横截面的顶角角度α为10度,凸棱124与槽底面1230长边的夹角β为90度,槽底面1230与雾化面122之间的距离h3为2.05mm,导液槽123的深度h2为2.58mm,凸棱124的高度h1为1.5mm,槽底面1230和该十个凸棱124的表面积为45mm 2;测试结果:导液时间为30-40s,单口抽吸烟雾量为5.0-6.0mg/口。
图9-10示出了本发明第三实施例中的吸液体12,在本实施例中,吸液体12的凹凸结构包括间隔平行设置的两个长条状凸棱124。
性能测试:采用丙三醇和1,2-丙二醇一比一质量比的混合液体作导液性能测试,其中,凸棱124的横截面为等腰三角形,该横截面的顶角角度α为40度,凸棱124与槽底面1230长边的夹角β为90度,槽底面1230与雾化面122之间的距离h3为2.05mm,导液槽123的深度h2为2.58mm,凸棱124的高度h1为1.45mm,槽底面1230和该两个凸棱124的表面积为10.8mm 2;测试结果:导液时间为55-70s,单口抽吸烟雾量为3.5-4.5mg/口。
图11-12示出了本发明第四实施例中的吸液体12,在本实施例中,吸液体12的凹凸结构仅包括一个长条状凸棱124。
性能测试:采用丙三醇和1,2-丙二醇一比一质量比的混合液体作导液性能测试,其中,凸棱124的横截面为等腰三角形,该横截面的顶角角度α为60度,横截面的底边长d2为1.45mm,凸棱124与槽底面1230长边的夹角β为90度,槽底面1230与雾化面122之间的距离h3为2.05mm,导液槽123的深度h2为2.58mm,凸棱124的高度h1为1.25mm,槽底面1230和该一个凸棱124的表面积为7.82mm 2;测试结果:导液时间为60-70s,单口抽吸烟雾量为3-4mg/口。
作为对比,图13示出了现有技术一些实施例中的吸液体12,该吸液体12的槽底面1230上未设置有凹凸结构。
性能测试:采用丙三醇和1,2-丙二醇一比一质量比的混合液体作导液性能测试,其中,槽底面1230与雾化面122之间的距离h3为2.05mm,导液槽123的深度h2为2.58mm,槽底面1230的表面积为4mm 2;测试结果:导液时间为70-80s,单口抽吸烟雾量为3-4mg/口。
由上述各性能测试的结果可以看出,随着凸棱124数量的增加,槽底面1230和该至少一个凸棱124的表面积大幅增加,导液时间显著减少,导液速度和单口抽吸烟雾量显著增加,雾化效果提高。
可以理解地,上述各技术特征可以任意组合使用而不受限制。
以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (18)

  1. 一种雾化组件,用于雾化高粘度液态基质,其特征在于,包括多孔体型吸液体(12),所述吸液体(12)包括用于安装发热体(11)的雾化面(122)以及用于导入所述液态基质的吸液面(121);所述吸液面(121)上设置有凹凸结构,以增大所述吸液体(12)与所述液态基质之间的换热面积。
  2. 根据权利要求1所述的雾化组件,其特征在于,所述吸液面(121)包括朝向所述雾化面(122)凹设的至少一个导液槽(123),所述凹凸结构设置于所述至少一个导液槽(123)的槽底面(1230)上。
  3. 根据权利要求2所述的雾化组件,其特征在于,所述凹凸结构包括至少一个凸棱(124),所述至少一个凸棱(124)的底部与所述槽底面(1230)相接,所述至少一个凸棱(124)的顶部伸向所述液态基质。
  4. 根据权利要求3所述的雾化组件,其特征在于,所述至少一个凸棱(124)的横截面形状包括三角形、弧形、多边形中的至少一个。
  5. 根据权利要求3所述的雾化组件,其特征在于,所述至少一个凸棱(124)的高度h1是所述导液槽(123)的深度h2的0.1-0.6倍。
  6. 根据权利要求3所述的雾化组件,其特征在于,所述槽底面(1230)包括一长边,所述至少一个凸棱(124)与所述长边的夹角β为0-90度。
  7. 根据权利要求3所述的雾化组件,其特征在于,所述至少一个凸棱(124)的横截面形状为三角形。
  8. 根据权利要求3所述的雾化组件,其特征在于,所述至少一个凸棱(124)的横截面形状为等腰三角形。
  9. 根据权利要求7或8所述的雾化组件,其特征在于,所述横截面的顶角角度α为10-60度。
  10. 根据权利要求3所述的雾化组件,其特征在于,所述凹凸结构包括至少两个凸棱(124),所述至少两个凸棱(124)呈长条状且间隔平行设置。
  11. 根据权利要求3所述的雾化组件,其特征在于,所述凹凸结构包括至少三个凸棱(124),所述至少三个凸棱(124)呈长条状且等间距平行排列。
  12. 根据权利要求10或11所述的雾化组件,其特征在于,相邻两个凸棱(124)之间的间距d1是所述凸棱(124)的横截面的底边长d2的0.2-0.3倍。
  13. 根据权利要求10或11所述的雾化组件,其特征在于,所述凸棱(124)的数量为2-10个。
  14. 根据权利要求1-8、10-11任一项所述的雾化组件,其特征在于,所述吸液体(12)呈长方体状,所述吸液体(12)包括靠近所述雾化面(122)的第一层(125)和远离所述雾化面(122)的第二层(126),所述第一层(125)的外部尺寸大于所述第二层(126)的外部尺寸。
  15. 根据权利要求1-8、10-11任一项所述的雾化组件,其特征在于,所述吸液体(12)包括多孔陶瓷,所述多孔陶瓷的孔隙率为60-85%。
  16. 根据权利要求1-8、10-11任一项所述的雾化组件,其特征在于,所述雾化组件还包括设置于所述雾化面(122)上的发热体(11)。
  17. 一种雾化器,其特征在于,包括储液腔(3)以及如权利要求1-16任一项所述的雾化组件(12),所述吸液面(121)朝向所述储液腔(3)且与所述储液腔(3)导液连通。
  18. 一种电子雾化装置,其特征在于,包括权利要求17所述的雾化器(10)以及与所述雾化器(10)电性连接的电源装置(50)。
PCT/CN2020/072121 2020-01-15 2020-01-15 电子雾化装置及其雾化器和雾化组件 WO2021142640A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/072121 WO2021142640A1 (zh) 2020-01-15 2020-01-15 电子雾化装置及其雾化器和雾化组件
CN202022412722.1U CN214127012U (zh) 2020-01-15 2020-10-26 电子雾化装置及其雾化器和雾化组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072121 WO2021142640A1 (zh) 2020-01-15 2020-01-15 电子雾化装置及其雾化器和雾化组件

Publications (1)

Publication Number Publication Date
WO2021142640A1 true WO2021142640A1 (zh) 2021-07-22

Family

ID=76863398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072121 WO2021142640A1 (zh) 2020-01-15 2020-01-15 电子雾化装置及其雾化器和雾化组件

Country Status (2)

Country Link
CN (1) CN214127012U (zh)
WO (1) WO2021142640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159057A4 (en) * 2022-05-13 2023-09-20 Shenzhen Smoore Technology Limited HEATING BODY, ATOMIZER AND ELECTRONIC ATOMIZATION DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071703A1 (en) * 2013-11-12 2015-05-21 Chen Léon Atomizer unit for use in an electronic cigarette
CN205912904U (zh) * 2016-07-27 2017-02-01 卓尔悦欧洲控股有限公司 雾化器及电子烟
CN207784278U (zh) * 2017-12-11 2018-08-31 深圳麦克韦尔股份有限公司 电子烟及其雾化器
CN208113970U (zh) * 2018-02-13 2018-11-20 深圳麦克韦尔股份有限公司 电子烟及其雾化器
CN209846169U (zh) * 2018-09-13 2019-12-27 深圳麦克韦尔科技有限公司 电子烟及其雾化器和电池组件
CN209931491U (zh) * 2019-03-14 2020-01-14 深圳市合元科技有限公司 烟弹及电子烟

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071703A1 (en) * 2013-11-12 2015-05-21 Chen Léon Atomizer unit for use in an electronic cigarette
CN205912904U (zh) * 2016-07-27 2017-02-01 卓尔悦欧洲控股有限公司 雾化器及电子烟
CN207784278U (zh) * 2017-12-11 2018-08-31 深圳麦克韦尔股份有限公司 电子烟及其雾化器
CN208113970U (zh) * 2018-02-13 2018-11-20 深圳麦克韦尔股份有限公司 电子烟及其雾化器
CN209846169U (zh) * 2018-09-13 2019-12-27 深圳麦克韦尔科技有限公司 电子烟及其雾化器和电池组件
CN209931491U (zh) * 2019-03-14 2020-01-14 深圳市合元科技有限公司 烟弹及电子烟

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4159057A4 (en) * 2022-05-13 2023-09-20 Shenzhen Smoore Technology Limited HEATING BODY, ATOMIZER AND ELECTRONIC ATOMIZATION DEVICE

Also Published As

Publication number Publication date
CN214127012U (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021012961A1 (zh) 雾化组件、雾化器及气溶胶发生装置
CN211746949U (zh) 雾化器及气溶胶发生装置
WO2017066955A1 (zh) 电子烟及其雾化组件和雾化元件
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
WO2021226834A1 (zh) 一种雾化装置
WO2022156510A1 (zh) 加热组件及雾化装置
WO2023000799A1 (zh) 一种雾化芯、雾化组件、雾化器及电子雾化装置
US20220110370A1 (en) Electronic atomization device, and atomizer and heating assembly thereof
WO2023040837A1 (zh) 电子雾化装置及其雾化器
WO2023138216A1 (zh) 电子雾化装置、雾化器及其雾化芯
WO2021142640A1 (zh) 电子雾化装置及其雾化器和雾化组件
WO2022179300A9 (zh) 发热组件、雾化器及电子雾化装置
WO2022179301A2 (zh) 发热体、雾化器及电子雾化装置
WO2024087662A1 (zh) 雾化器及气溶胶发生装置
GB2612465A (en) Atomizing member, atomizer, and aerosol generating device
CN218889286U (zh) 气溶胶发生组件及气溶胶发生装置
CN216568352U (zh) 雾化结构件、雾化装置及气溶胶生成装置
WO2024036878A1 (zh) 一种雾化芯及雾化器
WO2023045586A1 (zh) 雾化器及气溶胶发生装置
WO2023016202A1 (zh) 一种电子雾化装置及其雾化器和雾化组件
WO2022021036A1 (zh) 雾化芯、雾化器及电子雾化装置
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022040866A1 (zh) 电子雾化装置及其雾化器
WO2023005029A1 (zh) 电子雾化装置、雾化器及其雾化组件
WO2022179644A2 (zh) 发热组件、雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913802

Country of ref document: EP

Kind code of ref document: A1