WO2021226834A1 - 一种雾化装置 - Google Patents

一种雾化装置 Download PDF

Info

Publication number
WO2021226834A1
WO2021226834A1 PCT/CN2020/089824 CN2020089824W WO2021226834A1 WO 2021226834 A1 WO2021226834 A1 WO 2021226834A1 CN 2020089824 W CN2020089824 W CN 2020089824W WO 2021226834 A1 WO2021226834 A1 WO 2021226834A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomization
wall
cavity
capillary
air outlet
Prior art date
Application number
PCT/CN2020/089824
Other languages
English (en)
French (fr)
Inventor
雷桂林
姜茹
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP20935518.9A priority Critical patent/EP4151099A4/en
Priority to PCT/CN2020/089824 priority patent/WO2021226834A1/zh
Publication of WO2021226834A1 publication Critical patent/WO2021226834A1/zh
Priority to US17/985,481 priority patent/US20230076495A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0211Ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • This application relates to the technical field of atomization equipment, and in particular to an atomization device.
  • the cavity wall of the atomization cavity in the atomization device is usually made of plastic material.
  • the temperature in the atomization cavity is too high, it will often cause the cavity wall of the atomization cavity to be deformed, and even scorch and other stability problems.
  • the atomizing device heats and atomizes aerosol substrates such as e-liquid, it is easy to explode oil due to uneven distribution of the aerosol substrate and excessive local temperature, and the unatomized aerosol substrate splashes into the atomization cavity
  • the cavity wall or the atomized aerosol matrix condenses on the cavity wall of the atomization cavity, and the aerosol matrix attached to the cavity wall of the atomization cavity easily reaches the bottom of the atomization device along the cavity wall, which causes the problem of liquid leakage.
  • the main technical problem to be solved by this application is to provide an atomization device, which can improve the structural stability of the atomization device and improve the anti-leakage effect of the atomization device.
  • the atomizing device includes an air inlet, an air outlet and an atomizing cavity.
  • the atomization cavity is respectively connected with the air inlet and the air outlet, and the atomization cavity is provided with an atomization assembly, and the part of the inner wall of the atomization cavity near the atomization assembly is provided with a first capillary liquid absorption structure, wherein the first capillary liquid absorption structure After absorbing the aerosol matrix, the temperature of the cavity wall of the atomization cavity at the position of the first capillary liquid absorption structure can be reduced along with the endothermic atomization of the aerosol matrix.
  • the atomization device further includes a first bearing member and a second bearing member, the first bearing member and the second bearing member are butted to form an atomizing cavity, the air inlet is provided on the first bearing member, and the mist
  • the chemical component is arranged on the second carrier, and the first capillary liquid absorption structure is arranged on the inner wall of the second carrier.
  • the first capillary liquid absorption structure is provided on the side wall of the second carrier.
  • the temperature of the wall of the atomization cavity is less than or equal to 150°C.
  • the distance between the surface of the atomization component and the inner wall of the atomization cavity is 0.5 mm-1.8 mm.
  • the distance between the surface of the atomization component and the inner wall of the atomization cavity is 1 mm-1.5 mm.
  • the atomization device further includes an air outlet channel, which respectively communicates with the air outlet and the atomization cavity, and the part of the inner wall of the atomization cavity connecting the inner wall of the air outlet channel is provided with a first capillary liquid absorption structure for absorption The aerosol matrix flowing back along the inner wall of the air outlet channel.
  • the first capillary liquid absorption structure includes a first capillary groove and a second capillary groove.
  • the capillary groove is far away from the air outlet channel and there is a gap between the second capillary groove and the first capillary groove, wherein the aerosol matrix in the first capillary groove enters the second capillary groove after the gap converges.
  • the width of the first capillary groove and the second capillary groove is less than 1 mm.
  • the first capillary groove and the second capillary groove extend in a direction close to the air outlet channel.
  • the first capillary groove and the second capillary groove extend in a direction close to the air outlet.
  • the inner wall of the air outlet channel is provided with a second capillary liquid absorption structure extending to the atomization cavity to guide the aerosol matrix condensed on the inner wall of the air outlet channel to the atomization cavity.
  • part of the second capillary liquid absorption structure is connected to the first capillary liquid absorption structure provided on the inner wall of the atomization chamber connected to the inner wall of the gas outlet, and the remaining part of the second capillary liquid absorption structure is connected with the first capillary liquid absorption structure provided in the mist.
  • the first capillary liquid absorbing structures of the part where the inner wall of the chemical chamber is connected to the inner wall of the air outlet channel are arranged at intervals.
  • the part where the atomization cavity communicates with the air outlet channel is provided with a tapered channel, and the cross-sectional area of the tapered channel gradually decreases in a direction close to the air outlet channel.
  • the first capillary liquid absorption structure provided on the part of the inner wall of the atomization chamber connected to the inner wall of the air outlet channel is at least partially located on the inner wall of the tapered channel.
  • the atomization component includes a porous heating element.
  • the porous heating element is a porous ceramic heating element.
  • the present application provides an atomization device.
  • the part of the inner wall of the atomization cavity of the atomization device close to the atomization assembly is provided with a first capillary liquid absorption structure.
  • the first capillary liquid absorption structure is used to absorb the aerosol matrix and can reduce the cavity wall of the atomization cavity at the position of the first capillary liquid absorption structure with the endothermic atomization of the aerosol matrix after absorbing the aerosol matrix.
  • Temperature thereby avoiding stability problems such as deformation and scorching of the wall of the atomization cavity due to excessively high temperature, and thus can improve the structural stability of the atomization device.
  • the first capillary liquid absorption structure of the present application has the function of absorbing and storing the aerosol matrix. At least part of the aerosol matrix on the wall of the atomization cavity is locked in the first capillary liquid absorption structure, which can reduce The accumulated aerosol matrix can further reduce the risk of liquid leakage of the atomization device, which is beneficial to improve the anti-leakage effect of the atomization device.
  • FIG. 1 is a schematic structural diagram of an embodiment of an atomization device of the present application
  • Fig. 2 is a schematic cross-sectional structure diagram of the atomization device shown in Fig. 1 along the A-A direction;
  • FIG. 3 is a schematic structural view of an embodiment of the atomization assembly, the first carrier, and the second carrier of the atomization device of the present application;
  • FIG. 4 is a schematic diagram of the exploded structure of the atomization assembly, the first carrier and the second carrier shown in FIG. 3;
  • FIG. 5 is a schematic top view of the structure of the atomization assembly, the first carrier and the second carrier shown in FIG. 3;
  • FIG. 6 is a schematic structural diagram of the atomization device shown in FIG. 2 without the atomization component.
  • an embodiment of the present application provides an atomization device.
  • the atomizing device includes an air inlet, an air outlet and an atomizing cavity.
  • the atomization cavity is respectively connected with the air inlet and the air outlet, and the atomization cavity is provided with an atomization assembly, and the part of the inner wall of the atomization cavity near the atomization assembly is provided with a first capillary liquid absorption structure, wherein the first capillary liquid absorption structure After absorbing the aerosol matrix, the temperature of the cavity wall of the atomization cavity at the position of the first capillary liquid absorption structure can be reduced along with the endothermic atomization of the aerosol matrix. This will be explained in detail below.
  • FIG. 1 is a schematic structural diagram of an embodiment of the atomization device of the present application
  • FIG. 2 is a schematic cross-sectional structural diagram of the atomization device shown in FIG. 1 along the A-A direction.
  • the atomization device 10 may be in the form of an electronic cigarette.
  • it can also be a medical atomization device used in the medical field.
  • the following description takes the atomization device 10 in the form of an electronic cigarette as an example, which is not limited by this.
  • the atomizing device 10 includes an air inlet 11, an air outlet 12 and an atomizing cavity 13.
  • the atomization cavity 13 is respectively connected to the air inlet 11 and the air outlet 12, and an atomization assembly 14 is provided in the atomization cavity 13, wherein the atomization assembly 14 is used to atomize the aerosol matrix (such as e-liquid) in the atomization device 10 , Liquid medicine, etc.).
  • the position where the air inlet 11 is located is the position where the atomizer 10 takes in air.
  • external gas enters the atomization cavity 13 from the air inlet 11 to carry the aerosol matrix atomized by the atomization component 14 in the atomization cavity 13 to the air outlet 12 and output to the user for the user Snorting.
  • the atomizing component 14 may be a porous heating element, which absorbs the aerosol matrix by capillary force and generates heat to atomize the aerosol matrix.
  • the atomization component 14 may be a porous ceramic heating element or the like, and it may be further provided with a heating film.
  • the atomization component 14 may also be a design in which fiber cotton and heating wire are matched, which is not limited herein.
  • a first capillary liquid absorbing structure 15 is provided.
  • the first capillary liquid absorption structure 15 is used for absorbing the aerosol matrix splashed to the cavity wall of the atomization cavity 13 due to frying oil and the aerosol matrix condensed on the cavity wall of the atomization cavity 13.
  • the aerosol matrix absorbed by the first capillary liquid-absorbing structure 15 can be in the first capillary liquid-absorbing structure 15 Continue to atomize.
  • the aerosol matrix in the first capillary liquid-absorbing structure 15 absorbs the aerosol matrix
  • the aerosol matrix in the first capillary liquid-absorbing structure 15 continues to be atomized, so that the atomization component 14 is transferred
  • the heat to the wall of the atomization cavity 13 at the location of the first capillary liquid absorption structure 15 is reduced, and the heat of the cavity of the atomization cavity 13 at the location of the first capillary liquid absorption structure 15 is absorbed by the aerosol matrix, thereby reducing
  • the temperature of the cavity wall of the atomization cavity 13 at the location of the first capillary liquid absorbing structure 15 is reduced by the endothermic atomization of the aerosol matrix.
  • the temperature can avoid stability problems such as deformation and scorching of the cavity wall of the atomization cavity 13 due to excessively high temperature, thereby improving the structural stability of the atomization device 10.
  • the aerosol matrix in the first capillary liquid absorption structure 15 continues to be atomized, which also means that the aerosol matrix absorbed by the first capillary liquid absorption structure 15 is reused, which can increase the utilization rate of the aerosol matrix of the atomizing device 10 .
  • the temperature of the cavity wall of the atomization cavity 13 is less than or equal to 150°C. It can be seen that through the design of the first capillary liquid absorption structure 15 of this embodiment, the temperature of the cavity wall of the atomization cavity 13 can be controlled to be below 150°C, thereby effectively avoiding the deformation of the cavity wall of the atomization cavity 13 due to excessive temperature. Stability issues such as scorching.
  • the first capillary liquid absorption structure 15 of this embodiment is provided on the part of the inner wall of the atomization chamber 13 close to the atomization assembly 14, that is, the first capillary liquid absorption structure 15 is arranged close to the atomization assembly 14, which can further reduce the atomization cavity. 13 There is a risk of stability problems on the cavity wall, thereby further improving the structural stability of the atomization device 10.
  • the first capillary liquid absorbing structure 15 of this embodiment has the function of absorbing and storing the aerosol matrix. At least part of the aerosol matrix on the cavity wall of the atomization cavity 13 can be locked in the first capillary liquid absorption structure 15, so as to reduce the aerosol matrix accumulated in the atomization device 10, thereby reducing the leakage of the atomization device 10 Risks are beneficial to improve the anti-leakage effect of the atomization device 10. For example, for the direct liquid atomization device 10, the bottom of the atomization device 10 tends to accumulate more aerosol matrix.
  • the first capillary liquid absorption structure 15 of this embodiment can effectively reduce the amount of the atomization device 10
  • the aerosol matrix accumulated at the bottom further reduces the risk of liquid leakage of the atomization device 10 and improves the anti-leakage effect of the atomization device 10.
  • the splashed aerosol matrix is absorbed by the first capillary liquid absorption structure 15 because the temperature is low and will not affect the first
  • the structure of the cavity wall of the atomization cavity 13 at the position of the capillary liquid absorption structure 15 is stable, but a protective film can be formed at the first capillary liquid absorption structure 15 to follow the heat absorption of the aerosol matrix in the first capillary liquid absorption structure 15
  • Atomization reduces the temperature of the cavity wall of the atomization cavity 13 where the first capillary liquid absorbing structure 15 is located, thereby avoiding stability problems such as deformation and scorching of the cavity wall of the atomization cavity 13 due to excessively high temperature.
  • FIG. 3 is a schematic structural diagram of an embodiment of the atomization assembly, the first carrier, and the second carrier of the atomization device of the present application
  • FIG. 4 is the atomization assembly, the first A schematic diagram of the exploded structure of the carrier and the second carrier.
  • the atomization device 10 further includes a first supporting member 16 and a second supporting member 17.
  • the first supporting member 16 and the second supporting member 17 are butted to form an atomizing cavity 13, and the air inlet 11 is provided in the first
  • the carrier 16 and the atomization assembly 14 are disposed on the second carrier 17, and the first capillary liquid absorption structure 15 is disposed on the inner wall of the second carrier 17.
  • the first capillary liquid absorbing structure 15 may be provided on the side wall or bottom wall of the second supporting member 17.
  • FIG. 2 shows a situation in which the first capillary liquid absorbing structure 15 is provided on the side wall of the second supporting member 17. Not limited.
  • FIG. 5 is a schematic top view of the atomization assembly, the first supporting member, and the second supporting member shown in FIG. 3.
  • the surface of the atomization component 14 and the atomization cavity are usually required.
  • the distance between the inner walls of 13 must be more than 2mm to ensure that the cavity wall of the atomization cavity 13 is not overheated, deformed, burnt, etc., which makes the cross-sectional area of the atomization cavity 13 too large and causes the airflow in the atomization cavity 13 when the user inhales The flow rate is too low, which is not conducive to the airflow carrying the atomized aerosol matrix for the user to inhale.
  • the cavity wall of the atomization cavity 13 of this embodiment allows the distance between the surface of the atomization assembly 14 and the inner wall of the atomization cavity 13 after the first capillary liquid absorption structure 15 is provided (the distance W shown in FIG. 5 ) Is reduced to 0.5mm-1.8mm, and then the temperature of the cavity wall of the atomization cavity 13 is controlled to be below 150°C.
  • the distance between the surface of the atomization assembly 14 and the inner wall of the atomization cavity 13 in this embodiment is reduced, so that the cross-sectional area of the atomization cavity 13 is reduced and the user sucks
  • the airflow velocity in the atomization cavity 13 is increased, specifically, the airflow velocity in the atomization cavity 13 is increased by at least 10% when the user inhales, and it can also ensure that the cavity wall of the atomization cavity 13 is not overheated, deformed, burned, etc.
  • the reduced distance between the surface of the atomization component 14 and the inner wall of the atomization cavity 13 in this embodiment means that the atomization cavity 13 is allowed to be designed with a smaller volume, which is beneficial to the miniaturization of the atomization device 10.
  • the distance between the surface of the atomization assembly 14 and the inner wall of the atomization cavity 13 is preferably 1 mm-1.5 mm, so The air flow velocity in the atomization cavity 13 can be increased as much as possible, and at the same time, the cavity wall of the atomization cavity 13 can be ensured that the cavity wall of the atomization cavity 13 is not overheated, deformed, scorched, etc. as much as possible.
  • the atomization device 10 further includes an air outlet channel 18.
  • the air outlet channel 18 communicates with the air outlet 12 and the atomization cavity 13 respectively.
  • the gas entering the atomization cavity 13 from the air inlet 11 carries the aerosol matrix atomized by the atomization component 14 to the air outlet channel 18 and is output to the user along the air outlet channel 18 for the user to inhale.
  • the inner wall of the atomization cavity 13 in this embodiment The part connected to the inner wall of the air outlet channel 18 is provided with a first capillary liquid absorption structure 15 for absorbing the aerosol matrix that flows back along the inner wall of the air outlet channel 18, so that the aerosol matrix condensed on the inner wall of the air outlet channel 18 can be reused and used in the first
  • a protective film is formed at a capillary absorbing structure 15 to control the temperature of the cavity wall of the atomization cavity 13 (that is, as described in the above-mentioned embodiment, the first capillary is reduced by the endothermic atomization of the aerosol matrix in the first capillary absorbing structure 15). The temperature of the cavity wall of the atomization cavity 13 at the position where the liquid absorbing structure 15 is located).
  • the inner wall of the air outlet channel 18 of this embodiment is provided with a second capillary liquid absorption structure 181 extending to the atomization cavity 13.
  • the capillary liquid absorption structure 181 absorbs the aerosol matrix condensed on the inner wall of the air channel 18, it guides the absorbed aerosol matrix to the atomization cavity 13, which is beneficial to optimize the diversion effect of the aerosol matrix on the inner wall of the air channel 18.
  • part of the second capillary liquid absorption structure 181 is connected to the first capillary liquid absorption structure 15 provided on the part of the inner wall of the atomization chamber 13 connected to the inner wall of the gas channel 18, and the aerosol in the second capillary liquid absorption structure 181 is The matrix is guided into the first capillary liquid-absorbing structure 15 to facilitate the accumulation of the aerosol matrix in the first capillary liquid-absorbing structure 15, thereby improving the structural stability of the atomization device 10.
  • the remaining second capillary liquid absorbing structure 181 and the first capillary liquid absorbing structure 15 provided on the inner wall of the atomization chamber 13 connected to the inner wall of the air channel 18 are spaced apart, that is, the remaining second capillary liquid absorbing structure 181 and the first capillary liquid absorbing structure 15 A capillary liquid absorption structure 15 is not connected, and the aerosol matrix in the second capillary liquid absorption structure 181 can be directly guided to the atomization assembly 14 to be atomized by the atomization assembly 14 again.
  • the part where the atomization cavity 13 communicates with the air outlet channel 18 is provided with a tapered channel 131.
  • the cross-sectional area of the tapered channel 131 gradually decreases in the direction close to the air outlet channel 18 (as shown by the arrow X in FIG. 2 and the same below).
  • the capillary liquid absorbing structure 15 is at least partially located on the inner wall of the tapered channel 131.
  • the large droplet aerosol matrix that splashes vertically in the direction close to the gas outlet channel 18 will return to the atomization assembly 14 under the action of gravity to be heated and atomized again, and splash around.
  • a part of the aerosol matrix of large droplets is absorbed by the first capillary liquid-absorbing structure 15 on the side, and a part of the aerosol matrix splashes upward in a direction close to the air outlet channel 18. It has a vertical upward sub-velocity and will be affected by the tapered channel.
  • the inner wall of 131 is blocked by the first capillary liquid absorbing structure 15 on the inner wall of the tapered channel 131, and the small droplet aerosol matrix can enter the air outlet channel 18 under the airflow, and will not be affected by the tapered channel 131. In this way, the aerosol matrix of large droplets can be prevented from entering the air outlet channel 18 and being sucked by the user, which affects the user's taste.
  • the airflow flows through the tapered channel 131. Since the cross-sectional area of the tapered channel 131 gradually decreases in the direction close to the air outlet channel 18, the flow velocity of the airflow in the tapered channel 131 increases, which is beneficial to The airflow carries the atomized aerosol matrix and outputs it to the user, and can also alleviate the condensation of the atomized aerosol matrix.
  • FIG. 6 is a schematic structural diagram of the atomization device shown in FIG. 2 without the atomization component.
  • the first capillary liquid-absorbing structure 15 may be a capillary groove with capillary force, etc., which can absorb the aerosol matrix by using capillary force.
  • the first capillary liquid absorbing structure 15 can also be other structures with capillary force.
  • the surface of the atomization chamber 13 is roughened by grinding or other roughening treatments to form a structure with capillary force in the form of a matte surface, lines, etc., namely The first capillary absorbing structure 15.
  • the first capillary liquid-absorbing structure 15 adopts a capillary groove as an example for illustration, which does not limit the type of the first capillary liquid-absorbing structure 15.
  • the first capillary liquid absorbing structure 15 includes a first capillary groove 151 and a second capillary groove 152.
  • the first capillary groove 151 is provided in the part where the inner wall of the atomization chamber 13 is connected to the inner wall of the air outlet channel 18, and the second capillary groove 152 is far away from the air outlet channel 18 relative to the first capillary groove 151.
  • the aerosol matrix in the first capillary groove 151 is allowed to mix uniformly at the gap 19 and is evenly distributed into the second capillary groove 152, thereby improving the aerosol in the first capillary liquid absorption structure 15 on the inner wall of the atomization cavity 13
  • the uniformity of the matrix distribution is beneficial to reduce the risk of structural stability problems on the cavity wall of the atomization cavity 13.
  • the width of the first capillary groove 151 and the second capillary groove 152 is preferably less than 1 mm, so that the first capillary groove 151 and the second capillary groove 152 have sufficient capillary liquid absorption capacity. If the width of the first capillary groove 151 and the second capillary groove 152 is too large, the capillary liquid absorption capacity of the first capillary groove 151 and the second capillary groove 152 will be weakened, which is insufficient for use.
  • the design values of the widths of the first capillary groove 151 and the second capillary groove 152 also depend on the viscosity of the aerosol matrix and the structural design constraints of the atomization device 10.
  • the greater the depth of the capillary groove the greater its liquid storage capacity, so if the structure allows, increasing the depth of the capillary groove is beneficial to increase the liquid storage capacity of the first capillary groove 151 and the second capillary groove 152 , which in turn helps reduce the risk of liquid leakage.
  • both the first capillary groove 151 and the second capillary groove 152 may extend in a direction close to the air outlet channel 18, that is, extend in a direction close to the air outlet 12, as shown by the arrow X in FIG. 6.
  • the first capillary groove 151 and the second capillary groove 152 are vertical grooves, which facilitates the injection molding of the first capillary groove 151 and the second capillary groove 152.
  • the first capillary groove 151 and the second capillary groove 152 may not be vertical grooves, for example, implemented by 3D printing technology.
  • the inner wall of the atomization cavity is provided with a first capillary liquid absorption structure at a portion of the inner wall of the atomization cavity close to the atomization assembly.
  • the first capillary liquid absorption structure is used to absorb the aerosol matrix and can reduce the cavity wall of the atomization cavity at the position of the first capillary liquid absorption structure with the endothermic atomization of the aerosol matrix after absorbing the aerosol matrix. Temperature, thereby avoiding stability problems such as deformation and scorching of the wall of the atomization cavity due to excessively high temperature, and thus can improve the structural stability of the atomization device.
  • the first capillary liquid absorption structure of the present application has the function of absorbing and storing the aerosol matrix. At least part of the aerosol matrix on the wall of the atomization cavity is locked in the first capillary liquid absorption structure, which can reduce The accumulated aerosol matrix can further reduce the risk of liquid leakage of the atomization device, which is beneficial to improve the anti-leakage effect of the atomization device.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • connection may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

一种雾化装置(10),该雾化装置(10)包括进气口(11)、出气口(12)及雾化腔(13)。雾化腔(13)分别连通进气口(11)和出气口(12),并且雾化腔(13)内设有雾化组件(14),雾化腔(13)内壁靠近雾化组件(14)的部分设有第一毛细吸液结构(15),其中在第一毛细吸液结构(15)吸收气溶胶基质后能够随气溶胶基质的吸热雾化而降低第一毛细吸液结构(15)所在位置处的雾化腔(13)腔壁的温度。通过以上方式,能够提高雾化装置的结构稳定性以及改善雾化装置的防漏液效果。

Description

一种雾化装置 【技术领域】
本申请涉及雾化设备技术领域,特别是涉及一种雾化装置。
【背景技术】
目前,诸如电子烟等雾化装置,其内雾化腔的腔壁通常是塑胶材质。当雾化腔内温度过高时,往往会导致雾化腔的腔壁发生变形,甚至烤焦等稳定性问题。并且,当雾化装置加热雾化诸如烟油等气溶胶基质时,容易因为气溶胶基质分布不均以及局部温度过高而发生炸油现象,未经雾化的气溶胶基质飞溅至雾化腔腔壁,或是雾化的气溶胶基质在雾化腔腔壁冷凝,而雾化腔腔壁上附着的气溶胶基质容易沿腔壁到达雾化装置底部而引发漏液的问题。
【申请内容】
有鉴于此,本申请主要解决的技术问题是提供一种雾化装置,能够提高雾化装置的结构稳定性以及改善雾化装置的防漏液效果。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种雾化装置。该雾化装置包括进气口、出气口以及雾化腔。雾化腔分别连通进气口和出气口,并且雾化腔内设有雾化组件,雾化腔内壁靠近雾化组件的部分设有第一毛细吸液结构,其中在第一毛细吸液结构吸收气溶胶基质后能够随气溶胶基质的吸热雾化而降低第一毛细吸液结构所在位置处的雾化腔腔壁的温度。
在本申请的一实施例中,雾化装置还包括第一承载件和第二承载件,第一承载件和第二承载件对接形成雾化腔,进气口设于第一承载件,雾化组件设于第二承载件,并且第一毛细吸液结构设于第二承载件的内壁。
在本申请的一实施例中,第一毛细吸液结构设于第二承载件的侧壁。
在本申请的一实施例中,当雾化组件发热时,雾化腔腔壁的温度小于或等于150℃。
在本申请的一实施例中,雾化组件表面与雾化腔内壁之间的距离为0.5mm-1.8mm。
在本申请的一实施例中,雾化组件表面与雾化腔内壁之间的距离为1mm-1.5mm。
在本申请的一实施例中,雾化装置还包括出气通道,出气通道分别连通出气口和雾化腔,雾化腔内壁连接出气通道内壁的部分设有第一毛细吸液结构,用于吸收沿出气通道内壁回流的气溶胶基质。
在本申请的一实施例中,第一毛细吸液结构包括第一毛细槽和第二毛细槽,第一毛细槽设于雾化腔内壁连接出气通道内壁的部分,第二毛细槽相对第一毛细槽远离出气通道且第二毛细槽与第一毛细槽之间具有间隙,其中第一毛细槽中的气溶胶基质在间隙汇流后进入第二毛细槽。
在本申请的一实施例中,第一毛细槽和第二毛细槽的宽度小于1mm。
在本申请的一实施例中,第一毛细槽和第二毛细槽沿靠近出气通道的方向延伸。
在本申请的一实施例中,第一毛细槽和第二毛细槽沿靠近出气口的方向延伸。
在本申请的一实施例中,出气通道的内壁设有延伸至雾化腔的第二毛细吸液结构,以将出气通道的内壁上冷凝的气溶胶基质引导至雾化腔。
在本申请的一实施例中,部分第二毛细吸液结构与设于雾化腔内壁连接出气通道内壁的部分的第一毛细吸液结构连通,剩余部分第二毛细吸液结构与设于雾化腔内壁连接出气通道内壁的部分的第一毛细吸液结构间隔设置。
在本申请的一实施例中,雾化腔连通出气通道的部分设有渐缩通道,渐缩通道的横截面面积沿靠近出气通道的方向逐渐减小。
在本申请的一实施例中,设于雾化腔内壁连接出气通道内壁的部分的第一毛细吸液结构至少部分位于渐缩通道的内壁。
在本申请的一实施例中,雾化组件包括多孔发热体。
在本申请的一实施例中,多孔发热体为多孔陶瓷发热体。
本申请的有益效果是:区别于现有技术,本申请提供一种雾化装置。该雾化装置的雾化腔内壁靠近雾化组件的部分设有第一毛细吸液结构。其中,第一毛细吸液结构用于吸收气溶胶基质并能够在吸收气溶胶基质后能够随气溶胶基质的吸热雾化而降低第一毛细吸液结构所在位置处的雾化腔腔壁的温度,从而 避免雾化腔腔壁由于温度过高而发生变形、烤焦等稳定性问题,因而能够提高雾化装置的结构稳定性。
并且,本申请的第一毛细吸液结构具有吸收、存储气溶胶基质的作用,雾化腔腔壁上至少部分的气溶胶基质锁止于第一毛细吸液结构中,能够减少雾化装置内积累的气溶胶基质,进而能够降低雾化装置漏液的风险,有利于改善雾化装置的防漏液效果。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。此外,这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
图1是本申请雾化装置一实施例的结构示意图;
图2是图1所示雾化装置A-A方向的剖面结构示意图;
图3是本申请雾化装置的雾化组件、第一承载件以及第二承载件一实施例的结构示意图;
图4是图3所示雾化组件、第一承载件以及第二承载件的爆炸结构示意图;
图5是图3所示雾化组件、第一承载件以及第二承载件的俯视结构示意图;
图6是图2所示雾化装置省去雾化组件后的结构示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
为解决现有技术中雾化装置的结构稳定性以及防漏液效果较差的技术问 题,本申请的一实施例提供一种雾化装置。该雾化装置包括进气口、出气口以及雾化腔。雾化腔分别连通进气口和出气口,并且雾化腔内设有雾化组件,雾化腔内壁靠近雾化组件的部分设有第一毛细吸液结构,其中在第一毛细吸液结构吸收气溶胶基质后能够随气溶胶基质的吸热雾化而降低第一毛细吸液结构所在位置处的雾化腔腔壁的温度。以下进行详细阐述。
请参阅图1和图2,图1是本申请雾化装置一实施例的结构示意图,图2是图1所示雾化装置A-A方向的剖面结构示意图。
在一实施例中,雾化装置10可以是诸如电子烟等形式。当然,也可以是应用于医疗领域的医疗雾化设备等。下文以电子烟形式的雾化装置10为例进行阐述,并非因此造成限定。
具体地,雾化装置10包括进气口11、出气口12以及雾化腔13。雾化腔13分别连通进气口11和出气口12,并且雾化腔13内设有雾化组件14,其中雾化组件14用于雾化雾化装置10内的气溶胶基质(例如烟油、药液等)。
进气口11所在位置处为雾化装置10进气的位置。当用户抽吸时,外部的气体自进气口11进入雾化腔13,以将雾化腔13内经雾化组件14雾化的气溶胶基质携带至出气口12并输出至用户,以供用户吸食。
可选地,雾化组件14可以是多孔发热体,其通过毛细作用力吸收气溶胶基质并产热以雾化气溶胶基质。优选地,雾化组件14可以是多孔陶瓷发热体等,其还可以进一步设置发热膜。当然,在本申请的其它实施例中,雾化组件14还可以是纤维棉和发热丝搭配的设计,在此不做限定。
考虑到当雾化腔13内温度过高时,往往会导致雾化腔13的腔壁发生变形,甚至烤焦等稳定性问题,本实施例的雾化腔13内壁靠近雾化组件14的部分设有第一毛细吸液结构15。第一毛细吸液结构15用于吸收由于炸油而飞溅至雾化腔13腔壁的气溶胶基质以及在雾化腔13腔壁冷凝的气溶胶基质等。
由于气溶胶基质雾化需要吸热,并且第一毛细吸液结构15所在位置处具有较高温度,因此被第一毛细吸液结构15吸收的气溶胶基质能够在第一毛细吸液结构15中继续雾化。如此一来,在第一毛细吸液结构15吸收气溶胶基质后,由于第一毛细吸液结构15中的气溶胶基质继续雾化,至少部分热量被气溶胶基质吸收,使得雾化组件14传递至第一毛细吸液结构15所在位置处的雾化腔13腔壁的热量减少以及使得第一毛细吸液结构15所在位置处的雾化腔13腔壁的热量被气溶胶基质吸收,进而降低第一毛细吸液结构15所在位置处的雾化腔13 腔壁的温度,即随气溶胶基质的吸热雾化而降低第一毛细吸液结构15所在位置处的雾化腔13腔壁的温度,能够避免雾化腔13腔壁由于温度过高而发生变形、烤焦等稳定性问题,进而能够提高雾化装置10的结构稳定性。
当然,第一毛细吸液结构15中的气溶胶基质继续雾化,也意味着第一毛细吸液结构15吸收的气溶胶基质被重新利用,能够提高雾化装置10的气溶胶基质的利用率。
可选地,在一优选实施例中,当雾化组件14发热时,雾化腔13腔壁的温度小于或等于150℃。可以看出,通过本实施例第一毛细吸液结构15的设计,能够控制雾化腔13腔壁的温度处于150℃以下,进而有效避免雾化腔13腔壁由于温度过高而发生变形、烤焦等稳定性问题。
进一步地,本实施例的第一毛细吸液结构15设于雾化腔13内壁靠近雾化组件14的部分,即第一毛细吸液结构15靠近雾化组件14设置,能够进一步降低雾化腔13腔壁发生稳定性问题的风险,从而进一步提高雾化装置10的结构稳定性。
并且,本实施例的第一毛细吸液结构15具有吸收、存储气溶胶基质的作用。雾化腔13腔壁上至少部分的气溶胶基质能够锁止于第一毛细吸液结构15中,从而能够减少雾化装置10内积累的气溶胶基质,进而能够降低雾化装置10漏液的风险,有利于改善雾化装置10的防漏液效果。举例而言,对于直液式的雾化装置10而言,雾化装置10的底部往往积累较多的气溶胶基质,因而本实施例的第一毛细吸液结构15能够有效减少雾化装置10底部所积累的气溶胶基质,进而降低雾化装置10漏液的风险,改善雾化装置10的防漏液效果。
需要说明的是,当用户刚刚开始抽吸时,雾化组件14内气溶胶基质还未分布均匀,并且雾化组件14还未受热均匀,即存在局部过热的情况,因此此时最容易发生炸油现象。由于此时雾化组件14温度较低,因炸油而飞溅的气溶胶基质的温度同样较低,飞溅的气溶胶基质被第一毛细吸液结构15吸收由于温度较低并不会影响第一毛细吸液结构15所在位置处的雾化腔13腔壁的结构稳定,反而能够在第一毛细吸液结构15处形成保护膜,以随第一毛细吸液结构15中气溶胶基质的吸热雾化而降低第一毛细吸液结构15所在位置处的雾化腔13腔壁的温度,进而避免雾化腔13腔壁由于温度过高而发生变形、烤焦等稳定性问题。
请参阅图2至图4,图3是本申请雾化装置的雾化组件、第一承载件以及第 二承载件一实施例的结构示意图,图4是图3所示雾化组件、第一承载件以及第二承载件的爆炸结构示意图。
在一实施例中,雾化装置10还包括第一承载件16和第二承载件17,第一承载件16和第二承载件17对接形成雾化腔13,进气口11设于第一承载件16,雾化组件14设于第二承载件17,并且第一毛细吸液结构15设于第二承载件17的内壁。其中,第一毛细吸液结构15可以设于第二承载件17的侧壁或者底壁,图2展示了第一毛细吸液结构15设于第二承载件17的侧壁的情况,在此不做限定。
请参阅图2和图5,图5是图3所示雾化组件、第一承载件以及第二承载件的俯视结构示意图。
在一实施例中,当雾化组件14发热至其最高温度达到250℃时,如若雾化腔13腔壁未设置第一毛细吸液结构15,则通常需要雾化组件14表面与雾化腔13内壁之间的距离达到2mm以上才能保证雾化腔13腔壁不过热变形、烤焦等,这就使得雾化腔13横截面的面积过大而致使用户抽吸时雾化腔13内气流流速过低,不利于气流携带雾化的气溶胶基质供用户吸食。
有鉴于此,本实施例的雾化腔13腔壁在设置第一毛细吸液结构15后,允许雾化组件14表面与雾化腔13内壁之间的距离(如图5所示的距离W)降低至0.5mm-1.8mm,进而控制雾化腔13腔壁的温度处于150℃以下。相较于未设置第一毛细吸液结构15的情况,本实施例雾化组件14表面与雾化腔13内壁之间的距离降低,使得雾化腔13横截面的面积减小而用户抽吸时雾化腔13内气流流速提高,具体地在用户抽吸时雾化腔13内气流流速至少提高10%,并且还能够保证雾化腔13腔壁不过热变形、烤焦等。此外,本实施例雾化组件14表面与雾化腔13内壁之间的距离降低,意味着允许雾化腔13设计更小的体积,有利于雾化装置10的微型化。
优选地,在本实施例的雾化腔13腔壁设有第一毛细吸液结构15的情况下,雾化组件14表面与雾化腔13内壁之间的距离优选为1mm-1.5mm,如此能够尽可能提高雾化腔13内气流流速,同时尽可能保证雾化腔13腔壁不过热变形、烤焦等。
请继续参阅图2。在一实施例中,雾化装置10还包括出气通道18。出气通道18分别连通出气口12和雾化腔13。自进气口11进入雾化腔13的气体,将经雾化组件14雾化的气溶胶基质携带至出气通道18,并沿出气通道18输出至 用户,以供用户吸食。
由于雾化的气溶胶基质接触出气通道18内壁后会发生冷凝现象,出气通道18内壁上冷凝的气溶胶基质会沿出气通道18重新回到雾化腔13,因此本实施例雾化腔13内壁连接出气通道18内壁的部分设有第一毛细吸液结构15,用于吸收沿出气通道18内壁回流的气溶胶基质,如此以重新利用冷凝于出气通道18内壁的气溶胶基质以及用于在第一毛细吸液结构15处形成保护膜以控制雾化腔13腔壁的温度(即上述实施例所阐述随第一毛细吸液结构15中的气溶胶基质的吸热雾化而降低第一毛细吸液结构15所在位置处的雾化腔13腔壁的温度)。
进一步地,为引导出气通道18内壁上冷凝的气溶胶基质回流至雾化腔13,本实施例的出气通道18的内壁设有延伸至雾化腔13的第二毛细吸液结构181,第二毛细吸液结构181吸收出气通道18内壁上冷凝的气溶胶基质后,将其所吸收气溶胶基质引导至雾化腔13,有利于优化出气通道18内壁上气溶胶基质的导流效果。
更进一步地,部分第二毛细吸液结构181与设于雾化腔13内壁连接出气通道18内壁的部分的第一毛细吸液结构15连通,该部分第二毛细吸液结构181中的气溶胶基质引导至第一毛细吸液结构15中,以助于第一毛细吸液结构15中气溶胶基质的积累,进而用于提高雾化装置10的结构稳定性。
而剩余部分的第二毛细吸液结构181与设于雾化腔13内壁连接出气通道18内壁的部分的第一毛细吸液结构15间隔设置,即剩余部分的第二毛细吸液结构181与第一毛细吸液结构15不连通,该部分第二毛细吸液结构181中的气溶胶基质可以直接引导至雾化组件14,以重新经雾化组件14雾化。
请继续参阅图2。在一实施例中,雾化腔13连通出气通道18的部分设有渐缩通道131。渐缩通道131的横截面面积沿靠近出气通道18的方向(如图2中箭头X所示,下同)逐渐减小,上述设于雾化腔13内壁连接出气通道18内壁的部分的第一毛细吸液结构15至少部分位于渐缩通道131的内壁。
当发生明显的炸油现象时,向靠近出气通道18方向竖直飞溅的大液滴气溶胶基质会在重力的作用下重新回到雾化组件14而重新被加热雾化,而向四周飞溅的大液滴气溶胶基质一部分被侧面的第一毛细吸液结构15吸收,还有一部分气溶胶基质向靠近出气通道18的方向倾斜向上飞溅,其具有竖直向上的分速度,会受到渐缩通道131内壁的阻挡而被渐缩通道131内壁上的第一毛细吸液结构15吸收,而小液滴气溶胶基质在气流的带动下能够进入出气通道18,不会受到 渐缩通道131的影响。如此一来,能够避免大液滴的气溶胶基质进入出气通道18而被用户吸食,影响用户的口感。
并且,当用户抽吸时,气流流经渐缩通道131,由于渐缩通道131的横截面面积沿靠近出气通道18的方向逐渐减小,因此渐缩通道131中气流的流速增大,有利于气流携带雾化的气溶胶基质输出至用户,并且还能够缓解雾化的气溶胶基质冷凝的情况。
请参阅图6,图6是图2所示雾化装置省去雾化组件后的结构示意图。
需要说明的是,第一毛细吸液结构15可以是具有毛细作用力的毛细槽等,能够利用毛细作用力吸收气溶胶基质。当然,第一毛细吸液结构15也可以是其它具有毛细作用力的结构,例如雾化腔13表面进行研磨等粗糙化处理,以形成磨砂面、纹路等形式的具有毛细作用力的结构,即第一毛细吸液结构15。下文以第一毛细吸液结构15采用毛细槽为例进行阐述,并非因此对第一毛细吸液结构15的类型造成限定。
在一实施例中,第一毛细吸液结构15包括第一毛细槽151和第二毛细槽152。第一毛细槽151设于雾化腔13内壁连接出气通道18内壁的部分,而第二毛细槽152相对第一毛细槽151远离出气通道18。其中,第一毛细槽151和第二毛细槽152之间具有间隙19,第一毛细槽151中的气溶胶基质在间隙19汇流后进入第二毛细槽152。如此一来,允许第一毛细槽151中的气溶胶基质在间隙19处混合均匀并均匀分配至第二毛细槽152中,进而改善雾化腔13内壁的第一毛细吸液结构15中气溶胶基质分布的均匀性,有利于降低雾化腔13腔壁发生结构稳定性问题的风险。
进一步地,第一毛细槽151和第二毛细槽152的宽度优选为小于1mm,以使得第一毛细槽151和第二毛细槽152具有足够的毛细吸液能力。如若第一毛细槽151和第二毛细槽152的宽度过大,就会导致第一毛细槽151和第二毛细槽152的毛细吸液能力减弱,不足以满足使用。并且,第一毛细槽151和第二毛细槽152二者宽度的设计值还取决于气溶胶基质的粘度以及雾化装置10的结构设计限制。此外,毛细槽的深度越大,其储液量就越大,因此在结构允许的情况下,增大毛细槽的深度有利于增大第一毛细槽151和第二毛细槽152的储液量,进而有利于降低漏液的风险。
并且,第一毛细槽151和第二毛细槽152均可以沿靠近出气通道18的方向延伸,即沿靠近出气口12的方向延伸,如图6中箭头X所示。进一步地,第一 毛细槽151和第二毛细槽152为竖槽,有利于第一毛细槽151和第二毛细槽152的注塑成型。当然,在本申请的其它实施例中,第一毛细槽151和第二毛细槽152也可以不是竖槽,例如通过3D打印技术等实现。
综上所述,本申请所提供的雾化装置,其雾化腔内壁靠近雾化组件的部分设有第一毛细吸液结构。其中,第一毛细吸液结构用于吸收气溶胶基质并能够在吸收气溶胶基质后能够随气溶胶基质的吸热雾化而降低第一毛细吸液结构所在位置处的雾化腔腔壁的温度,从而避免雾化腔腔壁由于温度过高而发生变形、烤焦等稳定性问题,因而能够提高雾化装置的结构稳定性。
并且,本申请的第一毛细吸液结构具有吸收、存储气溶胶基质的作用,雾化腔腔壁上至少部分的气溶胶基质锁止于第一毛细吸液结构中,能够减少雾化装置内积累的气溶胶基质,进而能够降低雾化装置漏液的风险,有利于改善雾化装置的防漏液效果。
此外,在本申请中,除非另有明确的规定和限定,术语“相连”、“连接”、“层叠”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种雾化装置,其中,所述雾化装置包括:
    进气口;
    出气口;
    雾化腔,所述雾化腔分别连通所述进气口和所述出气口,并且所述雾化腔内设有雾化组件,所述雾化腔内壁靠近所述雾化组件的部分设有第一毛细吸液结构,其中在所述第一毛细吸液结构吸收气溶胶基质后能够随气溶胶基质的吸热雾化而降低所述第一毛细吸液结构所在位置处的所述雾化腔腔壁的温度。
  2. 根据权利要求1所述的雾化装置,其中,所述雾化装置还包括第一承载件和第二承载件,所述第一承载件和所述第二承载件对接形成所述雾化腔,所述进气口设于所述第一承载件,所述雾化组件设于所述第二承载件,并且所述第一毛细吸液结构设于所述第二承载件的内壁。
  3. 根据权利要求2所述的雾化装置,其中,第一毛细吸液结构设于所述第二承载件的侧壁。
  4. 根据权利要求1所述的雾化装置,其中,当所述雾化组件发热时,所述雾化腔腔壁的温度小于或等于150℃。
  5. 根据权利要求1所述的雾化装置,其中,所述雾化组件表面与所述雾化腔内壁之间的距离为0.5mm-1.8mm。
  6. 根据权利要求5所述的雾化装置,其中,所述雾化组件表面与所述雾化腔内壁之间的距离为1mm-1.5mm。
  7. 根据权利要求1所述的雾化装置,其中,所述雾化装置还包括出气通道,所述出气通道分别连通所述出气口和所述雾化腔,所述雾化腔内壁连接所述出气通道内壁的部分设有所述第一毛细吸液结构,用于吸收沿所述出气通道内壁回流的气溶胶基质。
  8. 根据权利要求7所述的雾化装置,其中,所述第一毛细吸液结构包括第一毛细槽和第二毛细槽,所述第一毛细槽设于所述雾化腔内壁连接所述出气通道内壁的部分,所述第二毛细槽相对所述第一毛细槽远离所述出气通道且所述第二毛细槽与所述第一毛细槽之间具有间隙,其中所述第一毛细槽中的气溶胶基质在所述间隙汇流后进入所述第二毛细槽。
  9. 根据权利要求8所述的雾化装置,其中,所述第一毛细槽和所述第二毛 细槽的宽度小于1mm。
  10. 根据权利要求8所述的雾化装置,其中,所述第一毛细槽和所述第二毛细槽沿靠近所述出气通道的方向延伸。
  11. 根据权利要求8所述的雾化装置,其中,所述第一毛细槽和所述第二毛细槽沿靠近所述出气口的方向延伸。
  12. 根据权利要求7所述的雾化装置,其中,所述出气通道的内壁设有延伸至所述雾化腔的第二毛细吸液结构,以将所述出气通道的内壁上冷凝的气溶胶基质引导至所述雾化腔。
  13. 根据权利要求12所述的雾化装置,其中,部分所述第二毛细吸液结构与设于所述雾化腔内壁连接所述出气通道内壁的部分的所述第一毛细吸液结构连通,剩余部分所述第二毛细吸液结构与设于所述雾化腔内壁连接所述出气通道内壁的部分的所述第一毛细吸液结构间隔设置。
  14. 根据权利要求7所述的雾化装置,其中,所述雾化腔连通所述出气通道的部分设有渐缩通道,所述渐缩通道的横截面面积沿靠近所述出气通道的方向逐渐减小。
  15. 根据权利要求14所述的雾化装置,其中,设于所述雾化腔内壁连接所述出气通道内壁的部分的所述第一毛细吸液结构至少部分位于所述渐缩通道的内壁。
  16. 根据权利要求1所述的雾化装置,其中,所述雾化组件包括多孔发热体。
  17. 根据权利要求16所述的雾化装置,其中,所述多孔发热体为多孔陶瓷发热体。
PCT/CN2020/089824 2020-05-12 2020-05-12 一种雾化装置 WO2021226834A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20935518.9A EP4151099A4 (en) 2020-05-12 2020-05-12 ATOMIZATION DEVICE
PCT/CN2020/089824 WO2021226834A1 (zh) 2020-05-12 2020-05-12 一种雾化装置
US17/985,481 US20230076495A1 (en) 2020-05-12 2022-11-11 Atomization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089824 WO2021226834A1 (zh) 2020-05-12 2020-05-12 一种雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/985,481 Continuation US20230076495A1 (en) 2020-05-12 2022-11-11 Atomization device

Publications (1)

Publication Number Publication Date
WO2021226834A1 true WO2021226834A1 (zh) 2021-11-18

Family

ID=78525071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089824 WO2021226834A1 (zh) 2020-05-12 2020-05-12 一种雾化装置

Country Status (3)

Country Link
US (1) US20230076495A1 (zh)
EP (1) EP4151099A4 (zh)
WO (1) WO2021226834A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD929648S1 (en) * 2018-11-21 2021-08-31 Shenzhen Smoore Technology Limited Electronic cigarette
USD933285S1 (en) * 2018-11-21 2021-10-12 Shenzhen Smoore Technology Limited Electronic cigarette
USD966604S1 (en) * 2020-09-25 2022-10-11 Shenzhen Verdewell Technology Limited Atomizer
USD1013253S1 (en) 2021-01-25 2024-01-30 Nicoventures Trading Limited Aerosol generator
USD1021227S1 (en) * 2021-03-04 2024-04-02 VEC Limited Electronic cigarette cartridge
USD1013939S1 (en) * 2021-03-18 2024-02-06 Shaofang Wang Atomizer for electronic cigarette
USD1004186S1 (en) * 2021-09-15 2023-11-07 Nicoventures Trading Limited Aerosol generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027470A1 (en) * 2013-07-24 2015-01-29 Altria Client Services Inc. Electronic smoking article
WO2018161254A1 (zh) * 2017-03-07 2018-09-13 昂纳自动化技术(深圳)有限公司 电子烟防漏液装置
CN109310152A (zh) * 2016-03-25 2019-02-05 莱战略控股公司 包括具有微图案的表面的气溶胶产生组件
CN110352017A (zh) * 2017-03-01 2019-10-18 尼科创业控股有限公司 具有液体捕获的蒸气供应装置
CN110613172A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN110613171A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
WO2020064921A1 (en) * 2018-09-27 2020-04-02 Philip Morris Products S.A. Mouthpiece for aerosol-generating device with woven fiber liner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020022570A2 (pt) * 2018-06-06 2021-02-02 Philip Morris Products S.A. dispositivo gerador de aerossol com um componente móvel para transferência de substrato formador de aerossol

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027470A1 (en) * 2013-07-24 2015-01-29 Altria Client Services Inc. Electronic smoking article
CN109310152A (zh) * 2016-03-25 2019-02-05 莱战略控股公司 包括具有微图案的表面的气溶胶产生组件
CN110352017A (zh) * 2017-03-01 2019-10-18 尼科创业控股有限公司 具有液体捕获的蒸气供应装置
WO2018161254A1 (zh) * 2017-03-07 2018-09-13 昂纳自动化技术(深圳)有限公司 电子烟防漏液装置
WO2020064921A1 (en) * 2018-09-27 2020-04-02 Philip Morris Products S.A. Mouthpiece for aerosol-generating device with woven fiber liner
CN110613172A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN110613171A (zh) * 2019-09-30 2019-12-27 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151099A4 *

Also Published As

Publication number Publication date
US20230076495A1 (en) 2023-03-09
EP4151099A4 (en) 2023-08-09
EP4151099A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2021226834A1 (zh) 一种雾化装置
AU2017346137B2 (en) Atomizer and electronic cigarette thereof
CN111657547A (zh) 一种雾化装置
WO2021227061A1 (zh) 一种电子雾化装置及其雾化器
WO2017139963A1 (zh) 电子雾化装置
WO2023138216A1 (zh) 电子雾化装置、雾化器及其雾化芯
CN215603184U (zh) 一种电子雾化装置及其雾化器
CN110638104A (zh) 雾化装置
CN110664009A (zh) 雾化装置
EP4108279A1 (en) Electronic atomization device and air curtain formation structure used by same
CN113712270A (zh) 一种电子雾化装置及其雾化器
WO2021174438A1 (zh) 雾化器以及电子雾化装置
WO2023011553A1 (zh) 雾化器及电子雾化装置
WO2023116037A1 (zh) 一种防泄漏的雾化芯、雾化器及气溶胶发生装置
CN114747811A (zh) 一种雾化器及电子雾化装置
WO2021233009A1 (zh) 雾化件、雾化器及其气溶胶发生装置
WO2024093568A1 (zh) 一种雾化器及电子雾化装置
CN212345282U (zh) 一种雾化装置
WO2023185155A1 (zh) 一种电子雾化装置及其雾化器
CN218219158U (zh) 一种雾化芯及雾化器
CN216568352U (zh) 雾化结构件、雾化装置及气溶胶生成装置
WO2019144308A1 (zh) 电子烟及其雾化器
CN215347015U (zh) 雾化器、电子雾化装置及雾化组件
WO2022057921A1 (zh) 雾化芯、雾化器和电子雾化装置
CN218245671U (zh) 雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020935518

Country of ref document: EP

Effective date: 20221212