WO2021227061A1 - 一种电子雾化装置及其雾化器 - Google Patents

一种电子雾化装置及其雾化器 Download PDF

Info

Publication number
WO2021227061A1
WO2021227061A1 PCT/CN2020/090649 CN2020090649W WO2021227061A1 WO 2021227061 A1 WO2021227061 A1 WO 2021227061A1 CN 2020090649 W CN2020090649 W CN 2020090649W WO 2021227061 A1 WO2021227061 A1 WO 2021227061A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary liquid
liquid absorption
capillary
absorption structure
air inlet
Prior art date
Application number
PCT/CN2020/090649
Other languages
English (en)
French (fr)
Inventor
雷桂林
姜茹
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP20934918.2A priority Critical patent/EP4151108A4/en
Priority to PCT/CN2020/090649 priority patent/WO2021227061A1/zh
Publication of WO2021227061A1 publication Critical patent/WO2021227061A1/zh
Priority to US17/986,144 priority patent/US20230077260A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/045Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters using another liquid as heat exchanger, e.g. bain-marie
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological

Definitions

  • This application relates to the technical field of atomization equipment, in particular to an electronic atomization device and its atomizer.
  • the air inlet of electronic atomization devices such as electronic cigarettes is usually set at the bottom of the atomization cavity, and external air enters the atomization cavity from the air inlet, mixes with the atomized aerosol matrix in the atomization cavity, and then exits the air outlet channel. Reach the nozzle.
  • the atomized aerosol matrix is easy to condense in the electronic atomization device to form droplets, and the aerosol matrix droplets formed by condensation are easy to leak from the air inlet of the electronic atomization device and cause liquid leakage. The effectiveness of chemical devices to prevent leakage is poor.
  • the main technical problem to be solved by the present application is to provide an electronic atomization device and an atomizer thereof, which can improve the anti-leakage effect of the atomizer.
  • the atomizer includes an air inlet, an air outlet, and an air flow channel.
  • the airflow channels are respectively connected with the air inlet and the air outlet, and an atomizing core is arranged in the airflow channel.
  • the atomizer also includes a first capillary liquid absorption structure and a second capillary liquid absorption structure.
  • the first capillary liquid absorption structure and the second capillary liquid absorption structure are provided in the airflow channel between the air inlet and the atomizing core, and the first capillary liquid absorption structure and the second capillary liquid absorption structure
  • a capillary liquid-absorbing structure is located between the atomizing core and the second capillary liquid-absorbing structure. Wherein, there is a gap between the first capillary liquid absorption structure and the second capillary liquid absorption structure, and the gas entering from the air inlet sequentially passes through the gap and the first capillary liquid absorption structure to reach the atomizing core.
  • the gas entering from the multiple air inlets flows through the first capillary liquid absorbing structure after being mixed in the gap.
  • the first capillary liquid absorption structure includes a plurality of capillary grooves, and the extension directions of the capillary grooves are parallel to each other and the cross-sectional area is the same, so that the flow velocity and flow direction of the airflow passing through the capillary grooves are the same.
  • a blocking member is provided in the air flow channel, and the blocking member forms a barrier between the gap and the air inlet to restrict the gap from directly communicating with the air inlet, thereby allowing the gap to pass through the second capillary liquid absorption structure Connect with the air inlet.
  • the blocking member includes a first blocking member and a second blocking member. After the first blocking member and the second blocking member are butted with the second capillary liquid absorption structure, the gap is butted with the second capillary liquid absorption structure, so that the gap is connected to the air inlet through the second capillary liquid absorption structure.
  • the airflow channel includes a connected air inlet channel and an intermediate channel, the air inlet channel further communicates with the air inlet, the intermediate channel further communicates with the air outlet, wherein the atomizing core, the first capillary liquid absorption structure, and the second The two capillary liquid absorbing structure is arranged in the middle channel.
  • the second capillary liquid absorption structure is arranged close to the port of the air inlet channel communicating with the intermediate channel, and the intermediate channel is provided with a first dam and a second dam surrounding the port of the air inlet channel communicating with the intermediate channel.
  • the first dam is arranged close to the gap relative to the second dam, and the first dam forms a barrier between the gap and the air inlet passage to restrict the gap from directly communicating with the air inlet passage, so that the gap is connected to the air inlet through the second capillary liquid absorption structure
  • the passage is in communication, and the first dam and the second dam are also used to separate the air inlet passage and the second capillary liquid absorption structure.
  • the height of the first dam is higher than the height of the second dam to form a vent between the first dam and the second dam, and the air inlet channel passes through the vent and the second capillary liquid absorption structure Connect, and then communicate with the gap.
  • the height of the first dam and the second dam is higher than the height of the second capillary liquid-absorbing structure.
  • the first dam, the second dam and the bottom side wall of the intermediate channel cooperate to surround the port of the air inlet channel communicating with the intermediate channel.
  • the orthographic projection on the reference plane of the port connecting the air inlet channel with the intermediate channel is outside the orthographic projection of the gap on the reference plane, wherein the reference plane is perpendicular to the first capillary liquid absorption structure and the second The relative direction of the capillary wicking structure.
  • the air intake passage includes at least two sections of first sub-channels, and adjacent first sub-channels are connected by a second sub-channel, wherein the extending direction of the first sub-channel is different from that of the second sub-channel The extension direction.
  • two opposite air inlet channels are provided at the bottom of the middle channel, and the gap is arranged relative to the second capillary liquid absorption structure between the two air inlet channels.
  • the air flow channel further includes an air outlet channel, and the intermediate channel is connected to the air outlet through the air outlet channel.
  • the first capillary liquid-absorbing structure and the second capillary liquid-absorbing structure are capillary grooves.
  • the first capillary liquid-absorbing structure extends in a direction opposite to the second capillary liquid-absorbing structure
  • the second capillary liquid-absorbing structure includes a first capillary groove and a second capillary groove.
  • the first capillary groove The first capillary groove and the second capillary groove communicate with each other and have different extension directions, and the plane defined by the extension directions of the first capillary groove and the second capillary groove is perpendicular to the extension direction of the first capillary liquid-absorbing structure.
  • the atomizer further includes a first bearing member and a second bearing member, the first bearing member and the second bearing member are butted to form an air flow channel, and the atomizing core and the first capillary liquid absorption structure are arranged at The first supporting member and the second capillary liquid absorption structure are arranged on the second supporting member.
  • the atomizer further includes a third capillary liquid absorbing structure, and the third capillary liquid absorbing structure is provided at a part of the inner wall of the air flow channel close to the atomizing core.
  • the width of the capillary grooves of the first capillary liquid absorption structure, the second capillary liquid absorption structure, and the third capillary liquid absorption structure is less than 1 mm.
  • an electronic atomization device the electronic atomization device includes a host and an atomizer, the host is connected to the atomizer, and the atomizer includes an air inlet , Air outlet and air flow channel.
  • the airflow channels are respectively connected with the air inlet and the air outlet, and an atomizing core is arranged in the airflow channel.
  • the atomizer also includes a first capillary liquid absorption structure and a second capillary liquid absorption structure.
  • the first capillary liquid absorption structure and the second capillary liquid absorption structure are provided in the airflow channel between the air inlet and the atomizing core, and the first capillary liquid absorption structure and the second capillary liquid absorption structure A capillary liquid-absorbing structure is located between the atomizing core and the second capillary liquid-absorbing structure. Wherein, there is a gap between the first capillary liquid absorption structure and the second capillary liquid absorption structure, and the gas entering from the air inlet sequentially passes through the gap and the first capillary liquid absorption structure to reach the atomizing core.
  • the beneficial effect of the present application is: different from the prior art, the present application provides an electronic atomization device and an atomizer thereof. After the amount of effusion absorbed by the first capillary absorbing structure of the atomizer reaches the threshold, the effusion in the first capillary absorbing structure further enters the second capillary absorbing structure and is absorbed by the second capillary absorbing structure.
  • the applied atomizer increases its liquid storage (ie, storing liquid accumulation) through the first capillary liquid absorption structure and the second capillary liquid absorption structure, which can reduce the risk of liquid leakage, thereby improving the anti-leakage effect of the atomizer .
  • first capillary liquid absorbing structure there is a gap between the first capillary liquid absorbing structure and the second capillary liquid absorbing structure of the present application.
  • the gas entering from the air inlet passes through the gap in turn, and the first capillary liquid absorbing structure reaches the atomizing core, so as to allow the gas to flow there.
  • the airflow in the atomizer is optimized to better carry the aerosol matrix atomized at the atomization core to the air outlet, thereby better providing the user with the aerosol carrying the aerosol matrix, which is conducive to improving the user experience.
  • the aerosol matrix absorbed in the first capillary liquid absorption structure will return to the atomizing core under the airflow to re-atomize, which can improve the aerosol matrix of the atomizer of the present application. Utilization rate.
  • Fig. 1 is a schematic structural diagram of an embodiment of an atomizer of the present application
  • Fig. 2 is a schematic cross-sectional structure diagram of the atomizer shown in Fig. 1 along the A-A direction;
  • Fig. 3 is a schematic structural diagram of a part of the atomizer shown in Fig. 2;
  • FIG. 4 is a schematic structural diagram of an embodiment of a second carrier of the present application.
  • FIG. 5 is a schematic diagram of an exploded structure of an embodiment of the atomization core, the first carrier, and the second carrier of the present application;
  • Fig. 6 is a schematic cross-sectional structure diagram of the atomizer shown in Fig. 1 in the direction B-B;
  • FIG. 7 is a schematic structural diagram of an embodiment of the electronic atomization device of the present application.
  • an embodiment of the present application provides an atomizer.
  • the atomizer includes an air inlet, an air outlet, and an air flow channel.
  • the airflow channels are respectively connected with the air inlet and the air outlet, and an atomizing core is arranged in the airflow channel.
  • the atomizer also includes a first capillary liquid absorption structure and a second capillary liquid absorption structure.
  • the first capillary liquid absorption structure and the second capillary liquid absorption structure are provided in the airflow channel between the air inlet and the atomizing core, and the first capillary liquid absorption structure and the second capillary liquid absorption structure A capillary liquid-absorbing structure is located between the atomizing core and the second capillary liquid-absorbing structure. Wherein, there is a gap between the first capillary liquid absorption structure and the second capillary liquid absorption structure, and the gas entering from the air inlet sequentially passes through the gap and the first capillary liquid absorption structure to reach the atomizing core. This will be explained in detail below.
  • FIG. 1 is a schematic structural diagram of an embodiment of an atomizer of the present application
  • FIG. 2 is a schematic cross-sectional structural diagram of the atomizer shown in FIG. 1 along the A-A direction.
  • the atomizer 10 may be in the form of an electronic cigarette.
  • it can also be a medical atomization device used in the medical field.
  • the following description takes the atomizer 10 in the form of an electronic cigarette as an example, which is not limited by this.
  • the atomizer 10 includes an air inlet 11, an air outlet 12 and an air flow channel 13.
  • the airflow channels 13 are respectively connected to the air inlet 11 and the air outlet 12, and the airflow channel 13 is provided with an atomizing core 14, wherein the atomizing core 14 is used for the aerosol matrix (such as e-liquid, liquid medicine, etc.) in the atomizer 10 ).
  • the position where the air inlet 11 is located is the position where the atomizer 10 takes in air.
  • external air enters the airflow channel 13 from the air inlet 11 to carry the aerosol matrix atomized by the atomizing core 14 in the airflow channel 13 to the air outlet 12 and output to the user along the air outlet 12. For users to smoke.
  • the atomizing core 14 may be a porous heating element, which absorbs the aerosol matrix by capillary force and generates heat to atomize the aerosol matrix.
  • the atomization core 14 may be a porous ceramic heating element or the like, and it may be further provided with a heating film.
  • the atomization core 14 may also be a design in which fiber cotton and heating wire are matched, which is not limited here.
  • the atomizer 10 of this embodiment further includes a first capillary liquid absorption structure 15 and a second capillary liquid absorption structure 16.
  • the first capillary liquid absorption structure 15 and the second capillary liquid absorption structure 16 are provided in the airflow channel 13 between the air inlet 11 and the atomizing core 14, and the first capillary liquid absorption structure 15 is located in the atomizing core 14 and the second capillary Between the absorbing structure 16.
  • the aerosol matrix condensed in the air flow channel 13 will be absorbed by the first capillary liquid absorption structure 15 first.
  • the effusion (ie, gas) in the first capillary absorbing structure 15 reaches the threshold after the amount of effusion absorbed by the first capillary absorbing structure 15
  • the sol matrix further enters the second capillary liquid-absorbing structure 16 and is absorbed by the second capillary liquid-absorbing structure 16.
  • the aerosol matrix in the first capillary liquid absorption structure 15 further enters the second capillary liquid absorption structure 16 and It is absorbed by the second capillary liquid-absorbing structure 16 through capillary force.
  • the atomizer 10 of this embodiment increases the amount of its liquid storage (ie, storing liquid accumulation, the same below) through the first capillary liquid absorption structure 15 and the second capillary liquid absorption structure 16, which can reduce the leakage of liquid accumulation. Risk, thereby improving the anti-leakage effect of the atomizer 10.
  • the gas entering from the air inlet 11 sequentially passes through the gap 17, the first capillary liquid absorption structure 15 to reach the atomizing core 14, thereby allowing the gas to uniformly mix in the gap 17, and evenly distribute to the first capillary liquid absorption structure 15, and then Through the first capillary liquid absorption structure 15 and carrying the atomized aerosol matrix, it is output to the user.
  • the first capillary liquid absorption structure 15 also plays a role of rectification, so that the flow velocity and flow direction of the airflow passing through the first capillary liquid absorption structure 15 are more consistent, so that the airflow can better cover the atomizing core 14 and optimize atomization.
  • the airflow in the atomizer 10 can better carry the aerosol matrix atomized at the atomization core 14 to the air outlet 12, thereby better providing the user with aerosol carrying the aerosol matrix, which is beneficial to improve the performance of the atomizer 10 User experience.
  • the aerosol matrix absorbed in the first capillary liquid absorption structure 15 will return to the atomization core 14 under the airflow to re-atomize, which can improve the performance of the atomizer 10 of this embodiment. Utilization of the aerosol matrix.
  • the first capillary liquid-absorbing structure 15 and the second capillary liquid-absorbing structure 16 may be capillary grooves with capillary force, etc., which can absorb the aerosol matrix by using capillary force.
  • the first capillary liquid absorbing structure 15 and the second capillary liquid absorbing structure 16 can also be other structures with capillary force.
  • the surface of the air flow channel 13 is roughened by grinding to form a matte surface, texture, etc.
  • the capillary force structure is the first capillary liquid-absorbing structure 15 and the second capillary liquid-absorbing structure 16. This will be explained below.
  • the first capillary liquid-absorbing structure 15 includes a plurality of capillary grooves.
  • the extension directions of the capillary grooves are parallel to each other and the cross-sectional area is the same, so that the flow velocity and flow direction of the airflow passing through the capillary grooves are the same, thereby optimizing the first capillary groove.
  • the several capillary grooves may extend in a direction close to the air outlet 12.
  • FIG. 3 is a schematic diagram of a part of the atomizer shown in FIG. 2.
  • there are multiple air inlets 11 of the atomizer 10. 2 and 3 show the case where the atomizer 10 has two air inlets 11. After the gas entering from the two air inlets 11 reaches the gap 17, it can flow in the gap 17 and then pass through the first capillary liquid absorption structure 15 to reach the atomizing core 14, specifically from the two air inlets 11 The gas in the gap 17 is uniformly mixed and evenly distributed into the first capillary liquid absorption structure 15, and cooperates with the rectification effect of the first capillary liquid absorption structure 15 to optimize the air flow in the atomizer 10 to better align the atomization core
  • the aerosol matrix atomized at 14 locations is carried to the air outlet 12.
  • the atomizer 10 may also have only one air inlet 11, and the gas entering from the air inlet 11 sequentially passes through the gap 17, the first capillary liquid absorption structure 15 to reach the atomizing core. 14.
  • the gas entering from the air inlet 11 sequentially passes through the gap 17, the first capillary liquid absorption structure 15 to reach the atomizing core. 14.
  • the atomized gas in the atomizer 10 will flow back.
  • the airflow of this embodiment The channel 13 is provided with a blocking member 131.
  • the blocking member 131 forms a barrier between the gap 17 and the air inlet 11 to restrict the gap 17 from directly communicating with the air inlet 11, so that the gap 17 communicates with the air inlet 11 through the second capillary liquid absorption structure 16 The air inlet 11 communicates.
  • the recirculated atomized gas first passes through the first capillary liquid absorption structure 15, wherein the condensed aerosol matrix is first absorbed by the first capillary liquid absorption structure 15, and then passes through the first capillary liquid absorption structure 15 to reach the backflow of the gap 17.
  • the atomized gas cannot escape directly from the air inlet 11 under the restriction of the stopper 131, but enters the second capillary liquid absorption structure 16, and flows back into the atomized gas after secondary absorption by the second capillary liquid absorption structure 16 Most aerosol substrates are locked in the atomizer 10 and will not leak from the atomizer 10.
  • the setting of the blocking member 131 can reduce the direct escape of the reflux atomized gas from the air inlet 11 The risk is beneficial to further reduce the risk of liquid leakage and improve the anti-leakage effect of the atomizer 10.
  • the air intake path of the atomizer 10 in this embodiment is the air inlet 11-the second capillary liquid absorption structure 16-gap 17-the first capillary liquid absorption structure 15-atomization core 14-air outlet 12- The user, where the air intake path at the bottom of the air flow channel is shown by the dotted arrow in FIG. 4.
  • the return path of the atomized gas of the atomizer 10 of this embodiment (the user stops sucking) is the reverse of the aforementioned air inlet path, specifically the air outlet 12-the atomization core 14-the first capillary liquid absorption structure 15-the gap 17 -Second capillary liquid absorption structure 16-Air inlet 11, wherein due to the liquid absorption effect of the second capillary liquid absorption structure 16 and the restriction of the blocking member 131, the reflux atomized gas hardly escapes from the air inlet 11, which is extremely The risk of leakage is greatly reduced.
  • the blocking member 131 includes a first blocking member 1311 and a second blocking member 1312.
  • the planes of the first blocking member 1311 and the second blocking member 1312 are arranged at an angle and both
  • the gap 17 is formed by matching and enclosing, wherein after the first blocking member 1311 and the second blocking member 1312 are butted with the second capillary liquid absorption structure 16, the gap 17 is butted with the second capillary liquid absorption structure 16, so that the gap 17 passes through the second capillary
  • the liquid absorbing structure 16 communicates with the air inlet 11.
  • the air flow passage 13 includes a communicating air inlet passage 134 and an intermediate passage 135, the air inlet passage 134 further communicates with the air inlet 11, and the intermediate passage 135 further communicates with the air outlet 12.
  • the atomization core 14, the first capillary liquid absorption structure 15 and the second capillary liquid absorption structure 16 are arranged in the middle channel 135.
  • the air flow channel 13 may further include an air outlet channel 136, and the intermediate channel 135 is connected to the air outlet 12 through the air outlet channel 136.
  • the second capillary liquid absorbing structure 16 is disposed close to the port 1341 of the air inlet passage 134 communicating with the intermediate passage 135, wherein the other port of the air inlet passage 134 opposite to the port 1341 is the air inlet 11.
  • the middle passage 135 is provided with a first dam 181 and a second dam 182 surrounding the port 1341 of the inlet passage 134 communicating with the middle passage 135.
  • the first dam 181 is disposed close to the gap 17 relative to the second dam 182, and the first dam 181 forms a barrier between the gap 17 and the air inlet passage 134 to restrict the gap 17 from directly communicating with the air inlet passage 134, so that the gap 17 passes through the second dam 17
  • the capillary liquid absorption structure 16 communicates with the air inlet channel 134.
  • the first dam 181 may be a part of the first blocking member 1311 or the second blocking member 1312.
  • FIG. 3 shows a case where the first dam 181 is a part of the first blocking member 1311, which will be described in detail
  • the height of the first dam 181 is higher than the height of the second dam 182 to form a vent 183 between the first dam 181 and the second dam 182, and the air inlet passage 134 is connected to the second capillary through the vent 183.
  • the liquid structure 16 communicates with the gap 17, and the gas entering from the air inlet passage 134 needs to be turned into the second capillary liquid absorption structure 16 through the vent 183, and then reaches the gap 17, as shown in Figs. 3 and 4, where the gas
  • the port 1341 of the inlet passage communicating with the middle passage enters and turns into the second capillary liquid absorption structure 16 through the vent 183 as shown by the dotted arrow in FIG. 4.
  • Fig. 4 shows the first dam 181, the second dam 182 and the bottom side wall of the middle channel 135 to surround the inlet channel to communicate with the port 1341 of the middle channel, in which the second dam 182 is provided on both sides of the first dam 181, namely There are vents 183 on both sides of the first dam 181 respectively. That is to say, the gas entering from the air inlet channel is diverted into the second capillary liquid absorption structure 16 through the air vents 183 on both sides of the first dam 181.
  • Figures 3 and 4 also show that the bottom of the middle channel 135 is provided with two opposite air inlet channels 134, and the gap 17 is arranged relative to the second capillary liquid absorption structure 16 between the two air inlet channels 134, from which the two inlets
  • the gas entering the gas channel 134 turns into the second capillary liquid absorption structure 16 between the two air inlet channels 134, and enters the gap 17 together after confluence, and then reaches the atomizing core 14 through the first capillary liquid absorption structure 15 to carry
  • the atomized aerosol matrix is output to the user.
  • the first dam 181 and the second dam 182 are also used to separate the air inlet channel and the second capillary liquid absorption structure 16, specifically connecting the air inlet channel to the port 1341 of the atomization chamber and the second The capillary absorbing structure 16 is separated. In this way, even when the amount of the aerosol matrix absorbed by the second capillary liquid absorption structure 16 is large, the aerosol matrix absorbed by the second capillary liquid absorption structure 16 will not leak from the air inlet channel, further reducing the leakage of liquid. risk.
  • the height of the first dam 181 and the second dam 182 is higher than the height of the second capillary liquid absorption structure 16, which can further reduce the risk of liquid leakage on the basis of the first dam 181 and the second dam 182.
  • the orthographic projection on the reference plane of the port 1341 of the air inlet passage 134 communicating with the intermediate passage 135 is outside the orthographic projection of the gap 17 on the reference plane, where the reference plane (as shown in plane ⁇ in FIG. 3) It is perpendicular to the relative direction of the first capillary liquid-absorbing structure 15 and the second capillary liquid-absorbing structure 16 (the relative direction of the first capillary liquid-absorbing structure 15 and the second capillary liquid-absorbing structure 16 is shown by the arrow X in FIG. 3).
  • the reference plane is perpendicular to the central axis of the atomizer.
  • the air inlet passage 134 and the gap 17 in this embodiment are arranged in a staggered manner on the reference plane, which is also used to prevent the atomized gas returning from the gap 17 from directly escaping from the air inlet passage 134 and cause liquid leakage, which is beneficial to The risk of liquid leakage is further reduced, and the liquid leakage prevention effect of the atomizer 10 is improved.
  • the orthographic projections of the two air intake passages 134 on the reference plane shown in FIG. 3 are respectively located on opposite sides of the orthographic projection of the gap 17 on the reference plane.
  • the air intake passage 134 includes at least two sections of first sub-channels 1342, and adjacent first sub-channels 1342 are connected by a second sub-channel 1343, wherein the extending direction of the first sub-channel 1342 is different from that of the second sub-channel 1342.
  • the extension direction of the sub-channel 1343 that is to say, the air intake passage 134 is in a serpentine extension shape, and the serpentine extension of the intake passage 134 increases the difficulty for the refluxed atomized gas to escape through the intake passage 134, thereby further reducing the risk of liquid leakage, which is beneficial to Improve the anti-leakage effect of the atomizer.
  • FIG. 5 is a schematic diagram of an exploded structure of an embodiment of the atomization core, the first carrier, and the second carrier of the present application.
  • the atomizer 10 further includes a first carrier 132 and a second carrier 133.
  • the first supporting member 132 and the second supporting member 133 are butted to form an air flow channel 13, and the cavity formed by the butting of the first supporting member 132 and the second supporting member 133 allows gas to flow.
  • the atomizing core 14 and the first capillary liquid absorption structure 15 are disposed on the first supporting member 132 and the first supporting member 132 is connected to the air outlet 12.
  • the air inlet 11 and the second capillary liquid absorption structure 16 are provided on the second carrier 133.
  • the air flow channel 13 of the atomizer 10 of this embodiment adopts a split structure design to facilitate injection molding of various components.
  • the aerosol matrix leaking from the atomizing core 14 on the first carrier 132 is first absorbed by the first capillary liquid absorbing structure 15 on the first carrier 132.
  • the aerosol matrix in the first capillary liquid-absorbing structure 15 will further infiltrate into the second capillary liquid-absorbing structure 16. Since the second capillary liquid absorption structure 16 on the second carrier 133 has a large liquid storage space, it can absorb most of the infiltrated aerosol matrix, and prevent the aerosol matrix from leaking out of the atomizer 10.
  • the first dam 181 of the foregoing embodiment is provided on the second bearing member 133, and the portion of the first bearing member 132 abutting the second bearing member 133 and the first dam 181 together constitute the first blocking member 1311 of the foregoing embodiment.
  • the second blocking member 1312 of the above embodiment is also provided on the first supporting member 132, as shown in FIG. 3.
  • first carrier 132 and the second carrier 133 may also be integrally formed by 3D printing, which is not limited herein.
  • FIG. 6 is a schematic cross-sectional structure diagram of the atomizer shown in FIG. 1 along the B-B direction.
  • the atomizer 10 further includes a third capillary liquid absorption structure 19, which is arranged on the inner wall of the air flow channel 13 near the atomization core 14, and the third capillary liquid absorption structure 19 is used for Cooperating with the first capillary liquid absorption structure 15 to absorb liquid accumulation, the liquid storage volume inside the atomizer 10 is further increased, the risk of liquid leakage is further reduced, and the liquid leakage prevention effect of the atomizer 10 is improved.
  • a third capillary liquid absorption structure 19 which is arranged on the inner wall of the air flow channel 13 near the atomization core 14, and the third capillary liquid absorption structure 19 is used for Cooperating with the first capillary liquid absorption structure 15 to absorb liquid accumulation, the liquid storage volume inside the atomizer 10 is further increased, the risk of liquid leakage is further reduced, and the liquid leakage prevention effect of the atomizer 10 is improved.
  • the third capillary liquid absorbing structure 19 is provided on the first carrier 132 of the above-mentioned embodiment. Specifically, the third capillary liquid absorption structure 19 is provided on the side wall of the inner cavity of the first carrier 132, and the first capillary liquid absorption structure 15 is provided on the bottom of the inner cavity of the first carrier 132. The aerosol matrix absorbed by the third capillary liquid-absorbing structure 19 will further flow to the first capillary liquid-absorbing structure 15 and be absorbed by the first capillary liquid-absorbing structure 15.
  • first capillary liquid absorption structure, the second capillary liquid absorption structure, and the third capillary liquid absorption structure may all be capillary grooves.
  • first capillary liquid-absorbing structure 15 preferably extends along the direction opposite to the second capillary liquid-absorbing structure 16.
  • first capillary liquid-absorbing structure 15 extends in the longitudinal direction.
  • the third capillary liquid absorbing structure can also extend in the longitudinal direction, which is not limited here.
  • the second capillary liquid absorbing structure 16 includes a first capillary groove 161 and a second capillary groove 162.
  • the first capillary groove 161 and the second capillary groove 162 communicate with each other and extend in different directions.
  • the plane defined by the extension direction of the first capillary groove 161 and the second capillary groove 162 is perpendicular to the central axis of the atomizer, and the first capillary liquid suction
  • the capillary groove of the structure extends along the central axis of the atomizer.
  • the width of the capillary grooves of the first capillary liquid absorption structure, the second capillary liquid absorption structure, and the third capillary liquid absorption structure is preferably less than 1 mm, so that the first capillary liquid absorption structure, the second capillary liquid absorption structure, and the The third capillary liquid-absorbing structure has sufficient capillary liquid-absorbing capacity. If the width of the capillary groove is too large, the capillary liquid absorption capacity of the capillary groove will be weak, which is insufficient for use. Moreover, the design value of the capillary groove width also depends on the viscosity of the aerosol matrix and the structural design constraints of the atomizer. In addition, the greater the depth of the capillary groove, the greater its liquid storage capacity. Therefore, if the structure allows, increasing the depth of the capillary groove is beneficial to increase the liquid storage capacity of the capillary groove, thereby helping to reduce the risk of liquid leakage. .
  • the atomizer in the atomizer provided by the present application, after the amount of effusion absorbed by the first capillary absorbing structure reaches the threshold, the effusion in the first capillary absorbing structure further enters the second capillary absorbing structure. Absorbed by the second capillary liquid absorption structure, that is, the atomizer of the present application increases its liquid storage (ie, storing liquid accumulation) through the first capillary liquid absorption structure and the second capillary liquid absorption structure, which can reduce the risk of liquid leakage , Thereby improving the anti-leakage effect of the atomizer.
  • first capillary liquid-absorbing structure there is a gap between the first capillary liquid-absorbing structure and the second capillary liquid-absorbing structure of the present application.
  • the gas entering from the air inlet sequentially passes through the gap and the first capillary liquid absorption structure to reach the atomizing core, thereby allowing the gas to uniformly mix in the gap and evenly distribute to the first capillary liquid absorption structure, and then pass through the first capillary liquid absorption structure.
  • the first capillary liquid absorption structure also plays a role of rectification, so that the flow velocity and flow direction of the airflow passing through the first capillary liquid absorption structure are more consistent, so that the airflow can better cover the atomization core and optimize the airflow in the atomizer.
  • the air flow can better carry the aerosol matrix atomized at the atomization core to the air outlet, thereby better providing the user with aerosol carrying the aerosol matrix, which is beneficial to improve the user experience.
  • the airflow channel of the present application is provided with a barrier, which forms a barrier between the gap and the air inlet, so as to prevent the recirculated atomized gas from directly leaking from the air inlet, causing liquid leakage.
  • the dislocation arrangement of the air intake passage and the gap of the present application that is, the dislocation arrangement of the air intake part of the atomizer of the present application and the main atomization air channel, is also used to prevent the atomized gas returning from the gap from directly escaping from the air inlet channel. And cause leakage problems.
  • the aerosol matrix absorbed in the first capillary liquid absorption structure will return to the atomizing core under the airflow to re-atomize, which can improve the aerosol matrix of the atomizer of the present application. Utilization rate.
  • FIG. 7 is a schematic structural diagram of an embodiment of an electronic atomization device of the present application.
  • the electronic atomization device 100 includes an atomizer 10 and a host 20.
  • the atomizer 10 is used to heat the atomized aerosol substrate (such as e-liquid, etc.).
  • the host 20 is provided with a power source and a control circuit.
  • the atomizer 10 can be fixedly connected to the host 20 or can be detachably connected to the host 20.
  • the atomizer 10 includes an air inlet, an air outlet, and an air flow channel.
  • the airflow channels are respectively connected with the air inlet and the air outlet, and an atomizing core is arranged in the airflow channel.
  • the atomizer also includes a first capillary liquid absorption structure and a second capillary liquid absorption structure.
  • the first capillary liquid absorption structure and the second capillary liquid absorption structure are provided in the airflow channel between the air inlet and the atomizing core, and the first capillary liquid absorption structure and the second capillary liquid absorption structure
  • a capillary liquid-absorbing structure is located between the atomizing core and the second capillary liquid-absorbing structure.
  • the atomizer 10 has been described in detail in the above-mentioned embodiment, and will not be repeated here.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.
  • connection may be a fixed connection or a detachable connection, or Integral; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction relationship between two elements.

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

一种电子雾化装置及其雾化器(10)。雾化器(10)包括进气口(11)、出气口(12)以及气流通道(13)。雾化器(10)具有第一毛细吸液结构(15)和第二毛细吸液结构(16),在第一毛细吸液结构(15)吸收的积液量达到阈值后,第一毛细吸液结构(15)中的积液进一步进入第二毛细吸液结构(16)而被第二毛细吸液结构(16)吸收。第一毛细吸液结构(15)和第二毛细吸液结构(16)之间具有间隙,从进气口(11)进入的气体依次经过间隙、第一毛细吸液结构(15)到达雾化芯(14)。雾化器(10)的防漏液效果得到了改善。

Description

一种电子雾化装置及其雾化器 【技术领域】
本申请涉及雾化设备技术领域,特别是涉及一种电子雾化装置及其雾化器。
【背景技术】
目前,诸如电子烟等电子雾化装置其进气口通常设置在雾化腔底部,外部的空气从进气口进入雾化腔,与雾化腔内雾化的气溶胶基质混合后从出气通道到达吸嘴。然而,雾化的气溶胶基质容易在电子雾化装置中冷凝而形成液滴,冷凝形成的气溶胶基质液滴容易从电子雾化装置的进气口泄漏而造成漏液,而目前的电子雾化装置防止漏液的效果较差。
【申请内容】
有鉴于此,本申请主要解决的技术问题是提供一种电子雾化装置及其雾化器,能够改善雾化器的防漏液效果。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种雾化器。该雾化器包括进气口、出气口以及气流通道。气流通道分别连通进气口和出气口,并且气流通道中设有雾化芯。该雾化器还包括第一毛细吸液结构和第二毛细吸液结构,第一毛细吸液结构和第二毛细吸液结构设于进气口和雾化芯之间的气流通道,并且第一毛细吸液结构位于雾化芯和第二毛细吸液结构之间。其中,第一毛细吸液结构和第二毛细吸液结构之间具有间隙,从进气口进入的气体依次经过间隙、第一毛细吸液结构到达雾化芯。
在本申请的一实施例中,进气口为多个,从多个进气口进入的气体在间隙混流后再通过第一毛细吸液结构。
在本申请的一实施例中,第一毛细吸液结构包括若干毛细槽,若干毛细槽的延伸方向相互平行且横截面面积相同,使得经过各毛细槽的气流的流速以及流动方向相同。
在本申请的一实施例中,气流通道内设有阻挡件,阻挡件在间隙和进气口之间形成阻挡,以限制间隙直接与进气口连通,进而使得间隙通过第二毛细吸液结构与进气口连通。
在本申请的一实施例中,阻挡件包括第一阻挡件和第二阻挡件,第一阻挡件和第二阻挡件二者所处平面成角度设置且二者配合围设形成间隙,其中在第一阻挡件和第二阻挡件与第二毛细吸液结构对接后,间隙与第二毛细吸液结构对接,使得间隙通过第二毛细吸液结构与进气口连通。
在本申请的一实施例中,气流通道包括连通的进气通道和中间通道,进气通道进一步连通进气口,中间通道进一步连通出气口,其中雾化芯、第一毛细吸液结构以及第二毛细吸液结构设于中间通道。
在本申请的一实施例中,第二毛细吸液结构靠近进气通道连通中间通道的端口设置,中间通道中设有围设于进气通道连通中间通道的端口外周的第一堤坝和第二堤坝,第一堤坝相对第二堤坝靠近间隙设置且第一堤坝在间隙和进气通道之间形成阻挡,以限制间隙直接与进气通道连通,进而使得间隙通过第二毛细吸液结构与进气通道连通,并且第一堤坝和第二堤坝还用于隔开进气通道和第二毛细吸液结构。
在本申请的一实施例中,第一堤坝的高度高于第二堤坝的高度,以在第一堤坝和第二堤坝之间形成通气口,进气通道通过通气口与第二毛细吸液结构连通,进而与间隙连通。
在本申请的一实施例中,第一堤坝和第二堤坝的高度高于第二毛细吸液结构的高度。
在本申请的一实施例中,第一堤坝、第二堤坝与中间通道底部侧壁配合包围进气通道连通中间通道的端口。
在本申请的一实施例中,进气通道连通中间通道的端口在参考平面上的正投影位于间隙在参考平面上的正投影之外,其中参考平面垂直于第一毛细吸液结构和第二毛细吸液结构的相对方向。
在本申请的一实施例中,进气通道包括至少两段第一子通道,相邻第一子通道之间通过第二子通道衔接,其中第一子通道的延伸方向不同于第二子通道的延伸方向。
在本申请的一实施例中,中间通道底部设有相对的两个进气通道,间隙相对两个进气通道之间的第二毛细吸液结构设置。
在本申请的一实施例中,气流通道还包括出气通道,中间通道通过出气通道连通出气口。
在本申请的一实施例中,第一毛细吸液结构和第二毛细吸液结构为毛细槽。
在本申请的一实施例中,第一毛细吸液结构沿其与第二毛细吸液结构的相对方向延伸,第二毛细吸液结构包括第一毛细槽和第二毛细槽,第一毛细槽和第二毛细槽相互连通且延伸方向不同,并且第一毛细槽和第二毛细槽的延伸方向所定义的平面垂直于第一毛细吸液结构的延伸方向。
在本申请的一实施例中,雾化器还包括第一承载件和第二承载件,第一承载件和第二承载件对接形成气流通道,雾化芯和第一毛细吸液结构设于第一承载件,第二毛细吸液结构设于第二承载件。
在本申请的一实施例中,雾化器还包括第三毛细吸液结构,第三毛细吸液结构设于气流通道内壁靠近雾化芯的部分。
在本申请的一实施例中,第一毛细吸液结构、第二毛细吸液结构以及第三毛细吸液结构的毛细槽的宽度小于1mm。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种电子雾化装置,该电子雾化装置包括主机以及雾化器,主机连接雾化器,该雾化器包括进气口、出气口以及气流通道。气流通道分别连通进气口和出气口,并且气流通道中设有雾化芯。该雾化器还包括第一毛细吸液结构和第二毛细吸液结构,第一毛细吸液结构和第二毛细吸液结构设于进气口和雾化芯之间的气流通道,并且第一毛细吸液结构位于雾化芯和第二毛细吸液结构之间。其中,第一毛细吸液结构和第二毛细吸液结构之间具有间隙,从进气口进入的气体依次经过间隙、第一毛细吸液结构到达雾化芯。
本申请的有益效果是:区别于现有技术,本申请提供一种电子雾化装置及其雾化器。该雾化器在第一毛细吸液结构吸收的积液量达到阈值后,第一毛细吸液结构中的积液进一步进入第二毛细吸液结构而被第二毛细吸液结构吸收,即本申请的雾化器通过第一毛细吸液结构和第二毛细吸液结构增大其储液(即存储积液)量,能够降低积液泄漏的风险,进而改善雾化器的防漏液效果。
并且,本申请的第一毛细吸液结构和第二毛细吸液结构之间具有间隙,从进气口进入的气体依次经过间隙、第一毛细吸液结构到达雾化芯,以允许气体在该间隙中均匀混流,并均匀分配至第一毛细吸液结构中,并且第一毛细吸液结构还起到整流的作用,使得通过第一毛细吸液结构的气流的流速和流动方向 较为一致,能够优化雾化器内的气流以更好地将雾化芯处雾化的气溶胶基质携带至出气口,进而更好地向用户提供携带气溶胶基质的气雾,有利于改善用户体验。
此外,在用户抽吸时,第一毛细吸液结构中吸收的气溶胶基质会在气流的带动下重新回到雾化芯以重新进行雾化,能够提高本申请雾化器的气溶胶基质的利用率。
【附图说明】
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。此外,这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
图1是本申请雾化器一实施例的结构示意图;
图2是图1所示雾化器A-A方向的剖面结构示意图;
图3是图2所示雾化器一局部的结构示意图;
图4是本申请第二承载件一实施例的结构示意图;
图5是本申请雾化芯、第一承载件以及第二承载件一实施例的爆炸结构示意图;
图6是图1所示雾化器B-B方向的剖面结构示意图;
图7是本申请电子雾化装置一实施例的结构示意图。
【具体实施方式】
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
为解决现有技术中电子雾化装置防止漏液的效果较差的技术问题,本申请的一实施例提供一种雾化器。该雾化器包括进气口、出气口以及气流通道。气流通道分别连通进气口和出气口,并且气流通道中设有雾化芯。该雾化器还包括第一毛细吸液结构和第二毛细吸液结构,第一毛细吸液结构和第二毛细吸液结构设于进气口和雾化芯之间的气流通道,并且第一毛细吸液结构位于雾化芯和第二毛细吸液结构之间。其中,第一毛细吸液结构和第二毛细吸液结构之间具有间隙,从进气口进入的气体依次经过间隙、第一毛细吸液结构到达雾化芯。以下进行详细阐述。
请参阅图1和图2,图1是本申请雾化器一实施例的结构示意图,图2是图1所示雾化器A-A方向的剖面结构示意图。
在一实施例中,雾化器10可以是诸如电子烟等形式。当然,也可以是应用于医疗领域的医疗雾化设备等。下文以电子烟形式的雾化器10为例进行阐述,并非因此造成限定。
具体地,雾化器10包括进气口11、出气口12以及气流通道13。气流通道13分别连通进气口11和出气口12,并且气流通道13内设有雾化芯14,其中雾化芯14用于雾化器10内的气溶胶基质(例如烟油、药液等)。
进气口11所在位置处为雾化器10进气的位置。当用户抽吸时,外部的气体自进气口11进入气流通道13,以将气流通道13内经雾化芯14雾化的气溶胶基质携带至出气口12,并沿出气口12输出至用户,以供用户吸食。
可选地,雾化芯14可以是多孔发热体,其通过毛细作用力吸收气溶胶基质并产热以雾化气溶胶基质。优选地,雾化芯14可以是多孔陶瓷发热体等,其还可以进一步设置发热膜。当然,在本申请的其它实施例中,雾化芯14还可以是纤维棉和发热丝搭配的设计,在此不做限定。
本实施例的雾化器10还包括第一毛细吸液结构15和第二毛细吸液结构16。第一毛细吸液结构15和第二毛细吸液结构16设于进气口11和雾化芯14之间的气流通道13,并且第一毛细吸液结构15位于雾化芯14和第二毛细吸液结构16之间。
需要说明的是,由于第一毛细吸液结构15相对第二毛细吸液结构16靠近雾化芯14,因此气流通道13内冷凝的气溶胶基质会先被第一毛细吸液结构15吸收。并且由于第一毛细吸液结构15连通第二毛细吸液结构16,因此在第一毛细吸液结构15吸收的积液量达到阈值后,第一毛细吸液结构15中的积液(即 气溶胶基质)进一步进入第二毛细吸液结构16而被第二毛细吸液结构16吸收。
具体地,当气流通道13内的积液较少时,由第一毛细吸液结构15通过毛细作用力吸收气溶胶基质进而锁住气溶胶基质。而当气流通道13内的积液较多,第一毛细吸液结构15吸收的积液量达到阈值后,第一毛细吸液结构15中的气溶胶基质进一步进入第二毛细吸液结构16而被第二毛细吸液结构16通过毛细作用力吸收。
也就是说,本实施例的雾化器10通过第一毛细吸液结构15和第二毛细吸液结构16增大其储液(即存储积液,下同)量,能够降低积液泄漏的风险,进而改善雾化器10的防漏液效果。
并且,本实施例的第一毛细吸液结构15和第二毛细吸液结构16之间具有间隙17。从进气口11进入的气体依次经过间隙17、第一毛细吸液结构15到达雾化芯14,从而允许气体在间隙17中均匀混流,并均匀分配至第一毛细吸液结构15中,进而通过第一毛细吸液结构15并携带雾化后的气溶胶基质输出至用户。并且,第一毛细吸液结构15还起到整流的作用,使得通过第一毛细吸液结构15的气流的流速和流动方向较为一致,从而使得气流更好地覆盖雾化芯14,优化雾化器10内的气流以更好地将雾化芯14处雾化的气溶胶基质携带至出气口12,进而更好地向用户提供携带气溶胶基质的气雾,有利于改善雾化器10的用户使用体验。
此外,在用户抽吸时,第一毛细吸液结构15中吸收的气溶胶基质会在气流的带动下重新回到雾化芯14以重新进行雾化,能够提高本实施例雾化器10的气溶胶基质的利用率。
可选地,第一毛细吸液结构15和第二毛细吸液结构16可以是具有毛细作用力的毛细槽等,能够利用毛细作用力吸收气溶胶基质。当然,第一毛细吸液结构15和第二毛细吸液结构16也可以是其它具有毛细作用力的结构,例如气流通道13表面进行研磨等粗糙化处理,以形成磨砂面、纹路等形式的具有毛细作用力的结构,即第一毛细吸液结构15和第二毛细吸液结构16。将在下文进行阐述。
在一实施例中,第一毛细吸液结构15包括若干毛细槽,该若干毛细槽的延伸方向相互平行且横截面面积相同,使得经过各毛细槽的气流的流速以及流动方向相同,从而优化第一毛细吸液结构15的整流作用。进一步地,该若干毛细槽可以沿靠近出气口12的方向延伸。
请参阅图2和图3,图3是图2所示雾化器一局部的结构示意图。
在一实施例中,雾化器10的进气口11为多个。图2和图3展示了雾化器10具有两个进气口11的情况。从该两个进气口11进入的气体在到达间隙17后,能够在间隙17处混流后再通过第一毛细吸液结构15到达雾化芯14,具体是从该两个进气口11进入的气体在间隙17处混流均匀并均匀分配至第一毛细吸液结构15中,并与第一毛细吸液结构15的整流作用配合优化雾化器10内的气流以更好地将雾化芯14处雾化的气溶胶基质携带至出气口12。
当然,在本申请的其它实施例中,雾化器10也可以仅具有一个进气口11,从该进气口11进入的气体依次经过间隙17、第一毛细吸液结构15到达雾化芯14,在此不做限定。
请继续参阅图2和图3。在一实施例中,当用户停止抽吸后,雾化器10内的雾化气会回流,为防止回流的雾化气直接从进气口11泄漏而造成漏液问题,本实施例的气流通道13内设有阻挡件131,阻挡件131在间隙17和进气口11之间形成阻挡,以限制间隙17直接与进气口11连通,进而使得间隙17通过第二毛细吸液结构16与进气口11连通。
通过上述方式,回流的雾化气先经过第一毛细吸液结构15,其中冷凝的气溶胶基质先经第一毛细吸液结构15吸收,而经过第一毛细吸液结构15到达间隙17的回流雾化气在阻挡件131的限制下无法直接从进气口11逸出,而是进入到第二毛细吸液结构16,经过第二毛细吸液结构16的二次吸收,回流雾化气中绝大多数的气溶胶基质均被锁止于雾化器10中,而不会从雾化器10中泄漏,其中阻挡件131的设置能够降低回流雾化气直接从进气口11逸出的风险,有利于进一步降低漏液的风险,改善雾化器10的防漏液效果。
需要说明的是,本实施例雾化器10的进气路径为进气口11-第二毛细吸液结构16-间隙17-第一毛细吸液结构15-雾化芯14-出气口12-用户,其中气流通道底部的进气路径如图4中虚线箭头所示。而本实施例雾化器10的雾化气回流路径(用户停止抽吸)即为前述进气路径的逆向,具体为出气口12-雾化芯14-第一毛细吸液结构15-间隙17-第二毛细吸液结构16-进气口11,其中由于第二毛细吸液结构16的吸液作用以及阻挡件131的限制,回流雾化气几乎不会从进气口11逸出,极大程度地降低了漏液的风险。
进一步地,请继续参阅图2和图3,阻挡件131包括第一阻挡件1311和第二阻挡件1312,第一阻挡件1311和第二阻挡件1312二者所处平面成角度设置 且二者配合围设形成间隙17,其中在第一阻挡件1311和第二阻挡件1312与第二毛细吸液结构16对接后,间隙17与第二毛细吸液结构16对接,使得间隙17通过第二毛细吸液结构16与进气口11连通。通过上述方式,回流雾化气在第一阻挡件1311和第二阻挡件1312的限制下,仅能通过间隙17直接进入第二毛细吸液结构16,而无法直接从进气口11逸出。
进一步地,请继续参阅图2至图4,气流通道13包括连通的进气通道134和中间通道135,进气通道134进一步连通进气口11,中间通道135进一步连通出气口12。其中,雾化芯14、第一毛细吸液结构15以及第二毛细吸液结构16设于中间通道135。
更进一步地,气流通道13可以进一步包括出气通道136,中间通道135通过出气通道136连通出气口12。
第二毛细吸液结构16靠近进气通道134连通中间通道135的端口1341设置,其中进气通道134相对端口1341的另一端口即为进气口11。中间通道135中设有围设于进气通道134连通中间通道135的端口1341外周的第一堤坝181和第二堤坝182。第一堤坝181相对第二堤坝182靠近间隙17设置且第一堤坝181在间隙17和进气通道134之间形成阻挡,以限制间隙17直接与进气通道134连通,进而使得间隙17通过第二毛细吸液结构16与进气通道134连通。其中,第一堤坝181可以是第一阻挡件1311或第二阻挡件1312的一部分,图3展示了第一堤坝181是第一阻挡件1311的一部分的情况,将在下文进行详细阐述。
更进一步地,第一堤坝181的高度高于第二堤坝182的高度,以在第一堤坝181和第二堤坝182之间形成通气口183,进气通道134通过通气口183与第二毛细吸液结构16连通,进而与间隙17连通,自进气通道134进入的气体需通过通气口183转向进入第二毛细吸液结构16,进而到达间隙17,如图3和4所示,其中气体自进气通道连通中间通道的端口1341进入并通过通气口183转向进入第二毛细吸液结构16的路径如图4中的虚线箭头所示。
图4展示了第一堤坝181、第二堤坝182与中间通道135底部侧壁配合包围进气通道连通中间通道的端口1341的情况,其中第一堤坝181两侧分别设有第二堤坝182,即第一堤坝181两侧分别具有通气口183。也就是说,自进气通道进入的气体通过第一堤坝181两侧的通气口183转向进入第二毛细吸液结构16。
图3和图4还展示了中间通道135底部设有相对的两个进气通道134,间隙 17相对该两个进气通道134之间的第二毛细吸液结构16设置,自该两个进气通道134进入的气体转向进入该两个进气通道134之间的第二毛细吸液结构16,汇流后一起进入间隙17,之后通过第一毛细吸液结构15达到雾化芯14,以携带雾化的气溶胶基质输出至用户。
并且,请继续参阅图4,第一堤坝181和第二堤坝182还用于隔开进气通道和第二毛细吸液结构16,具体是将进气通道连通雾化腔的端口1341与第二毛细吸液结构16隔开。如此一来,即便在第二毛细吸液结构16吸收气溶胶基质的量较大时,第二毛细吸液结构16吸收的气溶胶基质也不会从进气通道泄漏,进一步降低了漏液的风险。
进一步地,第一堤坝181和第二堤坝182的高度高于第二毛细吸液结构16的高度,能够在设置第一堤坝181和第二堤坝182的基础上进一步降低漏液的风险。
请继续参阅图3。在一实施例中,进气通道134连通中间通道135的端口1341在参考平面上的正投影位于间隙17在参考平面上的正投影之外,其中参考平面(如图3中平面α所示)垂直于第一毛细吸液结构15和第二毛细吸液结构16的相对方向(第一毛细吸液结构15和第二毛细吸液结构16的相对方向如图3中箭头X所示)。也就是说,对于直液式的雾化器而言,参考平面垂直于雾化器的中轴线。
也就是说,本实施例的进气通道134与间隙17在参考平面上错位设置,同样用于避免自间隙17回流的雾化气直接从进气通道134逸出而造成漏液问题,有利于进一步降低漏液的风险,改善雾化器10的防漏液效果。
图3展示的两个进气通道134在参考平面上的正投影分别位于间隙17在参考平面上的正投影的相对两侧。
请继续参阅图3。在一实施例中,进气通道134包括至少两段第一子通道1342,相邻第一子通道1342之间通过第二子通道1343衔接,其中第一子通道1342的延伸方向不同于第二子通道1343的延伸方向。也就是说,进气通道134呈蜿蜒延伸状,蜿蜒延伸的进气通道134增加了回流的雾化气通过进气通道134逸出的难度,从而进一步降低了漏液的风险,有利于改善雾化器的防漏液效果。
请参阅图2、图3和图5,图5是本申请雾化芯、第一承载件以及第二承载件一实施例的爆炸结构示意图。
在一实施例中,雾化器10还包括第一承载件132和第二承载件133。第一 承载件132和第二承载件133对接形成气流通道13,第一承载件132和第二承载件133对接形成的空腔供气体流动。雾化芯14和第一毛细吸液结构15设于第一承载件132且第一承载件132连通出气口12。进气口11和第二毛细吸液结构16设于第二承载件133。
也就是说,本实施例的雾化器10其气流通道13采用分体结构设计,以利于各部件的注塑成型。具体地,第一承载件132上的雾化芯14处泄漏的气溶胶基质先经第一承载件132上的第一毛细吸液结构15吸收。当第一毛细吸液结构15吸收的积液量达到阈值后,第一毛细吸液结构15中的气溶胶基质会进一步下渗至第二毛细吸液结构16。由于第二承载件133上的第二毛细吸液结构16具有极大的储液空间,能够吸收绝大部分下渗的气溶胶基质,而防止气溶胶基质泄漏至雾化器10外。
具体地,上述实施例的第一堤坝181设于第二承载件133,第一承载件132抵接第二承载件133的部分与第一堤坝181共同构成上述实施例的第一阻挡件1311,并且上述实施例的第二阻挡件1312也设于第一承载件132,如图3所示。
当然,在本申请的其它实施例中,第一承载件132和第二承载件133也可以通过3D打印一体成型,在此不做限定。
请参阅图6,图6是图1所示雾化器B-B方向的剖面结构示意图。
在一实施例中,雾化器10还包括第三毛细吸液结构19,第三毛细吸液结构19设于气流通道13内壁靠近雾化芯14的部分,第三毛细吸液结构19用于配合第一毛细吸液结构15吸收积液,以进一步增大雾化器10内部的储液量,进一步降低漏液的风险,以利于改善雾化器10的防漏液效果。
进一步地,第三毛细吸液结构19设于上述实施例的第一承载件132。具体地,第三毛细吸液结构19设于第一承载件132内腔的侧壁,而第一毛细吸液结构15设于第一承载件132内腔的底部。第三毛细吸液结构19吸收的气溶胶基质会进一步向第一毛细吸液结构15流动而被第一毛细吸液结构15吸收。
需要说明的是,第一毛细吸液结构、第二毛细吸液结构以及第三毛细吸液结构均可以是毛细槽。如图3所示,第一毛细吸液结构15优选地沿其与第二毛细吸液结构16的相对方向延伸。也就是说,第一毛细吸液结构15沿纵向延伸。当然,第三毛细吸液结构同样也可以是沿纵向延伸,在此不做限定。
请继续参阅图4。第二毛细吸液结构16包括第一毛细槽161和第二毛细槽162。第一毛细槽161和第二毛细槽162相互连通且延伸方向不同。通过上述方 式,有利于提高第二毛细吸液结构16吸收气溶胶基质的速率,改善第二毛细吸液结构16吸收气溶胶基质的效果,进而有利于进一步降低漏液的风险,改善雾化器的防漏液效果。
在本实施例中,对于直液式的雾化器而言,第一毛细槽161和第二毛细槽162的延伸方向所定义的平面垂直于雾化器的中轴线,而第一毛细吸液结构的毛细槽沿雾化器的中轴线方向延伸。
可选地,第一毛细吸液结构、第二毛细吸液结构以及第三毛细吸液结构的毛细槽其宽度优选为小于1mm,以使得第一毛细吸液结构、第二毛细吸液结构以及第三毛细吸液结构具有足够的毛细吸液能力。如若毛细槽的宽度过大,就会导致毛细槽的毛细吸液能力较弱,不足以满足使用。并且,毛细槽宽度的设计值还取决于气溶胶基质的粘度以及雾化器的结构设计限制。此外,毛细槽的深度越大,其储液量就越大,因此在结构允许的情况下,增大毛细槽的深度有利于增大毛细槽的储液量,进而有利于降低漏液的风险。
综上所述,本申请所提供的雾化器,其在第一毛细吸液结构吸收的积液量达到阈值后,第一毛细吸液结构中的积液进一步进入第二毛细吸液结构而被第二毛细吸液结构吸收,即本申请的雾化器通过第一毛细吸液结构和第二毛细吸液结构增大其储液(即存储积液)量,能够降低积液泄漏的风险,进而改善雾化器的防漏液效果。
其次,本申请的第一毛细吸液结构和第二毛细吸液结构之间具有间隙。从进气口进入的气体依次经过间隙、第一毛细吸液结构到达雾化芯,从而允许气体在间隙中均匀混流,并均匀分配至第一毛细吸液结构中,进而通过第一毛细吸液结构并携带雾化后的气溶胶基质输出至用户。并且,第一毛细吸液结构还起到整流的作用,使得通过第一毛细吸液结构的气流的流速和流动方向较为一致,从而使得气流更好地覆盖雾化芯,优化雾化器内的气流以更好地将雾化芯处雾化的气溶胶基质携带至出气口,进而更好地向用户提供携带气溶胶基质的气雾,有利于改善用户体验。
再者,本申请的气流通道内设有阻挡件,阻挡件在间隙和进气口之间形成阻挡,以防止回流的雾化气直接从进气口泄漏而造成漏液问题。
并且,本申请的进气通道与间隙错位设置,即本申请雾化器的进气部分与雾化主气道错位设置,同样用于避免自间隙回流的雾化气直接从进气通道逸出而造成漏液问题。
此外,在用户抽吸时,第一毛细吸液结构中吸收的气溶胶基质会在气流的带动下重新回到雾化芯以重新进行雾化,能够提高本申请雾化器的气溶胶基质的利用率。
请参阅图7,图7是本申请电子雾化装置一实施例的结构示意图。
在一实施例中,电子雾化装置100包括雾化器10以及主机20。雾化器10用于加热雾化气溶胶基质(例如烟油等)。主机20设有电源和控制电路。雾化器10可以固定连接到主机20上,也可以可拆卸地连接到主机20上。
雾化器10包括进气口、出气口以及气流通道。气流通道分别连通进气口和出气口,并且气流通道中设有雾化芯。该雾化器还包括第一毛细吸液结构和第二毛细吸液结构,第一毛细吸液结构和第二毛细吸液结构设于进气口和雾化芯之间的气流通道,并且第一毛细吸液结构位于雾化芯和第二毛细吸液结构之间。其中,第一毛细吸液结构和第二毛细吸液结构之间具有间隙,从进气口进入的气体依次经过间隙、第一毛细吸液结构到达雾化芯。其中,雾化器10已在上述实施例中详细阐述,在此就不再赘述。
此外,在本申请中,除非另有明确的规定和限定,术语“相连”、“连接”、“层叠”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种雾化器,其中,所述雾化器包括:
    进气口;
    出气口;
    气流通道,所述气流通道分别连通所述进气口和所述出气口,并且所述气流通道中设有雾化芯;
    第一毛细吸液结构和第二毛细吸液结构,所述第一毛细吸液结构和所述第二毛细吸液结构设于所述进气口和所述雾化芯之间的所述气流通道,并且所述第一毛细吸液结构位于所述雾化芯和所述第二毛细吸液结构之间;
    其中,所述第一毛细吸液结构和所述第二毛细吸液结构之间具有间隙,从所述进气口进入的气体依次经过所述间隙、所述第一毛细吸液结构到达所述雾化芯。
  2. 根据权利要求1所述的雾化器,其中,所述进气口为多个,从多个所述进气口进入的气体在所述间隙混流后再通过所述第一毛细吸液结构。
  3. 根据权利要求1所述的雾化器,其中,所述第一毛细吸液结构包括若干毛细槽,所述若干毛细槽的延伸方向相互平行且横截面面积相同,使得经过各所述毛细槽的气流的流速以及流动方向相同。
  4. 根据权利要求1所述的雾化器,其中,所述气流通道内设有阻挡件,所述阻挡件在所述间隙和所述进气口之间形成阻挡,以限制所述间隙直接与所述进气口连通,进而使得所述间隙通过所述第二毛细吸液结构与所述进气口连通。
  5. 根据权利要求4所述的雾化器,其中,所述阻挡件包括第一阻挡件和第二阻挡件,所述第一阻挡件和所述第二阻挡件二者所处平面成角度设置且二者配合围设形成所述间隙,其中在所述第一阻挡件和所述第二阻挡件与所述第二毛细吸液结构对接后,所述间隙与所述第二毛细吸液结构对接,使得所述间隙通过所述第二毛细吸液结构与所述进气口连通。
  6. 根据权利要求1所述的雾化器,其中,所述气流通道包括连通的进气通道和中间通道,所述进气通道进一步连通所述进气口,所述中间通道进一步连通所述出气口,其中所述雾化芯、所述第一毛细吸液结构以及所述第二毛细吸液结构设于所述中间通道。
  7. 根据权利要求6所述的雾化器,其中,所述第二毛细吸液结构靠近所述 进气通道连通所述中间通道的端口设置,所述中间通道中设有围设于所述进气通道连通所述中间通道的端口外周的第一堤坝和第二堤坝,所述第一堤坝相对所述第二堤坝靠近所述间隙设置且所述第一堤坝在所述间隙和所述进气通道之间形成阻挡,以限制所述间隙直接与所述进气通道连通,进而使得所述间隙通过所述第二毛细吸液结构与所述进气通道连通,并且所述第一堤坝和所述第二堤坝还用于隔开所述进气通道和所述第二毛细吸液结构。
  8. 根据权利要求7所述的雾化器,其中,所述第一堤坝的高度高于所述第二堤坝的高度,以在所述第一堤坝和所述第二堤坝之间形成通气口,所述进气通道通过所述通气口与所述第二毛细吸液结构连通,进而与所述间隙连通。
  9. 根据权利要求7所述的雾化器,其中,所述第一堤坝和所述第二堤坝的高度高于所述第二毛细吸液结构的高度。
  10. 根据权利要求7所述的雾化器,其中,所述第一堤坝、所述第二堤坝与所述中间通道底部侧壁配合包围所述进气通道连通所述中间通道的端口。
  11. 根据权利要求6所述的雾化器,其中,所述进气通道连通所述中间通道的端口在参考平面上的正投影位于所述间隙在所述参考平面上的正投影之外,其中所述参考平面垂直于所述第一毛细吸液结构和所述第二毛细吸液结构的相对方向。
  12. 根据权利要求6所述的雾化器,其中,所述进气通道包括至少两段第一子通道,相邻所述第一子通道之间通过第二子通道衔接,其中所述第一子通道的延伸方向不同于所述第二子通道的延伸方向。
  13. 根据权利要求6所述的雾化器,其中,所述中间通道底部设有相对的两个所述进气通道,所述间隙相对所述两个进气通道之间的所述第二毛细吸液结构设置。
  14. 根据权利要求6所述的雾化器,其中,所述气流通道还包括出气通道,所述中间通道通过所述出气通道连通所述出气口。
  15. 根据权利要求1所述的雾化器,其中,所述第一毛细吸液结构和所述第二毛细吸液结构为毛细槽。
  16. 根据权利要求15所述的雾化器,其中,所述第一毛细吸液结构沿其与所述第二毛细吸液结构的相对方向延伸,所述第二毛细吸液结构包括第一毛细槽和第二毛细槽,所述第一毛细槽和所述第二毛细槽相互连通且延伸方向不同,并且所述第一毛细槽和所述第二毛细槽的延伸方向所定义的平面垂直于所述第 一毛细吸液结构的延伸方向。
  17. 根据权利要求1所述的雾化器,其中,所述雾化器还包括第一承载件和第二承载件,所述第一承载件和所述第二承载件对接形成所述气流通道,所述雾化芯和所述第一毛细吸液结构设于所述第一承载件,所述第二毛细吸液结构设于所述第二承载件。
  18. 根据权利要求1所述的雾化器,其中,所述雾化器还包括第三毛细吸液结构,所述第三毛细吸液结构设于所述气流通道内壁靠近所述雾化芯的部分。
  19. 根据权利要求18所述的雾化器,其中,所述第一毛细吸液结构、所述第二毛细吸液结构以及所述第三毛细吸液结构的毛细槽的宽度小于1mm。
  20. 一种电子雾化装置,其特征在于,所述电子雾化装置包括主机以及雾化器,所述主机连接所述雾化器,所述雾化器包括:
    进气口;
    出气口;
    气流通道,所述气流通道分别连通所述进气口和所述出气口,并且所述气流通道中设有雾化芯;
    第一毛细吸液结构和第二毛细吸液结构,所述第一毛细吸液结构和所述第二毛细吸液结构设于所述进气口和所述雾化芯之间的所述气流通道,并且所述第一毛细吸液结构位于所述雾化芯和所述第二毛细吸液结构之间;
    其中,所述第一毛细吸液结构和所述第二毛细吸液结构之间具有间隙,从所述进气口进入的气体依次经过所述间隙、所述第一毛细吸液结构到达所述雾化芯。
PCT/CN2020/090649 2020-05-15 2020-05-15 一种电子雾化装置及其雾化器 WO2021227061A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20934918.2A EP4151108A4 (en) 2020-05-15 2020-05-15 ELECTRONIC ATOMIZER AND ATOMIZER THEREFOR
PCT/CN2020/090649 WO2021227061A1 (zh) 2020-05-15 2020-05-15 一种电子雾化装置及其雾化器
US17/986,144 US20230077260A1 (en) 2020-05-15 2022-11-14 Electronic atomization device and atomizer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/090649 WO2021227061A1 (zh) 2020-05-15 2020-05-15 一种电子雾化装置及其雾化器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/986,144 Continuation US20230077260A1 (en) 2020-05-15 2022-11-14 Electronic atomization device and atomizer thereof

Publications (1)

Publication Number Publication Date
WO2021227061A1 true WO2021227061A1 (zh) 2021-11-18

Family

ID=78525935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090649 WO2021227061A1 (zh) 2020-05-15 2020-05-15 一种电子雾化装置及其雾化器

Country Status (3)

Country Link
US (1) US20230077260A1 (zh)
EP (1) EP4151108A4 (zh)
WO (1) WO2021227061A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023077698A1 (zh) * 2021-11-05 2023-05-11 深圳市艾溹技术研究有限公司 雾化座、雾化器及电子雾化装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD929648S1 (en) 2018-11-21 2021-08-31 Shenzhen Smoore Technology Limited Electronic cigarette
USD933285S1 (en) 2018-11-21 2021-10-12 Shenzhen Smoore Technology Limited Electronic cigarette
USD966604S1 (en) * 2020-09-25 2022-10-11 Shenzhen Verdewell Technology Limited Atomizer
USD1013253S1 (en) 2021-01-25 2024-01-30 Nicoventures Trading Limited Aerosol generator
USD1021227S1 (en) * 2021-03-04 2024-04-02 VEC Limited Electronic cigarette cartridge
USD1013939S1 (en) * 2021-03-18 2024-02-06 Shaofang Wang Atomizer for electronic cigarette
USD1004186S1 (en) 2021-09-15 2023-11-07 Nicoventures Trading Limited Aerosol generator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205040652U (zh) * 2015-08-11 2016-02-24 上海烟草集团有限责任公司 雾化吸入装置
US20160073693A1 (en) * 2013-05-02 2016-03-17 Nicoventures Holdings Limited Electronic cigarette
CN106418700A (zh) * 2015-08-11 2017-02-22 上海烟草集团有限责任公司 雾化吸入装置
US20180352867A1 (en) * 2013-03-15 2018-12-13 Altria Client Services Llc Electronic smoking article
CN110250576A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110250577A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110403246A (zh) * 2019-06-17 2019-11-05 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN209931491U (zh) * 2019-03-14 2020-01-14 深圳市合元科技有限公司 烟弹及电子烟
CN209931490U (zh) * 2019-03-14 2020-01-14 深圳市合元科技有限公司 雾化芯、烟弹及电子烟

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018161254A1 (zh) * 2017-03-07 2018-09-13 昂纳自动化技术(深圳)有限公司 电子烟防漏液装置
CN108272142B (zh) * 2018-04-18 2023-10-17 深圳市优维尔科技有限公司 一种具有雾化功能的抽吸装置及电子烟

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180352867A1 (en) * 2013-03-15 2018-12-13 Altria Client Services Llc Electronic smoking article
US20160073693A1 (en) * 2013-05-02 2016-03-17 Nicoventures Holdings Limited Electronic cigarette
CN205040652U (zh) * 2015-08-11 2016-02-24 上海烟草集团有限责任公司 雾化吸入装置
CN106418700A (zh) * 2015-08-11 2017-02-22 上海烟草集团有限责任公司 雾化吸入装置
CN209931491U (zh) * 2019-03-14 2020-01-14 深圳市合元科技有限公司 烟弹及电子烟
CN209931490U (zh) * 2019-03-14 2020-01-14 深圳市合元科技有限公司 雾化芯、烟弹及电子烟
CN110250576A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110250577A (zh) * 2019-06-17 2019-09-20 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器
CN110403246A (zh) * 2019-06-17 2019-11-05 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4151108A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023077698A1 (zh) * 2021-11-05 2023-05-11 深圳市艾溹技术研究有限公司 雾化座、雾化器及电子雾化装置

Also Published As

Publication number Publication date
EP4151108A1 (en) 2023-03-22
US20230077260A1 (en) 2023-03-09
EP4151108A4 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
WO2021227061A1 (zh) 一种电子雾化装置及其雾化器
CN111657549A (zh) 一种电子雾化装置及其雾化器
US20230063069A1 (en) Atomizer, and electronic atomization device thereof
EP4151099A1 (en) Atomization device
CN112971217A (zh) 雾化芯、雾化器及电子雾化装置
WO2017139963A1 (zh) 电子雾化装置
JP2022539421A (ja) 電子気化装置及びその気化器
CN111657547A (zh) 一种雾化装置
CN110638104A (zh) 雾化装置
CN114304744A (zh) 一种降温雾化器及气溶胶发生装置
EP4245178A1 (en) Atomizer and electronic atomization device thereof
WO2021174438A1 (zh) 雾化器以及电子雾化装置
CN216701628U (zh) 电子烟雾化装置以及电子烟
WO2023124213A1 (zh) 一种雾化器及电子雾化装置
CN111329115A (zh) 雾化器以及电子雾化装置
WO2019144308A1 (zh) 电子烟及其雾化器
CN214629849U (zh) 雾化器、电子雾化装置以及液体导流机构
CN212185111U (zh) 雾化器以及电子雾化装置
CN212345283U (zh) 一种电子雾化装置及其雾化器
WO2023155476A1 (zh) 雾化器和雾化装置
CN216135184U (zh) 雾化器及电子雾化装置
CN217826745U (zh) 一种电子雾化装置及其雾化器
CN214854326U (zh) 电子雾化装置及其雾化器和雾化组件
CN212345282U (zh) 一种雾化装置
CN220875931U (zh) 雾化器和雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020934918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020934918

Country of ref document: EP

Effective date: 20221215

NENP Non-entry into the national phase

Ref country code: DE