WO2023070322A1 - 一种电子雾化装置及其雾化器、雾化芯 - Google Patents

一种电子雾化装置及其雾化器、雾化芯 Download PDF

Info

Publication number
WO2023070322A1
WO2023070322A1 PCT/CN2021/126451 CN2021126451W WO2023070322A1 WO 2023070322 A1 WO2023070322 A1 WO 2023070322A1 CN 2021126451 W CN2021126451 W CN 2021126451W WO 2023070322 A1 WO2023070322 A1 WO 2023070322A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid storage
atomizing
storage structure
capillary
Prior art date
Application number
PCT/CN2021/126451
Other languages
English (en)
French (fr)
Inventor
王洪钊
雷桂林
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/126451 priority Critical patent/WO2023070322A1/zh
Publication of WO2023070322A1 publication Critical patent/WO2023070322A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present application relates to the field of atomization core technology, in particular to an electronic atomization device, an atomizer, and an atomization core.
  • the electronic atomization device in the prior art is mainly composed of an atomizer and a power supply assembly.
  • the atomizing core in the atomizer is the core component, and the atomizing core mainly includes a porous substrate and a heating body.
  • the atomizing core is mainly made of cotton material, metal wire or ceramic porous body and heating film.
  • ceramic porous bodies are widely used in electronic atomization devices.
  • due to the limited liquid storage capacity of ceramics and their low power limit simply increasing the power to increase the amount of electronic atomization may cause local overheating of the ceramics, and often occur Burning and other problems will bring negative experience to users.
  • the main technical problem to be solved by this application is to provide an electronic atomization device, its atomizer, and an atomization core, so as to solve the problem of low liquid storage capacity of the atomization core in the prior art.
  • the first technical solution adopted by this application is to provide an atomizing core
  • the atomizing core includes: a liquid guide, with a capillary liquid storage structure on the liquid guide, the capillary liquid storage structure is used for Store the substrate to be atomized; the heating element is arranged on the liquid guide for heating and atomizing the substrate to be atomized; wherein, the liquid guide includes an atomized surface and a non-atomized surface, and the capillary liquid storage structure is at most as close as the atomized surface or one of the non-atomized surfaces is connected.
  • the heating element is arranged on the atomizing surface, the non-atomizing surface includes the liquid absorbing surface opposite to the atomizing surface and the side connecting the liquid absorbing surface and the atomizing surface, and the capillary liquid storage structure is at most connected to the atomizing surface, the liquid absorbing surface and the One of the sides is connected.
  • the liquid guide is a rectangular block, the cross-sectional shape of the liquid guide is rectangular, and the liquid guide includes an atomization surface, a liquid absorption surface and a side; one of the atomization surface and the liquid absorption surface is a rectangular block
  • the upper surface of the other is the lower surface of a rectangular block, and the side is annularly arranged between the atomization surface and the liquid absorption surface; or the liquid guide is a hollow column, and one of the atomization surface and the liquid absorption surface is hollow
  • the outer surface of the columnar body, the other is the inner surface of the hollow columnar body, and the side surfaces are the top and bottom surfaces of the hollow columnar body.
  • the capillary liquid storage structure is arranged on the atomization surface and/or the liquid absorption surface, and the capillary liquid storage structure includes blind grooves, through grooves and/or blind holes.
  • the capillary liquid storage structure is arranged on the side surface, and the capillary liquid storage structure includes blind grooves, through grooves, blind holes and/or through holes.
  • the capillary liquid storage structure includes at least one of grooves, openings and buried holes.
  • the capillary liquid storage structure is an opening, and the diameter of the opening is 0.1mm-1mm.
  • the hydraulic diameter of the opening is 0.05mm-2.0mm.
  • the center distance between adjacent openings is 0.2mm-1.3mm.
  • the capillary liquid storage structure is a groove
  • the width of the groove is 0.2mm-1.0mm
  • the depth of the groove is 0.05mm-5.0mm.
  • the distance between adjacent grooves is 0.6mm-1.0mm.
  • the capillary liquid storage structure is arranged on the atomizing surface and arranged at intervals from the heating element.
  • the second technical solution adopted by this application is to provide an atomizer, which includes: a housing, a liquid storage chamber is arranged in the housing, and the liquid storage chamber is used to store the liquid to be atomized.
  • an air outlet channel is formed in the housing, wherein the capillary liquid storage structure on the atomizing core communicates with at most one of the liquid storage chamber and the air outlet channel of the atomizer.
  • the capillary liquid storage structure on the atomizing surface is only in communication with the gas outlet channel or the capillary liquid storage structure on the non-atomization surface is only in communication with the liquid storage cavity.
  • the third technical solution adopted by the present application is to provide an electronic atomization device, which includes: a power supply assembly and the atomizer as described above, and the power supply assembly supplies power to the atomizer.
  • the beneficial effect of the present application is: different from the situation of the prior art, it provides an electronic atomization device, its atomizer, and an atomization core.
  • the liquid structure, the capillary liquid storage structure is used to store the substrate to be atomized; the heating element is arranged on the liquid guide for heating and atomizing the substrate to be atomized; wherein, the liquid guide includes an atomized surface and a non-atomized surface,
  • the capillary liquid storage structure communicates with at most one of the atomizing surface or the non-atomizing surface.
  • the capillary liquid storage structure is set on the liquid guide part of the atomizing core provided by this application, and the capillary action of the set capillary liquid storage structure realizes the functions of liquid locking and flow diversion, so as to improve the liquid storage capacity of the liquid guide part, thereby improving User experience.
  • Fig. 1 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application
  • Fig. 2 is a schematic structural diagram of an embodiment of the atomizer in the electronic atomization device provided by the present application;
  • Fig. 3 is a schematic structural diagram of the first embodiment of the atomizing core provided by the present application.
  • Fig. 4 is a schematic structural diagram of the second embodiment of the atomizing core provided by the present application.
  • Fig. 5 is a schematic structural view of the third embodiment of the atomizing core provided by the present application.
  • Fig. 6 is a schematic structural diagram of the fourth embodiment of the atomizing core provided by the present application.
  • Fig. 7 is a diagram of the liquid storage status of blind holes with different apertures on the liquid guide in the atomizing core provided by the present application;
  • Fig. 8 is a state diagram of before and after the liquid guide in the atomizing core is loaded with the substance to be atomized;
  • Fig. 9 is a schematic structural view of an embodiment of the liquid guide in the atomization core provided by the present application.
  • Fig. 10 is a cross-sectional view of the liquid guide in the atomizing core provided in Fig. 9;
  • Fig. 11 is a schematic structural view of another embodiment of the liquid guide in the atomizing core provided by the present application.
  • Fig. 12 is a top view of the liquid guide in the atomizing core provided in Fig. 11 .
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one feature.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • the applicant of the present application provides an atomizing core with functions of liquid storage and liquid guiding, as well as an atomizer and an electronic atomization device using the atomizing core.
  • FIG. 1 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application.
  • Electronic atomization devices can be used for atomization of liquid substrates.
  • the electronic atomization device includes an atomizer 1 and a power supply assembly 2 connected to each other.
  • the atomizer 1 is used to store the substrate to be atomized and atomize the substrate to be atomized to form an aerosol that can be inhaled by the user.
  • the substrate to be atomized can be liquid substrates such as medicinal liquid and plant grass liquid; atomizer 1 It can be used in different fields, such as medical treatment, beauty treatment, electronic aerosolization, etc.
  • the power supply assembly 2 includes a battery (not shown in the figure), an airflow sensor (not shown in the figure), and a controller (not shown in the figure), etc.; the battery is used to supply power to the atomizer 1, so that the atomizer 1 can atomize and be atomized
  • the matrix forms an aerosol;
  • the airflow sensor is used to detect the change of the airflow in the electronic atomization device, and the controller starts the electronic atomization device according to the airflow change detected by the airflow sensor.
  • the atomizer 1 and the power supply assembly 2 can be integrated or detachably connected, and can be designed according to specific needs.
  • the electronic atomization device also includes other components in the existing electronic atomization device, such as microphones, brackets, etc. The specific structures and functions of these components are the same or similar to those of the prior art. For details, please refer to the prior art. I won't repeat them here.
  • FIG. 2 is a schematic structural diagram of an embodiment of the atomizer in the electronic atomization device provided by the present application.
  • the atomizer 1 includes a suction nozzle 10 , a casing 11 , an atomizing core 12 , and an air outlet channel 13 .
  • the housing 11 has a liquid storage cavity 111 .
  • the liquid storage chamber 111 is used to store the substance to be atomized.
  • the liquid storage chamber 111 has a liquid outlet 112 , and the atomizing core 12 is arranged at the liquid outlet 112 of the liquid storage chamber 111 .
  • the atomizing core 12 is used to atomize the substance to be atomized in the liquid storage chamber 111 .
  • the atomizing core 12 is accommodated in the housing 11 , and the aerosol atomized by the atomizing core 12 reaches the mouthpiece 10 through the outlet channel 13 to be inhaled by the user.
  • the atomizing core 12 is electrically connected with the power supply assembly 2 to heat and atomize the substrate to be atomized.
  • Figure 3 is a schematic structural view of the first embodiment of the atomization core provided by the application
  • Figure 4 is a schematic structural view of the second embodiment of the atomization core provided by the application
  • Figure 5 is a schematic view of the structure of the second embodiment of the atomization core provided by the application
  • Fig. 6 is the structure diagram of the fourth embodiment of the atomization core provided by the application
  • Fig. 7 is the blind holes with different apertures on the liquid guide in the atomization core provided by the application
  • Fig. 8 is a state diagram of before and after the liquid guide in the atomization core is loaded with the substrate to be atomized. As shown in FIG.
  • the atomizing core 12 includes a liquid guiding element 121 and a heating element 128 disposed on the liquid guiding element 121 .
  • the liquid guiding element 121 is used to guide the substance to be atomized in the liquid storage chamber 111 to the surface of the liquid guiding element 121 provided with the heating element 128 .
  • the heating element 128 atomizes the substrate to be atomized with heat to generate an aerosol.
  • the liquid guiding element 121 is a porous matrix.
  • the heating element 128 can be a metal film, a metal mesh or a metal wire, etc., and its shape and structure are not limited.
  • the porous substrate can be a ceramic porous body
  • the heating element 128 can be an S-shaped metal strip
  • pins 140 are respectively provided at both ends, and the two ends of the heating element 128 are connected to the power supply assembly 2 through the pins 140. Positive and Negative.
  • a capillary liquid storage structure 127 is also provided on the liquid guide 121, and the capillary liquid storage structure 127 can be a specially established regular structure and its size is generally larger than that of the micropores.
  • the capillary liquid storage structure 127 provided on the liquid guide 121 can store the substance to be atomized in the liquid guide 121 through capillary force, and can also transfer the substance to be atomized to the liquid guide through capillary force.
  • the element 121 is provided on the surface of the heating element 128, so that the heating element 128 heats and atomizes the substrate to be atomized. Since the capillary liquid storage structure 127 can store the substance to be atomized, the liquid storage performance of the liquid guide 121 can be improved. Wherein, the capillary liquid storage structure 127 disposed on the liquid guiding element 121 is spaced apart from the heating element 128 disposed on the liquid guiding element 121 .
  • the capillary liquid storage structure 127 may be one or more of grooves, openings and buried holes. Grooves, open pores, and buried pores all have capillary forces. As shown in Fig. 4, in a specific embodiment, the groove can be a blind groove 129 with both ends closed, or a through groove 130 with both ends open, or other groove structures with one end closed and the other open.
  • the opening can be a through hole 126 or a blind hole 125 .
  • the hydraulic diameter of the groove or opening is 0.05mm-2.0mm. In one embodiment, the hydraulic diameter of the recess or opening is 1.5mm.
  • the cross-sectional shape of the groove or the opening is not limited, and may be semicircle, semiellipse, rectangle, triangle, etc.
  • the capillary liquid storage structure 127 includes a plurality of grooves, and the cross section of the grooves is rectangular.
  • the width of the groove is 0.2mm-1.0mm, and the depth of the groove is 0.05mm-5.0mm.
  • the capillary liquid storage structure 127 includes a plurality of grooves spaced in parallel, and the distance between adjacent grooves is 0.6mm-1.0mm.
  • the capillary liquid storage structure 127 includes a plurality of openings, and the cross-section of the openings is circular.
  • the diameter of the opening is 0.1mm-1mm, the depth of the opening is 3.5mm-5.0mm; the center-to-center distance between adjacent openings is 0.5mm-1.3mm.
  • the capillary liquid storage structure 127 includes a plurality of openings arranged at intervals, and the distance between the centers of adjacent openings is 0.8 mm.
  • the liquid guide 121 with the capillary liquid storage structure 127 in this embodiment can be made by injection molding, drilling, or 3D printing.
  • the capillary liquid storage structure 127 includes buried holes, and the buried holes may or may not have a capillary size, that is, the substrate to be atomized can pass through the micropores of the liquid guide 121
  • the buried hole can store the substrate to be atomized, and the substrate to be atomized in the buried hole can also be conducted to the surface of the liquid guide 121 where the heating element 128 is arranged through the micropores of the liquid guide 121, further shortening the waiting time.
  • the transmission path of the atomized substrate increases the amount of liquid.
  • the liquid guiding element 121 with buried holes can be manufactured by sintering two opposite ceramics with recesses into one body.
  • the liquid guide 121 with buried holes can also be obtained by 3D printing.
  • the liquid guiding element 121 includes an atomizing surface 122 and a non-atomizing surface.
  • the capillary liquid storage structure 127 communicates with at most one of the atomizing surface 122 or the non-atomizing surface. Since the capillary liquid storage structure 127 is not connected to the atomizing surface 122 and the non-atomizing surface of the liquid guiding member 121 , the problems of ventilation and liquid leakage through the capillary liquid storage structure 127 will not be caused.
  • the non-atomizing surface may include a liquid-absorbing surface 123 opposite to the atomizing surface 122 and a side surface 124 connecting the liquid-absorbing surface 123 and the atomizing surface 122 .
  • the capillary liquid storage structure 127 can be disposed on one or more of the atomizing surface 122 , the liquid absorbing surface 123 and the side surface 124 .
  • there is one heating element 128 there is one heating element 128 , and one heating element 128 is disposed on the atomizing surface 122 .
  • the surface of the liquid guiding element 121 on which the heating element 128 is disposed is defined as the atomizing surface 122
  • the surface of the liquid guiding element 121 in contact with the liquid storage cavity 111 is defined as the liquid absorbing surface 123 . That is, the heating element 128 is disposed on the atomizing surface 122 of the liquid guiding element 121 . In other optional embodiments, part of the heating element 128 is embedded inside the liquid guiding element 121 .
  • the capillary liquid storage structure 127 when the capillary liquid storage structure 127 is arranged on the atomizing surface 122 and/or the liquid absorption surface 123 of the liquid guide 121, the capillary liquid storage structure 127 is a blind groove 129, a through groove 130 and/or a blind groove 129. Hole 125.
  • the capillary liquid storage structure 127 provided on the atomization surface 122 and the liquid absorption surface 123 of the liquid guide 121 can improve the liquid storage performance of the liquid guide 121, so that the substance to be atomized can be more fully supplemented by the atomization of the liquid guide 121.
  • Surface 122 wherein, the capillary liquid storage structure 127 arranged on the atomization surface 122 and the liquid absorption surface 123 of the liquid guide 121 is a blind hole 125. Leakage problem.
  • the capillary liquid storage structure 127 is disposed on the atomizing surface 122 of the liquid guiding element 121 .
  • the capillary liquid storage structure 127 is a blind hole 125 .
  • the diameters of the blind holes 125 from a to c are 0.22mm, 0.49mm and 0.88mm respectively, and the depth is 1.6mm;
  • the experimental photos, a 2 , b 2 and c 2 are the experimental photos of the liquid-guiding member 121 filled with the substance to be atomized, respectively. It can be seen from Fig.
  • the grooves are spaced apart from the heating element 128 .
  • the through groove 130 can only be arranged on the peripheral portion of the atomizing surface 122 of the liquid guiding element 121, thereby avoiding atomization
  • the through groove 130 on the surface 122 intersects with the heating element 128 so that the heating element 128 is broken or discontinuous.
  • the shape of the through groove 130 can be the same as that of the heating element 128, the through groove 130 and the heating element 128 are spaced apart, and the two ends of the through groove 130 extend to at least the end of the liquid guiding element 121. 124 on one side.
  • the capillary liquid storage structure 127 When the capillary liquid storage structure 127 is disposed on the side surface 124 of the liquid guide 121 , the capillary liquid storage structure 127 can be a blind groove 129 , a through groove 130 , a through hole 126 and/or a blind hole 125 .
  • the substance to be atomized can be first transferred to the capillary liquid storage structure 127 for temporary storage. Compared with the distance from the liquid-absorbing surface 123 to the atomizing surface 122, the distance shortens the transmission path of the substance to be atomized, thereby enabling the substance to be atomized stored in the capillary liquid storage structure 127 to be transported to the liquid guide 121 faster The atomizing surface 122 of the liquid replenishment.
  • the blind hole 125 may have a depth of 4.1 mm and a diameter of 0.6 mm.
  • the liquid guide 121 can be a rectangular block, the cross-sectional shape of the liquid guide 121 is a rectangle, and one of the atomization surface 122 and the liquid absorption surface 123 is a rectangle On the outer surface of the block, one of the atomizing surface 122 and the liquid-absorbing surface 123 is the upper surface of the rectangular block, and the other is the lower surface of the rectangular block, and the side ring is arranged on the atomizing surface 122 and the liquid-absorbing surface. Between the faces 123 .
  • the capillary liquid storage structure 127 when the capillary liquid storage structure 127 is disposed on the side surface 124 of the liquid guide 121 , the capillary liquid storage structure 127 includes a through hole 126 . As shown in FIG. 8 , the through hole 126 is disposed on the left side of the side surface 124 of the liquid guiding element 121 , and the blind hole 125 is disposed on the right side of the side surface 124 of the liquid guiding element 121 . Wherein, the depth of the blind hole 125 is 4.1 mm, and the diameters of the blind hole 125 and the through hole 126 are 0.6 mm. It can be seen from FIG. 8( a 2 ) that when the substrate to be atomized is filled with ceramics, both the channels of the blind hole 125 and the channels of the through hole 126 are full of the substrate to be atomized.
  • the liquid storage capacity of the capillary liquid storage structure 127 provided on the liquid guide 121 is related to the number, volume and porosity of the blind holes 125, through holes 126 or buried holes. The greater the number of blind holes 125 , through holes 126 or buried holes, the larger their volume, and the smaller the porosity of the liquid guide, the greater the liquid storage capacity of the capillary liquid storage structure 127 provided on the liquid guide 121 .
  • two atomization cores 12 are used in the experimental test, the porosity of the liquid guide 121 in the two atomization cores 12 is 56%, and one atomization core 12 passes through the atomization surface of the liquid guide 121 122 is provided with a capillary liquid storage structure 127, the capillary liquid storage structure 127 is a blind hole 125 with a diameter of 0.3mm, the number of blind holes 125 is 24, the depth of the blind hole 125 is 1mm, and the center point of the adjacent blind hole 125 The distance is 0.8 mm; the liquid guide 121 of the other atomizing core 12 is not provided with a capillary liquid storage structure 127 .
  • the liquid storage volume of the liquid guide 121 provided with the capillary liquid storage structure 127 is increased by 0.75 mm 3 compared with the liquid storage volume of the liquid guide 121 without the capillary liquid storage structure 127 .
  • two atomization cores 12 are used in the experimental test, the porosity of the liquid guide 121 in the two atomization cores 12 is both 56%, and one atomization core 12 passes on the side 124 of the liquid guide 121
  • Capillary liquid storage structure 127 is set, and capillary liquid storage structure 127 is the through-hole 126 that aperture is 0.5mm, and the quantity of through-hole 126 is 4, and the length of through-hole 126 is 4.22mm, and the center point distance of adjacent through-hole 126 is 1.1 mm; the liquid guide 121 of the other atomizing core 12 is not provided with a capillary liquid storage structure 127 .
  • the liquid storage volume of the liquid guide 121 provided with the capillary liquid storage structure 127 is increased by 1.46 compared with the liquid storage volume of the liquid guide 121 without the capillary liquid storage structure 127 mm 3 .
  • Figure 9 is a schematic structural view of an embodiment of the liquid guide in the atomization core provided by the present application
  • Figure 10 is a cross-sectional view of the liquid guide in the atomization core provided in Figure 9
  • Figure 11 is A schematic structural view of another embodiment of the liquid guide in the atomization core provided in the present application
  • FIG. 12 is a top view of the liquid guide in the atomization core provided in FIG. 11 .
  • the liquid guide 121 can be a hollow column, one of the atomizing surface 122 and the liquid absorption surface 123 is the outer surface of the hollow column, the other is the inner surface of the hollow column, and the side 124 is hollow. The top and bottom of the cylinder.
  • the liquid guide 121 is a hollow cylinder
  • the heating element 128 is arranged on the inner surface of the hollow cylinder
  • the outer surface of the hollow cylinder is used to connect and absorb the fluid from the liquid storage chamber.
  • Blind holes 125 are provided on the inner wall of the liquid guiding member 121 , and a plurality of blind holes 125 are arranged in layers along the axial direction of the cylinder, and the blind holes 125 of each layer are arranged at equal intervals along the circumferential direction of the cylinder.
  • the central axis of the blind hole 125 is perpendicular to the longitudinal axis of the inner cavity of the liquid guiding member 121 , that is, extends along the radial direction of the cylinder.
  • the diameter of the blind holes 125 is 0.3 mm
  • the distance between the centers of adjacent blind holes 125 is 1 mm.
  • the liquid storage volume of the liquid guide 121 provided with the capillary liquid storage structure 127 is increased by 2.07 mm 3 compared with the liquid storage volume of the liquid guide 121 without the capillary liquid storage structure 127 .
  • the included angle between the central axis of the blind hole 125 on the liquid guiding element 121 and the longitudinal axis of the lumen of the liquid guiding element 121 is greater than 0° and less than 180°.
  • the liquid guide 121 is a hollow cylinder
  • the heating element 128 is arranged on the inner surface of the hollow cylinder
  • the outer surface of the hollow cylinder is used to connect and absorb the liquid from the liquid storage chamber. 111 of the substrate to be atomized.
  • a through hole 126 is opened, that is, the through hole 126 penetrates from the top surface of the hollow column to the bottom surface of the hollow column, and the central axis of the through hole 126 is connected to the longitudinal axis of the inner chamber of the hollow cylinder. parallel.
  • a plurality of through holes 126 are arranged at equal intervals along the circumferential direction of the hollow cylinder.
  • the diameter of the through hole 126 is 0.5 mm, and the distance between the centers of adjacent through holes 126 is 1.1 mm.
  • the liquid storage volume of the liquid guide 121 provided with the capillary liquid storage structure 127 is increased by 4.41 mm 3 compared with the liquid storage volume of the liquid guide 121 without the capillary liquid storage structure 127 .
  • the atomization core includes a liquid guiding part and a heating part, the liquid guiding part is used to guide the substrate to be atomized; the heating part is arranged on the liquid guiding part, and is used to heat the atomized material wherein, the liquid guiding part is provided with a capillary liquid storage structure, and the capillary liquid storage structure is used to store the substrate to be atomized.
  • the capillary liquid storage structure is set on the liquid guide part of the atomizing core provided by this application, and the capillary action of the set capillary liquid storage structure realizes the functions of liquid locking and flow diversion, so as to improve the liquid storage capacity of the liquid guide part, thereby improving User experience.

Landscapes

  • Special Spraying Apparatus (AREA)

Abstract

一种电子雾化装置及其雾化器(1)、雾化芯(12),雾化芯(12)包括:导液件(121),导液件(121)上具有毛细储液结构(127),毛细储液结构(127)用于存储待雾化基质;发热件(128),设置于导液件(121)上,用于加热雾化待雾化基质;其中,导液件(121)包括雾化面(122)和非雾化面,毛细储液结构(127)至多与雾化面(122)或非雾化面中的一个连通。雾化芯(12)中导液件(121)上通过设置的毛细储液结构(127)的毛细作用实现锁液以及导流的作用,以提升导液件(121)的储液能力,进而提升用户的体验感。

Description

一种电子雾化装置及其雾化器、雾化芯 技术领域
本申请涉及雾化芯技术领域,特别是涉及一种电子雾化装置及其雾化器、雾化芯。
背景技术
现有技术中电子雾化装置主要由雾化器和电源组件构成。其中,雾化器中的雾化芯是核心部件,雾化芯主要包括多孔基体和加热体。目前雾化芯主要以棉质材料和金属丝或陶瓷多孔体和加热薄膜为主。其中,陶瓷多孔体广泛的应用于电子雾化装置中,但由于陶瓷本身储液量有限,且其功率极限值较低,单纯的提高功率来增加电子雾量可能导致陶瓷局部过热,常常会出现烧焦等问题,给用户带来负面的体验。
发明内容
本申请主要解决的技术问题是提供一种电子雾化装置及其雾化器、雾化芯,解决现有技术中雾化芯的储液量较低的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种雾化芯,该雾化芯包括:导液件,导液件上具有毛细储液结构,毛细储液结构用于存储待雾化基质;发热件,设置于导液件上,用于加热雾化待雾化基质;其中,导液件包括雾化面和非雾化面,毛细储液结构至多与雾化面或非雾化面中的一个连通。
其中,发热件设置于雾化面,非雾化面包括与雾化面相对的吸液面以及连接吸液面和雾化面的侧面,毛细储液结构至多与雾化面、吸液面以及侧面中一个连通。
其中,导液件为矩形块状体,导液件的横截面形状为矩形,导液件包括雾化面、吸液面和侧面;雾化面和吸液面中的一个为矩形块状体的 上表面,另一个为矩形块状体的下表面,侧面环形设置于雾化面和吸液面之间;或导液件为中空柱状体,雾化面和吸液面中的一个为中空柱状体的外表面,另一个为中空柱状体的内表面,侧面为中空柱状体的顶面和底面。
其中,毛细储液结构设置于雾化面和/或吸液面上,毛细储液结构包括盲槽、通槽和/或盲孔。
其中,毛细储液结构设置于侧面上,毛细储液结构包括盲槽、通槽、盲孔和/或贯通孔。
其中,毛细储液结构包括凹槽、开孔和埋孔中的至少一种。
其中,毛细储液结构为开孔,开孔的直径为0.1mm-1mm。
其中,开孔的水力直径为0.05mm-2.0mm。
其中,相邻开孔之间的中心间距为0.2mm-1.3mm。
其中,毛细储液结构为凹槽,凹槽的宽度为0.2mm-1.0mm,凹槽的深度为0.05mm-5.0mm。
其中,相邻凹槽之间的距离为0.6mm-1.0mm。
其中,毛细储液结构设置于雾化面,且与发热件间隔设置。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种雾化器,该雾化器包括:壳体,壳体内设有储液腔,储液腔用于存储待雾化基质;雾化芯,设置于壳体内;雾化芯为如上述的雾化芯;雾化芯用于从储液腔吸待雾化基质并进行雾化。
其中,壳体内形成有出气通道,其中,雾化芯上的毛细储液结构至多与雾化器的储液腔和出气通道中的一个连通。
其中,雾化面上的毛细储液结构仅与出气通道连通或非雾化面上的毛细储液结构仅与储液腔连通。
为解决上述技术问题,本申请采用的第三个技术方案是:提供一种电子雾化装置,该电子雾化装置包括:电源组件以及如上述的雾化器,电源组件为雾化器供电。
本申请的有益效果是:区别于现有技术的情况,提供的一种电子雾化装置及其雾化器、雾化芯,该雾化芯包括:导液件,导液件上具有毛 细储液结构,毛细储液结构用于存储待雾化基质;发热件,设置于导液件上,用于加热雾化待雾化基质;其中,导液件包括雾化面和非雾化面,毛细储液结构至多与雾化面或非雾化面中的一个连通。本申请提供的雾化芯中导液件上通过设置毛细储液结构,通过设置的毛细储液结构的毛细作用实现锁液以及导流的作用,以提升导液件的储液能力,进而提升用户的体验感。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置一实施例的结构示意图;
图2是本申请提供的电子雾化装置中雾化器一实施例的结构示意图;
图3是本申请提供的雾化芯第一实施例的结构示意图;
图4是本申请提供的雾化芯第二实施例的结构示意图;
图5是本申请提供的雾化芯第三实施例的结构示意图;
图6是本申请提供的雾化芯第四实施例的结构示意图;
图7是本申请提供的雾化芯中导液件上不同孔径的盲孔的储液状况图;
图8本申请提供的雾化芯中导液件负载待雾化基质前后的状态图;
图9是本申请提供的雾化芯中导液件一实施例的结构示意图;
图10是图9中提供的雾化芯中导液件的剖视图;
图11是本申请提供的雾化芯中导液件另一实施例的结构示意图;
图12是图11中提供的雾化芯中导液件的俯视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实 施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果特定姿态发生改变时,则方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请申请人提供了一种具有储液和导液功能的雾化芯,以及采用该雾化芯的雾化器和电子雾化装置。
请参阅图1,图1是本申请提供的电子雾化装置一实施例的结构示意图。电子雾化装置可用于液态基质的雾化。电子雾化装置包括相互连接的雾化器1和电源组件2。雾化器1用于存储待雾化基质并雾化待雾化基质以形成可供用户吸食的气溶胶,待雾化基质可以是药液、植物草叶类液体等液态基质;雾化器1可用于不同的领域,比如,医疗、美容、电子气溶胶化等。电源组件2包括电池(图未示)、气流传感器(图未示)以及控制器(图未示)等;电池用于为雾化器1供电,以使得雾化 器1能够雾化待雾化基质形成气溶胶;气流传感器用于检测电子雾化装置中气流变化,控制器根据气流传感器检测到的气流变化启动电子雾化装置。雾化器1与电源组件2可以是一体设置,也可以是可拆卸连接,根据具体需要进行设计。当然,该电子雾化装置还包括现有电子雾化装置中的其它部件,比如,咪头、支架等,这些部件的具体结构和功能与现有技术相同或相似,具体可参见现有技术,在此不再赘述。
请参阅图2,图2是本申请提供的电子雾化装置中雾化器一实施例的结构示意图。雾化器1包括吸嘴10、壳体11、雾化芯12、出气通道13。壳体11具有储液腔111。储液腔111用于存储待雾化基质,储液腔111具有出液口112,雾化芯12设置于储液腔111的出液口112处。雾化芯12用于雾化储液腔111中的待雾化基质。在一个实施例中,雾化芯12的至少部分收容于壳体11内,雾化芯12雾化的气溶胶通过出气通道13到达吸嘴10被用户吸食。其中,雾化芯12与电源组件2电连接,以加热雾化待雾化基质。
请参阅图3至图7,图3是本申请提供的雾化芯第一实施例的结构示意图;图4是本申请提供的雾化芯第二实施例的结构示意图;图5是本申请提供的雾化芯第三实施例的结构示意图;图6是本申请提供的雾化芯第四实施例的结构示意图;图7是本申请提供的雾化芯中导液件上不同孔径的盲孔的储液状况图;图8本申请提供的雾化芯中导液件负载待雾化基质前后的状态图。如图3,雾化芯12包括导液件121以及设置于导液件121上的发热件128。其中,导液件121用于将储液腔111中的待雾化基质导流至导液件121设有发热件128的表面。发热件128用加热雾化待雾化基质以生成气溶胶。其中,导液件121为多孔基体。发热件128可以为金属膜、金属网或金属丝等,且形状和结构不限。在一实施例中,多孔基体可以为陶瓷多孔体,发热件128可以为S形的金属条,且两端分别设有引脚140,发热件128的两端通过引脚140连接电源组件2的正极和负极。
导液件121内部具有多个不规则的微孔,这些微孔的尺寸和分布是由陶瓷多孔体的制备工艺所导致的。本申请中,导液件121上还设置有 毛细储液结构127,毛细储液结构127可以为专门开设的规则的结构且尺寸一般要大于微孔尺寸。
相比于现有导液件121的吸液面上开设的凹腔,该凹腔并不能实现将待雾化基质存储于导液件121内。而本申请中,导液件121上设置的毛细储液结构127通过毛细作用力可以将待雾化基质存储于导液件121内,也可以通过毛细作用力将待雾化基质传导至导液件121设置发热件128的表面,以使发热件128对待雾化基质进行加热雾化。由于毛细储液结构127能够存储待雾化基质,可以提升导液件121的储液性能。其中,导液件121上设置的毛细储液结构127与设置于导液件121上的发热件128间隔设置。
其中,毛细储液结构127可以为凹槽、开孔和埋孔中的一种或多种。凹槽、开孔和埋孔均具有毛细作用力。如图4,在一具体实施例中,凹槽可以为两端均封闭的盲槽129,也可以为两端均敞开的通槽130,还可以为一端封闭另一端敞开的其他凹槽结构。
开孔可以为贯通孔126,也可以为盲孔125。具体地,凹槽或开孔的水力直径为0.05mm-2.0mm。在一实施例中,凹槽或开孔的水力直径为1.5mm。凹槽或开孔的横截面形状不限,可以为半圆形、半椭圆、矩形、三角形等。
在一具体实施例中,毛细储液结构127包括多个凹槽,凹槽的横截面为矩形。凹槽的宽度为0.2mm-1.0mm,凹槽的深度为0.05mm-5.0mm。在一具体实施例中,毛细储液结构127包括多个平行间隔的凹槽,相邻凹槽之间的距离为0.6mm-1.0mm。
在一具体实施例中,毛细储液结构127包括多个开孔,开孔的横截面为圆形。开孔的直径为0.1mm-1mm,开孔的深度为3.5mm-5.0mm;相邻所述开孔之间的中心间距为0.5mm-1.3mm。在一实施例中,毛细储液结构127包括多个间隔设置的开孔,相邻开孔中心点间距为0.8mm。
本实施例中的具有毛细储液结构127的导液件121可以通过注塑成型、钻孔、或3D打印的方式制成。
在另一可选实施例,请参阅图5,毛细储液结构127包括埋孔,埋 孔可以具有毛细尺寸,也可以不具有毛细尺寸,即待雾化基质可以通过导液件121的微孔被传导至埋孔,埋孔能够存储待雾化基质,且埋孔内的待雾化基质也可以通过导液件121的微孔传导至导液件121设置发热件128的表面,进一步缩短待雾化基质的传输路径,增大下液量。具体的,具有埋孔的导液件121可以通过将两个具有凹部且相对两个陶瓷烧结成一体而制得。也可以通过3D打印得到具有埋孔的导液件121。
在一具体实施例中,如图3,导液件121包括雾化面122和非雾化面。毛细储液结构127至多与雾化面122或非雾化面中的一个连通。由于毛细储液结构127不连通导液件121的雾化面122和非雾化面,因此不会造成通过毛细储液结构127换气及漏液的问题。其中,非雾化面可以包括与雾化面122相对的吸液面123以及连接吸液面123和雾化面122的侧面124。毛细储液结构127可以设置于雾化面122、吸液面123以及侧面124中的一个或多个上。在本实施例中,发热件128为一个,且一个发热件128设置于雾化面122。
导液件121设置发热件128的表面定义为雾化面122,导液件121与储液腔111接触的表面定义为吸液面123。即,发热件128设置于导液件121的雾化面122。在其它可选实施例中,部分发热件128嵌入导液件121的内部。
在一具体实施例中,当毛细储液结构127设置于导液件121的雾化面122和/或吸液面123时,毛细储液结构127为盲槽129、通槽130和/或盲孔125。导液件121的雾化面122和吸液面123设置的毛细储液结构127可以提升导液件121的储液性能,使待雾化基质能够更充分的补充到导液件121的雾化面122。其中,设置于导液件121的雾化面122和吸液面123的毛细储液结构127为盲孔125,这是为了避免储液腔111的待雾化基质从导液件121上漏出引起漏液问题。
在一具体实施例中,毛细储液结构127设置于导液件121的雾化面122上。其中,毛细储液结构127为盲孔125。只要盲孔125具有毛细作用力,盲孔125的孔径越大,盲孔125中存储的待雾化基质越多。图6中,从a到c盲孔125的直径分别是0.22mm、0.49mm和0.88mm,深 度为1.6mm;a 1、b 1和c 1分别为导液件121没有吸收待雾化基质的实验照片,a 2、b 2和c 2分别为导液件121充满待雾化基质的实验照片。从图6(a 2)、图6(b 2)和图6(c 2)中可以看出,当待雾化基质充满导液件121后不同孔径的盲孔125的孔道内均储存满了待雾化基质。
当雾化面122上设置有凹槽时,凹槽与发热件128间隔设置。在一实施例中,当导液件121设有发热件128的表面上设置有通槽130时,通槽130仅能设置于导液件121的雾化面122的周缘部分,进而避免雾化面122上的通槽130与发热件128交叉设置而导致发热件128断裂或不连续。在另一可选实施例中,通槽130的形状可以与发热件128的形状相同,通槽130与发热件128间隔设置,且通槽130的两个端部延伸至导液件121的至少一个侧面124。
当毛细储液结构127设置于导液件121的侧面124时,毛细储液结构127可以为盲槽129、通槽130、贯通孔126和/或盲孔125。待雾化基质可以先传导至毛细储液结构127内被暂存,当雾化面122出现供液不足的现象时,毛细储液结构127中暂存的待雾化基质到达雾化面122的距离相比于吸液面123到达雾化面122的距离变短,缩短了待雾化基质的传输路径,进而使毛细储液结构127中存储的待雾化基质更快传输到导液件121的雾化面122进行补液。在一具体实施例中,盲孔125的深度可以为4.1mm,直径可以为0.6mm。
在一具体实施例中,在一具体实施例中,导液件121可以为矩形块状体,导液件121的横截面形状为矩形,雾化面122和吸液面123中的一个为矩形块状体的外表面,雾化面122和吸液面123中的一个为矩形块状体的上表面,另一个为矩形块状体的下表面,侧面环形设置于雾化面122和吸液面123之间。
如图7所示,在一具体实施例中,当毛细储液结构127设置于导液件121的侧面124时,毛细储液结构127包括贯通孔126。如图8所示,贯通孔126设置于导液件121的侧面124的左边,盲孔125设置于导液件121的侧面124的右边。其中,盲孔125的深度为4.1mm,盲孔125和贯通孔126的直径为0.6mm。从图8(a 2)中可以看出,当待雾化基 质充满陶瓷后盲孔125的孔道和贯通孔126的孔道内均储存满了待雾化基质。
导液件121上设置的毛细储液结构127的储液量与盲孔125、贯通孔126或埋孔的数量、体积以及孔隙率均有关系。盲孔125、贯通孔126或埋孔的数量越多、体积越大、导液件的孔隙率越小,导液件121上设置的毛细储液结构127的储液量越多。
在一实施例,实验测试采用两个雾化芯12中,两个雾化芯12中导液件121的孔隙率均为56%,一个雾化芯12通过在导液件121的雾化面122上设置毛细储液结构127,毛细储液结构127为孔径为0.3mm的盲孔125,盲孔125的数量为24个,盲孔125的深度为1mm,相邻盲孔125的中心点的距离为0.8mm;另一个雾化芯12的导液件121上不设置毛细储液结构127。设置毛细储液结构127的导液件121的储液量相比于不设置毛细储液结构127的导液件121的储液量提高了0.75mm 3
在一实施例,实验测试采用两个雾化芯12中,两个雾化芯12中导液件121的孔隙率均为56%,一个雾化芯12通过在导液件121的侧面124上设置毛细储液结构127,毛细储液结构127为孔径为0.5mm的贯通孔126,贯通孔126的数量为4个,贯通孔126的长度为4.22mm,相邻贯通孔126的中心点距离为1.1mm;另一个雾化芯12的导液件121上不设置毛细储液结构127。与现有技术中的导液件121相比,设置毛细储液结构127的导液件121的储液量相比于不设置毛细储液结构127的导液件121的储液量提高了1.46mm 3
请参阅图9至图12,图9是本申请提供的雾化芯中导液件一实施例的结构示意图;图10是图9中提供的雾化芯中导液件的剖视图;图11是本申请提供的雾化芯中导液件另一实施例的结构示意图;图12是图11中提供的雾化芯中导液件的俯视图。
在一实施例中,导液件121可以为中空柱状体,雾化面122和吸液面123中的一个为中空柱状体的外表面,另一个为中空柱状体的内表面,侧面124为中空柱状体的顶面和底面。
请参阅图9和图10,在另一实施例中,导液件121为中空圆柱体, 发热件128设置于中空圆柱体的内表面,中空圆柱体的外表面用于连接吸收来自储液腔111的待雾化基质。在导液件121的内壁上开设盲孔125,多个盲孔125沿着圆柱体的轴向分层设置,每一层的盲孔125沿着圆柱体的周向等间隔设置。盲孔125的中轴线与导液件121的内腔的纵轴线垂直,即沿着圆柱体的径向延伸。其中,盲孔125的孔径为0.3mm,相邻盲孔125的中心点距离为1mm。设置毛细储液结构127的导液件121的储液量相比于不设置毛细储液结构127的导液件121的储液量提高了2.07mm 3。在其它可选实施例中,只要导液件121上的盲孔125的中轴线与导液件121的内腔的纵轴线的夹角角度为大于0°且小于180°即可。
在一具体实施例中,请参阅图11、图12,导液件121为中空圆柱体,发热件128设置于中空圆柱体的内表面,中空圆柱体的外表面用于连接吸收来自储液腔111的待雾化基质。在导液件121的侧面124上开设贯通孔126,即,贯通孔126自中空柱状体的顶面贯穿至中空柱状体的底面,贯通孔126的中轴线与中空圆柱体的内腔的纵轴线平行。多个贯通孔126沿着中空圆柱体的周向等间隔设置。其中,贯通孔126的孔径为0.5mm,相邻贯通孔126的中心点距离为1.1mm。设置毛细储液结构127的导液件121的储液量相比于不设置毛细储液结构127的导液件121的储液量提高了4.41mm 3
本实施例提供的电子雾化装置中,雾化芯包括导液件和发热件,导液件用于导流待雾化基质;发热件设置于导液件上,用于加热雾化待雾化基质;其中,导液件上设置有毛细储液结构,毛细储液结构用于存储待雾化基质。本申请提供的雾化芯中导液件上通过设置毛细储液结构,通过设置的毛细储液结构的毛细作用实现锁液以及导流的作用,以提升导液件的储液能力,进而提升用户的体验感。
以上仅为本申请的实施方式,并非因此限制本申请的专利保护范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种雾化芯,其中,所述雾化芯包括:
    导液件,所述导液件上具有毛细储液结构,所述毛细储液结构用于存储待雾化基质;
    发热件,设置于所述导液件上,用于加热雾化所述待雾化基质;
    其中,所述导液件包括雾化面和非雾化面,所述毛细储液结构至多与所述雾化面或所述非雾化面中的一个连通。
  2. 根据权利要求1所述的雾化芯,其中,所述发热件设置于所述雾化面,所述非雾化面包括与所述雾化面相对的吸液面以及连接所述吸液面和所述雾化面的侧面,所述毛细储液结构至多与所述雾化面、所述吸液面以及所述侧面中一个连通。
  3. 根据权利要求1所述的雾化芯,其中,所述导液件为矩形块状体,所述导液件的横截面形状为矩形,所述导液件包括雾化面、吸液面和侧面;所述雾化面和吸液面中的一个为所述矩形块状体的上表面,另一个为所述矩形块状体的下表面,所述侧面环形设置于所述雾化面和所述吸液面之间;或所述导液件为中空柱状体,所述雾化面和所述吸液面中的一个为所述中空柱状体的外表面,另一个为所述中空柱状体的内表面,所述侧面为所述中空柱状体的顶面和底面。
  4. 根据权利要求1所述的雾化芯,其中,所述毛细储液结构设置于所述雾化面和/或所述吸液面上,所述毛细储液结构包括盲槽、通槽和/或盲孔。
  5. 根据权利要求1所述的雾化芯,其中,所述毛细储液结构设置于所述侧面上,所述毛细储液结构包括盲槽、通槽、盲孔和/或贯通孔。
  6. 根据权利要求1所述的雾化芯,其中,所述毛细储液结构包括凹槽、开孔和埋孔中的至少一种。
  7. 根据权利要求6所述的雾化芯,其中,所述毛细储液结构为开孔,所述开孔的直径为0.1mm-1mm。
  8. 根据权利要求6所述的雾化芯,其中,所述开孔的水力直径为 0.05mm-2.0mm。
  9. 根据权利要求6所述的雾化芯,其中,相邻所述开孔之间的中心间距为0.2mm-1.3mm。
  10. 根据权利要求6所述的雾化芯,其中,所述毛细储液结构为凹槽,所述凹槽的宽度为0.2mm-1.0mm,所述凹槽的深度为0.05mm-5.0mm。
  11. 根据权利要求6所述的雾化芯,其中,相邻所述凹槽之间的距离为0.6mm-1.0mm。
  12. 根据权利要求1所述的雾化芯,其中,所述毛细储液结构设置于所述雾化面,且与所述发热件间隔设置。
  13. 一种雾化器,其中,所述雾化器包括:
    壳体,所述壳体内设有储液腔,所述储液腔用于存储待雾化基质;
    雾化芯,设置于所述壳体内;所述雾化芯为如上述权利要求1所述的雾化芯;所述雾化芯用于从储液腔吸所述待雾化基质并进行雾化。
  14. 根据权利要求13所述的雾化器,其中,所述壳体内形成有出气通道,其中,所述雾化芯上的所述毛细储液结构至多与所述雾化器的储液腔和出气通道中的一个连通。
  15. 根据权利要求13所述的雾化器,其中,所述雾化面上的所述毛细储液结构仅与所述出气通道连通或所述非雾化面上的所述毛细储液结构仅与所述储液腔连通。
  16. 一种电子雾化装置,其中,所述电子雾化装置包括:电源组件以及如上述权利要求13所述的雾化器,所述电源组件为所述雾化器供电。
PCT/CN2021/126451 2021-10-26 2021-10-26 一种电子雾化装置及其雾化器、雾化芯 WO2023070322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126451 WO2023070322A1 (zh) 2021-10-26 2021-10-26 一种电子雾化装置及其雾化器、雾化芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126451 WO2023070322A1 (zh) 2021-10-26 2021-10-26 一种电子雾化装置及其雾化器、雾化芯

Publications (1)

Publication Number Publication Date
WO2023070322A1 true WO2023070322A1 (zh) 2023-05-04

Family

ID=86158976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126451 WO2023070322A1 (zh) 2021-10-26 2021-10-26 一种电子雾化装置及其雾化器、雾化芯

Country Status (1)

Country Link
WO (1) WO2023070322A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105747278A (zh) * 2016-04-21 2016-07-13 深圳市合元科技有限公司 烟油加热装置以及雾化单元、雾化器和电子烟
CN110338466A (zh) * 2019-07-19 2019-10-18 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器、发热组件和多孔陶瓷体
CN209498589U (zh) * 2019-01-05 2019-10-18 深圳市合元科技有限公司 雾化芯及电子烟
US20200054075A1 (en) * 2018-08-17 2020-02-20 Shenzhen First Union Technology Co., Ltd. Heater, cartridge, atomizer and electronic cigarette having same
CN211323061U (zh) * 2019-10-31 2020-08-25 深圳伊卡普科技有限公司 口感型微孔陶瓷雾化芯
CN111728279A (zh) * 2020-08-04 2020-10-02 深圳市新宜康科技股份有限公司 复合导油构造及其成型方法
WO2020259505A1 (zh) * 2019-06-24 2020-12-30 深圳市合元科技有限公司 雾化组件及电子烟
WO2021062781A1 (zh) * 2019-09-30 2021-04-08 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
WO2021163950A1 (zh) * 2020-02-20 2021-08-26 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子烟

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105747278A (zh) * 2016-04-21 2016-07-13 深圳市合元科技有限公司 烟油加热装置以及雾化单元、雾化器和电子烟
US20200054075A1 (en) * 2018-08-17 2020-02-20 Shenzhen First Union Technology Co., Ltd. Heater, cartridge, atomizer and electronic cigarette having same
CN209498589U (zh) * 2019-01-05 2019-10-18 深圳市合元科技有限公司 雾化芯及电子烟
WO2020259505A1 (zh) * 2019-06-24 2020-12-30 深圳市合元科技有限公司 雾化组件及电子烟
CN110338466A (zh) * 2019-07-19 2019-10-18 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器、发热组件和多孔陶瓷体
WO2021062781A1 (zh) * 2019-09-30 2021-04-08 深圳麦克韦尔科技有限公司 一种电子雾化装置及其雾化器
CN211323061U (zh) * 2019-10-31 2020-08-25 深圳伊卡普科技有限公司 口感型微孔陶瓷雾化芯
WO2021163950A1 (zh) * 2020-02-20 2021-08-26 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子烟
CN111728279A (zh) * 2020-08-04 2020-10-02 深圳市新宜康科技股份有限公司 复合导油构造及其成型方法

Similar Documents

Publication Publication Date Title
JP7377356B2 (ja) 電子霧化装置及びそのアトマイザー
CN111109665A (zh) 电子雾化装置及其雾化器和发热体
WO2021142786A1 (zh) 电子雾化装置及其雾化器和发热体
CN215992753U (zh) 雾化芯、雾化器及气溶胶发生装置
WO2023000799A1 (zh) 一种雾化芯、雾化组件、雾化器及电子雾化装置
CN113598436A (zh) 电子雾化装置、雾化器及其雾化组件
CN216701689U (zh) 一种发热体、雾化器及电子雾化装置
WO2023035952A1 (zh) 电子雾化装置及其电源装置
WO2023070322A1 (zh) 一种电子雾化装置及其雾化器、雾化芯
EP4223159A1 (en) Atomizing structure, atomizer and aerosol generating device
CN218921694U (zh) 发热体、雾化器及电子雾化装置
CN213819852U (zh) 电子雾化装置及其雾化器
WO2023005029A1 (zh) 电子雾化装置、雾化器及其雾化组件
CN116019266A (zh) 一种电子雾化装置及其雾化器、雾化芯
CN216255482U (zh) 电子雾化装置、雾化器及其雾化组件
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022016537A2 (zh) 毛细导液雾化单元及雾化装置
CN218588220U (zh) 雾化器及电子雾化装置
CN218790580U (zh) 一种导液组件、发热组件、雾化器及电子雾化装置
CN220088592U (zh) 雾化芯及雾化装置
WO2023124162A1 (zh) 发热组件、雾化器及电子雾化装置
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
US11856989B2 (en) Atomizing structural member, atomizing device and aerosol generating device
CN218337731U (zh) 雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961698

Country of ref document: EP

Kind code of ref document: A1