WO2024055512A1 - 一步法合成三氟化氯的方法及反应装置 - Google Patents

一步法合成三氟化氯的方法及反应装置 Download PDF

Info

Publication number
WO2024055512A1
WO2024055512A1 PCT/CN2023/077311 CN2023077311W WO2024055512A1 WO 2024055512 A1 WO2024055512 A1 WO 2024055512A1 CN 2023077311 W CN2023077311 W CN 2023077311W WO 2024055512 A1 WO2024055512 A1 WO 2024055512A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chlorine
chlorine trifluoride
reaction
microchannel reactor
Prior art date
Application number
PCT/CN2023/077311
Other languages
English (en)
French (fr)
Inventor
李向如
李纪明
李嘉磊
陈施华
Original Assignee
福建德尔科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建德尔科技股份有限公司 filed Critical 福建德尔科技股份有限公司
Priority to CN202280006791.1A priority Critical patent/CN117440927A/zh
Publication of WO2024055512A1 publication Critical patent/WO2024055512A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/24Inter-halogen compounds

Definitions

  • the invention relates to a one-step method for synthesizing chlorine trifluoride and a reaction device.
  • Japanese patent application JP2018062427A discloses an industrial production method of chlorine trifluoride products in its patent: using F 2 , Cl 2 and ClF gas to react to produce chlorine trifluoride.
  • the patent proposes adding inert gas during the synthesis process, which increases the difficulty of purifying chlorine trifluoride.
  • the reaction of this method needs to be carried out in two steps, involving two reactors, gas-liquid and gas-gas reaction.
  • the process operation is complicated, and the crude product has too many impurities, which is not conducive to purification and is difficult to industrialize production.
  • the direct synthesis of fluorine and chlorine generally consists of a two-stage reaction interval: fluorine reacts with chlorine, prereacts to generate chlorine monofluoride, and then reacts chlorine monofluoride with fluorine to synthesize chlorine trifluoride.
  • reaction conversion rate is low, and the product impurity gas contains a certain amount of chlorine monofluoride that does not participate in the reaction; the reaction ratio is difficult to control, which will cause fluorine gas or chlorine monofluoride to not participate in the reaction, affecting the reaction efficiency.
  • the present invention provides a one-step method for synthesizing chlorine trifluoride and a reaction device, which can effectively solve the above problems.
  • the invention provides a one-step method for synthesizing chlorine trifluoride, which includes the following steps: S1, provide stable fluorine gas and chlorine gas, and fully mix the fluorine gas and chlorine gas according to the reaction measurement; S2, pass the mixed gas into the microchannel reactor; wherein, the material of the microchannel reactor is selected from corrosion-resistant nickel-based alloys, and the nickel-based materials in the corrosion-resistant nickel-based alloys are passivated by chlorine and fluorine gases. reaction to form a stepped fluorinated membrane with a porous structure.
  • the invention further provides a reaction device, including: A vertical reactor body, which includes a shell and a heating tube arranged on the inner wall of the shell; A chlorine gas inlet and a fluorine gas inlet provided at the bottom of the housing; A steady-flow gas distribution unit connected to the chlorine gas inlet and the fluorine gas inlet; A microchannel reactor is provided at the top of the steady flow gas distribution unit and communicates with the steady flow gas distribution unit, and the heating tube is arranged around the microchannel reactor.
  • the material of the microchannel reactor is selected from the group consisting of: Corrosion-resistant nickel-based alloy; and a discharge port provided at the top of the microchannel reactor.
  • the steady flow gas distribution unit includes: A chlorine gas flow stabilizing unit, which includes: a first buffer connected to the chlorine gas inlet, a plurality of first gas outlets arranged on the top of the first buffer; a first pipe connected to the first gas outlet ; Fluorine gas flow stabilizing unit, which includes: a second buffer connected to the fluorine gas inlet, a plurality of second gas outlets arranged on the top of the second buffer; a second pipe connected to the second gas outlet ; One end of the mixing chamber is connected to the first pipe and the second pipe respectively, and the other end is connected to the microchannel reactor.
  • a chlorine gas flow stabilizing unit which includes: a first buffer connected to the chlorine gas inlet, a plurality of first gas outlets arranged on the top of the first buffer; a first pipe connected to the first gas outlet ;
  • Fluorine gas flow stabilizing unit which includes: a second buffer connected to the fluorine gas inlet, a plurality of second gas outlets arranged on the top of the second buffer; a second pipe connected to the second
  • the beneficial effects of the present invention are: the one-step method and reaction device for synthesizing chlorine trifluoride provided by the present invention.
  • the nickel-based material in the microchannel reactor will produce passivation with fluorine gas and chlorine gas during the reaction process, forming
  • the cascade fluorinated membrane has a porous structure.
  • the cascade fluorinated membrane can effectively disperse hydrogen fluoride-fluorine gas molecular groups to form effective active groups of fluorine and chlorine, which improves the synthesis conversion rate of chlorine trifluoride and greatly reduces the It eliminates the corrosiveness of chlorine trifluoride to metal materials and greatly improves the conversion efficiency.
  • the steady-flow gas distribution unit can accurately control the intake volume of the reaction gas and keep the gas flow stable, thereby further improving the productivity.
  • the method of the present invention can make the prepared crude chlorine trifluoride gas contain only a trace amount of chlorine monofluoride (50 ppmv).
  • Figure 1 is a schematic structural diagram of a reaction device for preparing chlorine trifluoride provided by an embodiment of the present invention.
  • Figure 2 is an enlarged view of part A of the reaction device for preparing chlorine trifluoride provided by the embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of the first gas outlet and the second gas outlet in the reaction device for preparing chlorine trifluoride provided by the embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a mixing chamber in a reaction device for preparing chlorine trifluoride provided by an embodiment of the present invention.
  • Figure 5 is a flow chart of a one-step method for synthesizing chlorine trifluoride provided by an embodiment of the present invention.
  • Figure 6 is a flow chart of a one-step method for synthesizing chlorine trifluoride provided by another embodiment of the present invention.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • an embodiment of the present invention provides a reaction device, which can be used for the preparation of chlorine trifluoride.
  • the present invention takes chlorine trifluoride as an example for detailed explanation.
  • the reaction device includes: Vertical reactor body 10.
  • the vertical reactor body 10 includes a shell 101 and a heating tube 102 provided on the inner wall of the shell 101;
  • the chlorine gas inlet 11 and the fluorine gas inlet 12 are provided at the bottom of the housing 101;
  • a steady flow gas distribution unit 13 connected with the chlorine gas inlet 11 and the fluorine gas inlet 12;
  • a microchannel reactor 14 is provided at the top of the steady flow gas distribution unit 13 and communicates with the steady flow gas distribution unit 13, and the heating tube 102 is arranged around the microchannel reactor 14.
  • the microchannel reaction The material of the reactor 14 is selected from corrosion-resistant nickel-based alloys; and the outlet 22 is provided on the top of the microchannel reactor 14.
  • the housing 101 can be made of materials with thermal insulation and explosion-proof functions, which are not limited here.
  • the stability of chlorine trifluoride is significantly reduced under high temperature conditions, so it is easily decomposed by changes in the temperature environment. Therefore, the shell 101 needs to be set as an insulating material to prevent the external temperature from having a greater impact on the internal temperature. Influence. Furthermore, since fluorine gas, chlorine gas and chlorine trifluoride themselves are hazardous substances, further protection is also required.
  • the heating tube 102 may be disposed on the inner wall surface of the housing 101 or embedded in the inner wall of the housing 101 . The material and model of the heating tube 102 are not limited as long as stable heating can be achieved.
  • the heating pipe 102 can be arranged in sections to control the temperatures of different pipes.
  • a first connection seat 103 and a second connection seat 104 mated with the first connection seat 103 are further provided at the bottom of the housing 101 .
  • the first connection base 103 and the second connection base 104 can be fixedly connected through a fixing mechanism, such as nuts, buckles, etc.
  • the internal inspection of the reaction device can be achieved by opening the second connection seat 104 .
  • the chlorine gas inlet 11 and the fluorine gas inlet 12 are fixed on the second connection base 104 .
  • the steady flow gas distribution unit 13 includes: Chlorine gas flow stabilizing unit, which includes: a first buffer 130 connected to the chlorine gas inlet 11, a plurality of first gas outlets 131 arranged on the top of the first buffer 130; and the first gas outlet 131 China Unicom’s first pipeline 132; Fluorine gas flow stabilizing unit, which includes: a second buffer 135 connected to the fluorine gas inlet 12, a plurality of second air outlets 136 provided on the top of the second buffer 135; and the second air outlet 136 China Unicom’s second pipeline 137; One end of the mixing chamber 134 is connected to the first pipe 132 and the second pipe 137 respectively, and the other end is connected to the microchannel reactor 14 .
  • Chlorine gas flow stabilizing unit which includes: a first buffer 130 connected to the chlorine gas inlet 11, a plurality of first gas outlets 131 arranged on the top of the first buffer 130; and the first gas outlet 131 China Unicom’s first pipeline 132
  • Fluorine gas flow stabilizing unit which includes: a
  • each mixing chamber 134 preferably corresponds to one first pipe 132 and three second pipes 137, so that the gas distribution ratio of chlorine gas and fluorine gas reaches about 1:3 of the theoretical value.
  • the air inlets of the three second pipes 137 are arranged around the air inlet of the first pipe 132, so that the air can be mixed quickly and evenly after air intake.
  • 16 first air outlets 131 and 48 second air outlets 136 are included, and each first air outlet 131 corresponds to a first pipe 132 respectively; each second air outlet 136 corresponds to a second pipe 137; and includes 16 mixing chambers 134.
  • the diameters of the first pipe 132 and the second pipe 137 are equal and range from 1 to 10 mm. In one embodiment, the diameters of the first pipe 132 and the second pipe 137 are equal and approximately 5 mm.
  • the lengths of the first pipe 132 and the second pipe 137 corresponding to each mixing chamber 134 are equal, so that the ratio of fluorine gas and chlorine gas can be accurately controlled.
  • the pressures of the first buffer 130 and the second buffer 135 can be made the same. Since the first pipe 132 and the second pipe 137 have the same diameter and length, and different numbers, therefore , can accurately control the intake volume of reaction gas.
  • the first buffer 130 and the second buffer 135 are also provided on the second connection base 104 .
  • the microchannel reactor 14 includes a plurality of reaction channels, and each reaction channel is connected to a mixing chamber 134 respectively.
  • the reaction channel may be a triangular microchannel, a straight tube reaction device, or other shapes of reaction channels, which are not limited here.
  • the minimum diameter of the reaction channel is a channel diameter of 0.5mm ⁇ 10mm. In one embodiment, the reaction channel is a 2 mm triangular microchannel reaction channel.
  • the material of the microchannel reactor 14 is selected from corrosion-resistant nickel-based alloys, such as nickel metal, Monel, Hastelloy, etc. Since the nickel-based material in the microchannel reactor will have a passivation effect with fluorine and chlorine during the reaction, a stepped fluorinated membrane with a porous structure is formed.
  • the stepped fluorinated membrane can effectively disperse hydrogen fluoride-fluorine gas molecules.
  • the group forms an effective active group of fluorine and chlorine, which improves the synthesis conversion rate of chlorine trifluoride, greatly reduces the corrosiveness of chlorine trifluoride to metal materials, and greatly improves the conversion efficiency.
  • the microchannel reactor 14 is made of Hastelloy, and its use can increase the conversion rate of the reaction from 80% to 85%-90%.
  • the reaction device further includes: a metal filler bed 18 arranged on the top of the microchannel reactor 14, and the heating tube 102 is further arranged around the metal filler bed 18, and the metal filler Bed 18 includes filler selected from the group consisting of nickel, Monel, Hastelloy and mixtures thereof.
  • a passivation film can be further formed. This passivation film can prevent the reverse reaction from occurring, so that the synthesis reaction of the present invention has a unique step film-forming reaction, which greatly reduces the The corrosiveness of chlorine trifluoride to metal materials further greatly improves the conversion efficiency. Its conversion rate can be further increased to about 93-95%.
  • the metal filler bed 18 and the microchannel reaction are further A sieve plate 15 is arranged between the containers 14.
  • the sieve plate 15 is used to prevent the filler in the metal filler bed 18 from falling or blocking the microchannel reactor 14 .
  • the diameter of the sieve plate 15 is not limited, as long as it is smaller than the particle size of the filler.
  • the height of the metal filler bed 18 is 1000-1500mm. In one embodiment, the height of the metal filler bed 18 is approximately 1200 mm.
  • the reaction device further includes: an extraction agent feed port 17 and a temperature measuring sleeve 19 provided on the upper part of the microchannel reactor 14; the extraction agent feed port 17 is used to pass in the extraction agent; The temperature measuring tube 19 is used to obtain the temperature of the metal filler bed 18 .
  • the extraction agent is used to extract the generated chlorine trifluoride to prevent further decomposition.
  • the extraction agent can be selected from high-efficiency extraction agents such as fluoroether oil, and is not limited here.
  • the extraction agent feed port 17 can be disposed at the upper part of the sieve plate 15 .
  • the extraction agent feed port 17 is disposed at about 50-150 mm above the sieve plate 15 . If the extraction agent feed port 17 is too low, the incoming extraction agent will not have time to volatilize; if the extraction agent feed port 17 is too high, the generated chlorine trifluoride cannot be extracted by the extraction agent in time. And produce decomposition.
  • the extraction agent feed port 17 is disposed approximately 100 mm above the screen plate 15 .
  • the temperature measuring tube 19 may include at least two, one is disposed in the middle of the metal filler bed 18 , and the other is disposed at the top of the metal filler bed 18 , so as to measure the The overall temperature of the metal filler bed 18 is effectively monitored.
  • the reaction device further includes: a pressure relief port 20 provided on the top of the housing 101 and a sample sampling port 21 .
  • the reaction device further includes: a buffer container (not shown), which is connected to the outlet 22 and is used to store the prepared chlorine trifluoride.
  • the buffer container is cooled at low temperature to form a slight negative pressure, and the chlorine trifluoride in the reaction device can be transported without the need for other air pumps or compression pumps.
  • the embodiment of the present invention further provides a one-step method for synthesizing chlorine trifluoride, which includes the following steps: S1, provide stable fluorine gas and chlorine gas, and fully mix the fluorine gas and chlorine gas according to the reaction measurement; S2, pass the mixed gas into the microchannel reactor, control the reaction temperature to prepare chlorine trifluoride gas; wherein, the material of the microchannel reactor is selected from nickel, Monel or Hastelloy, and the nickel, Monel or The nickel-based material of Hastelloy produces a passivation reaction with chlorine and fluorine gas, thereby forming a stepped fluoride film with a porous structure.
  • step S1 stable fluorine gas and chlorine gas are provided through the steady flow gas distribution unit 13, and the fluorine gas and chlorine gas are fully mixed according to the reaction metering.
  • the ideal mixing ratio of fluorine gas and chlorine gas is 1:3.
  • the structure of the steady-flow gas distribution unit 13 is not limited, as long as gas stability and stable ratio can be achieved.
  • step S13 it may further include: Inert gas is introduced to remove air and moisture from the reaction device. Specifically, the chlorine gas inlet 11 and the fluorine gas inlet 12 can be switched to the inert gas inlet channel, and then the inert gas can be introduced.
  • the step of controlling the reaction temperature to prepare chlorine trifluoride gas includes: Control the reaction temperature to 250 ⁇ 270°C to prepare chlorine trifluoride gas. In one embodiment, the reaction temperature is controlled to be about 255°C.
  • the nickel-based material in the microchannel reactor will have a passivation effect with fluorine and chlorine gas to form a cascade fluoride membrane with a porous structure.
  • the cascade fluoride membrane can effectively disperse hydrogen fluoride- Fluorine gas molecular groups form effective active groups of fluorine and chlorine, which improves the synthesis conversion rate of chlorine trifluoride, greatly reduces the corrosiveness of chlorine trifluoride to metal materials, and greatly improves the conversion efficiency.
  • the method of the present invention can increase the conversion rate to more than 90%.
  • step S2 further includes: controlling the pressure of the microchannel reactor to a negative pressure to allow the chlorine trifluoride gas to be naturally discharged.
  • the buffer container provided at the outlet end of the microchannel reactor is cooled at low temperature to form a slight negative pressure, so that the chlorine trifluoride in the reaction device can be transported without the need for other air pumps or compression pumps. .
  • the one-step method for synthesizing chlorine trifluoride may further include: S3, pass the chlorine trifluoride gas through a high-temperature metal filler bed to keep the chlorine trifluoride gas stable and difficult to decompose; wherein the metal filler bed includes fillers and extraction agents, and the fillers are selected from Nickel, Monel, Hastelloy and their mixtures, and the temperature of the high-temperature metal bed is 265 ⁇ 270°C. In one embodiment, the temperature of the high-temperature metal bed is about 268°C.
  • the method of the present invention can make the content of chlorine monofluoride in the prepared crude chlorine trifluoride gas less than 50 ppmv, and its conversion rate can be increased to more than 93-95%.
  • the one-step method for synthesizing chlorine trifluoride may further include: The temperature of the metal filler bed 18 is obtained through the temperature measuring tube 19. When there is a large difference between the actual temperature and the preset temperature, for example, the error is more than 2°C, the macroscopic temperature can be measured through the heating tube 102, and then The microscopic temperature is fine-tuned by controlling the flow rate of the extraction agent.
  • the one-step method for synthesizing chlorine trifluoride may further include: Sampling is performed through the sample sampling port 21. When the sample concentration has a large gap with the preset concentration, the flow rate of the extractant is controlled to make adjustments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明提供了一种一步法合成三氟化氯的方法及装置。所述方法包括:S1,提供稳定的氟气与氯气,并将氟气与氯气按照反应计量充分混合形成混合气体;S2,将所述混合气体通入微通道反应器中,控制反应温度制备三氟化氯气体;其中,所述微通道反应器的材质选自耐腐蚀镍基合金,所述镍基合金与氯气和氟气产生钝化反应,通过反应过程参数控制,生成具有多孔结构的梯级氟化膜,该梯级氟化膜可以有效离散氟化氢-氟气分子团,形成氟和氯的有效活性基团,提高了三氟化氯的合成转化率,极大程度的降低了三氟化氯对金属材质的腐蚀性,且大大的提高了转化效率。

Description

一步法合成三氟化氯的方法及反应装置 技术领域
本发明涉及一种一步法合成三氟化氯的方法及反应装置。
背景技术
在集成电路(IC)、薄膜晶体管(TFT)或太阳能工业中,需要通过气相沉积工艺,将不同的膜材料沉积在硅晶片上。在沉积过程中,薄膜不仅仅在基板的表面,所以需要使用高反应性气体通过清洁工艺去除这些薄膜。长期以来使用对环境危害较大的全氟化合物(PFC)或氢氟烃(HFC)来清洗。自1990年代,国外制备出电子级三氟化氯后,发现三氟化氯相较于传统的(PFC)而言,在清洗质量、效率和减少温室效应等方面有着明显的优势,所以在微电子行业得以广泛使用,但国内微电子行业的三氟化氯完全依靠进口。
自20世纪30年代,Ruff和Krag采用氟气和氯气直接化合首次合成出ClF 3以来,出现多种合成三氟化氯的方法,其反应方程式如下:
3F 2+Cl 2=2ClF 3
例如,日本专利申请JP2018062427A在其专利中公开了一种三氟化氯产品工业化生产方法:使用F 2、Cl 2和ClF气体进行反应,来生产三氟化氯。但专利中提出了在合成过程中加入惰性气体,该步骤增加了对三氟化氯提纯的难度。
美国专利US8382940在其专利中报道了利用HCl或是Cl 2为原料与F 2、NF 3或SF 6在等离子体反应器中进行反应,生成三氟化氯,该方法会有较多的杂质产生,并且使用等离子反应器会导致生成的三氟化氯因温度过高而分解,不适合工业化生产电子级三氟化氯,反应方程式如下:
Cl 2-->2Cl*; F 2-->2F*,F 2*;
Cl*+F*,F 2,F 2*-->ClF 3
中国专利申请CN104477849A在其专利中报道了以液相氯化物(CCl 4和/或SiCl 4)与F 2生成氯气,氯气再与多余的氟气反应生成三氟化氯,其反应方程式如下:
CCl 4+2F 2=CF 4+2Cl 2;
SiCl 4+2F 2=SiF 4+2Cl 2;
Cl 2+3F 2=2ClF 3
该方法反应需要分两步进行,涉及气液和气气反应两种反应器,工艺操作复杂,粗品杂质太多,不利于提纯,难以工业化生产。
综上所述,制备三氟化氯的方法有很多,但是同时能够满足工业化、粗气杂质少的只有氟气与氯气直接反应生成三氟化氯的方法符合这些要求。使用氟气与氯气直接合成,一般会由2级反应区间组成:氟气与氯气反应,预反应生成一氟化氯,再由一氟化氯与氟气反应合成三氟化氯,此方法存在着反应转化率低,产品杂质气体中含有一定量的一氟化氯未参与反应;反应配比难以控制,会造成氟气或一氟化氯未参与反应,影响反应效率。
发明内容
本发明提供了一种一步法合成三氟化氯的方法及反应装置,可以有效解决上述问题。
本发明是这样实现的:
本发明提供一种一步法合成三氟化氯的方法,包括以下步骤:
S1,提供稳定的氟气与氯气,并将氟气与氯气按照反应计量充分混合;
S2,将混合气体通入微通道反应器中;其中,所述微通道反应器的材质选自耐腐蚀镍基合金,所述耐腐蚀镍基合金中的镍基材质与氯气和氟气产生钝化反应,进而生成具有多孔结构的梯级氟化膜。
本发明进一步提供一种反应装置,包括:
立式反应器主体,所述立式反应器主体包括壳体以及设置于所述壳体内壁的加热管;
设置于所述壳体底部的氯气进气口以及氟气进气口;
与所述氯气进气口以及氟气进气口联通的稳流配气单元;
设置于所述稳流配气单元顶部且与所述稳流配气单元联通的微通道反应器,且所述加热管环绕所述微通道反应器设置,所述微通道反应器的材质选自耐腐蚀镍基合金;以及
设置于所述微通道反应器顶部的出料口。
作为进一步改进的,所述稳流配气单元包括:
氯气稳流单元,其包括:联通所述氯气进气口的第一缓冲器,设置在所述第一缓冲器顶部的多个第一出气孔;与所述第一出气孔联通的第一管道;
氟气稳流单元,其包括:联通氟气进气口的第二缓冲器,设置在所述第二缓冲器顶部的多个第二出气孔;与所述第二出气孔联通的第二管道;
混配腔,其一端分别与所述第一管道和所述第二管道联通,另一端与所述微通道反应器联通。
本发明的有益效果是:本发明提供的一步法合成三氟化氯的方法及反应装置,该微通道反应器中的镍基材质在反应过程中会与氟气和氯气产生钝化作用,形成具有多孔结构的梯级氟化膜,该梯级氟化膜可以有效离散氟化氢-氟气分子团,形成氟和氯的有效活性基团,提高了三氟化氯的合成转化率,极大程度的降低了三氟化氯对金属材质的腐蚀性,且大大的提高了转化效率。进一步的,所述稳流配气单元可以准确控制反应气体的进气量,并保持气流平稳,从而进一步提高产率。本发明的方法,可以使制备出来的三氟化氯粗气中仅有微量的一氟化氯存在(50ppmv)。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例提供的用于制备三氟化氯的反应装置的结构示意图。
图2是本发明实施例提供的用于制备三氟化氯的反应装置中A部分的放大图图。
图3是本发明实施例提供的用于制备三氟化氯的反应装置中第一出气孔以及第二出气孔的结构示意图。
图4是本发明实施例提供的用于制备三氟化氯的反应装置中混配腔的结构示意图。
图5是本发明实施例提供的一步法合成三氟化氯的方法流程图。
图6是本发明另一实施例提供的一步法合成三氟化氯的方法流程图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参照图1所示,本发明实施例提供一种反应装置,所述反应装置可以用于三氟化氯的制备,但不于此,本发明以三氟化氯为例进行具体说明。
所述反应装置包括:
立式反应器主体10,所述立式反应器主体10包括壳体101以及设置于所述壳体101内壁的加热管102;
设置于所述壳体101底部的氯气进气口11以及氟气进气口12;
与所述氯气进气口11以及氟气进气口12联通的稳流配气单元13;
设置于所述稳流配气单元13顶部且与所述稳流配气单元13联通的微通道反应器14,且所述加热管102环绕所述微通道反应器14设置,所述微通道反应器14的材质选自耐腐蚀镍基合金;以及
设置于所述微通道反应器14顶部的出料口22。
所述壳体101可采用具有保温、防爆功能的材质,在此不做限制。三氟化氯在高温条件下稳定性显著降低,故,容易受到温度环境的变化而产生分解,故,需要将所述壳体101设置为保温材质以防止外部温度对其内部温度产生较大的影响。进一步的,由于氟气、氯气以及三氟化氯本身都是危险性物质,因此,也需要进行进一步防护。所述加热管102可以设置于所述壳体101的内壁表面或内嵌于所述壳体101的内壁中。所述加热管102的材质及型号不限,只要可以实现稳定加热即可。所述加热管102可以分段设置,从而控制不同管道的温度。
在其中一个实施例中,作为进一步改进的,为了方便拆装及检修,所述壳体101底部进一步设置第一连接座103以及与所述第一连接座103配合的第二连接座104。所述第一连接座103及所述第二连接座104可通过固定机构,如螺母、卡扣等方式进行固定连接。通过打开所述第二连接座104可实现反应装置的内部检修。在其中一个实施例中,所述氯气进气口11以及氟气进气口12固设于所述第二连接座104上。
请一并参见图2、3,4,所述稳流配气单元13包括:
氯气稳流单元,其包括:联通所述氯气进气口11的第一缓冲器130,设置在所述第一缓冲器130顶部的多个第一出气孔131;与所述第一出气孔131联通的第一管道132;
氟气稳流单元,其包括:联通氟气进气口12的第二缓冲器135,设置在所述第二缓冲器135顶部的多个第二出气孔136;与所述第二出气孔136联通的第二管道137;
混配腔134,其一端分别与所述第一管道132和所述第二管道137联通,另一端与所述微通道反应器14联通。
作为优选的方案,每一混配腔134优选对应一个第一管道132和3个第二管道137,从而使氯气和氟气的配气比例达到理论值的1:3左右。所述3个第二管道137的进气口围绕所述第一管道132的进气口设置,从而使得进气后可以快速均匀混合。
在其中一个实施例中,包括16个第一出气孔131以及48个第二出气孔136,且每一第一出气孔131分别对应一第一管道132;每一第二出气孔136,分别对应一第二管道137;且包括16个混配腔134。所述第一管道132与所述第二管道137的管径相等,且为1~10mm。在其中一个实施例中,所述第一管道132与所述第二管道137的管径相等,且约为5mm。每一混配腔134对应的第一管道132与所述第二管道137的管道长度相等,从而可以准确控制氟气和氯气的比例。具体的,可以使所述第一缓冲器130及所述第二缓冲器135的压强相同,由于所述第一管道132与所述第二管道137的管径及长度相同,且数量不同,因此,可以准确控制反应气体的进气量。
在其中一个实施例中,所述第一缓冲器130及所述第二缓冲器135也设置在所述第二连接座104上。
所述微通道反应器14包括多个反应通道,每一反应通道分别与一混配腔134联通。所述反应通道可以为三角型微通道或直管式反应装置或其他形状的反应通道,在此不做限制。所述反应通道的最小管径为通道直径为0.5mm~10mm。在其中一个实施例中,所述反应通道为2mm的三角型微通道反应通道。所述微通道反应器14的材质选自耐腐蚀镍基合金,例如,镍金属、蒙乃尔、哈氏合金等。由于该微通道反应器中的镍基材质在反应过程中会与氟气和氯气产生钝化作用,形成生成具有多孔结构的梯级氟化膜,该梯级氟化膜可以有效离散氟化氢-氟气分子团,形成氟和氯的有效活性基团,提高了三氟化氯的合成转化率,极大程度的降低了三氟化氯对金属材质的腐蚀性,且大大的提高了转化效率。在其中一个实施例中,所述微通道反应器14的材质为哈氏合金,其使用可以使反应的转化率,由80%提升至85%-90%。
作为进一步改进的,所述反应装置进一步包括:设置于所述微通道反应器14顶部的金属填料床层18,且所述加热管102进一步环绕所述金属填料床层18设置,所述金属填料床层18包括填料,所述填料选自镍、蒙乃尔、哈氏合金及其混合物。可以理解,通过镍基金属或合金的设置,还可以进一步形成钝化膜,该钝化膜可以防止逆反应发生,使本发明的合成反应具有独有的梯级成膜反应,极大程度的降低了三氟化氯对金属材质的腐蚀性,进一步大大的提高了转化效率。其转化率可进一步提升到93-95%左右。
作为进一步改进的,为了防止所述金属填料床层18中的填料掉落到所述微通道反应器14中,在其他实施例中,进一步在所述金属填料床层18以及所述微通道反应器14之间设置筛板15。所述筛板15用于防止金属填料床层18中的填料掉落或堵塞所述微通道反应器14。所述筛板15的直径不限,只要小于所述填料的粒径即可。所述金属填料床层18的高度为1000-1500mm。在其中一个实施例中,所述金属填料床层18的高度约为1200mm。
作为进一步改进的,所述反应装置进一步包括:设置于微通道反应器14上部的萃取剂进料口17以及测温套管19;所述萃取剂进料口17用于通入萃取剂;所述测温套管19用于获取所述金属填料床层18的温度。所述萃取剂用于萃取生成的三氟化氯,从而防止其进一步分解。所述萃取剂可以选自氟醚油等高效萃取剂,在此不做限制。
所述萃取剂进料口17可设置于所述筛板15上部,优选的,所述萃取剂进料口17设置于所述筛板15上部约50-150mm处。所述萃取剂进料口17如果过低,会导致进入的萃取剂来不及挥发;所述所述萃取剂进料口17如果过高,会导致生成的三氟化氯无法及时被萃取剂萃取,而产生分解。在其中一个实施例中,所述萃取剂进料口17设置于所述筛板15上部约100mm处。
在其他实施例中,所述测温套管19可以至少包括两根,一根设置在所述金属填料床层18的中部,一个设置在所述金属填料床层18的顶部,从而对所述金属填料床层18整体温度进行有效监控。
在其他实施例中,所述反应装置进一步包括:设置于所述壳体101顶部的泄压口20,以及样品取样口21。
在其他实施例中,所述反应装置进一步包括:缓冲容器未画出,与所述出料口22联通,用于存储制备的三氟化氯。所述缓冲容器用低温冷却,形成微负压,反应装置中的三氟化氯无需其他气泵或压缩泵,就可以进行输送。
请参见图5,本发明实施例进一步提供一种一步法合成三氟化氯的方法,包括以下步骤:
S1,提供稳定的氟气与氯气,并将氟气与氯气按照反应计量充分混合;
S2,将混合气体通入微通道反应器中,控制反应温度制备三氟化氯气体;其中,所述微通道反应器的材质选自镍、蒙乃尔或哈氏合金,所述镍、蒙乃尔或哈氏合金的镍基材质与氯气和氟气产生钝化反应,进而生成具有多孔结构的梯级氟化膜。
作为进一步改进的,在步骤S1中,通过所述稳流配气单元13提供稳定的氟气与氯气,并将氟气与氯气按照反应计量充分混合。所述氟气与氯气的理想混合比例为1:3。所述稳流配气单元13的结构不限,只要可以实现气体稳定且配比稳定即可。
作为进一步改进的,在步骤S13之前,还可以进一步包括:
通入惰性气体,将反应装置中的空气及水份去除干净。具体的,可以将氯气进气口11以及氟气进气口12切换到惰性气体进气通道中,然后通入惰性气体。
作为进一步改进的,在步骤S2中,所述控制反应温度制备三氟化氯气体的步骤包括:
控制反应温度为250~270℃制备三氟化氯气体。在其中一个实施例中,控制反应温度为255℃左右。在反应过程中,该微通道反应器中的镍基材质在反应过程中会与氟气和氯气产生钝化作用,形成具有多孔结构的梯级氟化膜,该梯级氟化膜可以有效离散氟化氢-氟气分子团,形成氟和氯的有效活性基团,提高了三氟化氯的合成转化率,极大程度的降低了三氟化氯对金属材质的腐蚀性,且大大的提高了转化效率。本发明的方法,可以使其转化率可提升到90%以上。
作为进一步改进的,在步骤S2中,进一步包括:控制所述微通道反应器的压力为负压,使所述三氟化氯气体自然排出。具体的,在所述微通道反应器的出口端所设置的缓冲容器用低温冷却,形成微负压,从而使所述反应装置中的三氟化氯无需其他气泵或压缩泵,就可以进行输送。
请参见图6,在其他实施例中,所述一步法合成三氟化氯的方法,还可以进一步包括:
S3,将所述三氟化氯气体通过高温金属填料床层以使所述三氟化氯气体保持稳定,不易分解;其中,所述金属填料床层包括填料以及萃取剂,所述填料选自镍、蒙乃尔、哈氏合金及其混合物,且所述高温金属层床的温度为265~270℃。在其中一个实施例中,所述高温金属层床的温度为268℃左右。本发明的方法,可以使制备出来的三氟化氯粗气中一氟化氯的含量低于50ppmv,其转化率可提升到93-95%以上。
所述一步法合成三氟化氯的方法,还可进一步包括:
通过所述测温套管19获取所述金属填料床层18的温度,当实际温度与预设温度具有较大差距例如误差在2℃以上时,可通过所述加热管102进行宏观温度,然后通过控制所述萃取剂的流量对微观温度进行微调。
所述一步法合成三氟化氯的方法,还可以进一步包括:
通过所述样品取样口21进行取样,当样品浓度与预设浓度具有较大差距时,通过控制萃取剂的流量进行调整。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种一步法合成三氟化氯的方法,其特征在于,包括以下步骤:
    S1,提供稳定的氟气与氯气,并将氟气与氯气按照反应计量充分混合形成混合气体;
    S2,将所述混合气体通入微通道反应器中,控制反应温度制备三氟化氯气体;其中,所述微通道反应器的材质选自耐腐蚀镍基合金,所述镍基合金与氯气和氟气产生钝化反应,进而生成具有多孔结构的梯级氟化膜。
  2. 如权利要求1所述的一步法合成三氟化氯的方法,其特征在于,在步骤S1中,通过稳流配气单元提供稳定的氟气与氯气,并将氟气与氯气充分混合。
  3. 如权利要求1所述的一步法合成三氟化氯的方法,其特征在于,在步骤S2中,所述控制反应温度制备三氟化氯气体的步骤包括:
    控制反应温度为250~270℃制备三氟化氯气体。
  4. 如权利要求1所述的一步法合成三氟化氯的方法,其特征在于,在步骤S2中,进一步包括:控制所述微通道反应器的压力为负压,使所述三氟化氯气体自然排出。
  5. 如权利要求1所述的一步法合成三氟化氯的方法,其特征在于,进一步包括:
    S3,将所述三氟化氯气体通过高温金属填料床层以使所述三氟化氯气体保持稳定,不易分解;其中,所述金属填料床层包括填料以及萃取剂,所述填料选自耐腐蚀镍基合金,且所述高温金属层床的温度为265~270℃。
  6. 如权利要求1所述的一步法合成三氟化氯的方法,其特征在于,所述微通道反应器包括多个反应通道,每一反应通道的通道直径为0.5mm~10mm。
  7. 一种反应装置,其特征在于,包括:
    立式反应器主体(10),所述立式反应器主体(10)包括壳体(101)以及设置于所述壳体(101)内壁的加热管(102);
    设置于所述壳体(101)底部的氯气进气口(11)以及氟气进气口(12);
    与所述氯气进气口(11)以及氟气进气口(12)联通的稳流配气单元(13);
    设置于所述稳流配气单元(13)顶部且与所述稳流配气单元(13)联通的微通道反应器(14),且所述加热管(102)环绕所述微通道反应器(14)设置,所述微通道反应器(14)的材质选自耐腐蚀镍基合金;以及
    设置于所述微通道反应器(14)顶部的出料口(22)。
  8. 如权利要求7所述的反应装置,其特征在于,所述稳流配气单元(13)包括:
    氯气稳流单元,其包括:联通所述氯气进气口(11)的第一缓冲器(130),设置在所述第一缓冲器(130)顶部的多个第一出气孔(131);与所述第一出气孔(131)联通的第一管道(132);
    氟气稳流单元,其包括:联通氟气进气口(12)的第二缓冲器(135),设置在所述第二缓冲器(135)顶部的多个第二出气孔(136);与所述第二出气孔(136)联通的第二管道(137);
    混配腔(134),其一端分别与所述第一管道(132)和所述第二管道(137)联通,另一端与所述微通道反应器(14)联通。
  9. 如权利要求7所述的反应装置,其特征在于,所述反应装置进一步包括:设置于所述微通道反应器(14)顶部的金属填料床层(18),且所述加热管(102)进一步环绕所述金属填料床层(18)设置,所述金属填料床层(18)包括填料,所述填料选自耐腐蚀镍基合金。
  10. 如权利要求9所述的反应装置,其特征在于,所述反应装置进一步包括:设置于微通道反应器(14)上部的萃取剂进料口(17)以及测温套管(19);所述萃取剂进料口(17)用于通入萃取剂;所述测温套管(19)用于获取所述金属填料床层(18)的温度。
PCT/CN2023/077311 2022-09-16 2023-02-21 一步法合成三氟化氯的方法及反应装置 WO2024055512A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280006791.1A CN117440927A (zh) 2022-09-16 2023-02-21 一步法合成三氟化氯的方法及反应装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211128500.4 2022-09-16
CN202211128500.4A CN115448256B (zh) 2022-09-16 2022-09-16 一步法合成三氟化氯的方法及反应装置

Publications (1)

Publication Number Publication Date
WO2024055512A1 true WO2024055512A1 (zh) 2024-03-21

Family

ID=84304720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077311 WO2024055512A1 (zh) 2022-09-16 2023-02-21 一步法合成三氟化氯的方法及反应装置

Country Status (2)

Country Link
CN (1) CN115448256B (zh)
WO (1) WO2024055512A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448256B (zh) * 2022-09-16 2023-03-21 福建德尔科技股份有限公司 一步法合成三氟化氯的方法及反应装置
CN115970396B (zh) * 2023-01-16 2023-12-08 福建德尔科技股份有限公司 一种水洗后气水分离装置
CN116840399B (zh) * 2023-07-07 2023-12-19 福建德尔科技股份有限公司 一种高纯三氟化氯的气相色谱分析系统
CN117482864A (zh) * 2023-10-28 2024-02-02 福建德尔科技股份有限公司 一种电子级三氟化氯的制备系统及其方法
CN117138715B (zh) * 2023-11-01 2024-02-13 福建德尔科技股份有限公司 一种电子级三氟化氯合成用微通道反应器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159505A (ja) * 1998-11-20 2000-06-13 Kanto Denka Kogyo Co Ltd フッ素化ハロゲン化合物の製造方法
JP2008169448A (ja) * 2007-01-12 2008-07-24 Stella Chemifa Corp フッ化不動態膜を形成した炭素鋼又は特殊鋼及びその形成方法
WO2010055769A1 (ja) * 2008-11-12 2010-05-20 セントラル硝子株式会社 インターハロゲン化合物の合成方法
CN104477850A (zh) * 2014-12-02 2015-04-01 中国船舶重工集团公司第七一八研究所 一种三氟化氯的制备方法及装置
CN112723313A (zh) * 2020-12-29 2021-04-30 四川红华实业有限公司 一种制备三氟化氯的方法
CN112794286A (zh) * 2021-03-26 2021-05-14 大连海惠博科技有限公司 氯化溴的连续流法合成系统和合成工艺
CN112944204A (zh) * 2021-02-02 2021-06-11 福建德尔科技有限公司 电子级三氟化氯的收集装置
CN115448256A (zh) * 2022-09-16 2022-12-09 福建德尔科技股份有限公司 一步法合成三氟化氯的方法及反应装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112919419B (zh) * 2021-01-29 2022-08-23 福建德尔科技股份有限公司 电子级三氟化氯的精馏纯化系统控制方法
CN112915719A (zh) * 2021-02-02 2021-06-08 福建德尔科技有限公司 电子级三氟化氯的分离装置及分离方法
CN112875648A (zh) * 2021-02-02 2021-06-01 福建德尔科技有限公司 电子级三氟化氯的纯化系统及其温差动力控制方法
CN113562700A (zh) * 2021-07-17 2021-10-29 鹤壁德瑞科技有限公司 一种三氟化氯的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159505A (ja) * 1998-11-20 2000-06-13 Kanto Denka Kogyo Co Ltd フッ素化ハロゲン化合物の製造方法
JP2008169448A (ja) * 2007-01-12 2008-07-24 Stella Chemifa Corp フッ化不動態膜を形成した炭素鋼又は特殊鋼及びその形成方法
WO2010055769A1 (ja) * 2008-11-12 2010-05-20 セントラル硝子株式会社 インターハロゲン化合物の合成方法
CN104477850A (zh) * 2014-12-02 2015-04-01 中国船舶重工集团公司第七一八研究所 一种三氟化氯的制备方法及装置
CN112723313A (zh) * 2020-12-29 2021-04-30 四川红华实业有限公司 一种制备三氟化氯的方法
CN112944204A (zh) * 2021-02-02 2021-06-11 福建德尔科技有限公司 电子级三氟化氯的收集装置
CN112794286A (zh) * 2021-03-26 2021-05-14 大连海惠博科技有限公司 氯化溴的连续流法合成系统和合成工艺
CN115448256A (zh) * 2022-09-16 2022-12-09 福建德尔科技股份有限公司 一步法合成三氟化氯的方法及反应装置

Also Published As

Publication number Publication date
CN115448256B (zh) 2023-03-21
CN115448256A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2024055512A1 (zh) 一步法合成三氟化氯的方法及反应装置
JP2867306B2 (ja) 半導体級多結晶シリコンの製造方法とその装置
CN110606490B (zh) 一种高纯四氟化硅的合成及纯化方法
CN104555927A (zh) 一种三氟化氯的纯化方法
JP5172707B2 (ja) ガス流の処理方法
KR20110053834A (ko) 모노실란의 정제방법
CN113548669B (zh) 一种高纯电子级二碘硅烷的制备装置及其制备方法
TW589396B (en) Chemical vapor deposition reactor
CN111085081A (zh) 一种除去氟气中氟化氢的装置及方法
CN111039267A (zh) 一种预纯化电解制备的三氟化氮粗品的装置及方法
US20140072479A1 (en) Delivery Equipment for the Solid Precursor Particles
CN113562699B (zh) 一种高纯级三氟化氯的纯化系统及制备系统
CN101531367B (zh) 一种硅烷生产工艺
CN112441604B (zh) 一种制备高纯氟化物的方法
US20040091630A1 (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
CN110483364A (zh) 一种吲哚酮砜类化合物及其合成方法
CN117440927A (zh) 一步法合成三氟化氯的方法及反应装置
CN217077780U (zh) 一种腔内体积可调的快速气相沉积反应器
CN217016619U (zh) 一种六氟化钨的制备装置
CN113371681B (zh) 一种高纯级三氟化氯的纯化方法及制备方法
CN215540754U (zh) 高纯级三氟化氯的反应装置
CN110510675A (zh) 一种高纯六氟化钨连续纯化方法
CN102115093B (zh) 一种高纯富集11b三氟化硼气体的制备方法
CN109956452B (zh) 一种试剂盐酸的制备方法及其装置
CN104261413B (zh) 低温等离子体还原四氯化硅生产三氯氢硅方法及其装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280006791.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864255

Country of ref document: EP

Kind code of ref document: A1