WO2024054065A1 - 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 - Google Patents
차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 Download PDFInfo
- Publication number
- WO2024054065A1 WO2024054065A1 PCT/KR2023/013428 KR2023013428W WO2024054065A1 WO 2024054065 A1 WO2024054065 A1 WO 2024054065A1 KR 2023013428 W KR2023013428 W KR 2023013428W WO 2024054065 A1 WO2024054065 A1 WO 2024054065A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- silicon
- based thin
- shielding
- compound
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 268
- 150000001875 compounds Chemical class 0.000 title claims abstract description 204
- 239000000758 substrate Substances 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 77
- 239000004065 semiconductor Substances 0.000 title claims abstract description 30
- 230000015572 biosynthetic process Effects 0.000 title abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 81
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 78
- 239000010703 silicon Substances 0.000 claims abstract description 78
- 239000000460 chlorine Substances 0.000 claims description 48
- 239000010408 film Substances 0.000 claims description 37
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 35
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 35
- 229910052799 carbon Inorganic materials 0.000 claims description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- 125000000217 alkyl group Chemical group 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 17
- 229910052801 chlorine Inorganic materials 0.000 claims description 16
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 12
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 10
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 10
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 10
- 229910052794 bromium Inorganic materials 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 10
- 150000002367 halogens Chemical group 0.000 claims description 10
- 229910052740 iodine Inorganic materials 0.000 claims description 10
- 239000011630 iodine Substances 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910020776 SixNy Inorganic materials 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 5
- 150000002366 halogen compounds Chemical class 0.000 claims description 2
- 230000008021 deposition Effects 0.000 abstract description 61
- 230000006866 deterioration Effects 0.000 abstract description 7
- 238000005260 corrosion Methods 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 5
- 238000010926 purge Methods 0.000 description 68
- 238000000151 deposition Methods 0.000 description 63
- 239000002243 precursor Substances 0.000 description 62
- 239000007789 gas Substances 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 33
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 32
- 230000008569 process Effects 0.000 description 32
- 239000010410 layer Substances 0.000 description 23
- 230000002829 reductive effect Effects 0.000 description 23
- 238000000231 atomic layer deposition Methods 0.000 description 21
- 239000006227 byproduct Substances 0.000 description 20
- 239000012495 reaction gas Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 239000006200 vaporizer Substances 0.000 description 17
- 229910052786 argon Inorganic materials 0.000 description 16
- 230000008901 benefit Effects 0.000 description 15
- 230000009467 reduction Effects 0.000 description 14
- 239000012535 impurity Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 10
- 230000008016 vaporization Effects 0.000 description 10
- -1 aluminum Chemical class 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000012454 non-polar solvent Substances 0.000 description 9
- NBRKLOOSMBRFMH-UHFFFAOYSA-N tert-butyl chloride Chemical compound CC(C)(C)Cl NBRKLOOSMBRFMH-UHFFFAOYSA-N 0.000 description 9
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 239000012808 vapor phase Substances 0.000 description 8
- ANGGPYSFTXVERY-UHFFFAOYSA-N 2-iodo-2-methylpropane Chemical compound CC(C)(C)I ANGGPYSFTXVERY-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 239000012686 silicon precursor Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- CRNIHJHMEQZAAS-UHFFFAOYSA-N tert-amyl chloride Chemical compound CCC(C)(C)Cl CRNIHJHMEQZAAS-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 150000001924 cycloalkanes Chemical class 0.000 description 4
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 4
- RKSOPLXZQNSWAS-UHFFFAOYSA-N tert-butyl bromide Chemical compound CC(C)(C)Br RKSOPLXZQNSWAS-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000004627 transmission electron microscopy Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- JOUWCKCVTDSMHF-UHFFFAOYSA-N 2-bromo-2-methylbutane Chemical compound CCC(C)(C)Br JOUWCKCVTDSMHF-UHFFFAOYSA-N 0.000 description 2
- HLLCNVLEVVFTJB-UHFFFAOYSA-N 2-fluoro-2-methylbutane Chemical compound CCC(C)(C)F HLLCNVLEVVFTJB-UHFFFAOYSA-N 0.000 description 2
- GSMZLBOYBDRGBN-UHFFFAOYSA-N 2-fluoro-2-methylpropane Chemical compound CC(C)(C)F GSMZLBOYBDRGBN-UHFFFAOYSA-N 0.000 description 2
- NWRZTQFWFPLHHX-UHFFFAOYSA-N 2-iodo-2-methylbutane Chemical compound CCC(C)(C)I NWRZTQFWFPLHHX-UHFFFAOYSA-N 0.000 description 2
- ZRPQYKLJSOLRPZ-UHFFFAOYSA-N 3-bromo-3-methylpentane Chemical compound CCC(C)(Br)CC ZRPQYKLJSOLRPZ-UHFFFAOYSA-N 0.000 description 2
- VNHGXFJVSYNGJQ-UHFFFAOYSA-N 3-fluoro-3-methylpentane Chemical compound CCC(C)(F)CC VNHGXFJVSYNGJQ-UHFFFAOYSA-N 0.000 description 2
- CIDZNASUPYMQCG-UHFFFAOYSA-N 3-iodo-3-methylpentane Chemical compound CCC(C)(I)CC CIDZNASUPYMQCG-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- IWAKWOFEHSYKSI-UHFFFAOYSA-N 1-chloro-2-methylbutane Chemical compound CCC(C)CCl IWAKWOFEHSYKSI-UHFFFAOYSA-N 0.000 description 1
- WGCJTTUVWKJDAX-UHFFFAOYSA-N 1-fluoro-2-methylpropane Chemical compound CC(C)CF WGCJTTUVWKJDAX-UHFFFAOYSA-N 0.000 description 1
- JXHHVVMPTVKBGI-UHFFFAOYSA-N 2-bromo-2-methylpentane Chemical compound CCCC(C)(C)Br JXHHVVMPTVKBGI-UHFFFAOYSA-N 0.000 description 1
- NXXHAWKBICGUCK-UHFFFAOYSA-N 2-chloro-2-methylpentane Chemical compound CCCC(C)(C)Cl NXXHAWKBICGUCK-UHFFFAOYSA-N 0.000 description 1
- JSYWPBHDBBDHKQ-UHFFFAOYSA-N 2-fluoro-2-methylpentane Chemical compound CCCC(C)(C)F JSYWPBHDBBDHKQ-UHFFFAOYSA-N 0.000 description 1
- KCNIMEJTKUGMLA-UHFFFAOYSA-N 2-iodo-2-methylpentane Chemical compound CCCC(C)(C)I KCNIMEJTKUGMLA-UHFFFAOYSA-N 0.000 description 1
- JQDCPNNWLOSCPM-UHFFFAOYSA-N 3-bromo-3-ethylhexane Chemical compound BrC(CC)(CCC)CC JQDCPNNWLOSCPM-UHFFFAOYSA-N 0.000 description 1
- VBWMTSXDBBJVHP-UHFFFAOYSA-N 3-bromo-3-ethylpentane Chemical compound CCC(Br)(CC)CC VBWMTSXDBBJVHP-UHFFFAOYSA-N 0.000 description 1
- XUSOXJJDAVAVIH-UHFFFAOYSA-N 3-bromo-3-methylhexane Chemical compound CCCC(C)(Br)CC XUSOXJJDAVAVIH-UHFFFAOYSA-N 0.000 description 1
- GOMWAYCVQYANPT-UHFFFAOYSA-N 3-chloro-3-ethylhexane Chemical compound CCCC(Cl)(CC)CC GOMWAYCVQYANPT-UHFFFAOYSA-N 0.000 description 1
- ZOUXTTNTFFBAQN-UHFFFAOYSA-N 3-chloro-3-ethylpentane Chemical compound CCC(Cl)(CC)CC ZOUXTTNTFFBAQN-UHFFFAOYSA-N 0.000 description 1
- UTKDCNDVTOWUHW-UHFFFAOYSA-N 3-chloro-3-methylhexane Chemical compound CCCC(C)(Cl)CC UTKDCNDVTOWUHW-UHFFFAOYSA-N 0.000 description 1
- SGWJUIFOPCZXMR-UHFFFAOYSA-N 3-chloro-3-methylpentane Chemical compound CCC(C)(Cl)CC SGWJUIFOPCZXMR-UHFFFAOYSA-N 0.000 description 1
- GRTLXIVYGJAJDW-UHFFFAOYSA-N 3-ethyl-3-fluoropentane Chemical compound CCC(F)(CC)CC GRTLXIVYGJAJDW-UHFFFAOYSA-N 0.000 description 1
- QVCBHWPZHXMJEW-UHFFFAOYSA-N 3-ethyl-3-iodopentane Chemical compound CCC(I)(CC)CC QVCBHWPZHXMJEW-UHFFFAOYSA-N 0.000 description 1
- DLAMNRWFMPVTLS-UHFFFAOYSA-N 3-fluoro-3-methylhexane Chemical compound CCCC(C)(F)CC DLAMNRWFMPVTLS-UHFFFAOYSA-N 0.000 description 1
- FYYIKFLSEVETSW-UHFFFAOYSA-N 3-iodo-3-methylhexane Chemical compound CCCC(C)(I)CC FYYIKFLSEVETSW-UHFFFAOYSA-N 0.000 description 1
- AXIPMGFNZYVPLT-UHFFFAOYSA-N 4-bromo-4-ethylheptane Chemical compound CCCC(Br)(CC)CCC AXIPMGFNZYVPLT-UHFFFAOYSA-N 0.000 description 1
- AATDBMATFJJJNP-UHFFFAOYSA-N 4-bromo-4-methylheptane Chemical compound CCCC(C)(Br)CCC AATDBMATFJJJNP-UHFFFAOYSA-N 0.000 description 1
- QKZOLNBYNJQRMW-UHFFFAOYSA-N 4-bromo-4-propylheptane Chemical compound CCCC(Br)(CCC)CCC QKZOLNBYNJQRMW-UHFFFAOYSA-N 0.000 description 1
- SKHLYPLYKMKJLB-UHFFFAOYSA-N 4-chloro-4-ethylheptane Chemical compound CCCC(Cl)(CC)CCC SKHLYPLYKMKJLB-UHFFFAOYSA-N 0.000 description 1
- WKOJWXPNSRJQQN-UHFFFAOYSA-N 4-chloro-4-methylheptane Chemical compound CCCC(C)(Cl)CCC WKOJWXPNSRJQQN-UHFFFAOYSA-N 0.000 description 1
- XTWYDWUSMYSOLX-UHFFFAOYSA-N 4-chloro-4-propylheptane Chemical compound CCCC(Cl)(CCC)CCC XTWYDWUSMYSOLX-UHFFFAOYSA-N 0.000 description 1
- WOWRSCPDKWEHHA-UHFFFAOYSA-N 4-iodo-4-propylheptane Chemical compound CCCC(I)(CCC)CCC WOWRSCPDKWEHHA-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- 101000735417 Homo sapiens Protein PAPPAS Proteins 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 102100034919 Protein PAPPAS Human genes 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910020175 SiOH Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000000572 ellipsometry Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
Definitions
- the present invention relates to a shielding compound, a method of forming a thin film using the same, and a semiconductor substrate and semiconductor device manufactured therefrom. More specifically, the present invention relates to a shielding area for a silicon-based thin film on a substrate to reduce the deposition rate of the silicon-based thin film and increase the thin film growth rate. It relates to a shielding compound that significantly improves step coverage and thickness uniformity of a thin film even when forming a thin film on a substrate with a complex structure by appropriately lowering the temperature, a method of forming a thin film using the same, and a semiconductor substrate manufactured therefrom.
- the semiconductor thin film is made of a nitride film, an oxide film, a metal film, etc.
- the nitride film includes silicon nitride (SiN), titanium nitride (TiN), and tantalum nitride (TaN), and the oxide film includes silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), and zirconium oxide (ZrO 2 ).
- the metal film includes molybdenum film (Mo), tungsten (W), and ruthenium (Ru).
- the thin film is generally used as a diffusion barrier between the silicon layer of a doped semiconductor and aluminum (Al), copper (Cu), etc. used as interlayer wiring materials.
- Al aluminum
- Cu copper
- etc. used as interlayer wiring materials.
- W tungsten
- the ALD (atomic layer deposition) process that utilizes surface reaction is used rather than the CVD (chemical vapor deposition) process that mainly utilizes gas phase reaction, but there are still problems in implementing 100% step coverage.
- process by-products such as chloride remain in the manufactured thin film, causing corrosion of metals such as aluminum, and the generation of non-volatile by-products causes deterioration of the film quality.
- the present invention reduces the deposition rate of the silicon-based thin film by forming a shielding area for the silicon-based thin film on the substrate and appropriately lowers the thin film growth rate to reduce the level difference even when forming a thin film on a substrate with a complex structure.
- the purpose is to provide a shielding compound that significantly improves step coverage and thin film thickness uniformity, a thin film formation method using the same, and a semiconductor substrate manufactured therefrom.
- the purpose of the present invention is to improve the density and electrical properties of thin films by improving their crystallinity.
- the present invention is a shielding compound for silicon-based thin films
- the silicon-based thin film has a film composition of SixNy (x and y are each integers from 0.5 to 4.5),
- the shielding compound has the following formula 1:
- R 1 and R 3 are independently an alkyl group having 1 to 6 carbon atoms
- R 2 independently has an alkyl group having 1 to 6 carbon atoms or a functional group of the formula BR 4 R 5 R 6 , B is carbon bonded to A, and R 4 , R 5 and R 6 are independently hydrogen and carbon atoms. It is an alkyl group of 1 to 6, fluorine (F), chlorine (Cl), bromine (Br), or iodine (I),
- the present invention provides a shielding compound for a silicon-based thin film, wherein
- the shielding compound may have a refractive index (a) in the range of 1.38 to 1.52, and the vapor pressure (25°C, mmHg, b) divided by the refractive index (a) (b/a) may be in the range of 0.003 to 0.033.
- the silicon-based thin film may be composed of Si 3 N 4 , Si 2 N 3 , Si 2 N, SiN, or a mixture thereof.
- the shielding compound can provide a shielding area for a silicon-based thin film.
- the shielding area for the silicon-based thin film does not remain in the silicon-based thin film, and the silicon-based thin film may contain less than 0.01% by weight of a halogen element.
- the silicon-based thin film may be used as a diffusion barrier, an etch stop film, or a charge trap.
- R 1 and R 3 are independently an alkyl group having 1 to 6 carbon atoms
- R 2 independently has an alkyl group having 1 to 6 carbon atoms or a functional group of the formula BR 4 R 5 R 6 , B is carbon bonded to A, and R 4 , R 5 and R 6 are independently hydrogen and carbon atoms. It is an alkyl group of 1 to 6, fluorine (F), chlorine (Cl), bromine (Br), or iodine (I),
- X is a halogen element and is fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).)
- a shielding compound with a saturated structure represented by A method of forming a silicon-based thin film is provided, comprising the step of shielding.
- It may include thirdly purging the inside of the chamber with a purge gas.
- It may include thirdly purging the inside of the chamber with a purge gas.
- the precursor compound may be a molecule composed of Si and one or more types selected from the group consisting of C, N, H, and Cl, and preferably may be a molecule composed of Si, H, and Cl.
- less than 0.01% of halogen elements may be included in the silicon-based thin film obtained while reducing the deposition rate.
- the precursor compound may be a silicon precursor having a vapor pressure of 2 mTorr to 75 KTorr at 25°C.
- the chamber may be an ALD chamber or a CVD chamber.
- the shielding compound or precursor compound may be vaporized and injected, followed by plasma post-treatment.
- the amount of purge gas introduced into the chamber in the first purging step and the second purging step may be 10 to 100,000 times the volume of the introduced shielding compound.
- the reaction gas is a nitriding agent, and the reaction gas, shielding compound, and precursor compound may be transferred into the chamber by VFC method, DLI method, or LDS method.
- the substrate loaded in the chamber may be heated to 300 to 800 °C, and as a specific example, may be heated to 500 to 700 °C.
- the ratio of the shielding compound and the precursor compound input (mg/cycle) in the chamber may be 1:1.5 to 1:20, and as a specific example, 1:3 to 1:15.
- the present invention provides a semiconductor substrate manufactured by the above-described silicon-based thin film forming method.
- the silicon-based thin film may have a two- or three-layer multilayer structure.
- the silicon-based thin film may be a Si-rich thin film, or may be a portion of a Si-rich thin film or an N-rich thin film.
- the present invention provides a semiconductor device including the above-described semiconductor substrate.
- the semiconductor substrate includes low resistive metal gate interconnects, high aspect ratio 3D metal-insulator-metal capacitors, and DRAM trench capacitors. , 3D Gate-All-Around (GAA), or 3D NAND.
- GAA Gate-All-Around
- a shielding compound that improves step coverage even when forming a thin film on a substrate with a complex structure by forming a shielding area for a silicon-based thin film on a substrate to reduce the deposition rate of the silicon-based thin film and appropriately lowering the thin film growth rate.
- process by-products are more effectively reduced when forming a thin film, preventing corrosion or deterioration and improving the crystallinity of the thin film, thereby improving the electrical properties of the thin film.
- process by-products are reduced when forming a thin film, step coverage and thin film density can be improved, and furthermore, there is an effect of providing a thin film forming method using the same and a semiconductor substrate manufactured therefrom.
- Figure 1 is a SIMS analysis graph of SiN thin films prepared in Example 1 using the shielding compound used in the present invention and Comparative Example 1 without using it.
- Figure 2 is a graph examining the change in deposition rate according to supply time of the shielding compound used in the present invention.
- Figure 3 is a graph showing the results of elemental analysis by depth through Ar sputtering of SiN thin films prepared in Examples 3 to 4 and Comparative Example 4.
- Figure 4 is a SIMS analysis graph of SiN thin films prepared in Example 3 and Comparative Example 4.
- Figure 5 is a TEM photograph confirming the step coverage of the SiN thin film deposited using a trench substrate with an aspect ratio of 23:1 in Examples 3 to 4 and Comparative Example 4.
- shielding means not only reducing, preventing, or blocking the adsorption of precursor compounds for forming silicon-based thin films on the substrate, but also reducing the adsorption of process by-products on the substrate. It means to block or block.
- the term “some area” or “part of the substrate” used in this description refers to a specific layer area based on the horizontal plane of the substrate, or refers to a specific layer area based on the vertical plane of the substrate.
- a shielding region that does not remain in the silicon-based thin film is formed at a reduced deposition rate while the thin film growth rate is greatly increased.
- step coverage is significantly improved by securing the uniformity of the thin film, and in particular, it can be deposited at a thin thickness, and the carbon residual amount, which was not easy to reduce even with the use of halides and excessive reducing gas that remained as process by-products, is reduced. It was confirmed that there was improvement. Based on this, the present invention was completed by focusing on research on a shielding compound that provides a shielding area.
- the shielding compound of the present invention provides a shielding compound for silicon-based thin films.
- the silicon-based thin film is, for example, SiH 4 , SiCl 4 , SiF 4 , SiCl 2 H 2 , Si 2 Cl 6 , TEOS, DIPAS, BTBAS, (NH 2 )Si(NHMe) 3 , (NH 2 )Si(NHEt) 3 , (NH 2 )Si(NH n Pr) 3 , (NH 2 )Si(NH i Pr) 3 , (NH 2 )Si(NH n Bu) 3 , (NH 2 )Si(NH i Bu) 3 , ( NH 2 )Si(NH t Bu) 3 , (NMe 2 )Si(NHMe) 3 , (NMe 2 )Si(NHEt) 3 , (NMe 2 )Si(NH n Pr) 3 , (NMe 2 )Si(NH i Pr) 3 , (NMe 2 )Si(NH n Bu) 3 , (NMe 2 )S
- n Pr means n-propyl
- i Pr means iso-propyl
- n Bu means n-butyl
- i Bu means iso-butyl
- t Bu means tert -butyl
- the silicon-based thin film may have a film composition of SixNy as a specific example.
- x and y may each be integers from 0.5 to 4.5.
- x and y may each be an integer of 2.5 to 4.5.
- the silicon-based thin film may be composed of Si 3 N 4 , Si 2 N 3 , Si 2 N, SiN, or a mixture thereof, but is not limited thereto and also includes SiH and SiOH.
- the silicon-based thin film can be used in semiconductor devices not only as a commonly used diffusion barrier but also as an etch stop film or charge trap.
- the shielding compound has the following formula 1:
- R 1 and R 3 are independently an alkyl group having 1 to 6 carbon atoms
- R 2 independently has an alkyl group having 1 to 6 carbon atoms or a functional group of the formula BR 4 R 5 R 6 , B is carbon bonded to A, and R 4 , R 5 and R 6 are independently hydrogen and carbon atoms. It is an alkyl group of 1 to 6, fluorine (F), chlorine (Cl), bromine (Br), or iodine (I),
- X is a halogen element, which is fluorine (F), chlorine (Cl), bromine (Br), or iodine (I).
- A is carbon
- R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, and at least one of them has 2 or 5 carbon atoms.
- the carbon number of any one of R 1 , R 2 and R 3 is 1 and the carbon number of the other two is 2 or 3, more preferably, the carbon number of any one of R 1 , R 2 and R 3 is 1 and the remaining two have a carbon number of 2, and within this range, there is a significant effect of reducing process by-products, excellent step coverage, improved thin film density, and superior electrical properties of the thin film.
- the X may be fluorine, for example, and in this case, it has the advantage of being more suitable for processes requiring high temperature deposition.
- the compound represented by Formula 1 is a halogen-substituted tertiary alkyl compound, and specific examples include 2-chloro-2-methylpropane, 2-chloro-2methylbutane, 2-chloro-2methylpentane, and 3-chloro-3methyl.
- the compound represented by Formula 1 has a refractive index (a) in the range of 1.38 to 1.52, and the vapor pressure (mmHg, b) measured at 25°C divided by the refractive index (a) (b/a) is 0.003 to 0.033. It may be a saturated compound within the range.
- the deposition rate of the silicon-based thin film is reduced and the thin film growth rate is appropriately lowered to ensure step coverage and uniform thickness of the thin film even when forming a thin film on a substrate with a complex structure. It has the advantage of greatly improving performance and preventing the adsorption of not only thin film precursors but also process by-products, thereby effectively protecting the surface of the substrate and effectively removing process by-products.
- the compound represented by Formula 1 has a refractive index (a) in the range of 1.38 to 1.51, and the vapor pressure (mmHg, b) measured at 25°C divided by the refractive index (a) (b/a) is 0.003 to 0.0325. It may be a saturated compound within the range, preferably the refractive index (a) is within the range of 1.383 to 1.505, and the vapor pressure (mmHg, b) measured at 25°C divided by the refractive index (a) (b/a) is within the range of 0.0035 to 1.505.
- a shielding area for a silicon-based thin film is formed on the substrate to reduce the deposition rate of the silicon-based thin film and appropriately lower the thin film growth rate to ensure step coverage even when forming a thin film on a substrate with a complex structure. It has the advantage of greatly improving the step coverage and thickness uniformity of the thin film, effectively protecting the surface of the substrate by preventing adsorption of not only the thin film precursor but also process by-products, and effectively removing process by-products.
- the shielding compound can provide a shielding area for a silicon-based thin film.
- the shielding area for the silicon-based thin film may be formed on the entire substrate or a portion of the substrate on which the silicon-based thin film is formed.
- the shielding area for the silicon-based thin film is characterized in that it does not remain in the silicon-based thin film.
- the silicon-based thin film may contain 0.01% or less of a halogen compound.
- the silicon-based thin film may be used as a diffusion barrier, an etch stop film, or a charge trap, but is not limited thereto.
- the shielding compound may preferably be a compound with a purity of 99.9% or more, a compound with a purity of 99.95% or more, or a compound with a purity of 99.99% or more.
- impurities may be formed, so it is preferably 99% or more. It is recommended to use the above substances.
- the compound represented by Formula 1 is preferably used in the atomic layer deposition (ALD) process. In this case, it effectively protects the surface of the substrate as a shielding compound without interfering with the adsorption of the precursor compound and effectively removes process by-products. There is an advantage to removing it.
- ALD atomic layer deposition
- the compound represented by Formula 1 is preferably a liquid at room temperature (25°C), has a density of 0.8 to 2.5 g/cm 3 or 0.8 to 1.5 g/cm 3 , and has a vapor pressure (20°C) of 0.1 to 300 mmHg or 1 to 300 mmHg, and the solubility in water (25°C) may be 200 mg/L or less, and within this range, it effectively forms a shielding area and has excellent effects in step coverage, thin film thickness uniformity, and film quality improvement. .
- the compound represented by Formula 1 has a density of 0.75 to 2.0 g/cm 3 or 0.8 to 1.3 g/cm 3 , a vapor pressure (20° C. of 1 to 260 mmHg), and a solubility in water (25° C. may be 160 mg/L or less, and within this range, a shielding area is effectively formed, and step coverage, thin film thickness uniformity, and film quality are excellently improved.
- the method of forming a silicon-based thin film of the present invention has the following formula (1):
- R 1 and R 3 are independently an alkyl group having 1 to 6 carbon atoms
- R 2 independently has an alkyl group having 1 to 6 carbon atoms or a functional group of the formula BR 4 R 5 R 6 , B is carbon bonded to A, and R 4 , R 5 and R 6 are independently hydrogen and carbon atoms. It is an alkyl group of 1 to 6, fluorine (F), chlorine (Cl), bromine (Br), or iodine (I),
- a shielding area for a silicon-based thin film is formed on the substrate to reduce the deposition rate of the silicon-based thin film and appropriately lower the thin film growth rate to provide step coverage even when forming a thin film on a substrate with a complex structure. It has the effect of greatly improving step coverage and thickness uniformity of thin films.
- the feeding time of the shielding compound to the substrate surface is preferably 0.01 to 20 seconds, more preferably 0.02 to 20 seconds, and more preferably 0.04 to 20 seconds per cycle. More preferably, it is 0.05 to 20 seconds, and within this range, there are advantages of low thin film growth rate, excellent step coverage, and economic efficiency.
- the feeding time of the shielding compound is based on a chamber volume of 15 to 20 L and a flow rate of 0.5 to 5 mg/s, and more specifically, a chamber volume of 18 L and a flow rate of 1 to 2 mg/s. It is based on .
- the thin film forming method is a preferred embodiment.
- the shielding step to the third purging step can be performed as a unit cycle and the cycle can be repeatedly performed until a thin film of the desired thickness is obtained.
- the shielding compound of the present invention is converted into a precursor within one cycle.
- the thin film growth rate can be appropriately lowered even if deposited at high temperature, and the resulting process by-products are effectively removed, thereby reducing the resistivity of the thin film and greatly improving step coverage.
- the thin film forming method includes vaporizing a precursor compound and adsorbing it on the surface of a substrate loaded in a chamber; Primary purging the inside of the chamber with a purge gas; remind Vaporizing the shielding compound and adsorbing it to the surface of the substrate loaded in the chamber; Secondary purging the inside of the chamber with a purge gas; supplying a reaction gas inside the chamber; and thirdly purging the inside of the chamber with a purge gas.
- the shielding step to the third purging step can be performed as a unit cycle and the cycle can be repeated until a thin film of the desired thickness is obtained. In this way, the shielding compound of the present invention is added later than the precursor compound within one cycle.
- the shielding compound When adsorbed to a substrate, the shielding compound can act as an activator for thin film formation, in this case There is an advantage in that the thin film growth rate is increased, the density and crystallinity of the thin film are increased, the resistivity of the thin film is reduced, and the electrical properties are greatly improved.
- the shielding compound of the present invention can be added before the precursor compound within one cycle and adsorbed to the substrate.
- the thin film growth rate is appropriately reduced to remove process by-products.
- This can be greatly reduced, the step coverage can be greatly improved, the formation of the thin film can be increased, and the specific resistance of the thin film can be reduced, and even when applied to a semiconductor device with a large aspect ratio, the thickness uniformity of the thin film is greatly improved, thereby improving the reliability of the semiconductor device.
- the thin film forming method may repeat the unit cycle 1 to 99,999 times as needed, preferably 10 to 10,000 unit cycles, or more. Preferably, it can be repeated 50 to 5,000 times, more preferably 100 to 2,000 times, and within this range, the desired thickness of the thin film can be obtained and the effect desired in the present invention can be sufficiently obtained.
- the precursor compound is a molecule composed of one or more types selected from the group consisting of Si and C, N, H and Cl, and in the case of a silicon precursor having a vapor pressure of 2 mTorr to 75 KTorr or less at 25 ° C, the above-mentioned shielding despite natural oxidation The effect of forming a shielding area by the compound can be maximized.
- the chamber may be, for example, an ALD chamber or a CVD chamber.
- the shielding compound or precursor compound may be vaporized and injected, and then may include plasma post-treatment. In this case, process by-products can be reduced while controlling the growth rate of the thin film.
- the unadsorbed shielding compound is purged into the chamber in the step of purging.
- the amount of purge gas introduced is not particularly limited as long as it is sufficient to remove the non-adsorbed shielding compound, but for example, it may be 10 to 100,000 times, preferably 50 to 50,000 times, and more preferably 100 to 10,000 times. , within this range, the non-adsorbed shielding compound can be sufficiently removed to form a thin film evenly and prevent deterioration of the film quality.
- the input amounts of the purge gas and the shielding compound are each based on one cycle, and the volume of the shielding compound refers to the volume of the opportunity shielding compound vapor.
- the shielding compound was injected (per cycle) at a flow rate of 1.66 mL/s and an injection time of 0.5 sec, and in the step of purging the non-adsorbed shielding compound, purge gas was injected at a flow rate of 166.6 mL/s and an injection time of 3 sec.
- the injection amount of purge gas is 602 times the injection amount of the shielding compound.
- the amount of purge gas introduced into the ALD chamber in the step of purging the unadsorbed precursor compound is not particularly limited as long as it is an amount sufficient to remove the unadsorbed precursor compound, but for example, the precursor compound introduced into the ALD chamber Based on the volume, it may be 10 to 10,000 times, preferably 50 to 50,000 times, more preferably 100 to 10,000 times, and within this range, the unadsorbed precursor compound is sufficiently removed so that the thin film is formed evenly and the film quality is Deterioration can be prevented.
- the input amounts of the purge gas and the precursor compound are each based on one cycle, and the volume of the precursor compound refers to the volume of the opportunity precursor compound vapor.
- the amount of purge gas introduced into the ALD chamber may be, for example, 10 to 10,000 times the volume of the reaction gas introduced into the ALD chamber, and is preferably 50 times. It may be 50,000 times to 50,000 times, more preferably 100 to 10,000 times, and the desired effect can be sufficiently obtained within this range.
- the input amounts of the purge gas and reaction gas are each based on one cycle.
- the shielding compound and the precursor compound may preferably be transferred into the ALD chamber using a VFC method, a DLI method, or an LDS method, and more preferably, they are transported into the chamber using an LDS method.
- the substrate loaded in the chamber may be heated to 300 to 800° C., for example, to 500 to 700° C., and the shielding compound or precursor compound may be injected onto the substrate in an unheated or heated state.
- the heating conditions may be adjusted during the deposition process after injection without heating. For example, it can be injected onto the substrate at 300 to 800°C for 1 to 30 seconds.
- the dosage ratio (mg/cycle) of the shielding compound and the precursor compound in the chamber may preferably be 1:1.5 to 1:20, more preferably 1:2 to 1:15, and even more preferably 1:2 to 1:20. It is 1:12, and more preferably 1:2.5 to 1:10, and within this range, the effect of improving step coverage and reducing process by-products is significant.
- the precursor compound can be mixed with a non-polar solvent and then added into the chamber, and in this case, there is an advantage that the viscosity or vapor pressure of the precursor compound can be easily adjusted.
- the non-polar solvent may preferably be one or more selected from the group consisting of alkanes and cycloalkanes.
- it contains an organic solvent that has very low reactivity and is easy to manage moisture, and has step coverage (step coverage) even if the deposition temperature increases during thin film formation. There is an advantage that coverage is improved.
- the non-polar solvent may include a C1 to C10 alkane or a C3 to C10 cycloalkane, preferably a C3 to C10 cycloalkane, in which case the reactivity is It has the advantage of being very low and easy to manage moisture.
- the cycloalkane may preferably be a C3 to C10 monocycloalkane.
- monocycloalkanes cyclopentane is liquid at room temperature and has the highest vapor pressure, so it is preferred in the vapor deposition process, but is not limited thereto.
- the non-polar solvent has a solubility in water (25°C) of 200 mg/L or less, preferably 50 to 400 mg/L, more preferably 135 to 175 mg/L, and within this range, the precursor compound It has the advantage of low reactivity and easy moisture management.
- solubility is not particularly limited if it is based on measurement methods or standards commonly used in the technical field to which the present invention pertains, and for example, a saturated solution can be measured by HPLC method.
- the nonpolar solvent may preferably contain 5 to 95% by weight, more preferably 10 to 90% by weight, and even more preferably 40 to 90% by weight, based on the total weight of the precursor compound and the nonpolar solvent. It may contain % by weight, and most preferably it may contain 70 to 90% by weight.
- the content of the non-polar solvent exceeds the upper limit, impurities are created, increasing resistance and the level of impurities in the thin film, and if the content of the organic solvent is less than the lower limit, the step coverage is improved due to the addition of the solvent. It has the disadvantage of being less effective in reducing impurities such as chlorine (Cl) ions.
- the thin film growth rate per cycle ( ⁇ /cycle) reduction rate calculated by Equation 1 below is -5% or less, preferably -10% or less, more preferably Preferably -20% or less, more preferably -30% or less, even more preferably -40% or less, most preferably -45% or less, and within this range, step coverage and film thickness uniformity are great.
- Thin film growth rate reduction per cycle (%) [(Thin film growth rate per cycle when using shielding compound - Thin film growth rate per cycle when using no shielding compound) / Thin film growth rate per cycle when using no shielding compound] X 100
- the thin film growth rate per cycle when using and not using the shielding compound means the thin film deposition thickness per cycle ( ⁇ /cycle), that is, the deposition rate, and the deposition rate is expressed as Ellipsometery, for example.
- the average deposition rate can be obtained by measuring the final thickness of the thin film and dividing it by the total number of cycles.
- the optical thickness (ellipsometry) measurement method was correlated with transmission electron microscopy (TEM) analysis to improve thickness error.
- Equation 1 “when no shielding compound is used” refers to the case where a thin film is manufactured by adsorbing only the precursor compound on a substrate in the thin film deposition process, and a specific example is when the shielding compound is adsorbed in the thin film forming method. This refers to a case where a thin film is formed by omitting the step of purging the non-adsorbed shielding compound.
- the silicon-based thin film forming method is such that the residual halogen intensity (c/s) in the thin film based on a thin film thickness of 100 ⁇ , measured based on SIMS, is preferably 4,000 ppm or less, more preferably 3,700 ppm or less, even more preferably 3,500 ppm or less, and even more. Preferably, it may be 2,000 ppm or less, and more preferably, it may be 0 ppm or close to it, and within this range, the effect of preventing corrosion and deterioration is excellent.
- purging is preferably 1,000 to 50,000 sccm (Standard Cubic Centimeter per Minute), more preferably 2,000 to 30,000 sccm, and even more preferably 2,500 to 15,000 sccm, and within this range, the thin film growth rate per cycle is appropriately controlled, and a single There is an advantage in terms of film quality as deposition is performed at or close to an atomic mono-layer.
- the ALD (Atomic Layer Deposition) process is very advantageous in the manufacture of integrated circuits (ICs) that require a high aspect ratio, and in particular, it provides excellent step conformality and uniform coverage due to a self-limiting thin film growth mechanism. There are advantages such as uniformity and precise thickness control.
- the thin film formation method can be carried out at a deposition temperature in the range of 50 to 800 °C, preferably at a deposition temperature in the range of 300 to 700 °C, more preferably at a deposition temperature in the range of 500 to 700 °C. , More preferably, it is carried out at a deposition temperature in the range of 600 to 650 °C, and within this range, it has the effect of realizing ALD process characteristics and growing a thin film of excellent film quality.
- the thin film formation method may be carried out at a deposition pressure in the range of 0.01 to 20 Torr, preferably in the range of 0.1 to 20 Torr, more preferably in the range of 0.1 to 10 Torr, and most preferably Typically, it is carried out at a deposition pressure in the range of 0.3 to 5 Torr, which is effective in obtaining a thin film of uniform thickness within this range.
- the deposition temperature and deposition pressure may be measured as the temperature and pressure formed within the deposition chamber, or may be measured as the temperature and pressure applied to the substrate within the deposition chamber.
- the silicon-based thin film forming method preferably includes the steps of raising the temperature inside the chamber to the deposition temperature before introducing the shielding compound into the chamber; And/or it may include purging the chamber by injecting an inert gas into the chamber before introducing the shielding compound into the chamber.
- the present invention is a thin film manufacturing device capable of implementing the silicon-based thin film manufacturing method, including an ALD chamber, a first vaporizer for vaporizing the shielding compound, a first transport means for transporting the vaporized shielding compound into the ALD chamber, and a thin film precursor for vaporizing the thin film precursor. It may include a thin film manufacturing apparatus including a second vaporizer and a second transport means for transporting the vaporized thin film precursor into the ALD chamber.
- the vaporizer and transport means are not particularly limited as long as they are vaporizers and transport means commonly used in the technical field to which the present invention pertains.
- the substrate on which the thin film is to be formed is placed in a deposition chamber capable of atomic layer deposition.
- the substrate may include a semiconductor substrate such as a silicon substrate or silicon oxide.
- the substrate may further have a conductive layer or an insulating layer formed on its top.
- the above-described shielding compound and a precursor compound or a mixture thereof and a non-polar solvent are respectively prepared.
- the prepared shielding compound is injected into the vaporizer, changed into a vapor phase, delivered to the deposition chamber, adsorbed on the substrate, and purged to remove the non-adsorbed shielding compound.
- the prepared precursor compound or a mixture of it and a non-polar solvent composition for forming a thin film
- a non-polar solvent composition for forming a thin film
- a process of adsorbing the shielding compound on a substrate and then purging to remove the non-adsorbed shielding compound; and the process of adsorbing the precursor compound on the substrate and purging to remove the non-adsorbed precursor compound may be performed in a different order as needed.
- the method of transferring the shielding compound and the precursor compound (composition for forming a thin film) to the deposition chamber is, for example, a method of transferring volatilized gas using a gas phase flow control (MFC) method (Vapor Flow).
- MFC gas phase flow control
- VDS Liquid Delivery System
- VFC Control
- LMFC Liquid Mass Flow Controller
- one or a mixture of two or more gases selected from the group consisting of argon (Ar), nitrogen (N 2 ), and helium (He) can be used as a transport gas or dilution gas for moving the shielding compound and precursor compound, etc. on the substrate.
- gases selected from the group consisting of argon (Ar), nitrogen (N 2 ), and helium (He)
- Ar argon
- N 2 nitrogen
- He helium
- an inert gas may be used as the purge gas, and preferably the transport gas or dilution gas may be used.
- the reaction gas is not particularly limited as long as it is a reaction gas commonly used in the technical field to which the present invention pertains, and may preferably include a nitriding agent.
- the nitriding agent and the precursor compound adsorbed on the substrate react to form a nitride film.
- the nitriding agent may be nitrogen gas (N 2 ), hydrazine gas (N 2 H 4 ), or a mixture of nitrogen gas and hydrogen gas.
- the reaction gas may contain hydrogen (H 2 ) alone.
- the hydrogen and the precursor compound adsorbed on the substrate react to form a silicon film.
- the remaining unreacted reaction gas is purged using an inert gas. Accordingly, not only excess reaction gas but also generated by-products can be removed.
- the silicon-based thin film forming method includes, for example, the steps of shielding a shielding compound on a substrate, purging the non-adsorbed shielding compound, adsorbing the precursor compound/thin film forming composition on the substrate, and removing the non-adsorbed precursor.
- the steps of purging the compound/thin film forming composition, supplying the reaction gas, and purging the remaining reaction gas are performed as a unit cycle, and the unit cycle can be repeated to form a thin film of a desired thickness.
- the silicon-based thin film forming method includes, as another example, adsorbing a precursor compound/thin film forming composition onto a substrate, purging a non-adsorbed precursor compound/thin film forming composition, adsorbing a shielding compound onto the substrate, The steps of purging the adsorbed shielding compound, supplying the reaction gas, and purging the remaining reaction gas are performed as a unit cycle, and the unit cycle can be repeated to form a thin film of a desired thickness.
- the unit cycle may be repeated 1 to 99,999 times, preferably 10 to 1,000 times, more preferably 50 to 5,000 times, and even more preferably 100 to 2,000 times, and the desired thin film characteristics within this range. This effect is expressed well.
- the present invention also provides a semiconductor substrate, which is characterized in that the semiconductor substrate is manufactured by the silicon-based thin film forming method of the present substrate.
- the semiconductor substrate is manufactured by the silicon-based thin film forming method of the present substrate.
- step coverage and thickness uniformity of the thin film are greatly excellent, and the thin film It has excellent density and electrical properties.
- the manufactured thin film preferably has a thickness of 100 nm or less, an etch rate (WER @ LAL500 60s) ⁇ 2 nm/min based on a thin film thickness of 10 or 20 nm, and both residual carbon content and residual halogen content satisfy 0.01% or less.
- the step coverage ratio is over 90%, and within this range, the performance is excellent as an insulating film and charge trap layer, but it is not limited to this.
- the thin film may have a thickness of, for example, 1 to 100 nm, preferably 1 to 50 nm, more preferably 3 to 25 nm, and even more preferably 5 to 20 nm, and within this range, the thin film characteristics are excellent. There is.
- the thin film may have a residual carbon content and a residual halogen content of preferably 0.1% or less or 0 to 0.01%, more preferably 0 to 0.001%, and even more preferably 0 to 0.0001%, respectively, and this range Although the thin film characteristics are excellent, the thin film growth rate is reduced. Within this range, the appropriate content of carbon in the thin film forms a deep trap site inside the band gap of the thin film, improving charge storage characteristics and improving film density, thereby improving the etch rate, resulting in excellent insulating film properties. The lower the halogen residual amount in the thin film, the better the film quality.
- the thin film has a step coverage of 90% or more, preferably 92% or more, and more preferably 95% or more. Within this range, even a thin film with a complex structure can be easily deposited on a substrate, making it suitable for next-generation semiconductor devices. There are applicable benefits.
- the manufactured thin film is, for example , a silicon nitride film ( Si ⁇ 4.5, 2.5 ⁇ y ⁇ 4.5), and in this case, it has the advantage of being useful as a diffusion barrier, etch stop film, or charge trap for semiconductor devices.
- the thin film may have a two- or three-layer multi-layer structure, if necessary.
- the multilayer film having the two-layer structure may have a lower layer-middle layer structure as a specific example, and the multilayer film having the three-layer structure may have a lower layer film-middle layer-upper layer structure as a specific example.
- the lower layer film is, for example, Si, SiO 2 , MgO, Al 2 O 3 , CaO, ZrSiO 4 , ZrO 2 , HfSiO 4 , Y 2 O 3 , HfO 2 , LaLuO 2 , Si 3 N 4 , SrO, La 2 O 3 , Ta 2 O 5 , BaO, TiO 2 It may include one or more selected from the group consisting of.
- the multilayer film may include Ti x N y , preferably TN.
- the upper layer may include one or more selected from the group consisting of W and Mo.
- Tert-butyl iodide was prepared as a shielding compound and Si 2 Cl 6 as a thin film precursor compound.
- the prepared shielding compound was placed in a canister and supplied to a vaporizer heated to 120°C at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- the shielding compound vaporized in a vapor phase in a vaporizer was introduced into the deposition chamber loaded with the substrate for 1 second, and then argon gas was supplied at 5000 sccm for 2 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 2.5 Torr.
- the prepared Si 2 Cl 6 was placed in a separate canister and supplied to a separate vaporizer heated to 150°C at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- Si 2 Cl 6 evaporated into a vapor phase in a vaporizer was introduced into the deposition chamber for 1 second, and then argon gas was supplied at 5000 sccm for 2 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 2.5 Torr.
- the LAL500 etchant was used to immerse and etch the SiN thin film in the etchant for 60 seconds, and then the reduced thickness was measured as optical thickness to calculate the etch speed.
- a SiN thin film as a self-limiting atomic layer was formed in the same manner as in Example 1, except that tert-butyl bromide was used as the shielding compound.
- the LAL500 etchant was used to immerse and etch the SiN thin film in the etchant for 60 seconds, and then the reduced thickness was measured as optical thickness to calculate the etch speed.
- Tert-butyl chloride was prepared as a shielding compound and Si 2 Cl 6 as a membrane precursor compound.
- the prepared shielding compound was placed in a canister and supplied to a vaporizer heated to 120°C at a flow rate of 0.1 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- the shielding compound vaporized in a vapor phase in a vaporizer was introduced into the deposition chamber loaded with the substrate for 5 to 30 seconds, and then argon gas was supplied at 1000 sccm for 30 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 1.0 Torr.
- the prepared Si 2 Cl 6 was placed in a separate canister and supplied to a separate vaporizer heated to 150°C at a flow rate of 0.1 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- the thin film precursor compound evaporated into a vapor phase in a vaporizer was introduced into the deposition chamber for 5 to 30 seconds, and then argon gas was supplied at 1000 sccm for 30 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 1.0 Torr.
- the LAL500 etchant was used to immerse and etch the SiN thin film in the etchant for 60 seconds, and then the reduced thickness was measured as optical thickness to calculate the etch speed.
- 2-chloro-2-methyl butane was prepared as a shielding compound and Si 2 Cl 6 as a membrane precursor compound.
- the prepared shielding compound was placed in a canister and supplied to a vaporizer heated to 120°C at a flow rate of 0.1 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- the shielding compound vaporized in a vapor phase in a vaporizer was introduced into the deposition chamber loaded with the substrate for 5 to 30 seconds, and then argon gas was supplied at 1000 sccm for 30 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 1.0 Torr.
- the prepared Si 2 Cl 6 was placed in a separate canister and supplied to a separate vaporizer heated to 150°C at a flow rate of 0.1 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- the thin film precursor compound evaporated into a vapor phase in a vaporizer was introduced into the deposition chamber for 5 to 30 seconds, and then argon gas was supplied at 1000 sccm for 30 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 1.0 Torr.
- the LAL500 etchant was used to immerse and etch the SiN thin film in the etchant for 60 seconds, and then the reduced thickness was measured as optical thickness to calculate the etch speed.
- Example 3 The same process as Example 3 was repeated except that tert-butyl chloride as a shielding compound and SiH 2 Cl 2 as a membrane precursor compound were prepared.
- the LAL500 etchant was used to immerse and etch the SiN thin film in the etchant for 60 seconds, and then the reduced thickness was measured as optical thickness to calculate the etch speed.
- Example 4 The same process as Example 4 was repeated except that 2-chloro-2-methyl butane was prepared as a shielding compound and SiH 2 Cl 2 as a membrane precursor compound.
- the LAL500 etchant was used to immerse and etch the SiN thin film in the etchant for 60 seconds, and then the reduced thickness was measured as optical thickness to calculate the etch speed.
- a SiN thin film was formed on the substrate in the same manner as in Example 1, except that the shielding compound was not used and the step of purging the non-adsorbed shielding compound was omitted.
- a SiN thin film which is a self-limiting atomic layer, was formed in the same manner as in Example 1, except that n-pentane was used as the shielding compound in Example 1.
- a SiN thin film which is a self-limiting atomic layer, was formed in the same manner as in Example 1, except that cyclopentane was used as the shielding compound in Example 1.
- a SiN thin film was formed on the substrate in the same manner as in Example 3, except that the shielding compound was not used and the step of purging the non-adsorbed shielding compound was omitted.
- a SiN thin film was formed on the substrate in the same manner as in Example 4, except that the shielding compound was not used and the step of purging the non-adsorbed shielding compound was omitted.
- a SiN thin film was formed on the substrate in the same manner as in Example 5, except that the shielding compound was not used and the step of purging the non-adsorbed shielding compound was omitted.
- a SiN thin film was formed on the substrate in the same manner as in Example 6, except that the shielding compound was not used and the step of purging the non-adsorbed shielding compound was omitted.
- the thin film growth rate of the SiN thin films deposited in Examples 1 to 6 and Comparative Examples 1 to 7 was measured using a device that can measure optical properties such as thickness or refractive index of the thin film using the polarization characteristics of light for the manufactured thin film.
- the thin film growth rate reduction rate was calculated by dividing the thickness of the thin film measured with an ellipsometer by the number of cycles to calculate the thickness of the thin film deposited per cycle. Specifically, it was calculated using Equation 1 below.
- Thin film growth rate reduction per cycle (%) [(Thin film growth rate per cycle when using shielding compound - Thin film growth rate per cycle when not using shielding compound) / Thin film growth rate per cycle when not using shielding compound] x 100
- Examples 1 to 6 using the shielding compound according to the present invention were compared to Comparative Examples 1, 4, 5, 6, and 7 without using it, and Comparative Example 2 using pentane and Comparative Example 3 using cyclopentane. It was confirmed that the thin film growth rate reduction rate per cycle was significantly improved.
- Example 1 which used tert-butyl iodide as a shielding compound, and Comparative Example 1, which did not include tert-butyl iodide, the deposition rate was 0.29 ⁇ /cycle, and compared to 0.35 ⁇ /cycle in Comparative Example 1, it was 20% or more. It was confirmed that the deposition rate decreased.
- Comparative Examples 2 and 3 which used pentane or cyclopentane instead of the shielding compound according to the present invention, also had the same deposition rate as Comparative Example 1.
- a decrease in deposition rate means converting CVD deposition characteristics to ALD deposition characteristics, so it can be used as an indicator of improvement in step covering characteristics.
- Figure 1 is a SIMS analysis graph of SiN thin films prepared in Example 1 and Comparative Example 1.
- Figure 2 below is a graph examining the change in deposition rate according to supply time of the shielding compound of the present invention.
- a deposition rate reduction of -35% (0.66 ⁇ 0.31 ⁇ /cycle) was confirmed as a result of 15 second injection, and 2-
- chloro-2-methyl butane shielding compound a 15-second injection resulted in a -28% reduction in deposition rate (0.66 ⁇ 0.38 ⁇ /cycle).
- Table 1 below shows deposition evaluation results according to deposition temperature when using SiH 2 Cl 2 (DCS) silicon precursor.
- Tert-butyl chloride was used as the shielding compound, and the shielding compound injection time and purge time for each ALD cycle were 5 seconds and 10 seconds, respectively.
- Example 1 using the shielding compound according to the present invention had a deposition temperature compared to Comparative Example 1 without using it or Comparative Example 2 using pentane. It was confirmed that the Cl intensity decreased significantly at 500°C and 550°C, showing excellent impurity reduction characteristics.
- Si 2 Cl 6 was used as the silicon precursor, the shielding compound was injected for 15 seconds, and deposition was performed at 600°C.
- Si 2 Cl 6 was used as the silicon precursor, ⁇ was used as the shielding compound, and the injection time was no injection, 5 second injection, 10 second injection, 15 second injection, and 20 second injection, deposited at a temperature of 600°C. was carried out.
- Figure 4 below is a SIMS analysis graph of SiN thin films prepared in Example 3 and Comparative Example 4. As shown in Figure 4 below, changes in the contents of Si, Cl, and N were not confirmed, but the number of ions corresponding to the mass of secondary ions of C released from the specimen was confirmed to increase by about 10 times. Since this C doping result also affects thin film density, it can be further confirmed by the effect of improving the etch speed.
- the etch rate of Comparative Example 4 was 10.2 nm/min, and as the thin film quality was improved by applying the shielding compound injection process, the etch rate of Example 3 and Example 4 were 8.7 nm/min, respectively. It was confirmed that the speed was improved to 7.8 nm/min.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명은 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자에 관한 것으로, 소정 구조의 화합물을 차폐 화합물로 제공하며, 기판에 실리콘계 박막용 차폐 영역을 형성하여 실리콘계 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 수 있고, 부식이나 열화가 저감되며 박막의 결정성이 향상되어 박막의 전기적 특성이 개선되는 효과가 있다. [대표도] 도 5
Description
본 발명은 차폐 화합물, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 및 반도체 소자에 관한 것으로, 보다 상세하게는 기판에 실리콘계 박막용 차폐 영역을 형성하여 실리콘계 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage), 박막의 두께 균일성을 크게 향상시키는 차폐 화합물, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판에 관한 것이다.
메모리 및 비메모리 반도체 소자의 집적도는 나날이 증가하고 있으며, 그 구조가 점점 복잡해짐에 따라 다양한 박막을 기판에 증착시키는데 있어서 단차 피복성(step coverage)의 중요성이 점점 증대되고 있다.
상기 반도체용 박막은 질화막, 산화막, 금속막 등으로 이루어진다. 상기 질화막으로는 질화규소(SiN), 질화티타늄(TiN), 질화탄탈륨(TaN) 등이 있으며, 상기 산화막으로는 산화규소(SiO2), 산화하프늄(HfO2), 산화지르코늄(ZrO2) 등이 있으며, 상기 금속막으로는 몰리브덴막(Mo), 텅스텐(W), 루테늄(Ru) 등이 있다.
상기 박막은 일반적으로 도핑된 반도체의 실리콘층과 층간 배선 재료로 사용되는 알루미늄(Al), 구리(Cu) 등과의 확산 방지막(diffusion barrier)으로 사용된다. 다만, 텅스텐(W) 박막을 기판에 증착할 때에는 접착층(adhesion layer)으로 사용된다.
기판에 증착된 박막이 우수하고 균일한 물성을 얻기 위해서는 형성된 박막의 높은 단차 피복성이 필수적이다. 따라서 기상반응을 주로 활용하는 CVD(chemical vapor deposition) 공정보다 표면반응을 활용하는 ALD(atomic layer deposition) 공정이 활용되고 있지만, 100% step coverage 구현을 위해서는 여전히 문제가 존재한다.
더욱이, 단차 피복성을 향상시키기 위한 한 방법으로 박막의 성장 속도를 낮추는 방법이 제안되었으나, 박막의 성장 속도를 낮추기 위하여 증착 온도를 감소시키는 경우 박막 내 탄소나 염소와 같은 불순물의 잔류량이 증가하여 막질이 크게 떨어지는 문제가 있다.
또한, 제조된 박막 내 염화물과 같은 공정 부산물이 잔류하게 되어 알루미늄 등과 같은 금속의 부식을 유발하며, 비휘발성 부산물이 생성되는 문제로 막질의 열화를 초래한다.
따라서 복잡한 구조의 박막 형성이 가능하고, 불순물의 잔류량이 낮으며, 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 박막의 형성 방법과 이로부터 제조된 반도체 기판 등의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 공개특허 제2011-0048195호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 기판에 실리콘계 박막용 차폐 영역을 형성하여 실리콘계 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 차폐 화합물, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 제공하는 것을 목적으로 한다.
본 발명은 박막의 결정성을 개선시킴으로써 박막의 밀도 및 전기적 특성을 개선시키는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 실리콘계 박막용 차폐 화합물로서,
상기 실리콘계 박막은 SixNy(x 및 y는 각각 0.5 내지 4.5의 정수이다.)인 막 조성을 가지며,
상기 차폐 화합물은 하기 화학식 1
[화학식 1]
(상기 A는 탄소이고,
상기 R1, R3는 독립적으로 탄소수 1 내지 6의 알킬기이며,
상기 R2는 독립적으로 탄소수 1 내지 6의 알킬기 또는 식 BR4R5R6의 작용기를 가지고, 상기 B는 A와 결합된 탄소이고, 상기 R4, R5 및 R6은 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이며,
상기 X는 할로겐 원소로 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이다.)로 표시되는 포화 화합물인 것을 특징으로 하는 실리콘계 박막용 차폐 화합물을 제공한다.
상기 차폐 화합물은 굴절률(a)이 1.38 내지 1.52 범위 내인 동시에 증기압(25℃, mmHg, b)을 상기 굴절률(a)로 나눈 값(b/a)이 0.003 내지 0.033 범위 내일 수 있다.
상기 실리콘계 박막은 Si3N4, Si2N3, Si2N, SiN 또는 이들의 혼합으로 구성된 것일 수 있다.
상기 차폐 화합물은 실리콘계 박막용 차폐 영역을 제공할 수 있다.
상기 실리콘계 박막용 차폐 영역은 상기 실리콘계 박막에 잔류하지 않고, 상기 실리콘계 박막은 할로겐 원소를 0.01중량% 미만으로 포함할 수 있다.
상기 실리콘계 박막은 확산방지막, 에칭정지막 또는 차지트랩 용도일 수 있다.
또한, 본 발명은 하기 화학식 1
[화학식 1]
(상기 A는 탄소이고,
상기 R1, R3는 독립적으로 탄소수 1 내지 6의 알킬기이며,
상기 R2는 독립적으로 탄소수 1 내지 6의 알킬기 또는 식 BR4R5R6의 작용기를 가지고, 상기 B는 A와 결합된 탄소이고, 상기 R4, R5 및 R6은 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이며,
상기 X는 할로겐 원소로 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이다.)로 표시되는 포화 구조의 차폐 화합물을 챔버 내로 주입하여 로딩(loading)된 기판 표면을 차폐시키는 단계를 포함하는 것을 특징으로 하는 실리콘계 박막 형성 방법을 제공한다.
상기 차폐 화합물을 기화하여 챔버 내 로딩된 기판 표면에 차폐 영역을 형성하는 단계;
상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계;
전구체 화합물을 기화하여 상기 차폐 영역을 벗어난 영역에 흡착시키는 단계;
상기 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계;
상기 챔버 내부에 반응 가스를 공급하는 단계; 및
상기 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계;를 포함할 수 있다.
전구체 화합물을 기화하여 챔버 내 로딩된 기판 표면에 흡착시키는 단계;
상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계;
상기 차폐 화합물을 기화하여 챔버 내 로딩된 기판 표면을 차폐하는 단계;
상기 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계;
상기 챔버 내부에 반응 가스를 공급하는 단계; 및
상기 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계;를 포함할 수 있다.
상기 전구체 화합물은 일례로 Si와 C, N, H 및 Cl로 이루어진 군으로부터 선택된 1종 이상으로 구성된 분자일 수 있으며, 바람직하게는 Si와 H 및 Cl로 이루어진 분자일 수 있다. 이 경우에 증착 속도를 저감시키면서 수득된 실리콘계 박막 내 할로겐 원소를 0.01% 미만으로 포함할 수 있다.
상기 전구체 화합물은 25 ℃에서 증기압이 2 mTorr 내지 75 KTorr인 실리콘 전구체일 수 있다.
상기 챔버는 ALD 챔버 또는 CVD 챔버일 수 있다.
상기 차폐 화합물 또는 전구체 화합물은 기화하여 주입된 다음 플라즈마 후처리하는 단계를 포함할 수 있다.
상기 1차 퍼징 단계와 상기 2차 퍼징 단계에서 각각 챔버 내부로 투입되는 퍼지 가스의 양은 투입된 차폐 화합물의 부피를 기준으로 10 내지 100,000배일 수 있다.
상기 반응 가스는 질화제이고, 상기 반응 가스, 차폐 화합물 및 전구체 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있다.
상기 챔버 내 로딩된 기판은 300 내지 800 ℃로 가열될 수 있고, 구체적인 예로 500 내지 700 ℃로 가열될 수 있다.
상기 차폐 화합물과 상기 전구체 화합물의 챔버 내 투입량(mg/cycle) 비는 1 : 1.5 내지 1 : 20일 수 있고, 구체적인 예로 1 : 3 내지 1 : 15일 수 있다.
또한, 본 발명은 전술한 실리콘계 박막 형성 방법으로 제조됨을 특징으로 하는 반도체 기판을 제공한다.
상기 실리콘계 박막은 2층 또는 3층의 다층 구조일 수 있다.
상기 실리콘계 박막은 Si-rich 박막이거나, Si-rich 박막 또는 N-rich 박막 중 일부 영역일 수 있다.
또한, 본 발명은 전술한 반도체 기판을 포함하는 반도체 소자를 제공한다.
상기 반도체 기판은 저 저항 금속 게이트 인터커넥트(low resistive metal gate interconnects), 고 종횡비 3D 금속-절연체-금속(MIM) 커패시터(high aspect ratio 3D metal-insulator-metal capacitor), DRAM 트렌치 커패시터(DRAM trench capacitor), 3D 게이트-올-어라운드(GAA; Gate-All-Around), 또는 3D NAND일 수 있다.
본 발명에 따르면, 기판에 실리콘계 박막용 차폐 영역을 형성하여 실리콘계 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성을 향상시키는 차폐 화합물을 제공하는 효과가 있다.
또한 박막 형성시 공정 부산물이 보다 효과적으로 감소되어, 부식이나 열화를 막고 박막의 결정성을 개선시킴으로써 박막의 전기적 특성을 개선시키는 효과가 있다.
또한 박막 형성시 공정 부산물이 감소되고 단차 피복성과 박막 밀도를 개선시킬 수 있고, 나아가 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 제공하는 효과가 있다.
도 1은 본 발명에서 사용하는 차폐 화합물을 사용한 실시예 1과 미사용한 비교예 1에서 제조된 SiN 박막의 SIMS 분석 그래프이다.
도 2는 본 발명에서 사용하는 차폐 화합물의 공급시간별 증착속도 변화를 살펴본 그래프이다.
도 3은 실시예 3 내지 실시예 4와, 비교예 4에서 제조한 SiN 박막의 Ar 스퍼터링을 통한 깊이별 원소분석결과를 나타낸 그래프이다.
도 4는 실시예 3과 비교예 4에서 제조된 SiN 박막의 SIMS 분석 그래프이다.
도 5는 실시예 3 내지 실시예 4, 및 비교예 4에서 23:1의 종횡비를 갖는 트랜치 기판을 활용하여 증착된 SiN 박막의 단차 피복성을 확인한 TEM 사진이다.
이하 본 기재의 실리콘계 박막용 차폐 화합물, 이를 이용한 실리콘계 박막 형성 방법 및 이로부터 제조된 반도체 기판을 상세하게 설명한다.
본 기재에서 사용하는 용어 “차폐”는 달리 특정하지 않는 한, 실리콘계 박막을 형성하기 위한 전구체 화합물이 기판 상에 흡착되는 것을 저감, 저지 또는 차단할 뿐 아니라 공정 부산물이 기판 상에 흡착되는 것까지 저감, 저지 또는 차단하는 것을 의미한다.
본 기재에서 사용하는 용어 “일부 영역” 또는 ”일부 기판”은 달리 특정하지 않는 한, 기판의 수평면을 기준으로 하여 특정 층 부위를 지칭하거나, 기판의 수직면을 기준으로 하여 특정 층 부위를 지칭한다.
본 발명자들은 챔버 내부에 로딩된 기판 표면에 실리콘계 박막을 형성하기 위한 전구체 화합물을 차폐하는 차폐 화합물을 사용하는 경우, 실리콘계 박막에 잔류하지 않는 차폐 영역을 저감된 증착 속도로 형성하는 동시에 박막 성장률이 크게 낮아져서 복잡한 구조의 기판에 적용하더라도 박막의 균일성을 확보하여 단차 커버리지가 크게 향상되고, 특히 얇은 두께로 증착 가능하고, 공정 부산물로 잔류하던 할로겐화물 및 과도한 환원 가스를 사용하고도 줄이기 쉽지 않던 탄소 잔량까지 개선시키는 것을 확인하였다. 이를 토대로 차폐 영역을 제공하는 차폐 화합물에 대한 연구에 매진하여 본 발명을 완성하게 되었다.
본 발명의 차폐 화합물은 실리콘계 박막용 차폐 화합물을 제공한다.
상기 실리콘계 박막은 일례로 SiH4, SiCl4, SiF4, SiCl2H2, Si2Cl6, TEOS, DIPAS, BTBAS, (NH2)Si(NHMe)3, (NH2)Si(NHEt)3, (NH2)Si(NHnPr)3, (NH2)Si(NHiPr)3, (NH2)Si(NHnBu)3, (NH2)Si(NHiBu)3, (NH2)Si(NHtBu)3, (NMe2)Si(NHMe)3, (NMe2)Si(NHEt)3, (NMe2)Si(NHnPr)3, (NMe2)Si(NHiPr)3, (NMe2)Si(NHnBu)3, (NMe2)Si(NHiBu)3, (NMe2)Si(NHtBu)3, (NEt2)Si(NHMe)3, (NEt2)Si(NHEt)3, (NEt2)Si(NHnPr)3, (NEt2)Si(NHiPr)3, (NEt2)Si(NHnBu)3, (NEt2)Si(NHiBu)3, (NEt2)Si(NHtBu)3, (NnPr2)Si(NHMe)3, (NnPr2)Si(NHEt)3, (NnPr2)Si(NHnPr)3, (NnPr2)Si(NHiPr)3, (NnPr2)Si(NHnBu)3, (NnPr2)Si(NHiBu)3, (NnPr2)Si(NHtBu)3, (NiPr2)Si(NHMe)3, (NiPr2)Si(NHEt)3, (NiPr2)Si(NHnPr)3, (NiPr2)Si(NHiPr)3, (NiPr2)Si(NHnBu)3, (NiPr2)Si(NHiBu)3, (NiPr2)Si(NHtBu)3, (NnBu2)Si(NHMe)3, (NnBu2)Si(NHEt)3, (NnBu2)Si(NHnPr)3, (NnBu2)Si(NHiPr)3, (NnBu2)Si(NHnBu)3, (NnBu2)Si(NHiBu)3, (NnBu2)Si(NHtBu)3, (NiBu2)Si(NHMe)3, (NiBu2)Si(NHEt)3, (NiBu2)Si(NHnPr)3, (NiBu2)Si(NHiPr)3, (NiBu2)Si(NHnBu)3, (NiBu2)Si(NHiBu)3, (NiBu2)Si(NHtBu)3, (NtBu2)Si(NHMe)3, (NtBu2)Si(NHEt)3, (NtBu2)Si(NHnPr)3, (NtBu2)Si(NHiPr)3, (NtBu2)Si(NHnBu)3, (NtBu2)Si(NHiBu)3, (NtBu2)Si(NHtBu)3, (NH2)2Si(NHMe)2, (NH2)2Si(NHEt)2, (NH2)2Si(NHnPr)2, (NH2)2Si(NHiPr)2, (NH2)2Si(NHnBu)2, (NH2)2Si(NHiBu)2, (NH2)2Si(NHtBu)2, (NMe2)2Si(NHMe)2, (NMe2)2Si(NHEt)2, (NMe2)2Si(NHnPr)2, (NMe2)2Si(NHiPr)2, (NMe2)2Si(NHnBu)2, (NMe2)2Si(NHiBu)2, (NMe2)2Si(NHtBu)2, (NEt2)2Si(NHMe)2, (NEt2)2Si(NHEt)2, (NEt2)2Si(NHnPr)2, (NEt2)2Si(NHiPr)2, (NEt2)2Si(NHnBu)2, (NEt2)2Si(NHiBu)2, (NEt2)2Si(NHtBu)2, (NnPr2)2Si(NHMe)2, (NnPr2)2Si(NHEt)2, (NnPr2)2Si(NHnPr)2, (NnPr2)2Si(NHiPr)2, (NnPr2)2Si(NHnBu)2, (NnPr2)2Si(NHiBu)2, (NnPr2)2Si(NHtBu)2, (NiPr2)2Si(NHMe)2, (NiPr2)2Si(NHEt)2, (NiPr2)2Si(NHnPr)2, (NiPr2)2Si(NHiPr)2, (NiPr2)2Si(NHnBu)2, (NiPr2)2Si(NHiBu)2, (NiPr2)2Si(NHtBu)2, (NnBu2)2Si(NHMe)2, (NnBu2)2Si(NHEt)2, (NnBu2)2Si(NHnPr)2, (NnBu2)2Si(NHiPr)2, (NnBu2)2Si(NHnBu)2, (NnBu2)2Si(NHiBu)2, (NnBu2)2Si(NHtBu)2, (NiBu2)2Si(NHMe)2, (NiBu2)2Si(NHEt)2, (NiBu2)2Si(NHnPr)2, (NiBu2)2Si(NHiPr)2, (NiBu2)2Si(NHnBu)2, (NiBu2)2Si(NHiBu)2, (NiBu2)2Si(NHtBu)2, (NtBu2)2Si(NHMe)2, (NtBu2)2Si(NHEt)2, (NtBu2)2Si(NHnPr)2, (NtBu2)2Si(NHiPr)2, (NtBu2)2Si(NHnBu)2, (NtBu2)2Si(NHiBu)2, (NtBu2)2Si(NHtBu)2, Si(HNCH2CH2NH)2, Si(MeNCH2CH2NMe)2, Si(EtNCH2CH2NEt)2, Si(nPrNCH2CH2NnPr)2, Si(iPrNCH2CH2NiPr)2, Si(nBuNCH2CH2NnBu)2, Si(iBuNCH2CH2NiBu)2, Si(tBuNCH2CH2NtBu)2, Si(HNCHCHNH)2, Si(MeNCHCHNMe)2, Si(EtNCHCHNEt)2, Si(nPrNCHCHNnPr)2, Si(iPrNCHCHNiPr)2, Si(nBuNCHCHNnBu)2, Si(iBuNCHCHNiBu)2, Si(tBuNCHCHNtBu)2, (HNCHCHNH)Si(HNCH2CH2NH), (MeNCHCHNMe)Si(MeNCH2CH2NMe), (EtNCHCHNEt)Si(EtNCH2CH2NEt), (nPrNCHCHNnPr)Si(nPrNCH2CH2NnPr), (iPrNCHCHNiPr)Si(iPrNCH2CH2NiPr), (nBuNCHCHNnBu)Si(nBuNCH2CH2NnBu), (iBuNCHCHNiBu)Si(iBuNCH2CH2NiBu), (tBuNCHCHNtBu)Si(tBuNCH2CH2NtBu), (NHtBu)2Si(HNCH2CH2NH), (NHtBu)2Si(MeNCH2CH2NMe), (NHtBu)2Si(EtNCH2CH2NEt), (NHtBu)2Si(nPrNCH2CH2NnPr), (NHtBu)2Si(iPrNCH2CH2NiPr), (NHtBu)2Si(nBuNCH2CH2NnBu), (NHtBu)2Si(iBuNCH2CH2NiBu), (NHtBu)2Si(tBuNCH2CH2NtBu), (NHtBu)2Si(HNCHCHNH), (NHtBu)2Si(MeNCHCHNMe), (NHtBu)2Si(EtNCHCHNEt), (NHtBu)2Si(nPrNCHCHNnPr), (NHtBu)2Si(iPrNCHCHNiPr), (NHtBu)2Si(nBuNCHCHNnBu), (NHtBu)2Si(iBuNCHCHNiBu), (NHtBu)2Si(tBuNCHCHNtBu), (iPrNCH2CH2NiPr)Si(NHMe)2, (iPrNCH2CH2NiPr)Si(NHEt)2, (iPrNCH2CH2NiPr)Si(NHnPr)2, (iPrNCH2CH2NiPr)Si(NHiPr)2, (iPrNCH2CH2NiPr)Si(NHnBu)2, (iPrNCH2CH2NiPr)Si(NHiBu)2, (iPrNCH2CH2NiPr)Si(NHtBu)2, (iPrNCHCHNiPr)Si(NHMe)2, (iPrNCHCHNiPr)Si(NHEt)2, (iPrNCHCHNiPr)Si(NHnPr)2, (iPrNCHCHNiPr)Si(NHiPr)2, (iPrNCHCHNiPr)Si(NHnBu)2, (iPrNCHCHNiPr)Si(NHiBu)2 및 (iPrNCHCHNiPr)Si(NHtBu)2 로 이루어진 군으로부터 선택된 1종 이상의 전구체로 제공될 수 있고, 이 경우 본 발명에서 달성하고자 하는 효과를 충분히 얻을 수 있다.
상기 nPr은 n-프로필을 의미하고, iPr은 iso-프로필을 의미하며, nBu은 n-부틸을, iBu은 iso-부틸을, tBu은 tert-부틸을 의미한다.
상기 실리콘계 박막은 구체적인 예로 SixNy인 막 조성을 가질 수 있다.
여기서 x 및 y는 각각 0.5 내지 4.5의 정수일 수 있다.
상기 x 및 y는 바람직하게는 각각 2.5 내지 4.5의 정수일 수 있다.
상기 실리콘계 박막은 Si3N4, Si2N3, Si2N, SiN 또는 이들의 혼합으로 구성될 수 있으나, 이에 한정하는 것은 아니며, SiH, SiOH 또한 포함하는 의미이다.
상기 실리콘계 박막은 일반적으로 사용하는 확산방지막 뿐 아니라 에칭 정지막 또는 차지트랩으로서 반도체 소자에 활용될 수 있다.
상기 차폐 화합물은 하기 화학식 1
[화학식 1]
(상기 A는 탄소이고,
상기 R1, R3는 독립적으로 탄소수 1 내지 6의 알킬기이며,
상기 R2는 독립적으로 탄소수 1 내지 6의 알킬기 또는 식 BR4R5R6의 작용기를 가지고, 상기 B는 A와 결합된 탄소이고, 상기 R4, R5 및 R6은 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이며,
상기 X는 할로겐 원소로 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이다.)로 표시되는 포화 화합물인 것을 특징으로 하고, 이와 같은 경우 실리콘계 박막 형성 시 실리콘계 박막에 잔류하지 않는 차폐 영역을 저감된 증착 속도로 형성하는 동시에 부반응을 억제하고 박막 성장률을 조절하여, 박막 내 공정 부산물이 저감되어 부식이나 열화가 저감되고, 박막의 결정성이 향상되며, 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 효과가 있다.
상기 화학식 1에서 상기 A는 탄소이다.
상기 R1, R2 및 R3는 각각 독립적으로 탄소수 1 내지 6의 알킬기이되 이들 중 최소 하나 이상은 탄소수가 2 또는 5이다. 바람직한 일례로, 상기 R1, R2 및 R3 중 어느 하나의 탄소수는 1이고 나머지 둘의 탄소수는 2 또는 3, 보다 바람직하게는 상기 R1, R2 및 R3 중 어느 하나의 탄소수는 1이고 나머지 둘의 탄소수는 2이며, 이 범위 내에서 공정 부산물 감소 효과가 크고 단차 피복성이 우수하며, 박막 밀도 향상 효과 및 박막의 전기적 특성이 보다 뛰어난 이점이 있다.
상기 화학식 1에서 X는 할로겐 원소로, 바람직하게는 불소, 염소 또는 브롬일 수 있고, 보다 바람직하게는 염소 또는 브롬일 수 있으며, 이 범위 내에서 공정 부산물 감소 및 단차 피복성 개선 효과가 더욱 뛰어난 이점이 있다. 또한, 상기 X는 일례로 불소일 수 있고, 이 경우 고온 증착이 요구되는 공정에 보다 적합한 이점이 있다.
상기 화학식 1에서 X는 다른 바람직한 일례로 아이오딘일 수 있으며, 이 범위 내에서 박막 결정성이 개선되고 부반응을 억제하여 공정 부산물 감소 효과가 더욱 뛰어난 이점이 있다.
상기 화학식 1로 표시되는 화합물은 할로겐 치환된 터셔리 알킬 화합물로, 구체적인 예로 2-클로로-2-메틸프로판, 2-클로로-2메틸부탄, 2-클로로-2메틸펜탄, 3-클로로-3메틸펜탄, 3-클로로-3메틸헥산, 3-클로로-3에틸펜탄, 3-클로로-3에틸헥산, 4-클로로-4메틸헵탄, 4-클로로-4에틸헵탄, 4-클로로-4프로필헵탄, 2-브로모-2메틸프로판, 2-브로모-2메틸부탄, 2-브로모-2메틸펜탄, 3-브로모-3메틸펜탄, 3-브로모-3메틸헥산, 3-브로모-3에틸펜탄, 3-브로모-3에틸헥산, 4-브로모-4메틸헵탄, 4-브로모-4에틸헵탄, 4-브로모-4프로필헵탄, 2-아이오도-2메틸프로판, 2-아이오도-2메틸부탄, 2-아이오도-2메틸펜탄, 3-아이오도-3메틸펜탄, 3-아이오도-3메틸헥산, 3-아이오도-3에틸펜탄, 3-아이오도-3에틸헥산, 4-아이오도-4메틸헵탄, 4-아이오도-4에틸헵탄, 4-아이오도-4프로필헵탄, 2-플루오로-2메틸프로판, 2-플루오로-2메틸부탄, 2-플루오로-2메틸펜탄, 3-플루오로-3메틸펜탄, 3-플루오로-3메틸헥산, 3-플루오로-3에틸펜탄, 3-플루오로-3에틸헥산, 4-플루오로-4메틸헵탄, 4-플루오로-4에틸헵탄, 4-플루오로-4프로필헵탄으로 이루어진 군으로부터 선택된 1종 이상이고, 바람직하게는 2-클로로-2메틸프로판, 2-클로로-2메틸부탄, 3-클로로-3메틸펜탄, tert-부틸 클로라이드, 2-브로모-2메틸프로판, 2-브로모-2메틸부탄, 3-브로모-3메틸펜탄, tert-부틸 브로마이드, 2-아이오도-2메틸프로판, 2-아이오도-2메틸부탄, 3-아이오도-3메틸펜탄, tert-부틸 아이오다이드, 2-플루오로-2메틸 프로판, 2-플루오로-2메틸부탄, 3-플루오로-3메틸펜탄 및 tert-부틸 플루오라이드로 이루어진 군으로부터 선택된 1종 이상이며, 이 경우 실리콘 박막용 차폐 영역을 제공하여 박막의 성장률을 조절하는 효과가 크고, 공정 부산물 제거 효과 또한 크고, 단차 피복성 개선 및 막질 개선효과가 우수하다.
상기 화학식 1로 표시되는 화합물은 일례로 굴절률(a)이 1.38 내지 1.52 범위 내인 동시에 25℃에서 측정한 증기압(mmHg, b)을 상기 굴절률(a)로 나눈 값(b/a)이 0.003 내지 0.033 범위 내인 포화 화합물일 수 있다. 이러한 경우에 기판에 실리콘계 박막용 차폐 영역을 형성하여 실리콘계 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키고 박막 전구체 뿐 아니라 공정 부산물이 흡착을 저지하여 기판의 표면을 효과적으로 보호(protection)하고 공정 부산물을 효과적으로 제거하는 이점이 있다.
상기 화학식 1로 표시되는 화합물은 구체적인 예로 굴절률(a)이 1.38 내지 1.51 범위 내인 동시에 25℃에서 측정한 증기압(mmHg, b)을 상기 굴절률(a)로 나눈 값(b/a)이 0.003 내지 0.0325 범위 내인 포화 화합물일 수 있고, 바람직하게는 굴절률(a)이 1.383 내지 1.505 범위 내인 동시에 25℃에서 측정한 증기압(mmHg, b)을 상기 굴절률(a)로 나눈 값(b/a)이 0.0035 내지 0.0324 범위 내인 포화 화합물일 수 있으며, 이 경우에 기판에 실리콘계 박막용 차폐 영역을 형성하여 실리콘계 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키고 박막 전구체 뿐 아니라 공정 부산물이 흡착을 저지하여 기판의 표면을 효과적으로 보호(protection)하고 공정 부산물을 효과적으로 제거하는 이점이 있다.
상기 차폐 화합물은 실리콘계 박막용 차폐 영역을 제공할 수 있다.
일례로, 상기 실리콘계 박막용 차폐 영역은 상기 실리콘계 박막이 형성되는 전체 기판 또는 일부 기판에 형성될 수 있다.
상기 실리콘계 박막용 차폐 영역은 상기 실리콘계 박막에 잔류하지 않는 것을 특징으로 한다.
이때 잔류하지 않는다는 것은, 달리 특정하지 않는 한, XPS로 성분 분석 시 C 원소 0.1 원자%(atom %), Si 원소 0.1 원자%(atom%) 미만, N 원소 0.1 원자%(atom%) 미만, 할로겐 원소 0.1 원자%(atom%) 미만으로 존재하는 경우를 지칭한다.
상기 실리콘계 박막은 구체적인 예로 할로겐 화합물을 0.01% 이하로 포함할 수 있다.
상기 실리콘계 박막은 확산방지막, 에칭정지막 또는 차지트랩 용도로 사용될 수 있으며, 이에 한정하는 것은 아니다.
상기 차폐 화합물은 바람직하게는 순도 99.9% 이상의 화합물, 순도 99.95% 이상의 화합물, 또는 순도 99.99% 이상의 화합물일 수 있으며, 참고로 순도 99% 미만의 화합물을 사용할 경우에는 불순물을 형성할 수 있어 가급적 99% 이상의 물질을 사용하는 것이 좋다.
상기 화학식 1로 표시되는 화합물은 바람직하게 원자층 증착(ALD) 공정에 사용되는 것이며, 이 경우 전구체 화합물의 흡착을 방해하지 않으면서 차폐 화합물로서 기판의 표면을 효과적으로 보호(protection)하고 공정 부산물을 효과적으로 제거하는 이점이 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게 상온(25℃)에서 액체이고, 밀도가 0.8 내지 2.5 g/cm3 또는 0.8 내지 1.5 g/cm3이며, 증기압(20℃)이 0.1 내지 300 mmHg 또는 1 내지 300 mmHg이고, 물에서의 용해도(25℃)가 200 mg/L 이하일 수 있으며, 이 범위 내에서 차폐 영역을 효과적으로 형성하고, 단차 피복성, 박막의 두께 균일성 및 막질 개선이 우수한 효과가 있다.
보다 바람직하게는, 상기 화학식 1로 표시되는 화합물은 밀도가 0.75 내지 2.0 g/cm3 또는 0.8 내지 1.3 g/cm3이며, 증기압(20℃이 1 내지 260 mmHg이고, 물에서의 용해도(25℃가 160 mg/L 이하일 수 있으며, 이 범위 내에서 차폐 영역을 효과적으로 형성하고, 단차 피복성, 박막의 두께 균일성 및 막질개선이 우수한 효과가 있다.
본 발명의 실리콘계 박막 형성 방법은 하기 화학식 1
[화학식 1]
(상기 A는 탄소이고,
상기 R1, R3는 독립적으로 탄소수 1 내지 6의 알킬기이며,
상기 R2는 독립적으로 탄소수 1 내지 6의 알킬기 또는 식 BR4R5R6의 작용기를 가지고, 상기 B는 A와 결합된 탄소이고, 상기 R4, R5 및 R6은 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이며,
상기 X는 할로겐 원소로 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이다.)로 표시되는 차폐 화합물을 ALD 챔버 내로 주입하여 로딩(loading)된 기판 표면에 흡착시키는 단계를 포함하는 것을 특징으로 하고, 이와 같은 경우 기판에 실리콘계 박막용 차폐 영역을 형성하여 실리콘계 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 효과가 있다.
상기 차폐 화합물을 기판 표면에 차폐시키는 단계는 기판 표면에 차폐 화합물의 공급 시간(Feeding Time)이 사이클당 바람직하게 0.01 내지 20 초, 보다 바람직하게 0.02 내지 20 초, 더욱 바람직하게 0.04 내지 20 초, 보다 더욱 바람직하게 0.05 내지 20 초이고, 이 범위 내에서 박막 성장률이 낮고 단차 피복성 및 경제성이 우수한 이점이 있다.
본 기재에서 차폐 화합물의 공급 시간(Feeding Time)은 챔버의 부피 15 내지 20 L 및 유량 0.5 내지 5 mg/s을 기준으로 하고, 보다 구체적으로는 챔버의 부피 18 L 및 유량 1 내지 2 mg/s을 기준으로 한다.
상기 박막 형성 방법은 바람직한 일 실시예로 상기 차폐 화합물을 기화하여 ALD 챔버 내 로딩된 기판 표면에 차폐시키는 단계; 상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계; 전구체 화합물을 기화하여 챔버 내 로딩된 기판 표면에 흡착시키는 단계; 상기 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계; 상기 챔버 내부에 반응 가스를 공급하는 단계; 및 상기 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계를 포함할 수 있다. 이때, 상기 차폐 단계 내지 3차 퍼징 단계를 단위 사이클(cycle)로 하여 목적하는 두께의 박막을 얻을 때까지 상기 사이클을 반복하여 수행할 수 있고, 이와 같이 한 사이클 내에서 본 발명의 차폐 화합물을 전구체 화합물보다 먼저 투입하여 기판에 흡착시키는 경우, 고온에서 증착하더라도 박막 성장률이 적절히 낮출 수 있고, 생성되는 공정 부산물이 효과적으로 제거되어 박막의 비저항이 감소되고 단차 피복성이 크게 향상되는 이점이 있다.
바람직한 또 다른 실시예로, 상기 박막 형성 방법은 전구체 화합물을 기화하여 챔버 내 로딩된 기판 표면에 흡착시키는 단계; 상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계; 상기 차폐 화합물을 기화하여 챔버 내 로딩된 기판 표면에 흡착시키는 단계; 상기 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계; 상기 챔버 내부에 반응 가스를 공급하는 단계; 및 상기 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계를 포함할 수 있다. 이때, 상기 차폐 단계 내지 3차 퍼징 단계를 단위 사이클로 하여 목적하는 두께의 박막을 얻을 때까지 상기 사이클을 반복하여 수행할 수 있고, 이와 같이 한 사이클 내에서 본 발명의 차폐 화합물을 전구체 화합물보다 나중에 투입하여 기판에 흡착시키는 경우, 상기 차폐 화합물은 박막 형성용 활성화제로서 작용할 수 있으며, 이 경우 이러한 경우 박막 성장률이 높아지고, 박막의 밀도 및 결정성이 높아져 박막의 비저항이 감소되고 전기적 특성이 크게 향상되는 이점이 있다.
본 발명의 박막 형성 방법은 바람직한 일례로 한 사이클 내에서 본 발명의 차폐 화합물을 전구체 화합물보다 먼저 투입하여 기판에 흡착시킬 수 있고, 이 경우 고온에서 박막을 증착시키더라도 박막 성장률을 적절히 감소시킴으로써 공정 부산물이 크게 감소되고 단차 피복성이 크게 향상될 수 있고, 박막의 결성성이 증가하여 박막의 비저항이 감소될 수 있으며, 종횡비가 큰 반도체 소자에 적용하더라도 박막의 두께 균일도가 크게 향상되어 반도체 소자의 신뢰성을 확보하는 이점이 있다.
상기 박막 형성 방법은 일례로 상기 차폐 화합물을 전구체 화합물의 증착 전 또는 후에 증착시키는 경우, 필요에 따라 단위 사이클을 1 내지 99,999회 반복 수행할 수 있고, 바람직하게는 단위 사이클을 10 내지 10,000회, 보다 바람직하게는 50 내지 5,000회, 보다 더욱 바람직하게는 100 내지 2,000회 반복 수행할 수 있으며, 이 범위 내에서 목적하는 박막의 두께를 얻으면서 본 발명에서 달성하고자 하는 효과를 충분히 얻을 수 있다.
상기 전구체 화합물은 Si와 C, N, H 및 Cl로 이루어진 군으로부터 선택된 1종 이상으로 구성된 분자로서 25 ℃에서 증기압이 2 mTorr 내지 75 KTorr 이하인 실리콘 전구체인 경우에, 자연 산화에도 불구하고 전술한 차폐 화합물에 의한 차폐 영역을 형성하는 효과를 극대화할 수 있다.
본 발명에서 상기 챔버는 일례로 ALD 챔버 또는 CVD 챔버일 수 있다.
본 발명에서 상기 차폐 화합물 또는 전구체 화합물은 기화하여 주입된 다음 플라즈마 후처리하는 단계를 포함할 수 있고, 이 경우에 박막의 성장률을 조절하면서 공정 부산물을 줄일 수 있다.
기판 상에 상기 차폐 화합물을 먼저 흡착시킨 후 상기 전구체 화합물을 흡착시키는 경우, 또는 상기 전구체 화합물을 먼저 흡착시킨 후 상기 차폐 화합물을 흡착시키는 경우, 상기 미흡착 차폐 화합물을 퍼징하는 단계에서 상기 챔버 내부로 투입되는 퍼지 가스의 양은 상기 미흡착 차폐 화합물을 제거하는 데 충분한 양이면 특별히 제한되지 않으나, 일례로 10 내지 100,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 미흡착 차폐 화합물을 충분히 제거하여 박막이 고르게 형성되고 막질의 열화를 방지할 수 있다. 여기서, 상기 퍼지 가스 및 차폐 화합물의 투입량은 각각 한 사이클을 기준으로 하며, 상기 차폐 화합물의 부피는 기회된 차폐 화합물 증기의 부피를 의미한다.
구체적인 일례로, 상기 차폐 화합물을 유속 1.66 mL/s 및 주입시간 0.5 sec으로 주입(1 사이클 당)하고, 미흡착 차폐 화합물을 퍼징하는 단계에서 퍼지 가스를 유량 166.6 mL/s 및 주입시간 3 sec로 주입(1 사이클 당)하는 경우, 퍼지 가스의 주입량은 차폐 화합물 주입량의 602배이다.
또한, 상기 미흡착 전구체 화합물을 퍼징하는 단계에서 상기 ALD 챔버 내부로 투입되는 퍼지 가스의 양은 상기 미흡착 전구체 화합물을 제거하는 데 충분한 양이면 특별히 제한되지 않으나, 일례로 상기 ALD 챔버 내부로 투입된 전구체 화합물의 부피를 기준으로 10 내지 10,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 미흡착 전구체 화합물을 충분히 제거하여 박막이 고르게 형성되고 막질의 열화를 방지할 수 있다. 여기서, 상기 퍼지 가스 및 전구체 화합물의 투입량은 각각 한 사이클을 기준으로 기준으로 하며, 상기 전구체 화합물의 부피는 기회된 전구체 화합물 증기의 부피를 의미한다.
또한, 상기 반응 가스 공급 단계 직후 수행하는 퍼징 단계에서 상기 ALD 챔버 내부로 투입되는 퍼지 가스의 양은 일례로 상기 ALD 챔버 내부로 투입된 반응 가스의 부피를 기준으로 10 내지 10,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 원하는 효과를 충분히 얻을 수 있다. 여기서, 상기 퍼지 가스 및 반응 가스의 투입량은 각각 한 사이클을 기준으로 한다.
상기 차폐 화합물 및 전구체 화합물은 바람직하게 VFC 방식, DLI 방식 또는 LDS 방식으로 ALD 챔버 내로 이송될 수 있고, 보다 바람직하게는 LDS 방식으로 챔버 내로 이송되는 것이다.
상기 챔버 내 로딩된 기판은 일례로 300 내지 800 ℃, 구체적인 예로 500 내지 700 ℃로 가열될 수 있으며, 상기 차폐 화합물 또는 전구체 화합물은 상기 기판 상에 가열되지 않은 채로 혹은 가열된 상태로 주입될 수 있으며, 증착 효율에 따라 가열되지 않은 채 주입된 다음 증착 공정 도중에 가열 조건을 조절하여도 무방하다. 일례로 300 내지 800 ℃ 하에 1 내지 30초간 기판 상에 주입할 수 있다.
상기 차폐 화합물과 상기 전구체 화합물의 챔버 내 투입량(mg/cycle) 비는 바람직하게 1:1.5 내지 1:20일 수 있고, 보다 바람직하게 1:2 내지 1:15이며, 더욱 바람직하게 1:2 내지 1:12이고, 보다 더욱 바람직하게 1:2.5 내지 1:10이며, 이 범위 내에서 단차 피복성 향상 효과 및 공정 부산물의 저감 효과가 크다.
본 발명에서 상기 전구체 화합물은 일례로 비극성 용매와 혼합하여 챔버 내로 투입될 수 있고, 이 경우 전구체 화합물의 점도나 증기압을 용이하게 조절 가능한 이점이 있다.
상기 비극성 용매는 바람직하게 알칸 및 사이클로 알칸으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이러한 경우 반응성이 매우 낮고 수분 관리가 용이한 유기용매를 함유하면서도 박막 형성 시 증착 온도가 증가되더라도 단차 피복성(step coverage)이 향상되는 이점이 있다.
보다 바람직한 예로, 상기 비극성 용매는 C1 내지 C10의 알칸(alkane) 또는 C3 내지 C10의 사이클로알칸(cycloalkane)을 포함할 수 있으며, 바람직하게는 C3 내지 C10의 사이클로알칸(cycloalkane)이고, 이 경우 반응성이 매우 낮고 수분 관리가 용이한 이점이 있다.
본 기재에서 C1, C3 등은 탄소수를 의미한다.
상기 사이클로알칸은 바람직하게는 C3 내지 C10의 모노사이클로알칸일 수 있으며, 상기 모노사이클로알칸 중 사이클로펜탄(cyclopentane)이 상온에서 액체이며 가장 증기압이 높아 기상 증착 공정에서 바람직하나, 이에 한정되는 것은 아니다.
상기 비극성 용매는 일례로 물에서의 용해도(25℃)가 200 mg/L 이하, 바람직하게는 50 내지 400 mg/L, 보다 바람직하게는 135 내지 175 mg/L이고, 이 범위 내에서 전구체 화합물에 대한 반응성이 낮고 수분 관리가 용이한 이점이 있다.
본 기재에서 용해도는 본 발명이 속한 기술분야에서 통상적으로 사용하는 측정 방법이나 기준에 의하는 경우 특별히 제한되지 않고, 일례로 포화용액을 HPLC법으로 측정할 수 있다.
상기 비극성 용매는 바람직하게 전구체 화합물 및 비극성 용매를 합한 총 중량에 대하여 5 내지 95 중량%를 포함할 수 있고, 보다 바람직하게는 10 내지 90 중량%를 포함할 수 있으며, 더욱 바람직하게는 40 내지 90 중량%를 포함할 수 있고, 가장 바람직하게는 70 내지 90 중량%를 포함할 수 있다.
만약, 상기 비극성 용매의 함량이 상기 상한치를 초과하여 투입되면 불순물을 유발하여 저항과 박막내 불순물 수치가 증가하고, 상기 유기용매의 함량이 상기 하한치 미만으로 투입될 경우 용매 첨가로 인한 단차 피복성의 향상 효과 및 염소(Cl) 이온과 같은 불순물의 저감효과가 적은 단점이 있다.
상기 실리콘계 박막 형성 방법은 일례로 상기 차폐 화합물을 사용하는 경우, 하기 수학식 1로 계산되는 사이클당 박막 성장률(Å/cycle) 감소율이 -5 % 이하이고, 바람직하게는 -10 % 이하, 보다 바람직하게는 -20 % 이하이고, 더욱 바람직하게는 -30 % 이하, 보다 더욱 바람직하게는 -40 % 이하, 가장 바람직하게는 -45 % 이하이며, 이 범위 내에서 단차 피복성 및 막의 두께 균일성이 우수하다.
[수학식 1]
사이클당 박막 성장률 감소율(%) = [(차폐 화합물을 사용했을 때 사이클당 박막 성장률 - 차폐 화합물을 사용하지 않았을 때 사이클당 박막 성장률) / 차폐 화합물을 사용하지 않았을 때 사이클당 박막 성장률] Ⅹ 100
상기 수학식 1에서, 차폐 화합물을 사용했을 때 및 사용하지 않았을 때 사이클당 박막 성장률은 각각의 사이클 당 박막 증착 두께(Å/cycle), 즉 증착 속도를 의미하고, 상기 증착 속도는 일례로 Ellipsometery로 박막의 최종 두께를 측정한 후 총 사이클 회수로 나누어 평균 증착 속도로 구할 수 있다. 보다 정확한 두께 측정을 위해 상기 광학두께 (Ellipsometry) 측정법은 투과전자현미경 (TEM) 분석으로 상관분석하여 두께 오차를 개선하였다.
상기 수학식 1에서, "차폐 화합물을 사용하지 않았을 때"는 박막 증착 공정에서 기판 상에 전구체 화합물만을 흡착시켜 박막을 제조하는 경우를 의미하고, 구체적인 예로는 상기 박막 형성 방법에서 차폐 화합물을 흡착시키는 단계 및 미흡착 차폐 화합물을 퍼징시키는 단계를 생략하여 박막을 형성한 경우를 가리킨다.
상기 실리콘계 박막 형성 방법은 SIMS에 의거하여 측정된, 박막 두께 100Å 기준 박막 내 잔류 할로겐 세기(c/s)가 바람직하게 4,000ppm 이하, 보다 바람직하게 3,700ppm 이하, 더욱 바람직하게 3,500ppm 이하, 보다 더욱 바람직하게 2,000ppm 이하일 수 있고, 보다 바람직하게는 0ppm이거나 이에 근접할 수 있으며, 이러한 범위 내에서 부식 및 열화가 방지되는 효과가 우수하다.
본 기재에서 퍼징은 바람직하게 1,000 내지 50,000 sccm(Standard Cubic Centimeter per Minute), 보다 바람직하게 2,000 내지 30,000 sccm, 더욱 바람직하게 2,500 내지 15,000 sccm이고, 이 범위 내에서 사이클당 박막 성장률이 적절히 제어되고, 단일 원자층(atomic mono-layer)으로 혹은 이에 가깝게 증착이 이루어져 막질 측면에서 유리한 이점이 있다.
상기 ALD(원자층 증착공정)은 높은 종횡비가 요구되는 집적회로(IC: Integrated Circuit) 제작에 있어서 매우 유리하며, 특히 자기제한적인 박막 성장 메커니즘에 의해 우수한 단차 도포성 (conformality), 균일한 피복성 (uniformity) 및 정밀한 두께 제어 등과 같은 이점이 있다.
상기 박막 형성 방법은 일례로 50 내지 800 ℃ 범위의 증착 온도에서 실시할 수 있고, 바람직하게는 300 내지 700 ℃ 범위의 증착 온도에서, 보다 바람직하게는 500 내지 700 ℃ 범위의 증착 온도에서 실시하는 것이며, 보다 더욱 바람직하게는 600 내지 650 ℃ 범위의 증착 온도에서 실시하는 것인데, 이 범위 내에서 ALD 공정 특성을 구현하면서 우수한 막질의 박막으로 성장시키는 효과가 있다.
상기 박막 형성 방법은 일례로 0.01 내지 20 Torr 범위의 증착 압력에서 실시할 수 있고, 바람직하게는 0.1 내지 20 Torr 범위의 증착 압력에서, 보다 바람직하게는 0.1 내지 10 Torr 범위의 증착 압력에서, 가장 바람직하게는 0.3 내지 5 Torr 범위의 증착 압력에서 실시하는 것인데, 이 범위 내에서 균일한 두께의 박막을 얻는 효과가 있다.
본 기재에서 증착 온도 및 증착 압력은 증착 챔버 내 형성되는 온도 및 압력으로 측정되거나, 증착 챔버 내 기판에 가해지는 온도 및 압력으로 측정될 수 있다.
상기 실리콘계 박막 형성 방법은 바람직하게 상기 차폐 화합물을 챔버 내에 투입하기 전에 챔버 내 온도를 증착 온도로 승온하는 단계; 및/또는 상기 차폐 화합물을 챔버 내에 투입하기 전에 챔버 내에 비활성 기체를 주입하여 퍼징하는 단계를 포함할 수 있다.
또한, 본 발명은 상기 실리콘계 박막 제조 방법을 구현할 수 있는 박막 제조 장치로 ALD 챔버, 차폐 화합물을 기화하는 제1 기화기, 기화된 차폐 화합물을 ALD 챔버 내로 이송하는 제1 이송수단, 박막 전구체를 기화하는 제2 기화기 및 기화된 박막 전구체를 ALD 챔버 내로 이송하는 제2 이송수단을 포함하는 박막 제조 장치를 포함할 수 있다. 여기에서 기화기 및 이송수단은 본 발명이 속한 기술분야에서 통상적으로 사용되는 기화기 및 이송수단인 경우 특별히 제한되지 않는다.
구체적인 예로서, 상기 박막 형성 방법에 대해 설명하면, 먼저 상부에 박막이 형성될 기판을 원자층 증착이 가능한 증착 챔버 내에 위치시킨다.
상기 기판은 실리콘 기판, 실리콘 옥사이드 등의 반도체 기판을 포함할 수 있다.
상기 기판은 그 상부에 도전층 또는 절연층이 더 형성되어 있을 수 있다.
상기 증착 챔버 내에 위치시킨 기판 상에 박막을 증착하기 위해서 상술한 차폐 화합물과, 전구체 화합물 또는 이와 비극성 용매의 혼합물을 각각 준비한다.
이후 준비된 차폐 화합물을 기화기 내로 주입한 후 증기상으로 변화시켜 증착 챔버로 전달하여 기판 상에 흡착시키고, 퍼징(purging)하여 미흡착된 차폐 화합물을 제거시킨다.
다음으로, 준비된 전구체 화합물 또는 이와 비극성 용매의 혼합물(박막 형성용 조성물)을 기화기 내로 주입한 후 증기상으로 변화시켜 증착 챔버로 전달하여 기판 상에 흡착시키고, 미흡착된 전구체 화합물/박막 형성용 조성물을 퍼징(purging)시킨다.
본 기재에서 상기 차폐 화합물을 기판 상에 흡착시킨 후 퍼징하여 미흡착 차폐 화합물을 제거시키는 공정; 및 전구체 화합물을 기판 상에 흡착시키고 퍼징하여 미흡착 전구체 화합물을 제거시키는 공정은 필요에 따라 순서를 바꾸어 실시할 수 있다.
본 기재에서 차폐 화합물 및 전구체 화합물(박막 형성용 조성물) 등을 증착 챔버로 전달하는 방식은 일례로 기체상 유량 제어(Mass Flow Controller; MFC) 방법을 활용하여 휘발된 기체를 이송하는 방식(Vapor Flow Control; VFC) 또는 액체상 유량 제어(Liquid Mass Flow Controller; LMFC) 방법을 활용하여 액체를 이송하는 방식(Liquid Delivery System; LDS)을 사용할 수 있고, 바람직하게는 LDS 방식을 사용하는 것이다.
이때 차폐 화합물 및 전구체 화합물 등을 기판 상에 이동시키기 위한 운송 가스 또는 희석 가스로는 아르곤(Ar), 질소(N2), 헬륨(He)으로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 혼합 기체를 사용할 수 있으나, 제한되는 것은 아니다.
본 기재에서 퍼지 가스로는 일례로 비활성 가스가 사용될 수 있고, 바람직하게는 상기 운송 가스 또는 희석 가스를 사용할 수 있다.
다음으로, 반응 가스를 공급한다. 상기 반응 가스로는 본 발명이 속한 기술분야에서 통상적으로 사용되는 반응 가스인 경우 특별히 제한되지 않고, 바람직하게 질화제를 포함할 수 있다. 상기 질화제와 기판에 흡착된 전구체 화합물이 반응하여 질화막이 형성된다.
바람직하게는 상기 질화제는 질소 가스(N2), 히드라진 가스(N2H4), 또는 질소 가스 및 수소 가스의 혼합물일 수 있다.
상기 반응 가스는 수소(H2)를 단독으로 포함할 수 있다. 상기 수소와 기판에 흡착된 전구체 화합물이 반응하여 실리콘막이 형성된다.
다음으로, 비활성 가스를 이용하여 반응하지 않은 잔류 반응 가스를 퍼징시킨다. 이에 따라, 과량의 반응 가스뿐만 아니라 생성된 부산물도 함께 제거할 수 있다.
위와 같이, 상기 실리콘계 박막 형성 방법은 일례로 차폐 화합물을 기판 상에 차폐시키는 단계, 미흡착된 차폐 화합물을 퍼징하는 단계, 전구체 화합물/박막 형성용 조성물을 기판 상에 흡착시키는 단계, 미흡착된 전구체 화합물/박막 형성용 조성물을 퍼징하는 단계, 반응 가스를 공급하는 단계, 잔류 반응 가스를 퍼징하는 단계를 단위 사이클로 하며, 원하는 두께의 박막을 형성하기 위해, 상기 단위 사이클을 반복할 수 있다.
상기 실리콘계 박막 형성 방법은 다른 일례로 전구체 화합물/박막 형성용 조성물을 기판 상에 흡착시키는 단계, 미흡착된 전구체 화합물/박막 형성용 조성물을 퍼징하는 단계, 차폐 화합물을 기판 상에 흡착시키는 단계, 미흡착된 차폐 화합물을 퍼징하는 단계, 반응 가스를 공급하는 단계, 잔류 반응 가스를 퍼징하는 단계를 단위 사이클로 하며, 원하는 두께의 박막을 형성하기 위해, 상기 단위 사이클을 반복할 수 있다.
상기 단위 사이클은 일례로 1 내지 99,999회, 바람직하게는 10 내지 1,000회, 보다 바람직하게는 50 내지 5,000회, 보다 더욱 바람직하게는 100 내지 2,000회 반복될 수 있고, 이 범위 내에서 목적하는 박막 특성이 잘 발현되는 효과가 있다.
본 발명은 또한 반도체 기판을 제공하고, 상기 반도체 기판은 본 기재의 실리콘계 박막 형성 방법으로 제조됨을 특징으로 하며, 이러한 경우 박막의 단차 피복성(step coverage) 및 박막의 두께 균일성이 크게 뛰어나고, 박막의 밀도 및 전기적 특성이 뛰어난 효과가 있다.
상기 제조된 박막은 바람직하게 두께가 100 nm 이하이고, 박막 두께 10 또는 20 nm 기준 식각속도 (WER @ LAL500 60s) < 2 nm/min 이며, 잔류 탄소 함량과 잔류 할로겐 함량이 모두 0.01 % 이하를 만족하고, 단차피복율이 90% 이상이며, 이 범위 내에서 절연막 및 Charge trap layer 로서 성능이 뛰어나지만, 이에 한정하는 것은 아니다.
상기 박막은 두께가 일례로 1 내지 100 nm, 바람직하게는 1 내지 50 nm, 보다 바람직하게는 3 내지 25 nm, 더욱 바람직하게는 5 내지 20 nm일 수 있고, 이 범위 내에서 박막 특성이 우수한 효과가 있다.
상기 박막은 잔류 탄소 함량과 잔류 할로겐 함량이 각각 바람직하게는 0.1% 이하 또는 0 내지 0.01% 일수 있고, 더욱 바람직하게는 0 내지 0.001%, 보다 더욱 바람직하게는 0 내지 0.0001% 일 수 있고, 이 범위 내에서 박막 특성이 우수하면서도 박막 성장률이 저감되는 효과가 있다. 이 범위 내에서 박막 내 탄소의 적정한 함량은 박막의 밴드갭 내부의 deep trap site를 형성시켜 전하의 저장특성을 향상시키면서 막 밀도를 개선시켜 식각속도를 개선시키는 등 우수한 절연막 특성을 보이는 특징이 있고, 박막 내 할로겐 잔류량이 낮을수록 막질이 뛰어나 바람직하다.
상기 박막은 일례로 단차 피복률이 90% 이상, 바람직하게는 92% 이상, 보다 바람직하게는 95% 이상이며, 이 범위 내에서 복잡한 구조의 박막이라도 용이하게 기판에 증착시킬 수 있어 차세대 반도체 장치에 적용 가능한 이점이 있다.
상기 제조된 박막은 일례로 질화규소막(SixNy, 여기서 0<x≤4.5, 0<y≤4.5, 바람직하게는 0.5≤x≤4.5, 0.5≤y≤4.5, 보다 바람직하게는 2.5≤x≤4.5, 2.5≤y≤4.5일 수 있음)을 포함할 수 있으며, 이 경우 반도체 소자의 확산방지막, 에칭정지막 또는 차지트랩으로 유용한 이점이 있다.
상기 박막은 일례로 필요에 따라 2층 또는 3층의 다층 구조일 수 있다. 상기 2층 구조의 다층막은 구체적인 일례로 하층막-중층막 구조일 수 있고, 상기 3층 구조의 다층막은 구체적인 일례로 하층막-중층막-상층막 구조일 수 있다.
상기 하층막은 일례로 Si, SiO2, MgO, Al2O3, CaO, ZrSiO4, ZrO2, HfSiO4, Y2O3, HfO2, LaLuO2, Si3N4, SrO, La2O3, Ta2O5, BaO, TiO2로 이루어진 군에서 선택된 1종 이상을 포함하여 이루어질 수 있다.
상기 중층막은 일례로 TixNy, 바람직하게는 TN을 포함하여 이루어질 수 있다.
상기 상층막은 일례로 W, Mo로 이루어진 군에서 선택된 1종 이상을 포함하여 이루어질 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 도면을 제시하나, 하기 실시예 및 도면은 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
차폐 화합물로 tert-butyl iodide와 박막 전구체 화합물로 Si2Cl6를 각각 준비하였다.
준비된 차폐 화합물을 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 120 ℃로 가열된 기화기로 공급하였다. 기화기에서 증기상으로 기화된 차폐 화합물을 1초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다.
다음으로 준비된 Si2Cl6를 별도의 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다. 기화기에서 증기상으로 기화된 Si2Cl6를 1초 동안 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다.
다음으로 반응성 가스로서 암모니아 1000 sccm을 3초 동안 상기 반응 챔버에 투입한 후, 3초 동안 아르곤 퍼징을 실시하였다. 이때 금속 박막이 형성될 기판을 460 ℃로 가열하였다. 이와 같은 공정을 200 내지 400회 반복하여 10 nm 두께의 자기-제한 원자층인 SiN 박막 (SixNy 박막(x 및 y는 각각 0.5 내지 4.5의 정수이다.)에 해당)을 형성하였다.
식각속도 확인을 위해 LAL500 식각액을 활용하여 60초 동안 SiN 박막을 식각액에 담가 식각한 후 감소된 두께를 광학두께로 측정하여 식각속도를 계산하였다.
실시예 2
실시예 1에서 차폐 화합물로 tert-butyl bromide를 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 자기-제한 원자층인 SiN 박막을 형성하였다.
식각속도 확인을 위해 LAL500 식각액을 활용하여 60초 동안 SiN 박막을 식각액에 담가 식각한 후 감소된 두께를 광학두께로 측정하여 식각속도를 계산하였다.
실시예 3
차폐 화합물로 tert-butyl chloride와 막 전구체 화합물로 Si2Cl6를 각각 준비하였다.
준비된 차폐 화합물을 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.1 g/min의 유속으로 120 ℃로 가열된 기화기로 공급하였다. 기화기에서 증기상으로 기화된 차폐 화합물을 5내지 30초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 1000 sccm으로 30초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 1.0 Torr로 제어하였다.
다음으로 준비된 Si2Cl6를 별도의 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.1 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다. 기화기에서 증기상으로 기화된 박막 전구체 화합물을 5초 내지 30초 동안 증착 챔버에 투입한 후 아르곤 가스를 1000 sccm으로 30초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 1.0 Torr로 제어하였다.
다음으로 반응성 가스로서 암모니아 1000 sccm을 30초 동안 상기 반응 챔버에 투입한 후, 30초 동안 아르곤 퍼징을 실시하였다. 이때 금속 박막이 형성될 기판을 500내지 650 ℃로 가열하였다. 이와 같은 공정을 200 내지 400회 반복하여 10 nm 두께의 자기-제한 원자층인 SiN 박막 (SixNy 박막(x 및 y는 각각 0.5 내지 4.5의 정수이다.)에 해당)을 형성하였다.
식각속도 확인을 위해 LAL500 식각액을 활용하여 60초 동안 SiN 박막을 식각액에 담가 식각한 후 감소된 두께를 광학두께로 측정하여 식각속도를 계산하였다.
실시예 4
차폐 화합물로 2-chloro-2-methyl butane과 막 전구체 화합물로 Si2Cl6를 각각 준비하였다.
준비된 차폐 화합물을 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.1 g/min의 유속으로 120 ℃로 가열된 기화기로 공급하였다. 기화기에서 증기상으로 기화된 차폐 화합물을 5내지 30초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 1000 sccm으로 30초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 1.0 Torr로 제어하였다.
다음으로 준비된 Si2Cl6를 별도의 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.1 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다. 기화기에서 증기상으로 기화된 박막 전구체 화합물을 5초 내지 30초 동안 증착 챔버에 투입한 후 아르곤 가스를 1000 sccm으로 30초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 1.0 Torr로 제어하였다.
다음으로 반응성 가스로서 암모니아 1000 sccm을 30초 동안 상기 반응 챔버에 투입한 후, 30초 동안 아르곤 퍼징을 실시하였다. 이때 금속 박막이 형성될 기판을 500 내지 650 ℃로 가열하였다. 이와 같은 공정을 200 내지 400회 반복하여 10 nm 두께의 자기-제한 원자층인 SiN 박막 (SixNy 박막(x 및 y는 각각 0.5 내지 4.5의 정수이다.)에 해당)을 형성하였다.
식각속도 확인을 위해 LAL500 식각액을 활용하여 60초 동안 SiN 박막을 식각액에 담가 식각한 후 감소된 두께를 광학두께로 측정하여 식각속도를 계산하였다.
실시예 5
차폐 화합물로 tert-butyl chloride와 막 전구체 화합물로 SiH2Cl2를 각각 준비한 것을 제외하고는 상기 실시예 3과 동일한 공정을 반복하였다.
식각속도 확인을 위해 LAL500 식각액을 활용하여 60초 동안 SiN 박막을 식각액에 담가 식각한 후 감소된 두께를 광학두께로 측정하여 식각속도를 계산하였다.
실시예 6
차폐 화합물로 2-chloro-2-methyl butane과 막 전구체 화합물로 SiH2Cl2를 각각 준비한 것을 제외하고는 상기 실시예 4와 동일한 공정을 반복하였다.
식각속도 확인을 위해 LAL500 식각액을 활용하여 60초 동안 SiN 박막을 식각액에 담가 식각한 후 감소된 두께를 광학두께로 측정하여 식각속도를 계산하였다.
비교예 1
실시예 1에서 차폐 화합물을 사용하지 않은 것과 이에 따라 미흡착 차폐 화합물을 퍼징하는 단계를 생략한 것을 제외하고는 실시예 1과 동일한 방법으로 기판 위에 SiN 박막을 형성하였다.
비교예 2
실시예 1에서 차폐 화합물로 펜탄(n-pentane)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 자기-제한 원자층인 SiN 박막을 형성하였다.
비교예 3
실시예 1에서 차폐 화합물로 시클로펜탄(cyclopentane)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 자기-제한 원자층인 SiN 박막을 형성하였다.
비교예 4
실시예 3에서 차폐 화합물을 사용하지 않은 것과 이에 따라 미흡착 차폐 화합물을 퍼징하는 단계를 생략한 것을 제외하고는 실시예 3과 동일한 방법으로 기판 위에 SiN 박막을 형성하였다.
비교예 5
실시예 4에서 차폐 화합물을 사용하지 않은 것과 이에 따라 미흡착 차폐 화합물을 퍼징하는 단계를 생략한 것을 제외하고는 실시예 4와 동일한 방법으로 기판 위에 SiN 박막을 형성하였다.
비교예 6
실시예 5에서 차폐 화합물을 사용하지 않은 것과 이에 따라 미흡착 차폐 화합물을 퍼징하는 단계를 생략한 것을 제외하고는 실시예 5와 동일한 방법으로 기판 위에 SiN 박막을 형성하였다.
비교예 7
실시예 6에서 차폐 화합물을 사용하지 않은 것과 이에 따라 미흡착 차폐 화합물을 퍼징하는 단계를 생략한 것을 제외하고는 실시예 6과 동일한 방법으로 기판 위에 SiN 박막을 형성하였다.
[실험예]
1) 증착평가 및 증착속도 감소
실시예 1 내지 6, 및 비교예 1 내지 7에서 증착된 SiN 박막의 박막 성장률은, 제조된 박막에 대하여 빛의 편광 특성을 이용하여 박막의 두께나 굴절률과 같은 광학적 특성을 측정할 수 있는 장치인 엘립소미터(Ellipsometer)로 측정한 박막의 두께를 사이클 횟수로 나누어 1 사이클당 증착되는 박막의 두께를 계산하여 박막 성장률 감소율을 계산하였다. 구체적으로 하기 수학식 1를 이용하여 계산하였다.
[수학식 1]
사이클당 박막 성장률 감소율(%) = [(차폐 화합물을 사용하였을 때 사이클당 박막 성장률 - 차폐 화합물을 사용하지 않았을 때 사이클당 박막 성장률) / 차폐 화합물을 사용하지 않았을 때 사이클당 박막 성장률] x 100
그 결과, 본 발명에 따른 차폐 화합물을 사용한 실시예 1 내지 6은 이를 사용하지 않은 비교예 1, 4, 5, 6, 7, 그리고 펜탄을 사용한 비교예 2와 시클로펜탄을 사용한 비교예 3에 비하여 사이클당 박막 성장률 감소율이 현저하게 개선된 것을 확인할 수 있었다.
우선, tert-butyl iodide를 차폐 화합물로 사용한 실시예 1과 이를 포함하지 않은 비교예 1을 비교해보면, 증착 속도는 0.29 Å/cycle이고, 비교예 1의 0.35 Å/cycle과 비교하였을 때 20% 이상 증착 속도가 감소한 것으로 확인되었다.
또한, 본 발명에 따른 차폐 화합물 대신 펜탄 또는 시클로펜탄을 사용한 비교예 2 및 3도 비교예 1과 동일한 값의 증착 속도를 가지는 것을 확인할 수 있었다. 이때 증착 속도 감소는 CVD 증착 특성을 ALD 증착 특성으로 변환시키는 것을 의미하기 때문에 단차 피복 특성 개선의 지표로 활용될 수 있다.
나아가, SIMS 분석을 통해 ppb 수준의 탄소 도핑이 가능한지 검증하였으며, 얻어진 결과를 하기 도 1에 나타내었다.
구체적으로, 하기 도 1은 실시예 1과 비교예 1에서 제조된 SiN 박막의 SIMS 분석 그래프이다.
하기 도 1에서 보듯이, 우그래프에 해당하는 실시예 1이 좌측 그래프에 해당하는 비교예 1 대비하여 Cl이 크게 저감되는 것을 확인할 수 있었다.
나아가, Tert-butyl chloride와 2-chloro-2-methyl butane을 각각 차폐 화합물로 사용한 실시예 3과 실시예 4에서 얻어지는 증착 속도를 하기 도 2 대비하였다.
하기 도 2는 본 발명의 차폐 화합물의 공급시간별 증착속도 변화를 살펴본 그래프이다. 하기 도 2에서 보듯이, Si2Cl6 실리콘 전구체를 활용하여 tert-butyl chloride 차폐 화합물 활용 시 15초 주입결과 -35%의 증착속도 저감결과 (0.66 → 0.31 Å/cycle)를 확인하였고, 2-chloro-2-methyl butane 차폐 화합물 활용시 15초 주입결과 -28%의 증착속도 저감결과 (0.66 → 0.38 Å/cycle)를 확인하였다.
이어서, Si2Cl6 전구체 활용 차폐 화합물 종류별 주입시간에 따른 600℃ 증착속도 결과를 하기 표 1에 나타내었다.
하기 표 1은 SiH2Cl2 (DCS) 실리콘 전구체를 활용하는 경우 증착온도에 따른 증착평가 결과이다.
차폐 화합물로는 tert-butyl chloride를 활용하였고, ALD cycle 별 차폐 화합물 주입시간 및 퍼지시간은 각각 5초와 10초이다.
상기 표 1에 나타낸 바와 같이, 증착 온도 500℃, 600℃에서 각각 -64%와 -65%의 증착속도 저감효과를 확인할 수 있었다.
2) Cl 불순물 저감특성
실시예 1 내지 6, 및 비교예 1 내지 7에서 증착된 SiN 박막의 불순물 저감 특성, 즉 고정 부산물 저감특성을 비교하기 위해 SIMS 분석을 진행하고, 결과를 하기 표 2에 나타내었다.
여기에서 Cl 저감률(%)은 하기 수학식 2로 계산하였다.
[수학식 2]
구분 | 실시예1 | 비교예1 | 비교예2 | |
Cl 저감률 (Cl intensity(c/s)) |
460℃ | 42.8% (712) |
0% (13855) |
0% (1460) |
500℃ | - | 0% (8176) |
- | |
550℃ | - | 0%(3104) | - |
*시료 박막의 기준 두께(Thickness): 10nm상기 표 2에 나타낸 바와 같이, 본 발명에 따른 차폐 화합물을 사용한 실시예 1은 이를 사용하지 않은 비교예 1, 또는 펜탄을 사용한 비교예 2에 비하여 증착 온도 500 ℃, 550 ℃ 각각에서 Cl 강도(intensity)가 크게 감소하여 불순물 저감특성이 뛰어남을 확인할 수 있었다.
3) C 박막 불순물 도핑특성
실시예 3 과 비교예 4에서 증착된 SiN 박막의 원소 정량분석을 위해 XPS 정량분석을 실시하였다.
구체적으로, 실리콘 전구체는 Si2Cl6를 활용하였고, 차폐 화합물 주입시간은 15초 주입하여 600 ℃ 하에 증착을 수행하였다.
실시예 3 내지 실시예 4와, 비교예 4에서 제조한 SiN 박막의 Ar 스퍼터링을 통한 깊이별 원소분석결과를 나타낸 그래프를 하기 도 3에 나타내었다.
하기 도 3에서 보듯이, 차폐 화합물의 종류에 관계없이 차폐 화합물에 의한 C 불순물 증가는 확인되지 않았다. 참고로, 미량의 산소는 외부 공기에 노출에 의해 자연산화되어 오염된 결과에 해당한다.
나아가, SIMS 분석을 통해 ppb 수준의 탄소 도핑이 가능한지 검증하였으며, 얻어진 결과를 하기 도 3에 나타내었다.
구체적으로, 실리콘 전구체는 Si2Cl6를 활용하였고, 차폐 화합물은 ~를 사용하였으며, 주입시간은 미주입, 5초 주입, 10초 주입, 15초 주입, 20초 주입하면서 600 ℃ 온도 조건에서 증착을 수행하였다.
하기 도 4는 실시예 3과 비교예 4에서 제조된 SiN 박막의 SIMS 분석 그래프이다. 하기 도 4에서 보듯이, Si, Cl, N의 함량 변화는 확인되지 않지만, 시편에서 방출된 C의 2차이온 질량에 해당하는 이온수가 10배정도 증가하는 것으로 확인되었다. 이러한 C 도핑결과는 박막밀도에도 영향을 주기 때문에 식각 속도 개선효과로 추가 확인할 수 있다.
4) 단차 피복 특성
실시예 3 내지 4, 및 비교예 4에서 23:1의 종횡비를 갖는 트랜치 기판을 활용하여 증착된 SiN 박막을 TEM을 이용하여 단착 피복성을 확인하고 하기 도 5에 나타내었다.
하기 도 5에서 보듯이, 본 발명에 따른 차폐 화합물을 사용한 결과 단차피복 특성이 81%에서 각각 93%, 96%까지 개선된 것을 확인할 수 있었다.
5) 식각속도 특성
실시예 3 내지 4, 및 비교예 4에서 각 시편의 식각속도를 분석하고 하기 표 3에 나타내었다.
구분 | 식각속도(nm/min) |
비교예 4(Ref. SiN) | 10.2 |
실시예 3(Tert-butyl chloride_SiN) | 8.7 |
실시예 4(2-chloro-2-methyl butaine_siN) | 7.8 |
상기 표 4에 나타낸 바와 같이, 비교예 4의 식각속도는 10.2 nm/min 에서 차폐 화합물 주입공정 적용하여 박막품질이 개선됨에 따라 실시예 3의 식각속도와 실시예 4의 식각속도가 각각 8.7nm/min과 7.8nm/min으로 개선된 것을 확인하였다.
Claims (13)
- 실리콘계 박막용 차폐 화합물로서,상기 실리콘계 박막은 SixNy(x 및 y는 각각 0.5 내지 4.5의 정수이다.)인 막 조성을 가지며,상기 차폐 화합물은 하기 화학식 1[화학식 1](상기 A는 탄소이고,상기 R1, R3는 독립적으로 탄소수 1 내지 6의 알킬기이며,상기 R2는 독립적으로 탄소수 1 내지 6의 알킬기 또는 식 BR4R5R6의 작용기를 가지고, 상기 B는 A와 결합된 탄소이고, 상기 R4, R5 및 R6은 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이며,상기 X는 할로겐 원소로 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이다.)로 표시되는 포화 화합물인 것을 특징으로 하는 실리콘계 박막용 차폐 화합물.
- 제1항에 있어서,상기 차폐 화합물은 굴절률(a)이 1.38 내지 1.52 범위 내인 동시에 증기압(25℃, mmHg, b)을 상기 굴절률(a)로 나눈 값(b/a)이 0.003 내지 0.033 범위 내인 것을 특징으로 하는 실리콘계 박막용 차폐 화합물.
- 제1항에 있어서,상기 실리콘계 박막은 Si3N4, Si2N3, Si2N, SiN 또는 이들의 혼합으로 구성된 것을 특징으로 하는 실리콘계 박막용 차폐 화합물.
- 제1항 또는 제2항에 있어서,상기 차폐 화합물은 실리콘계 박막용 차폐 영역을 제공하는 것을 특징으로 하는 실리콘계 박막용 차폐 화합물.
- 제4항에 있어서,상기 실리콘계 박막용 차폐 영역은 상기 실리콘계 박막이 형성되는 전체 기판 또는 일부 기판에 형성되는 것을 특징으로 하는 실리콘계 박막용 차폐 화합물.
- 제4항에 있어서,상기 실리콘계 박막용 차폐 영역은 상기 실리콘계 박막에 잔류하지 않고, 상기 실리콘계 박막은 할로겐 화합물을 0.01 중량% 미만으로 포함하는 것을 특징으로 하는 실리콘계 박막용 차폐 화합물.
- 제1항에 있어서,상기 실리콘계 박막은 확산방지막, 에칭정지막 또는 차지트랩 용도인 것을 특징으로 하는 실리콘계 박막용 차폐 화합물.
- 하기 화학식 1[화학식 1](상기 A는 탄소이고,상기 R1, R3는 독립적으로 탄소수 1 내지 6의 알킬기,상기 R2는 독립적으로 탄소수 1 내지 6의 알킬기 또는 식 BR4R5R6의 작용기를 가지고, 상기 B는 A와 결합된 탄소이고, 상기 R4, R5 및 R6은 독립적으로 수소, 탄소수 1 내지 6의 알킬기, 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이며,상기 X는 할로겐 원소로 불소(F), 염소(Cl), 브롬(Br) 또는 아이오딘(I)이다.)로 표시되는 포화 구조의 차폐 화합물을 챔버 내로 주입하여 로딩(loading)된 기판 표면을 차폐시키는 단계를 포함하는 것을 특징으로 하는 실리콘계 박막 형성 방법.
- 제8항에 있어서,상기 챔버는 ALD 챔버 또는 CVD 챔버인 것을 특징으로 하는 실리콘계 박막 형성 방법.
- 제8항에 있어서,상기 차폐 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송되며, 상기 실리콘계 박막은 질화규소막인 것을 특징으로 하는 실리콘계 박막 형성 방법.
- 제8항에 따른 실리콘계 박막 형성 방법으로 제조됨을 특징으로 하는 반도체 기판.
- 제11항에 있어서,상기 실리콘계 박막은 2층 또는 3층의 다층 구조인 것을 특징으로 하는 반도체 기판.
- 제11항의 반도체 기판을 포함하는 반도체 소자.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0113344 | 2022-09-07 | ||
KR20220113344 | 2022-09-07 | ||
KR1020230118958A KR20240034680A (ko) | 2022-09-07 | 2023-09-07 | 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 |
KR10-2023-0118958 | 2023-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024054065A1 true WO2024054065A1 (ko) | 2024-03-14 |
Family
ID=90191606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/013428 WO2024054065A1 (ko) | 2022-09-07 | 2023-09-07 | 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202418008A (ko) |
WO (1) | WO2024054065A1 (ko) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130105238A (ko) * | 2012-03-14 | 2013-09-25 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
KR20180123436A (ko) * | 2017-05-08 | 2018-11-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 실리콘 질화막을 형성하는 방법 및 관련 반도체 소자 구조체 |
KR20210036257A (ko) * | 2019-09-25 | 2021-04-02 | 솔브레인 주식회사 | 박막 제조 방법 |
KR102254394B1 (ko) * | 2020-07-16 | 2021-05-24 | 솔브레인 주식회사 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
-
2023
- 2023-09-07 TW TW112134148A patent/TW202418008A/zh unknown
- 2023-09-07 WO PCT/KR2023/013428 patent/WO2024054065A1/ko unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130105238A (ko) * | 2012-03-14 | 2013-09-25 | 삼성전자주식회사 | 반도체 소자의 제조 방법 |
KR20180123436A (ko) * | 2017-05-08 | 2018-11-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 실리콘 질화막을 형성하는 방법 및 관련 반도체 소자 구조체 |
KR20210036257A (ko) * | 2019-09-25 | 2021-04-02 | 솔브레인 주식회사 | 박막 제조 방법 |
KR102254394B1 (ko) * | 2020-07-16 | 2021-05-24 | 솔브레인 주식회사 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
Non-Patent Citations (1)
Title |
---|
TAN, K. C. ET AL.: "Utilizing tertiary butyl iodide as an effective film quality enhancing agent for atomic layer deposition of HfO2 dielectric thin films", AIP ADVANCES, vol. 11, no. 7, 2021, pages 1 - 6, XP012257819, DOI: 10.1063/5.0055847 * |
Also Published As
Publication number | Publication date |
---|---|
TW202418008A (zh) | 2024-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022015098A1 (ko) | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 | |
WO2022010214A1 (ko) | 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크 | |
WO2021060864A1 (ko) | 박막 제조 방법 | |
WO2022015099A1 (ko) | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 | |
WO2021060860A1 (ko) | 박막 제조 방법 | |
WO2012047035A2 (ko) | 대칭형 유입구 및 유출구를 통해 반응가스를 공급하는 기판 처리 장치 | |
WO2019088722A1 (ko) | 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막 | |
WO2019156451A1 (ko) | 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 형성용 전구체 조성물, 및 이를 이용하는 막의 형성 방법 | |
WO2015190900A1 (ko) | 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법 | |
WO2023195653A1 (ko) | 활성화제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2022186644A1 (ko) | 금속 박막 전구체 조성물, 이를 이용한 박막 형성 방법, 및 이로부터 제조된 반도체 기판 | |
WO2020101437A1 (ko) | 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법 | |
WO2022255734A1 (ko) | 성막 재료, 성막 조성물, 이들을 이용한 성막 방법 및 이로부터 제조된 반도체 소자 | |
WO2024054065A1 (ko) | 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023200154A1 (ko) | 루테늄 전구체 조성물, 이의 제조방법, 및 이를 이용한 루테늄-함유 막의 형성 방법 | |
WO2023177091A1 (ko) | 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023195655A1 (ko) | 박막 차폐제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023191361A1 (ko) | 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2024076217A1 (ko) | 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자 | |
WO2023195657A1 (ko) | 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023191360A1 (ko) | 계단율 개선제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2012047034A2 (ko) | 반원 형상의 안테나를 구비하는 기판 처리 장치 | |
WO2023195656A1 (ko) | 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023195654A1 (ko) | 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2024177396A1 (ko) | 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23863529 Country of ref document: EP Kind code of ref document: A1 |