WO2024076217A1 - 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자 - Google Patents

유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자 Download PDF

Info

Publication number
WO2024076217A1
WO2024076217A1 PCT/KR2023/015457 KR2023015457W WO2024076217A1 WO 2024076217 A1 WO2024076217 A1 WO 2024076217A1 KR 2023015457 W KR2023015457 W KR 2023015457W WO 2024076217 A1 WO2024076217 A1 WO 2024076217A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric film
activator
substrate
precursor
formula
Prior art date
Application number
PCT/KR2023/015457
Other languages
English (en)
French (fr)
Inventor
정재선
이승현
김종문
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority claimed from KR1020230133350A external-priority patent/KR20240049771A/ko
Publication of WO2024076217A1 publication Critical patent/WO2024076217A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to a dielectric film activator, a semiconductor substrate and a semiconductor device manufactured using the same. More specifically, it provides the effect of increasing thin film density while improving capacitance by reducing residual carbon compound impurities between the precursor and reaction gas mixed in the dielectric film. It relates to a dielectric film activator capable of activating a dielectric film, a semiconductor substrate, and a semiconductor device manufactured using the same.
  • a dielectric like an insulator, does not conduct electricity, but refers to an insulator that exhibits polarity in an electric field. Dielectrics play a very important role in semiconductor devices.
  • the material in which electricity is actually stored in a capacitor is a dielectric.
  • the residual carbon compound impurity content is a factor that affects dielectric and chemical properties and may reduce the dielectric constant, or HCl, hydrocarbon derived from the leaving group of the halogen ligand.
  • dielectric constant or HCl, hydrocarbon derived from the leaving group of the halogen ligand.
  • a dielectric film activator that can provide the effect of increasing the dielectric constant by increasing the density of the thin film while reducing the content of residual carbon compound impurities, including impurities between the precursor and the reaction gas mixed in the dielectric, and the production of a dielectric film using the same, manufactured therefrom.
  • the present invention uses a dielectric film activator of a predetermined structure to activate the precursor adsorbed on the substrate to prevent by-product carbon compounds from being mixed into the dielectric film between the precursor and the reaction gas, thereby increasing the capacitance and forming the thin film.
  • the purpose is to provide high-quality dielectric films with increased density, and further semiconductor substrates and semiconductor devices containing the same.
  • the present invention provides an activated substrate adsorption-precursor by exchanging the first ligand directly connected to the central metal of the precursor adsorbed to the substrate with the second ligand contained in the dielectric film activator.
  • the central metal of the precursor may be, for example, a Group 4 element.
  • the central metal of the precursor may be Hf or Zr, as a specific example.
  • the precursor molecule adsorbed to the substrate may be selected from one or more structures represented by Formula 1 below and structures represented by Formula 2 below.
  • M is Zr or Hf
  • R 1 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • n is an integer of 0 to 5, and is independently selected from -NR' 1 R' 2 or -OR' 3 , Cl, or F
  • R' 1 to R' 3 are independently hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • M is Zr or Hf
  • X 1 and X 2 are independently -NR 1 R 2 or -OR 3 , Cl, or F
  • R 1 to R 3 are independently hydrogen or It is an alkyl group having 1 to 6 carbon atoms
  • Y is an alkyl group having 1 to 6 carbon atoms
  • n is 1 or 2.
  • the precursor molecule adsorbed to the substrate may have a structure in which four types of ligands independently selected from -NR' 1 R' 2 or -OR' 3 , Cl, or F are bound to a central metal.
  • the central metal may be Zr or Hf
  • R' 1 to R' 3 may independently be hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • the first and second ligands may independently contain halogen, halogen and oxygen, carbon and hydrogen, or nitrogen and carbon.
  • the first ligand is a ligand of Formula 1 or Formula 2
  • the ligand of the precursor adsorbed on the substrate further includes at least one selected from chlorine, fluorine, and bromine
  • the dielectric film activator includes iodine and bromine.
  • One or more selected halogens may be included.
  • the dielectric film activator may be hydrogen iodide (HI), hydrogen bromide (HBr), and a mixed gas mixed with an inert gas at a mole ratio of 1 to 99.
  • the activated substrate adsorption-precursor promotes a reaction with a reaction gas injected before or after the precursor, while simultaneously reducing the content of residual carbon compound impurities.
  • the reduction in the content of residual carbon compound impurities may include a reduction in the content of by-product carbon-oxygenate impurities generated by the combination between the precursor desorption ligand and the reaction gas and a reduction in the content of carbon compound impurities not desorbed from the precursor.
  • the reduction in the content of non-desorbed carbon compound impurities may be derived from exchanging the ligand of the precursor adsorbed on the substrate with the dielectric film activator included in the dielectric film activator.
  • the reaction gas may be one or more selected from H 2 O, H 2 O 2 , N 2 O, NO 2 , O 2 , O 3 and O radicals.
  • the precursor adsorption state before the ligand exchange can be represented by the following formula 3-1, and the precursor adsorption state after the ligand exchange can be represented by the following formula 3-2.
  • M is Hf or Zr
  • n is an integer of 1 to 4
  • X may be different from the ligand species of Formula 1 or Formula 2, F, or Cl.
  • M is Hf or Zr, m is an integer of 1 to 4, and Y is Br or I.
  • the substrate is a silicon wafer having an -H or -OH end group, an insulating film, or It may be a dielectric membrane.
  • the dielectric layer may be a vapor deposition layer.
  • deposition is performed using atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PEALD), vapor deposition (CVD), plasma enhanced vapor deposition (PECVD), metal organic chemical vapor deposition (MOCVD), or low pressure vapor deposition (LPCVD). It can be included.
  • ALD atomic layer deposition
  • PEALD plasma enhanced atomic layer deposition
  • CVD vapor deposition
  • PECVD plasma enhanced vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • LPCVD low pressure vapor deposition
  • the present invention relates to a substrate; and a dielectric film;
  • a semiconductor substrate is provided, wherein the dielectric film is a film deposited using the above-described dielectric film activator.
  • the dielectric film may have a multilayer structure of two or more layers.
  • the dielectric film may have a deposition rate measured on SiO2 or Si (based on a thin film deposited at 300°C) of 0.5 ⁇ /cycle or more.
  • the dielectric film may have a thin film density measured on SiO2 or Si of 9.8 g/cm3 or more.
  • the dielectric film may have a C impurity content of 1000 counts/s or less as measured by SIMS (based on a thin film deposited at 300° C.) on SiO2 or Si.
  • the present invention provides a semiconductor device including the above-described semiconductor substrate.
  • the thickness uniformity of the dielectric film can be improved, and furthermore, there is an effect of providing a method of manufacturing a dielectric film using the same and a semiconductor substrate and semiconductor device manufactured therefrom.
  • Figure 1 is a diagram comparing the growth rate by deposition temperature in the dielectric film of Example 1 using a dielectric film activator according to the present invention and the growth rate by deposition temperature in the dielectric film of Comparative Example 1 without using the dielectric film activator according to the present invention.
  • Figure 2 is a graph showing the C impurity content analyzed by SIMS in the dielectric film of Additional Example 1 using a dielectric film activator according to the present invention.
  • Figure 3 is a graph showing the C impurity content analyzed by SIMS in the dielectric film of Additional Comparative Example 1 without using a dielectric film activator.
  • the present inventors have developed a dielectric film activation method that can provide the effect of increasing thin film density while reducing the content of by-product carbon-oxygenate impurities generated by the bond between the reactant and the precursor desorption ligand mixed into the dielectric film and the content of carbon compound impurities not desorbed from the precursor. It was confirmed that the use of the agent improves density when forming a dielectric film, prevents corrosion and deterioration, improves the dielectric characteristics of the dielectric film, and improves the thickness uniformity of the dielectric film, thereby providing a high-quality dielectric film. Based on this, the present invention was completed by focusing on dielectric film research.
  • the dielectric film activator activates the precursor adsorbed to the substrate, thereby promoting the reaction with the post-injection reaction gas by the activated substrate adsorption-precursor while reducing the incorporation of residual carbon compound impurities into the dielectric film. It can be a substance.
  • the central metal of the precursor adsorbed to the above-described substrate is a group 4 element, and the ligand may contain two or more halogens that are the same or different from each other and may be adsorbed to the substrate.
  • the central metal may preferably be Hf or Zr.
  • the precursor compound used to form the dielectric film in the present invention is a Group 4 metal and consists of Hf and Zr, Hf(NMe 2 ) 4 , Zr(NMe 2 ) 4 and CpZr (CpZr(NMe 2 ) 3 ), CpHf (CpHf (NMe 2 ) 3 ) and its derivatives with Hf and Zr as the central metal may be linear or cyclic precursor molecules in which ligands bound to the central metal are connected.
  • the precursor molecule adsorbed on the substrate can be represented by the following formula (1) and the following formula (2).
  • M is Zr or Hf
  • R 1 is independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • n is an integer of 0 to 5, and is independently selected from -NR' 1 R' 2 or -OR' 3 , Cl, or F
  • R' 1 to R' 3 are independently hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • M is Zr or Hf
  • X 1 and X 2 are independently -NR 1 R 2 or -OR 3 , Cl, or F
  • R 1 to R 3 are independently hydrogen or It is an alkyl group having 1 to 6 carbon atoms
  • Y is an alkyl group having 1 to 6 carbon atoms
  • n is 1 or 2.
  • zirconium precursor compound tris (dimethylamido) cyclopentadienyl zirconium of CpZr (NMe 2 ) 3 ) and (methyl-3-cyclo of Cp (CH 2 ) 3 NM 3 Zr (NMe 2 ) 2 Pentadienylpropylamino)bis(dimethylamino)zirconium, tetrakis(ethylmethylamido)zirconium of [(Me)(Et)N] 4 Zr, etc. can be used, and in this case, the dielectric film activator described later can be used. Can be filled appropriately.
  • the hafnium precursor compound is tris(dimethylamido)cyclopentadienyl hafnium of CpHf(NMe 2 ) 3 ) and (methyl-3-cyclopentadiene of Cp(CH 2 ) 3 NM 3 Hf(NMe 2 ) 2 Nylpropylamino)bis(dimethylamino)hafnium, tetrakis(ethylmethylamido)hafnium of [(Me)(Et)N] 4Hf , etc. can be used, and in this case, the dielectric film activator described above can be used to appropriately activate the dielectric film. It can be filled.
  • the precursor compound can be mixed with a non-polar solvent and then added into the chamber, and in this case, there is an advantage that the viscosity or vapor pressure of the precursor compound can be easily adjusted.
  • the non-polar solvent may preferably be one or more selected from the group consisting of alkanes and cycloalkanes.
  • it contains an organic solvent with low reactivity and solubility and easy moisture management, and improves thin film density even if the deposition temperature increases when forming a dielectric film ( There is an advantage that step coverage is improved.
  • the non-polar solvent may include a C1 to C10 alkane or a C3 to C10 cycloalkane, preferably a C3 to C10 cycloalkane, in which case the reactivity and It has the advantage of low solubility and easy moisture management.
  • the cycloalkane may preferably be a C3 to C10 monocycloalkane.
  • monocycloalkanes cyclopentane is liquid at room temperature and has the highest vapor pressure, so it is preferred in the vapor deposition process, but is not limited thereto.
  • the non-polar solvent has a solubility in water (25°C) of 200 mg/L or less, preferably 50 to 400 mg/L, more preferably 135 to 175 mg/L, and within this range, the precursor compound It has the advantage of low reactivity and easy moisture management.
  • solubility is not particularly limited if it is based on measurement methods or standards commonly used in the technical field to which the present invention pertains, and for example, a saturated solution can be measured by HPLC method.
  • the nonpolar solvent may preferably contain 5 to 95% by weight, more preferably 10 to 90% by weight, and even more preferably 40 to 90% by weight, based on the total weight of the precursor compound and the nonpolar solvent. It may contain % by weight, and most preferably it may contain 70 to 90% by weight.
  • the content of the non-polar solvent exceeds the upper limit, impurities are generated, increasing the resistance and the level of impurities in the dielectric film, and if the content of the organic solvent is less than the lower limit, the thin film density is improved due to the addition of the solvent. It has the disadvantage of having little improvement effect and little reduction effect of impurities such as chlorine (Cl) ions.
  • the first and second ligands may independently contain halogen, halogen and oxygen, carbon and hydrogen, or nitrogen and carbon.
  • the first ligand is a ligand of Formula 1 or Formula 2
  • the ligand of the precursor adsorbed on the substrate further includes at least one selected from chlorine, fluorine, and bromine
  • the dielectric film activator includes iodine and bromine.
  • One or more selected halogens may be included.
  • the dielectric film activator may be hydrogen iodide (HI), hydrogen bromide (HBr), and a mixed gas mixed with an inert gas at a mole ratio of 1 to 99.
  • a material having a structure in which the above-described ligand is bound to these central metals can be used as a precursor adsorbed on a substrate, and can be activated with the above-described dielectric film activator to obtain a precursor adsorbed on the activated substrate.
  • the activated substrate adsorption-precursor can promote the reaction with the post-injection reaction gas and at the same time reduce the content of residual carbon compound impurities.
  • the decrease in the content of residual carbon compound impurities is due to the decrease in the content of by-product carbon-oxygenate impurities generated by the bond between the precursor desorption ligand and the reactant and the decrease in the content of carbon compound impurities not desorbed from the precursor. It can be included.
  • the reduction in the content of non-desorbed carbon compound impurities may result from exchanging the ligand of the precursor adsorbed on the substrate with the dielectric film activator included in the dielectric film activator.
  • the precursor adsorption state before the ligand exchange can be represented by the following formula 3-1, and the precursor adsorption state after the ligand exchange can be represented by the following formula 3-2.
  • M is Hf or Zr
  • n is an integer of 1 to 4
  • X may be different from the ligand species of Formula 1 or Formula 2, F, or Cl.
  • M is Hf or Zr, m is an integer of 1 to 4, and Y is Br or I.
  • the structure of the precursor adsorbed to the substrate activated with the dielectric film activator is Formula 3-1 (substrate-MX n ), where M is Hf, and X, which may be different, may be one Cp ligand and two NMe 2 ligands.
  • the substrate may be a silicon wafer, an insulating film, or a dielectric film having -H or -OH end groups.
  • the ligand of the precursor adsorbed to the substrate may be a ligand species having the structure represented by Formula 1 or 2, F, or C.
  • the ligand of the precursor adsorbed to the substrate may be independently selected from -NR' 1 R' 2 or -OR' 3 , Cl, or F, where R' 1 to R' 3 are independently hydrogen or carbon atoms. It may be an alkyl group of 1 to 6.
  • the dielectric film activator contains nitrogen compounds and carbon compounds rather than chlorine and fluorine as iodine-based and bromine-based activators. It is desirable to react with .
  • the dielectric film activator may be hydrogen iodide (HI), hydrogen bromide (HBr), and a mixed gas mixed with an inert gas at a mole ratio of 1 to 99.
  • the dielectric film activator may include an iodine donor; iodine ion; Alternatively, it may be an iodine radical, and it is preferable that it is a material represented by the above structure in terms of smooth ligand exchange.
  • the dielectric film activator is 3N to 15N hydrogen iodide single, 1 to 99% by weight of 3N to 15N hydrogen iodide and a gas mixture with the remaining amount of inert gas such that the total amount is 100% by weight, or 3N to 15N hydrogen iodide.
  • the inert gas is nitrogen, helium or argon with a purity of 4N to 9N, The effect is large and the thin film density is improved, and the thin film density improvement effect and the electrical properties of the thin film can be improved.
  • the dielectric film activator is 5N to 6N hydrogen iodide single, 1 to 99% by weight of 5N to 6N hydrogen iodide, and a gas mixture with the remaining amount of inert gas such that the total amount is 100% by weight, or 5N An aqueous solution mixture of 0.5 to 70% by weight of hydrogen iodide with a purity of 6N and the balance of water such that the total amount is 100% by weight, where the inert gas may be nitrogen, helium or argon with a purity of 4N to 9N, in which case
  • the inert gas may be nitrogen, helium or argon with a purity of 4N to 9N, in which case
  • the dielectric film activator may preferably be a compound with a purity of 99.9% or more, a compound with a purity of 99.95% or more, or a compound with a purity of 99.99% or more.
  • impurities may remain in the dielectric film or may be used as a precursor or It may cause side reactions with reactants, so it is best to use more than 99% of the substance if possible.
  • the vapor pressure may be 1 atm at 180 to 240 K, and within this range, mass transfer into the chamber is smooth, resulting in excellent improvement in thickness uniformity, dielectric properties, and film quality of the dielectric film.
  • the dielectric film activator may be injected in a gaseous state, and the precursor compound described later may be vaporized and injected, followed by plasma post-treatment. In this case, process by-products can be reduced while improving the growth rate of the dielectric film.
  • the thin film (including a dielectric film) may be a deposited film.
  • the deposition may be atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PEALD), vapor deposition (CVD), plasma enhanced vapor deposition (PECVD), metal organic chemical vapor deposition (MOCVD), or low pressure vapor deposition (LPCVD).
  • ALD atomic layer deposition
  • PEALD plasma enhanced atomic layer deposition
  • CVD vapor deposition
  • PECVD plasma enhanced vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • LPCVD low pressure vapor deposition
  • the reaction gas may be one or more selected from H 2 O, H 2 O 2 , N 2 O, NO 2 , O 2 , O 3 and O radicals.
  • the dielectric film can be manufactured by various methods, for example, by the following method:
  • a precursor compound having a transition metal containing alkyl, alkylamine, or halogen, halogen and oxygen, or carbon and hydrogen, or a ligand containing nitrogen and carbon can be injected onto the substrate loaded in the chamber.
  • the ligand may be selected from one or more of alkyl and alkylamine, chlorine, and fluorine, and preferably includes an alkylamine with excellent reactivity.
  • the structure containing both carbon and hydrogen may be a cyclopentadienyl (Cp) group.
  • the method of transferring the precursor compound to the deposition chamber is, for example, a method of transferring volatilized gas using a gas flow control (MFC) method (Vapor Flow Control; VFC), a liquid phase flow control method ( Liquid Mass Flow Controller (LMFC), mass flow control (MFC), and liquid delivery system (LDS) can be used.
  • MFC gas flow control
  • LMFC Liquid Mass Flow Controller
  • MFC mass flow control
  • LDS liquid delivery system
  • one or two or more mixed gases selected from the group consisting of argon (Ar), nitrogen (N 2 ), and helium (He) can be used as the transport gas or dilution gas for moving the precursor compound on the substrate, but there are limitations. That is not the case.
  • an inert gas may be used as the purge gas, and preferably the transport gas or dilution gas may be used.
  • the chamber may be an atomic layer deposition (ALD) chamber, a plasma enhanced atomic layer deposition (PEALD) chamber, a vapor deposition (CVD) chamber, a plasma enhanced vapor deposition (PECVD) chamber, a metal organic chemical vapor deposition (MOCVD) chamber, or a low pressure vapor deposition (CVD) chamber. It may be a deposition (LPCVD) chamber.
  • ALD atomic layer deposition
  • PEALD plasma enhanced atomic layer deposition
  • CVD vapor deposition
  • PECVD plasma enhanced vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • CVD low pressure vapor deposition
  • the substrate loaded in the chamber may include a semiconductor substrate such as a silicon substrate or silicon oxide.
  • the substrate may further have a conductive layer or an insulating layer formed on its top.
  • the substrate may be maintained at 50 to 500 °C, or 80 to 500 °C.
  • the substrate may be heated to, for example, 50 to 500 °C, specifically 80 to 500 °C, 100 to 800 °C, or 200 to 500 °C, and the dielectric film activator or precursor compound may be applied on the substrate without heating or It can be injected in a heated state, or depending on deposition efficiency, it may be injected without heating and then adjust the heating conditions during the deposition process. For example, it can be injected onto the substrate at 50 to 500°C for 1 to 20 seconds.
  • the amount (mg/cycle) of the precursor compound introduced into the chamber is preferably, for example, a ratio of 1:1 to 1:100 between the dielectric film activator used in the second step described later and the amount (mg/cycle) of the precursor compound added into the chamber. Typically, it is 1:1 to 1:50, more preferably 1:1 to 1:25, and within this range, the effect of improving thin film density and reducing process by-products is significant.
  • the first step may include one or more purging steps using an inert gas.
  • the inert gas may be the transport gas or dilution gas described above.
  • the amount of purge gas introduced into the chamber in the step of purging the unadsorbed precursor compound is not particularly limited as long as it is sufficient to remove the unadsorbed precursor compound, but is based on, for example, the volume of the precursor compound introduced into the chamber. It may be 10 to 100,000 times, preferably 50 to 50,000 times, more preferably 100 to 10,000 times, and within this range, the non-adsorbed precursor compound can be sufficiently removed to form a dielectric film evenly and prevent deterioration of the film quality. You can.
  • the input amounts of the purge gas and the precursor compound are each based on one cycle, and the volume of the precursor compound refers to the volume of the opportunity precursor compound vapor.
  • purging is preferably 1,000 to 50,000 sccm (Standard Cubic Centimeter per Minute), more preferably 2,000 to 30,000 sccm, and even more preferably 2,500 to 15,000 sccm, and within this range, the thin film growth rate per cycle is appropriately controlled, and a single There is an advantage in terms of film quality as deposition is performed at or close to an atomic mono-layer.
  • a dielectric film activator is injected into the substrate to change the leaving group of the precursor adsorbed to the substrate into the halogen of the activator.
  • the leaving group of the precursor adsorbed on the substrate is effectively changed to the halogen of the activator to form a thin film without gaps in the crystal lattice, thereby improving the density of the thin film and greatly improving the dielectric properties and thickness uniformity of the thin film.
  • the halogen may be selected from one or more types of iodine and bromine, and it is preferable to use iodine.
  • the feeding time (sec) of the dielectric film activator to the surface of the substrate is preferably 0.01 to 10 seconds, more preferably 0.02 to 3 seconds, even more preferably 0.04 to 2 seconds, and even more preferably 0.05 to 1 second per cycle. It has the advantage of low thin film growth rate within this range, improved thin film density, and excellent economic efficiency.
  • the supply amount of the dielectric film activator is based on a flow rate of 1 to 300 sccm/cycle based on a chamber volume of 15 to 20 L, and more specifically, based on a flow rate of 10 to 100 sccm/cycle in a chamber volume of 18 L. do.
  • the dielectric film activator can be delivered to the deposition chamber by, for example, transferring gas using a mass flow controller (MFC) method.
  • MFC mass flow controller
  • the second step may include one or more purging steps using an inert gas.
  • the purge gas may be, for example, the transport gas or dilution gas.
  • purging is preferably 1,000 to 50,000 sccm (Standard Cubic Centimeter per Minute), more preferably 2,000 to 30,000 sccm, and even more preferably 2,500 to 15,000 sccm, and within this range, the thin film growth rate per cycle is appropriately controlled, and a single There is an advantage in terms of film quality as deposition is performed at or close to an atomic mono-layer.
  • the amount of purge gas introduced into the chamber in the step of purging the non-adsorbed dielectric film activator is not particularly limited as long as it is sufficient to remove the non-adsorbed dielectric film activator, but may be, for example, 10 to 100,000 times, preferably may be 50 to 50,000 times, more preferably 100 to 10,000 times, and within this range, the non-adsorbed dielectric film activator can be sufficiently removed to form a thin film evenly and prevent deterioration of film quality.
  • the input amounts of the purge gas and the dielectric film activator are each based on one cycle, and the volume of the dielectric film activator refers to the volume of the opportunity dielectric film activator vapor.
  • the deposition filler is injected (per cycle) at a flow rate of 100 sccm and an injection time of 0.5 sec, and in the step of purging the non-adsorbed deposition filler, the purge gas is injected at a flow rate of 3000 sccm and an injection time of 5 sec ( (per cycle), the injection amount of purge gas is 300 times the injection amount of the deposition filler.
  • a reaction gas can be injected into the substrate to form a thin film in which heteroatoms are bonded to a transition metal.
  • the reaction gas may be one or more selected from H 2 O, H 2 O 2 , N 2 O, NO 2 , O 2 , O 3 and O radicals.
  • the thin film may include a structure in which a halogen is directly bonded to a Group 4 metal.
  • the dielectric film forming method may be carried out at a deposition temperature in the range of 50 to 800 °C, preferably in the range of 100 to 700 °C, more preferably in the range of 200 to 650 °C. , More preferably, it is carried out at a deposition temperature in the range of 220 to 500 °C, which has the effect of growing a thin film of excellent film quality while realizing process characteristics within this range.
  • the dielectric film formation method may be performed at a deposition pressure in the range of 0.01 to 20 Torr, preferably in the range of 0.1 to 20 Torr, more preferably in the range of 0.1 to 10 Torr, and most preferably Typically, it is carried out at a deposition pressure in the range of 0.3 to 7 Torr, which is effective in obtaining a thin film of uniform thickness within this range.
  • the deposition temperature and deposition pressure may be measured as the temperature and pressure formed within the deposition chamber, or may be measured as the temperature and pressure applied to the substrate within the deposition chamber.
  • the second step preferably includes raising the temperature inside the chamber to the deposition temperature before introducing the dielectric film activator into the chamber; And/or the step of purging by injecting an inert gas into the chamber before introducing the dielectric film activator into the chamber may be further included.
  • the third step may include a purging step using an inert gas.
  • the amount of purge gas introduced into the chamber may be, for example, 10 to 10,000 times, preferably 50 to 50,000 times, based on the volume of the reaction gas introduced into the chamber. More preferably, it may be 100 to 10,000 times, and the desired effect can be sufficiently obtained within this range.
  • the input amounts of the purge gas and reaction gas are each based on one cycle.
  • purging is preferably 1,000 to 50,000 sccm (Standard Cubic Centimeter per Minute), more preferably 2,000 to 30,000 sccm, and even more preferably 2,500 to 15,000 sccm, and within this range, the thin film growth rate per cycle is appropriately controlled, and a single There is an advantage in terms of film quality as deposition is performed at or close to an atomic mono-layer.
  • the dielectric film forming method may be performed by repeating the unit cycle 1 to 99,999 times as needed, preferably 10 to 10,000 unit cycles, more preferably 50 to 5,000 times, and even more preferably 100 to 2,000 times. It can be performed repeatedly, and within this range, the desired thickness of the thin film can be obtained while reducing the by-product carbon compound content and improving the thin film density.
  • the above-described dielectric film activator and a precursor compound or a mixture of the dielectric film activator and a non-polar solvent are respectively prepared.
  • the prepared precursor compound or a mixture of it and a non-polar solvent is injected into the vaporizer, changed into a vapor phase, transferred to the deposition chamber, and adsorbed on the substrate.
  • the ligand of the precursor compound is replaced by a dielectric film activator, and the unadsorbed precursor compound is added. is purged.
  • the prepared dielectric film activator is injected into the vaporizer, changed into a vapor phase, delivered to the deposition chamber, adsorbed on the substrate, and purged to remove the non-adsorbed dielectric film activator.
  • the dielectric film activator and precursor compound can be delivered to the deposition chamber, for example, by transferring gas using a mass flow controller (MFC) method.
  • MFC mass flow controller
  • one or a mixture of two or more gases selected from the group consisting of argon (Ar), nitrogen (N 2 ), and helium (He) may be used as a transport gas or dilution gas for moving the dielectric film activator and precursor compound on the substrate.
  • gases selected from the group consisting of argon (Ar), nitrogen (N 2 ), and helium (He) may be used as a transport gas or dilution gas for moving the dielectric film activator and precursor compound on the substrate. may be possible, but is not limited.
  • an inert gas may be used as the purge gas, and preferably the transport gas or dilution gas may be used.
  • the heteroatom-containing gas is not particularly limited as long as it is a reactive gas commonly used in the technical field to which the present invention pertains, and may preferably include an oxidizing agent.
  • the oxidizing agent and the precursor compound adsorbed on the substrate react to form an oxide film.
  • the oxidizing agent may be oxygen gas (O 2 ), ozone gas (O 3 ), or a mixture of nitrogen gas and oxygen gas.
  • the remaining unreacted reaction gas is purged using an inert gas. Accordingly, not only excess reaction gas but also generated by-products can be removed.
  • the dielectric film forming method includes, for example, adsorbing a precursor compound on a substrate, purging the non-adsorbed precursor compound, supplying a dielectric film activator on the substrate, and purging the non-adsorbed dielectric film activator.
  • the step of supplying the reaction gas, and purging the remaining reaction gas are performed as a unit cycle, and the unit cycle may be repeated to form a dielectric layer of a desired thickness.
  • the unit cycle may be repeated 1 to 99,999 times, preferably 10 to 1,000 times, more preferably 50 to 5,000 times, and even more preferably 100 to 2,000 times, and within this range, the desired dielectric film characteristics This effect is expressed well.
  • the injection time and purge time of the precursor compound are a and b, respectively
  • the injection time and purge time of the alkyl-free halide in the second step are c and d, respectively
  • the injection time and purge time of the heteroatom-containing gas are e and f, respectively, 0.1 ⁇ a ⁇ 10, 2a ⁇ b ⁇ 4a, 0.1 ⁇ c ⁇ 10, 2c ⁇ d ⁇ 8c, 2 ⁇ e ⁇ 10, 2e ⁇ b ⁇ 8e can be satisfied simultaneously.
  • the deposition rate on the SiO2 of the dielectric film is 1 ⁇ /cycle 2)
  • the density of the dielectric film can satisfy all requirements of 9.8 g/cm3 or more.
  • the following two conditions are met: 1) The deposition rate of the SiO2 phase of the dielectric film is 1 to 2 ⁇ / cycle, and 2) the density of the dielectric film can satisfy all of 9.8 to 10.5 g/cm3.
  • the method of manufacturing a dielectric film includes, for example, an ALD chamber, a corrosion-resistant MFC including a gold seal for injecting a fixed amount of a dielectric film activator, a first transport means for transporting the dielectric film activator supplied in a fixed amount into the ALD chamber, and adsorbing the dielectric film activator to the substrate. It may be performed using a dielectric film manufacturing apparatus including a second vaporizer for vaporizing the precursor and a second transfer means for transporting the precursor adsorbed on the vaporized substrate into the ALD chamber.
  • the vaporizer and transport means are not particularly limited as long as they are vaporizers and transport means commonly used in the technical field to which the present invention pertains.
  • the thin film may be a dielectric film.
  • the thin film may have a multilayer structure of two or more layers.
  • the thin film can be obtained by a reaction between an activated substrate adsorption-precursor and a reactive gas represented by the structure of Formula 1, and in this case, the content of by-product carbon compounds is reduced due to the use of the activated substrate-adsorption precursor. This allows for the production of high-quality thin films.
  • the reduction of byproduct carbon compounds between the precursor adsorbed on the activated substrate and the reaction gas may result from the fact that the activation energy of the precursor adsorbed on the activated substrate is reduced compared to the activation energy of the precursor adsorbed on the substrate.
  • the dielectric film may have a deposition rate of 1.0 ⁇ /cycle or more, or 1.0 to 2.0 ⁇ /cycle, as measured by an ellipsometer (based on a thin film deposited at 300°C) on SiO2 or Si, and thin film uniformity and deposition within the above range. Productivity can be improved.
  • the dielectric film may have a thin film density measured on SiO2 or Si of 9.5 g/cm3 or more, 9.8 g/cm3 or more, or 9.8 to 10.3 g/cm3, and dielectric properties may be improved within this range.
  • the dielectric film may have a carbon impurity content measured by SIMS (based on a thin film deposited at 300°C) on SiO2 or Si of 1000 counts/s or less, 715 counts/s or less, or 700 counts/s or less, within the above range. Electron leakage is significantly reduced, which can improve dielectric properties.
  • SIMS based on a thin film deposited at 300°C
  • the dielectric film may have an iodine atom value of 50 counts/s or more, or 65 counts/s or more, as measured by SIMS, and can provide the effect of increasing the dielectric constant by increasing the thin film density within this range.
  • the dielectric film may have a deposition thickness of 410 counts/s or less, or 300 counts/s or less, as measured by SIMS (based on a thin film deposited at 400°C) on SiO2 or Si, and within the above range, electron leakage is significantly reduced, resulting in Dielectric properties can be improved.
  • the dielectric film may include the above-described film composition alone or as a selective area, but is not limited thereto and also includes Si, SiH, SiOH, and SiO2.
  • the dielectric film can be used in semiconductor devices not only as a commonly used DRAM, but also as a dielectric film and insulating film for NAND or logic devices.
  • the dielectric film may contain halogen compounds measured using SIMS at a rate of 30,000 counts/s or less.
  • the present invention also provides a semiconductor substrate, wherein the semiconductor substrate is manufactured by the dielectric film forming method of the present invention or includes the dielectric film, in which case the thin film density of the dielectric film (step coverage) and the thickness uniformity of the dielectric film are improved. This is greatly superior, and has excellent effects on the density and dielectric properties of the dielectric film.
  • the manufactured dielectric film preferably has a deposition rate of SiO2 of 1 ⁇ /cycle or more, has excellent performance as an anti-diffusion film within the range of a density of 9.8 g/cm3 or more, and has the effect of particularly improving dielectric properties, but is not limited to this. no.
  • the impurity halogen remaining in the dielectric film may be, for example, Cl 2 , Cl, or Cl - , and the lower the amount of halogen remaining in the dielectric film, the better the film quality, which is preferable.
  • the lower the carbon content remaining in the dielectric film the better the dielectric properties.
  • the dielectric film may have a multi-layer structure of two or more layers, a multi-layer structure of three or more layers, or a multi-layer structure of two or three layers, depending on necessity.
  • the multilayer film having the two-layer structure may have a lower layer-middle layer structure as a specific example, and the multilayer film having the three-layer structure may have a lower layer film-middle layer-upper layer structure as a specific example.
  • the lower layer film is, for example, Si, SiO 2 , MgO, Al 2 O 3 , CaO, ZrSiO 4 , ZrO 2 , HfSiO 4 , Y 2 O 3 , HfO 2 , LaLuO 2 , Si 3 N 4 , SrO, La 2 O 3 , Ta 2 O 5 , BaO, TiO 2 It may include one or more selected from the group consisting of.
  • the multilayer film may include Ti x N y , preferably TN.
  • the upper layer may include one or more selected from the group consisting of W and Mo.
  • a semiconductor device including the above-described semiconductor substrate can be provided.
  • the semiconductor devices include, for example, low resistive metal gate interconnects, high aspect ratio 3D metal-insulator-metal capacitors, and DRAM trench capacitors. capacitor), 3D Gate-All-Around (GAA; Gate-All-Around), or 3D NAND flash memory.
  • 5N HI was prepared as a dielectric film activator.
  • An ALD deposition process was performed using the precursor compound and a dielectric film activator in one cycle of the deposition process sequence according to the present invention.
  • the precursor compound having the structure shown in Formula 1-1 is placed in a canister maintained at 25°C and supplied to a separate vaporizer heated to 150°C at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature. did.
  • the precursor compound evaporated into vapor phase in the vaporizer was introduced into the deposition chamber using a VFC (Vapor Flow Controller) for 1 second, and then argon gas was supplied at 3000 sccm for 5 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 2.5 Torr.
  • 5N HI as a dielectric film activator was placed in a canister and supplied to the chamber at 100 sccm/cycle using a Mass Flow Controller (MFC) at room temperature.
  • MFC Mass Flow Controller
  • argon gas was supplied at 3000 sccm for 8 seconds to perform argon purging.
  • the pressure within the reaction chamber was controlled at 2.5 Torr.
  • the deposition rate of each dielectric film was 1.41 ⁇ /cycle.
  • the density of the dielectric film was measured using X-ray reflectometry (XRR) equipment.
  • the measured density was 9.83 g/cm 3 .
  • impurities were measured for H-, C-, NH-, 18 O-, 30 Si-, etc. using SIMS (Secondary-ion mass spectrometry) equipment.
  • the impurity value was confirmed in the SIMS graph by considering the impurity content (counts) at a sputter time of 50 seconds, when the ion sputter penetrates the dielectric film in the axial direction and there is little contamination in the surface layer of the substrate.
  • the average impurity content of carbon (C) in the dielectric film was calculated to be 694 counts/s.
  • H impurity content remaining as a process by-product was reduced from 3340 counts/s to 2600 counts/s.
  • the precursor compound having the structure shown in Formula 4 was placed in a canister maintained at 25°C and supplied to a separate vaporizer heated to 150°C at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
  • the precursor compound evaporated into vapor phase in the vaporizer was introduced into the deposition chamber using a VFC (Vapor Flow Controller) for 1 second, and then argon gas was supplied at 3000 sccm for 5 seconds to perform argon purging. At this time, the pressure within the reaction chamber was controlled at 2.5 Torr.
  • 5N HI as a dielectric film activator was placed in a canister and supplied to the chamber at 100 sccm/cycle using a Mass Flow Controller (MFC) at room temperature.
  • MFC Mass Flow Controller
  • argon gas was supplied at 3000 sccm for 8 seconds to perform argon purging.
  • the pressure within the reaction chamber was controlled at 2.5 Torr.
  • This process was repeated 200 to 400 times to manufacture a dielectric film at a deposition rate according to the deposition temperature.
  • the deposition rate of the dielectric film was 1.46 ⁇ /cycle.
  • the density of the dielectric film was measured using X-ray reflectometry (XRR) equipment.
  • the measured density was 10.08 g/cm 3 .
  • the average impurity content of carbon (C) in the dielectric film measured using SIMS (Secondary-ion mass spectrometry) equipment was calculated to be 243 counts/s. In addition, it was confirmed that not only carbon but also H impurity content remaining as a process by-product was reduced.
  • Example 1 The same process as Example 1 was repeated except that the dielectric film was manufactured without using the 5N HI used as the dielectric film activator in Example 1, and the measurement results are shown in Figure 1 below.
  • the deposition rate increase rate (D/R (dep. rate) increase rate) of the dielectric film was 0.84 ⁇ /cycle.
  • the density of the dielectric film was measured using X-ray reflectometry (XRR) equipment.
  • the measured density was calculated to be an average of 9.71 g/cm3, and it can be seen that it is poorer than Example 1.
  • the impurity content of the dielectric film was measured, and the impurity content of carbon (C) in the dielectric film confirmed using SIMS was calculated to be 927 counts/s, and it can be seen that it is 33% inferior to that of Example 1.
  • Example 2 The same process as Example 2 was repeated except that the dielectric film was manufactured without using 5N HI as the dielectric film activator in Example 2, and the measurement results are shown in Figure 1 below.
  • the deposition rate increase rate (D/R (dep. rate) increase rate) of the dielectric film was 0.91 ⁇ /cycle, and as a result, it can be seen that it was about 60% worse than Example 1.
  • the density of the dielectric film was measured using X-ray reflectometry (XRR) equipment.
  • the measured density was calculated to be an average of 10.08 g/cm3, and it can be seen that it is poorer than Example 1.
  • the impurity content of the dielectric film was measured, and the impurity content of carbon (C) in the dielectric film confirmed using SIMS was calculated to be 243 counts/s, which was found to be approximately 42% inferior to that of Example 1.
  • Example 1 using the dielectric film activator according to the present invention although the dielectric film was manufactured under low temperature conditions of 300°C, the rate of increase in dielectric film deposition rate per cycle and the density of the dielectric film were each 10% compared to Comparative Example 1 which did not use the dielectric film activator according to the present invention. This is the above, and it was confirmed that the impurity reduction rate was excellent at over 60%.
  • SIMS Secondary-ion mass spectrometry analysis method digs into the thin film in the axial direction with an ion sputter, and considers the C impurity content (counts) at a sputter time of 50 seconds with minimal contamination in the surface layer of the substrate, and calculates the C impurity value in the graph in Figure 3. As you can see, it was confirmed to be about 1100 counts/s.
  • the thickness, deposition rate increase rate, density, and dielectric properties of the dielectric film are all improved, and the impurity reduction characteristic is also excellent, effectively forming a dielectric film even on a complex patterned substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자에 관한 것으로, 본 발명에 따르면 유전막에 혼입되는 전구체와 반응 가스 간 부생 탄소 화합물 함량을 줄이면서 박막 밀도 증가 효과를 제공할 수 있는 유전막 활성화제를 이용함으로써 유전막의 커패시턴스를 개선하면서 간단한 공정으로 박막 밀도 증가 효과를 제공하는 효과가 있다. [대표도] 도 1

Description

유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자
본 발명은 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자에 관한 것으로, 보다 상세하게는 유전막에 혼입되는 전구체와 반응 가스 간 잔류 탄소 화합물 불순물을 줄여 커패시턴스를 개선하면서 박막 밀도 증가 효과를 제공할 수 있는 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자에 관한 것이다.
유전체는 절연체와 같이 전기가 흐르지 않지만, 전기장 속에서 극성을 띠는 절연체를 지칭하며, 반도체 소자에서 유전체는 매우 중요한 역할을 수행한다.
일례로 커패시터에서 전기가 실제로 저장되는 물질이 유전체이다.
한편, 높은 유전율을 갖는 고 유전체(high-k)에 전구체와 반응 가스 간 부생 탄소 화합물이 혼입되는 경우 매우 큰 커패시턴스 차이를 초래할 수 있다.
상기 유전막에 혼입되는 전구체와 반응 가스 간 불순물을 포함하는 잔류 탄소 화합물 불순물 함량은 유전특성과 화학적 특성에 영향을 미치는 요인으로서 유전율이 저감될 수 있거나, 또는 할로겐 리간드의 이탈기에서 유래된 HCl, 탄화수소 등의 부산물이 흡수되어 유전막을 오염시키거나 유전막의 결정 배열을 흐트리는 경우 박막 밀도를 낮춰 유전상수를 저감시키는 문제가 발생한다.
이에 유전체에 혼입되는 전구체와 반응 가스 간 불순물을 포함하는 잔류 탄소 화합물 불순물 함량을 줄이면서 박막 밀도를 증가시켜 유전상수가 높아지는 효과를 제공할 수 있는 유전막 활성화제와 이를 활용한 유전막 제조, 이로부터 제조된 반도체 기판과 반도체 소자 등의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
미국 공개특허 2020/0316645호 (공개일: 2020.10.08.)
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 소정 구조의 유전막 활성화제를 사용하여 기판에 흡착한 전구체를 활성화하여 전구체와 반응 가스 간 부생 탄소 화합물의 유전막 혼입을 방지함으로써 커패시턴스를 증가시키면서 박막 밀도가 증가된 고품질 유전막, 나아가 이를 포함하는 반도체 기판 및 반도체 소자를 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 기판에 흡착된 전구체의 중심금속에 직접 연결된 제1 리간드를, 유전막 활성화제에 포함된 제2 리간드로 교환하여 활성화된 기판 흡착-전구체를 제공하는 것을 특징으로 하는 유전막 활성화제를 제공한다.
상기 전구체의 중심 금속은 일례로 4족 원소일 수 있다.
상기 전구체의 중심 금속은 구체적인 예로 Hf 또는 Zr일 수 있다.
상기 기판에 흡착한 전구체 분자는 하기 화학식 1로 나타내는 구조 및 하기 화학식 2로 나타내는 구조 중에서 1종 이상 선택될 수 있다.
[화학식 1]
Figure PCTKR2023015457-appb-img-000001
(상기 화학식 1에서, 상기 M은 Zr 또는 Hf이며, R1은 독립적으로 수소, 탄소수 1 내지 4의 알킬기이고, 상기 n은 0 내지 5의 정수이며, X'1, X'2 및 X'3은 독립적으로 -NR'1R'2 또는 -OR'3, Cl, 또는 F로부터 선택되고, 상기 R'1 내지 R'3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이다.)
[화학식 2]
Figure PCTKR2023015457-appb-img-000002
(상기 화학식 2에서, 상기 M은 Zr 또는 Hf이며, 상기 X1, X2는 독립적으로 -NR1R2 또는 -OR3, Cl, 또는 F이고, 상기 R1 내지 R3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이며, 상기 Y는 탄소수 1 내지 6의 알킬이고, 상기 n은 1 또는 2이다.)
상기 기판에 흡착한 전구체 분자는 중심금속에 -NR'1R'2 또는 -OR'3, Cl, 또는 F로부터 독립적으로 선택된 4종의 리간드가 결합된 구조를 가질 수 있다. 여기서 중심금속은 Zr 또는 Hf일 수 있고, 상기 R'1 내지 R'3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기일 수 있다.
상기 제1 리간드와 제2 리간드는 서로 독립적으로 할로겐, 할로겐과 산소 또는 탄소와 수소를 동시에 포함하거나 또는 질소와 탄소를 동시에 포함할 수 있다.
상기 제1 리간드는 상기 화학식 1 또는 화학식 2의 리간드이며, 상기 기판에 흡착된 전구체의 리간드는 이에 더해 염소, 불소, 브롬 중에서 선택된 1종 이상이 포함되고, 상기 유전막 활성화제에는 아이오딘 및 브롬 중에서 선택된 1종 이상의 할로겐이 포함될 수 있다.
상기 유전막 활성화제는 요오드화수소 (HI), 브롬화수소 (HBr) 및 이를 불활성 기체에 1 내지 99 몰 분율로 혼합한 혼합가스일 수 있다.
상기 활성화된 기판 흡착-전구체에 의해 전구체보다 먼저 주입하는 전주입 또는 후주입된 반응가스와의 반응이 촉진되는 동시에 잔류 탄소 화합물 불순물 함량이 감소되는 것을 특징으로 한다.
잔류 탄소 화합물 불순물 함량 감소는 전구체 탈착 리간드와 반응가스간 결합에 의해 생성된 부생 탄소-산소화물 불순물 함량 감소와 전구체에서 미탈착된 탄소화합물 불순물 함량 감소에 의한 것을 포함할 수 있다.
상기 미탈착 탄소화합물 불순물 함량 감소는 상기 기판에 흡착한 전구체의 리간드를 상기 유전막 활성화제에 포함된 유전막 활성화제로 교환시킨 것으로부터 유래된 것일 수 있다.
상기 반응가스는 H2O, H2O2, N2O, NO2, O2, O3 및 O 라디칼 중에서 선택된 1종 이상일 수 있다.
상기 리간드 교환 전 전구체 흡착 상태는 하기 화학식 3-1로 나타낼 수 있고, 상기 리간드 교환 후 전구체 흡착 상태는 하기 화학식 3-2로 나타낼 수 있다.
[화학식 3-1]
기판-M-Xn
(상기 화학식 3-1에서, M은 Hf 또는 Zr이고, n은 1 내지 4의 정수이며, X는 화학식 1, 화학식 2의 리간드종, F, 또는 Cl으로 서로 다를 수 있다.)
[화학식 3-2]
기판-M-Ym
(상기 화학식 3-2에서, M은 Hf 또는 Zr이고, m은 1 내지 4의 정수이며, Y는 Br 또는 I이다.)
상기 기판은 -H 또는 -OH 말단기를 갖는 실리콘 웨이퍼, 절연막 또는 유전막일 수 있다.
상기 유전막은 증착막일 수 있다.
여기서 증착은 원자층 증착법(ALD), 플라즈마 강화 원자층 증착법(PEALD), 기상 증착법(CVD), 플라즈마 강화 기상증착법(PECVD), 유기금속 화학기상 증착법(MOCVD), 또는 저압 기상증착법(LPCVD)을 포함할 수 있다.
또한, 본 발명은 기판; 및 유전막;을 포함하며,
상기 유전막은 전술한 유전막 활성화제를 사용하여 증착된 막인 것을 특징으로 하는 반도체 기판을 제공한다.
상기 유전막은 2층 이상의 다층 구조일 수 있다.
상기 유전막은 SiO2 또는 Si 상에서 측정된 증착 속도 (300 ℃에서 증착한 박막 기준)가 0.5 Å/cycle 이상일 수 있다.
상기 유전막은 SiO2 또는 Si 상에서 측정된 박막 밀도가 9.8 g/cm3 이상일 수 있다.
상기 유전막은 SiO2 또는 Si 상에서 SIMS (300 ℃에서 증착한 박막 기준)로 측정한 C 불순물 함량이 1000 counts/s 이하일 수 있다.
또한, 본 발명은 전술한 반도체 기판을 포함하는 반도체 소자를 제공한다.
본 발명에 따르면, 활성화된 기판 흡착-전구체에 의해 후주입 반응가스와의 반응 촉진이 촉진되는 동시에 잔류 탄소 화합물 불순물 함량이 감소될 수 있는 유전막 활성화제를 제공하는 효과가 있다.
구체적으로, 유전막 형성시 밀도 개선과 함께 공정 부산물이 보다 효과적으로 감소되어, 부식이나 열화를 막고 유전막의 유전특성을 개선시키는 효과가 있다.
또한 유전막의 두께 균일성을 개선시킬 수 있고, 나아가 이를 이용한 유전막 제조 방법 및 이로부터 제조된 반도체 기판 및 반도체 소자를 제공하는 효과가 있다.
도 1은 본 발명에 따라 유전막 활성화제를 사용한 실시예 1의 유전막에서 증착 온도별 성장 속도와, 유전막 활성화제를 미사용한 비교예 1의 유전막에서 증착 온도별 성장 속도를 비교한 도면이다.
도 2는 본 발명에 따라 유전막 활성화제를 사용한 추가 실시예 1의 유전막에서 SIMS 분석한 C 불순물 함량을 나타낸 그래프이다.
도 3은 유전막 활성화제를 미사용한 추가 비교예 1의 유전막에서 SIMS 분석한 C 불순물 함량을 나타낸 그래프이다.
이하 본 기재의 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자를 상세하게 설명한다.
본 발명자들은 유전막에 혼입되는 전구체 탈착 리간드와 반응물간 결합에 의해 생성된 부생 탄소-산소화물 불순물 함량과 상기 전구체에서 미탈착된 탄소화합물 불순물 함량을 줄이면서 박막 밀도 증가 효과를 제공할 수 있는 유전막 활성화제를 사용하여 유전막 형성시 밀도 개선과 함께 부식이나 열화를 막고 유전막의 유전특성을 개선시키며, 유전막의 두께 균일성을 개선시켜 고품질 유전막을 제공하는 것을 확인하였다. 이를 토대로 유전막 연구에 매진하여 본 발명을 완성하게 되엇다.
이하, 유전막 활성화제, 이를 사용하여 제조된 유전막을 포함하는 반도체 기판과 반도체 소자에 대하여 구체적으로 살펴본다.
본 기재에서 상기 유전막 활성화제는, 본 발명에서 기판에 흡착한 전구체를 활성화하여 활성화된 기판 흡착-전구체에 의해 후주입 반응가스와의 반응 촉진이 촉진되는 동시에 잔류 탄소 화합물 불순물의 유전막 혼입을 감소시키는 물질일 수 있다.
전술한 기판에 흡착한 전구체의 중심 금속은 4족 원소로서, 리간드가 서로 같거나 다른 할로겐을 2개 이상 포함하여 기판에 흡착될 수 있다.
상기 중심 금속은 바람직하게는 Hf 또는 Zr일 수 있다.
본 발명에서 유전막을 형성하는데 사용하는 전구체 화합물은 4족 금속으로 Hf, Zr로 이루어져 있고, Hf(NMe2)4, Zr(NMe2)4 및 CpZr (CpZr(NMe2)3), CpHf (CpHf(NMe2)3) 및 Hf, Zr을 중심금속으로 하는 이의 유도체로서 선형 또는 중심금속에 결합된 리간드들이 연결된 환형 전구체 분자 일 수 있다.
상기 기판에 흡착한 전구체 분자는 일례로 하기 화학식 1과 하기 화학식 2로 나타낼 수 있다.
[화학식 1]
Figure PCTKR2023015457-appb-img-000003
(상기 화학식 1에서, 상기 M은 Zr 또는 Hf이며, R1은 독립적으로 수소, 탄소수 1 내지 4의 알킬기이고, 상기 n은 0 내지 5의 정수이며, X'1, X'2 및 X'3은 독립적으로 -NR'1R'2 또는 -OR'3, Cl, 또는 F로부터 선택되고, 상기 R'1 내지 R'3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이다.)
[화학식 2]
Figure PCTKR2023015457-appb-img-000004
(상기 화학식 2에서, 상기 M은 Zr 또는 Hf이며, 상기 X1, X2는 독립적으로 -NR1R2 또는 -OR3, Cl, 또는 F이고, 상기 R1 내지 R3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이며, 상기 Y는 탄소수 1 내지 6의 알킬이고, 상기 n은 1 또는 2이다.)
전이금속을 중심 금속원자(M)로 하여, C, N, O, H, X(할로겐)로 이루어진 리간드를 1종 이상으로 갖는 분자로서 25 ℃에서 증기압이 1 mTorr 내지 100 Torr인 전구체의 경우에, 후술하는 유전막 활성화제로 리간드를 치환하는 효과를 극대화할 수 있다.
또한, 지르코늄 전구체 화합물을 예로 들면, CpZr(NMe2)3)의 트리스(디메틸아미도)시클로펜타디에닐 지르코늄과 Cp(CH2)3NM3Zr(NMe2)2의 (메틸-3-시클로펜타디에닐프로필아미노)비스(디메틸아미노)지르코늄, [(Me)(Et)N]4Zr의 테트라키스(에틸메틸아미도)지르코늄 등을 사용할 수 있으며, 이 경우에 후술하는 유전막 활성화제에 의해 적절하게 채워질 수 있다.
하프늄 전구체 화합물을 예로 들면, CpHf(NMe2)3)의 트리스(디메틸아미도)시클로펜타디에닐 하프늄과 Cp(CH2)3NM3Hf(NMe2)2의 (메틸-3-시클로펜타디에닐프로필아미노)비스(디메틸아미노)하프늄, [(Me)(Et)N]4Hf의 테트라키스(에틸메틸아미도)하프늄 등을 사용할 수 있으며, 이 경우에 상술하는 유전막 활성화제에 의해 적절하게 채워질 수 있다.
본 발명에서 상기 전구체 화합물은 일례로 비극성 용매와 혼합하여 챔버 내로 투입될 수 있고, 이 경우 전구체 화합물의 점도나 증기압을 용이하게 조절 가능한 이점이 있다.
상기 비극성 용매는 바람직하게 알칸 및 사이클로 알칸으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이러한 경우 반응성 및 용해도가 낮고 수분 관리가 용이한 유기용매를 함유하면서도 유전막 형성 시 증착 온도가 증가되더라도 박막 밀도 향상(step coverage)이 향상되는 이점이 있다.
보다 바람직한 예로, 상기 비극성 용매는 C1 내지 C10의 알칸(alkane) 또는 C3 내지 C10의 사이클로알칸(cycloalkane)을 포함할 수 있으며, 바람직하게는 C3 내지 C10의 사이클로알칸(cycloalkane)이고, 이 경우 반응성 및 용해도가 낮고 수분 관리가 용이한 이점이 있다.
본 기재에서 C1, C3 등은 탄소수를 의미한다.
상기 사이클로알칸은 바람직하게는 C3 내지 C10의 모노사이클로알칸일 수 있으며, 상기 모노사이클로알칸 중 사이클로펜탄(cyclopentane)이 상온에서 액체이며 가장 증기압이 높아 기상 증착 공정에서 바람직하나, 이에 한정되는 것은 아니다.
상기 비극성 용매는 일례로 물에서의 용해도(25℃)가 200 mg/L 이하, 바람직하게는 50 내지 400 mg/L, 보다 바람직하게는 135 내지 175 mg/L이고, 이 범위 내에서 전구체 화합물에 대한 반응성이 낮고 수분 관리가 용이한 이점이 있다.
본 기재에서 용해도는 본 발명이 속한 기술분야에서 통상적으로 사용하는 측정 방법이나 기준에 의하는 경우 특별히 제한되지 않고, 일례로 포화용액을 HPLC법으로 측정할 수 있다.
상기 비극성 용매는 바람직하게 전구체 화합물 및 비극성 용매를 합한 총 중량에 대하여 5 내지 95 중량%를 포함할 수 있고, 보다 바람직하게는 10 내지 90 중량%를 포함할 수 있으며, 더욱 바람직하게는 40 내지 90 중량%를 포함할 수 있고, 가장 바람직하게는 70 내지 90 중량%를 포함할 수 있다.
만약, 상기 비극성 용매의 함량이 상기 상한치를 초과하여 투입되면 불순물을 유발하여 저항과 유전막내 불순물 수치가 증가하고, 상기 유기용매의 함량이 상기 하한치 미만으로 투입될 경우 용매 첨가로 인한 박막 밀도 향상의 향상 효과 및 염소(Cl) 이온과 같은 불순물의 저감효과가 적은 단점이 있다.
상기 제1 리간드와 제2 리간드는 서로 독립적으로 할로겐, 할로겐과 산소 또는 탄소와 수소를 동시에 포함하거나 질소와 탄소를 동시에 포함할 수 있다.
상기 제1 리간드는 상기 화학식 1 또는 화학식 2의 리간드이며, 상기 기판에 흡착된 전구체의 리간드는 이에 더해 염소, 불소, 브롬 중에서 선택된 1종 이상이 포함되고, 상기 유전막 활성화제에는 아이오딘 및 브롬 중에서 선택된 1종 이상의 할로겐이 포함될 수 있다.
상기 유전막 활성화제는 요오드화수소 (HI), 브롬화수소 (HBr) 및 이를 불활성 기체에 1 내지 99 몰 분율로 혼합한 혼합가스일 수 있다.
이들 중심 금속에 전술한 리간드가 결합된 구조를 갖는 물질을 기판에 흡착한 전구체로 사용할 수 있으며, 여기에 상술한 유전막 활성화제로 활성화시켜 활성화된 기판에 흡착한 전구체를 수득할 수 있다.
상기 활성화된 기판 흡착-전구체에 의해 후주입 반응가스와의 반응 촉진이 촉진되는 동시에 잔류 탄소 화합물 불순물 함량이 감소될 수 있다.
여기서 잔류 탄소 화합물 불순물 함량 감소는 전구체 탈착 리간드와 반응물간 결합에 의해 생성된 부생 탄소-산소화물 불순물 함량 감소와 전구체에서 미탈착된 탄소화합물 불순물 함량 감소에 의한 것을 포함할 수 있다.
구체적으로, 상기 미탈착 탄소화합물 불순물 함량 감소는 상기 기판에 흡착한 전구체의 리간드를 상기 유전막 활성화제에 포함된 유전막 활성화제로 교환시킨 것으로부터 유래될 수 있다.
상기 리간드 교환 전 전구체 흡착 상태는 하기 화학식 3-1로 나타낼 수 있고, 상기 리간드 교환 후 전구체 흡착 상태는 하기 화학식 3-2로 나타낼 수 있다.
[화학식 3-1]
기판-M-Xn
(상기 화학식 3-1에서, M은 Hf 또는 Zr이고, n은 1 내지 4의 정수이며, X는 화학식 1, 화학식 2의 리간드종, F, 또는 Cl으로 서로 다를 수 있다.)
[화학식 3-2]
기판-M-Ym
(상기 화학식 3-2에서, M은 Hf 또는 Zr이고, m은 1 내지 4의 정수이며, Y는 Br 또는 I이다.)
일례로, 상기 기판에 흡착한 전구체가 CpHf(NMe2)3인 경우, 상기 유전막 활성화제로 활성화된 기판에 흡착한 전구체 구조는 상기 화학식 3-1 (기판-M-Xn)에서 M은 Hf이고, 서로 다를 수 있는 X은 1개의 Cp 리간드와 2개의 NMe2 리간드일 수 있다.
상기 기판은 -H 또는 -OH 말단기를 갖는 실리콘 웨이퍼, 절연막 또는 유전막일 수 있다.
상기 기판에 흡착한 전구체의 리간드는 일례로 상기 화학식 1 또는 2로 나타내는 구조의 리간드종이거나, F, 또는 C일 수 있다.
상기 기판에 흡착한 전구체의 리간드는 다른 예로 -NR'1R'2 또는 -OR'3, Cl, 또는 F로부터 독립적으로 선택될 수 있고, 여기서 R'1 내지 R'3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기일 수 있다.
상기 기판에 흡착한 전구체에 염소, 불소, 질소화합물 및 탄소화합물 중에서 선택된 1종 이상의 할로겐이 포함되는 경우, 상기 유전막 활성화제에는 염소, 불소보다 질소화합물과 탄소화합물이 아이오딘계 및 브롬계 활성화제와 반응하는 것이 바람직하다.
구체적인 예로, 상기 유전막 활성화제는 요오드화수소 (HI), 브롬화수소 (HBr) 및 이를 불활성 기체에 1 내지 99 몰분율로 혼합한 혼합가스 일 수 있다.
또한, 상기 유전막 활성화제는 아이오딘 도너(doner); 아이오딘 이온; 또는 아이오딘 라디칼일 수 있고, 이는 원활한 리간드 교환 측면에서 상기 구조로 나타내는 물질인 것이 바람직하다.
이와 같은 경우 부반응을 억제하여 유전막 내 공정 부산물이 저감되어 부식이나 열화가 저감되고, 박막 성장률을 제어하며 금속 산화막 형성시 화학양론적인 산화상태에 도달하게 하며, 유전막의 두께 균일성을 크게 향상시키는 효과가 있다.
구체적인 예로, 상기 유전막 활성화제는 3N 내지 15N의 아이오딘화 수소 단일물, 3N 내지 15N의 아이오딘화 수소 1 내지 99 중량% 및 총량이 100 중량%가 되도록 하는 불활성 기체 잔량의 기체 혼합물, 또는 3N 내지 15N의 아이오딘화 수소 0.5 내지 70 중량% 및 총량이 100 중량%가 되도록 하는 물 잔량의 수용액 혼합물이며, 여기서 불활성 기체는 4N 내지 9N의 순도를 갖는 질소, 헬륨 또는 아르곤인 경우에, 공정 부산물 감소 효과가 크고 박막 밀도 향상이 우수하며, 박막 밀도 향상 효과 및 박막의 전기적 특성이 보다 뛰어날 수 있다.
바람직하게는, 상기 유전막 활성화제는 5N 내지 6N의 아이오딘화 수소 단일물, 5N 내지 6N의 아이오딘화 수소 1 내지 99 중량% 및 총량이 100 중량%가 되도록 하는 불활성 기체 잔량의 기체 혼합물, 또는 5N 내지 6N의 아이오딘화 수소 0.5 내지 70 중량% 및 총량이 100 중량%가 되도록 하는 물 잔량의 수용액 혼합물이며, 여기서 불활성 기체는 4N 내지 9N의 순도를 갖는 질소, 헬륨 또는 아르곤일 수 있고, 이 경우에 부반응을 억제하고 박막 성장률을 조절하여, 박막 내 공정 부산물이 저감되어 부식이나 열화가 저감되고, 박막의 결정성이 향상되며, 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 박막 밀도 향상(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 수 있다.
상기 유전막 활성화제는 바람직하게는 순도 99.9% 이상의 화합물, 순도 99.95% 이상의 화합물, 또는 순도 99.99% 이상의 화합물일 수 있으며, 참고로 순도 99% 미만의 화합물을 사용할 경우에는 불순물이 유전막에 잔류하거나 전구체 또는 반응물과의 부반응을 초래할 수 있어 가급적 99% 이상의 물질을 사용하는 것이 좋다.
증기압은 180 내지 240K에서 1 기압일 수 있고, 이 범위 내에서 챔버내로 물질 전달이 원활하여 유전막의 두께 균일성, 유전특성 및 막질 개선이 우수한 효과가 있다.
본 발명에서 상기 유전막 활성화제는 기체 상태로 주입하고 후술하는 전구체 화합물은 기화하여 주입된 다음 플라즈마 후처리하는 단계를 포함할 수 있고, 이 경우에 유전막의 성장률을 개선하면서 공정 부산물을 줄일 수 있다.
상기 박막(유전막 포함)은 증착막일 수 있다.
상기 증착은 원자층 증착법(ALD), 플라즈마 강화 원자층 증착법(PEALD), 기상 증착법(CVD), 플라즈마 강화 기상증착법(PECVD), 유기금속 화학기상 증착법(MOCVD), 또는 저압 기상증착법(LPCVD)일 수 있다.
상기 반응가스는 H2O, H2O2, N2O, NO2, O2, O3 및 O 라디칼 중에서 선택된 1종 이상일 수 있다.
상기 유전막은 다양한 방법으로 제조될 수 있으며, 일례로 다음과 같은 방법에 의해 제조될 수 있다:
제1 단계로서, 챔버에 적재된 기판 상에 전이금속에 알킬, 알킬아민 또는 할로겐, 할로겐과 산소 또는 탄소와 수소를 동시에 포함하거나, 질소와 탄소를 동시에 포함하는 리간드를 갖는 전구체 화합물을 주입할 수 있다.
상기 리간드는 알킬 및 알킬아민, 염소, 불소 중에서 1종 이상 선택될 수 있으며, 반응성이 우수한 알킬아민을 포함하는 것이 바람직하다.
상기 탄소와 수소 동시 포함 구조는 일례로 사이클로펜타디에닐(Cp) 기일 수 있다.
본 기재에서 전구체 화합물을 증착 챔버로 전달하는 방식은 일례로 기체상 유량 제어(Mass Flow Controller; MFC) 방법을 활용하여 휘발된 기체를 이송하는 방식(Vapor Flow Control; VFC), 액체상 유량 제어 방식(Liquid Mass Flow Controller; LMFC)를 비롯한 유량 제어 방식(Mass Flow Controller; MFC), 액체를 이송하는 방식(Liquid Delivery System; LDS)을 사용할 수 있다.
이때 전구체 화합물을 기판 상에 이동시키기 위한 운송 가스 또는 희석 가스로는 아르곤(Ar), 질소(N2), 헬륨(He)으로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 혼합 기체를 사용할 수 있으나, 제한되는 것은 아니다.
본 기재에서 퍼지 가스로는 일례로 비활성 가스가 사용될 수 있고, 바람직하게는 상기 운송 가스 또는 희석 가스를 사용할 수 있다.
상기 챔버는 원자층 증착(ALD) 챔버, 플라즈마 강화 원자층 증착(PEALD) 챔버, 기상 증착(CVD) 챔버, 플라즈마 강화 기상증착(PECVD) 챔버, 유기금속 화학기상 증착(MOCVD) 챔버, 또는 저압 기상증착(LPCVD) 챔버일 수 있다.
상기 챔버 내 로딩된 기판은 실리콘 기판, 실리콘 옥사이드 등의 반도체 기판을 포함할 수 있다.
상기 기판은 그 상부에 도전층 또는 절연층이 더 형성되어 있을 수 있다.
상기 기판은 50 내지 500 ℃, 또는 80 내지 500 ℃로 유지될 수 있다.
상기 기판은 일례로 50 내지 500 ℃, 구체적인 예로 80 내지 500 ℃, 100 내지 800 ℃, 또는 200 내지 500 ℃로 가열될 수 있으며, 상기 유전막 활성화제 또는 전구체 화합물은 상기 기판 상에 가열되지 않은 채로 혹은 가열된 상태로 주입될 수 있으며, 증착 효율에 따라 가열되지 않은 채 주입된 다음 증착 공정 도중에 가열 조건을 조절하여도 무방하다. 일례로 50 내지 500 ℃ 하에 1 내지 20초간 기판 상에 주입할 수 있다.
상기 전구체 화합물의 챔버 내 투입량(mg/cycle)은, 후술하는 제2 단계에서 사용하는 유전막 활성화제와 상기 전구체 화합물의 챔버 내 투입량(mg/cycle) 비가 일례로 1 : 1 내지 1 : 100, 바람직하게는 1:1 내지 1: 50, 보다 바람직하게는 1:1 내지 1:25 이며, 이 범위 내에서 박막 밀도 향상 효과 및 공정 부산물의 저감 효과가 크다.
상기 제1 단계는 비활성 가스를 사용한 퍼징 단계를 1회 이상 포함할 수 있다. 상기 비활성 가스는 전술한 운송 가스 또는 희석 가스를 사용할 수 있다.
상기 미흡착 전구체 화합물을 퍼징하는 단계에서 상기 챔버 내부로 투입되는 퍼지 가스의 양은 상기 미흡착 전구체 화합물을 제거하는 데 충분한 양이면 특별히 제한되지 않으나, 일례로 상기 챔버 내부로 투입된 전구체 화합물의 부피를 기준으로 10 내지 100,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 미흡착 전구체 화합물을 충분히 제거하여 유전막이 고르게 형성되고 막질의 열화를 방지할 수 있다. 여기서, 상기 퍼지 가스 및 전구체 화합물의 투입량은 각각 한 사이클을 기준으로 기준으로 하며, 상기 전구체 화합물의 부피는 기회된 전구체 화합물 증기의 부피를 의미한다.
본 기재에서 퍼징은 바람직하게 1,000 내지 50,000 sccm(Standard Cubic Centimeter per Minute), 보다 바람직하게 2,000 내지 30,000 sccm, 더욱 바람직하게 2,500 내지 15,000 sccm이고, 이 범위 내에서 사이클당 박막 성장률이 적절히 제어되고, 단일 원자층(atomic mono-layer)으로 혹은 이에 가깝게 증착이 이루어져 막질 측면에서 유리한 이점이 있다.
제2 단계로서, 상기 기판에, 유전막 활성화제를 주입하여 기판에 흡착한 전구체의 이탈기를 활성화제의 할로겐으로 바꾸게 된다. 이와 같은 경우 기판에 흡착된 전구체의 이탈기를 효과적으로 활성화제의 할로겐으로 변경하여 결정격자의 빈틈없이 박막을 형성함으로써 박막 밀도를 개선시켜 유전특성 및 박막의 두께 균일성을 크게 향상시키는 효과가 있다.
상기 할로겐은 일례로 아이오딘 및 브롬 중에서 1종 이상 선택될 수 있고, 아이오딘을 사용하는 것이 바람직하다.
상기 기판 표면에 유전막 활성화제의 공급 시간(Feeding Time, sec)은 1사이클당 바람직하게 0.01 내지 10 초, 보다 바람직하게 0.02 내지 3 초, 더욱 바람직하게 0.04 내지 2 초, 보다 더욱 바람직하게 0.05 내지 1 초이고, 이 범위 내에서 박막 성장률이 낮고 박막 밀도 향상 및 경제성이 우수한 이점이 있다.
본 기재에서 유전막 활성화제의 공급량은 챔버의 부피 15 내지 20 L 기준에서 유량 1 내지 300 sccm/cycle을 기준으로 하고, 보다 구체적으로는 챔버의 부피 18 L에서 유량 10 내지 100 sccm/cycle을 기준으로 한다.
본 기재에서 유전막 활성화제를 증착 챔버로 전달하는 방식은 일례로 기체상 유량 제어(Mass Flow Controller; MFC) 방법을 활용하여 기체를 이송하는 방식을 사용할 수 있다.
상기 제2 단계는 비활성 가스를 사용한 퍼징 단계를 1회 이상 포함할 수 있다. 본 기재에서 퍼지 가스로는 일례로 상기 운송 가스 또는 희석 가스를 사용할 수 있다.
본 기재에서 퍼징은 바람직하게 1,000 내지 50,000 sccm(Standard Cubic Centimeter per Minute), 보다 바람직하게 2,000 내지 30,000 sccm, 더욱 바람직하게 2,500 내지 15,000 sccm이고, 이 범위 내에서 사이클당 박막 성장률이 적절히 제어되고, 단일 원자층(atomic mono-layer)으로 혹은 이에 가깝게 증착이 이루어져 막질 측면에서 유리한 이점이 있다.
상기 미흡착 유전막 활성화제를 퍼징하는 단계에서 상기 챔버 내부로 투입되는 퍼지 가스의 양은 상기 미흡착 유전막 활성화제를 제거하는 데 충분한 양이면 특별히 제한되지 않으나, 일례로 10 내지 100,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 미흡착 유전막 활성화제를 충분히 제거하여 박막이 고르게 형성되고 막질의 열화를 방지할 수 있다. 여기서, 상기 퍼지 가스 및 유전막 활성화제의 투입량은 각각 한 사이클을 기준으로 하며, 상기 유전막 활성화제의 부피는 기회된 유전막 활성화제 증기의 부피를 의미한다.
구체적인 일례로, 상기 증착 채움제를 유량 100 sccm 및 주입시간 0.5 sec으로 주입 (1 사이클 당)하고, 미흡착 증착 채움제를 퍼징하는 단계에서 퍼지 가스를 유량 3000 sccm 및 주입시간 5 sec로 주입(1 사이클 당)하는 경우, 퍼지 가스의 주입량은 증착 채움제 주입량의 300배이다.
이어서 제3 단계로서, 상기 기판에, 반응 가스를 주입하여 전이금속에 헤테로원자가 결합된 박막을 형성할 수 있다.
상기 반응 가스는 일례로 H2O, H2O2, N2O, NO2, O2, O3 및 O 라디칼 중에서 선택된 1종 이상일 수 있다.
상기 박막은 4족 금속에 할로겐이 직접 결합된 구조를 포함할 수 있다.
상기 유전막 형성 방법은 일례로 50 내지 800 ℃ 범위의 증착 온도에서 실시할 수 있고, 바람직하게는 100 내지 700 ℃ 범위의 증착 온도에서, 보다 바람직하게는 200 내지 650 ℃ 범위의 증착 온도에서 실시하는 것이며, 더욱 바람직하게는 220 내지 500 ℃ 범위의 증착 온도에서 실시하는 것인데, 이 범위 내에서 공정 특성을 구현하면서 우수한 막질의 박막으로 성장시키는 효과가 있다.
상기 유전막 형성 방법은 일례로 0.01 내지 20 Torr 범위의 증착 압력에서 실시할 수 있고, 바람직하게는 0.1 내지 20 Torr 범위의 증착 압력에서, 보다 바람직하게는 0.1 내지 10 Torr 범위의 증착 압력에서, 가장 바람직하게는 0.3 내지 7 Torr 범위의 증착 압력에서 실시하는 것인데, 이 범위 내에서 균일한 두께의 박막을 얻는 효과가 있다.
본 기재에서 증착 온도 및 증착 압력은 증착 챔버 내 형성되는 온도 및 압력으로 측정되거나, 증착 챔버 내 기판에 가해지는 온도 및 압력으로 측정될 수 있다.
상기 제2 단계는, 바람직하게 상기 유전막 활성화제를 챔버 내에 투입하기 전에 챔버 내 온도를 증착 온도로 승온하는 단계; 및/또는 상기 유전막 활성화제를 챔버 내에 투입하기 전에 챔버 내에 비활성 기체를 주입하여 퍼징하는 단계를 추가로 포함할 수 있다.
상기 제3 단계는 비활성 가스를 사용한 퍼징 단계를 포함할 수 있다.
상기 반응 가스 공급 단계 직후 수행하는 퍼징 단계에서 상기 챔버 내부로 투입되는 퍼지 가스의 양은 일례로 상기 챔버 내부로 투입된 반응 가스의 부피를 기준으로 10 내지 10,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 원하는 효과를 충분히 얻을 수 있다. 여기서, 상기 퍼지 가스 및 반응 가스의 투입량은 각각 한 사이클을 기준으로 한다.
본 기재에서 퍼징은 바람직하게 1,000 내지 50,000 sccm(Standard Cubic Centimeter per Minute), 보다 바람직하게 2,000 내지 30,000 sccm, 더욱 바람직하게 2,500 내지 15,000 sccm이고, 이 범위 내에서 사이클당 박막 성장률이 적절히 제어되고, 단일 원자층(atomic mono-layer)으로 혹은 이에 가깝게 증착이 이루어져 막질 측면에서 유리한 이점이 있다.
상기 유전막 형성 방법은 필요에 따라 단위 사이클을 1 내지 99,999회 반복 수행할 수 있고, 바람직하게는 단위 사이클을 10 내지 10,000회, 보다 바람직하게는 50 내지 5,000회, 보다 더욱 바람직하게는 100 내지 2,000회 반복 수행할 수 있으며, 이 범위 내에서 목적하는 박막의 두께를 얻으면서 부생 탄소 화합물 함량을 저감하고 박막 밀도를 개선할 수 있다.
상기 유전막 제조방법의 구체적인 예로, 상기 챔버 내에 위치시킨 기판 상에 유전막을 증착하기 위해서 상술한 유전막 활성화제와, 전구체 화합물 또는 이와 비극성 용매의 혼합물을 각각 준비한다.
이후 준비된 전구체 화합물 또는 이와 비극성 용매의 혼합물을 기화기 내로 주입한 후 증기상으로 변화시켜 증착 챔버로 전달하여 기판 상에 흡착시키고, 유전막 활성화제에 의해 상기 전구체 화합물의 리간드를 치환시키며 미흡착된 전구체 화합물은 퍼징(purging)시킨다.
다음으로, 준비된 유전막 활성화제를 기화기 내로 주입한 후 증기상으로 변화시켜 증착 챔버로 전달하여 기판 상에 흡착시키고, 퍼징(purging)하여 미흡착된 유전막 활성화제를 제거한다.
본 기재에서 유전막 활성화제 및 전구체 화합물 등을 증착 챔버로 전달하는 방식은 일례로 기체상 유량 제어(Mass Flow Controller; MFC) 방법을 활용하여 기체를 이송하는 방식을 사용할 수 있다.
이때 유전막 활성화제 및 전구체 화합물 등을 기판 상에 이동시키기 위한 운송 가스 또는 희석 가스로는 아르곤(Ar), 질소(N2), 헬륨(He)으로 이루어진 군으로부터 선택되는 하나 또는 둘 이상의 혼합 기체를 사용할 수 있으나, 제한되는 것은 아니다.
본 기재에서 퍼지 가스로는 일례로 비활성 가스가 사용될 수 있고, 바람직하게는 상기 운송 가스 또는 희석 가스를 사용할 수 있다.
다음으로, 헤테로원자 포함 가스를 공급한다. 상기 헤테로원자 포함 가스로는 본 발명이 속한 기술분야에서 통상적으로 사용되는 반응 가스인 경우 특별히 제한되지 않고, 바람직하게 산화제를 포함할 수 있다. 상기 산화제와 기판에 흡착된 전구체 화합물이 반응하여 산화막이 형성된다.
바람직하게는 상기 산화제는 산소 가스(O2), 오존 가스(O3), 또는 질소 가스 및 산소 가스의 혼합물일 수 있다.
다음으로, 비활성 가스를 이용하여 반응하지 않은 잔류 반응 가스를 퍼징시킨다. 이에 따라, 과량의 반응 가스뿐만 아니라 생성된 부산물도 함께 제거할 수 있다.
위와 같이, 상기 유전막 형성 방법은 일례로 전구체 화합물을 기판 상에 흡착시키는 단계, 미흡착된 전구체 화합물을 퍼징하는 단계, 유전막 활성화제를 기판 상에 공급하는 단계, 미흡착된 유전막 활성화제를 퍼징하는 단계, 반응 가스를 공급하는 단계, 잔류 반응 가스를 퍼징하는 단계를 단위 사이클로 하며, 원하는 두께의 유전막을 형성하기 위해, 상기 단위 사이클을 반복할 수 있다.
상기 단위 사이클은 일례로 1 내지 99,999회, 바람직하게는 10 내지 1,000회, 보다 바람직하게는 50 내지 5,000회, 보다 더욱 바람직하게는 100 내지 2,000회 반복될 수 있고, 이 범위 내에서 목적하는 유전막 특성이 잘 발현되는 효과가 있다.
상기 제1 단계에서 전구체 화합물의 주입 시간과 퍼지 시간을 각각 a, b라 하고, 상기 제2 단계에서 알킬-프리 할로겐화물의 주입 시간과 퍼지 시간을 각각 c, d라 하고, 상기 제 3 단계에서 헤테로원자 포함 가스의 주입 시간과 퍼지 시간을 각각 e, f라 할 때, 0.1≤a≤10, 2a≤b≤4a, 0.1<c≤10, 2c≤d≤8c, 2<e≤10, 2e≤b≤8e를 동시에 만족할 수 있다.
상기 전구체 화합물과 유전막 활성화제의 주입 및 퍼지, 헤테로원자 포함 가스의 주입 및 퍼지를 1 사이클(cycle)이라 할 때, 다음 2가지 조건, 1)상기 유전막의 SiO2 상에 증착 속도는 1 Å/cycle 이상이며, 2)유전막의 밀도는 9.8 g/cm3 이상을 모두 만족할 수 있다.
상기 전구체 화합물과 유전막 활성화제의 주입 및 퍼지, 헤테로원자 포함 가스의 주입 및 퍼지를 1 사이클(cycle)이라 할 때, 다음 2가지 조건, 1)상기 유전막의 SiO2 상의 증착 속도는 1 내지 2 Å/cycle이며, 2)유전막의 밀도는 9.8 내지 10.5 g/cm3을 모두 만족할 수 있다.
상기 유전막 제조 방법은, 일례로 ALD 챔버, 유전막 활성화제를 정량 투입하는 금(gold) 씰을 포함하는 내부식성 MFC, 정량 투입된 유전막 활성화제를 ALD 챔버 내로 이송하는 제1 이송수단, 기판에 흡착한 전구체를 기화하는 제2 기화기 및 기화된 기판에 흡착한 전구체를 ALD 챔버 내로 이송하는 제2 이송수단을 포함하는 유전막 제조 장치를 사용하여 수행될 수 있다. 여기에서 기화기 및 이송수단은 본 발명이 속한 기술분야에서 통상적으로 사용되는 기화기 및 이송수단인 경우 특별히 제한되지 않는다.
전술한 유전막 활성화제를 사용하여 증착된 박막을 포함한다.
상기 박막은 유전막일 수 있다.
상기 박막은 2층 이상의 다층 구조일 수 있다.
일례로, 상기 박막은 전술한 화학식 1의 구조로 나타낸 활성화된 기판 흡착- 전구체와 반응 가스간 반응으로 수득될 수 있으며, 이 경우에 활성화된 기판-흡착 전구체의 사용으로 인하여 부생 탄소 화합물 함량을 저감시킬 수 있어 고품질의 박막을 제조할 수 있다.
전술한 활성화된 기판에 흡착한 전구체와 반응 가스 간 부생 탄소 화합물 감소는 일례로 활성화된 기판에 흡착한 전구체의 활성화 에너지가 상기 기판에 흡착한 전구체가 갖는 활성화 에너지보다 저감된 것으로부터 유래될 수 있다.
상기 유전막은 SiO2 또는 Si 상에서 엘립소미터 (300 ℃에서 증착한 박막 기준)로 측정한 증착 속도가 1.0 Å/cycle 이상, 또는 1.0 내지 2.0 Å/cycle일 수 있고, 상기 범위 내에서 박막 균일도 및 증착 생산성이 개선될 수 있다.
상기 유전막은 SiO2 또는 Si 상에서 측정된 박막 밀도가 9.5 g/cm3 이상, 9.8 g/cm3 이상, 또는 9.8 내지 10.3 g/cm3일 수 있고, 상기 범위 내에서 유전특성이 개선될 수 있다.
상기 유전막은 SiO2 또는 Si 상에서 SIMS (300 ℃에서 증착한 박막 기준)로 측정한 탄소 불순물의 함량이 1000 counts/s 이하, 715 counts/s 이하, 또는 700 counts/s 이하일 수 있고, 상기 범위 내에서 전자의 리크(leak)가 현저히 줄어들어 이로 인해 유전특성이 개선될 수 있다.
상기 유전막은 SIMS로 측정한 요오드 원자가 50 counts/s 이상, 또는 65 counts/s 이상일 수 있고, 상기 범위 내에서 박막 밀도를 증가시켜 유전상수가 높아지는 효과를 제공할 수 있다.
상기 유전막은 SiO2 또는 Si 상에서 SIMS (400 ℃에서 증착한 박막 기준)로 측정한 증착 두께가 410 counts/s 이하, 또는 300 counts/s 이하일 수 있고, 상기 범위 내에서 전자의 리크가 현저히 줄어들어 이로 인해 유전특성이 개선될 수 있다.
상기 유전막은 전술한 막 조성을 단독으로 혹은 선택적 영역(selective area)으로 포함할 수 있으나, 이에 한정하는 것은 아니며, Si, SiH, SiOH, SiO2 또한 포함하는 의미이다.
상기 유전막은 일반적으로 사용하는 DRAM 뿐 아니라 NAND 또는 Logic 소자의 유전막, 절연막 용도로 반도체 소자에 활용될 수 있다.
상기 유전막은 일예로 SIMS를 사용하여 측정한 할로겐 화합물을 30,000 counts/s 이하로 포함할 수 있다.
본 발명은 또한 반도체 기판을 제공하고, 상기 반도체 기판은 본 기재의 유전막 형성 방법으로 제조되거나 상기 유전막을 포함함을 특징으로 하며, 이러한 경우 유전막의 박막 밀도 향상(step coverage) 및 유전막의 두께 균일성이 크게 뛰어나고, 유전막의 밀도 및 유전특성이 뛰어난 효과가 있다.
상기 제조된 유전막은 바람직하게 SiO2 상의 증착 속도가 1 Å/cycle 이상이며, 밀도가 9.8 g/cm3 이상인 범위 내에서 확산 방지막으로서 성능이 뛰어나고, 유전특성이 특히 개선되는 효과가 있지만, 이에 한정하는 것은 아니다.
여기서, 상기 유전막에 잔류하는 불순물 할로겐은 일례로 Cl2, Cl, 또는 Cl- 일 수 있고, 유전막 내 할로겐 잔류량이 낮을수록 막질이 뛰어나 바람직하다.
또한, 상기 유전막에 잔류하는 탄소 함량이 낮을수록 유전특성이 뛰어나 바람직하다.
상기 유전막은 일례로 필요에 따라 2층 이상의 다층 구조, 3층 이상의 다층 구조이거나, 2층 또는 3층의 다층 구조일 수 있다. 상기 2층 구조의 다층막은 구체적인 일례로 하층막-중층막 구조일 수 있고, 상기 3층 구조의 다층막은 구체적인 일례로 하층막-중층막-상층막 구조일 수 있다.
상기 하층막은 일례로 Si, SiO2, MgO, Al2O3, CaO, ZrSiO4, ZrO2, HfSiO4, Y2O3, HfO2, LaLuO2, Si3N4, SrO, La2O3, Ta2O5, BaO, TiO2로 이루어진 군에서 선택된 1종 이상을 포함하여 이루어질 수 있다.
상기 중층막은 일례로 TixNy, 바람직하게는 TN을 포함하여 이루어질 수 있다.
상기 상층막은 일례로 W, Mo로 이루어진 군에서 선택된 1종 이상을 포함하여 이루어질 수 있다.
본 발명에 따르면, 전술한 반도체 기판을 포함하는 반도체 소자를 제공할 수 있다.
상기 반도체 소자는 일례로 저 저항 금속 게이트 인터커넥트(low resistive metal gate interconnects), 고 종횡비 3D 금속-절연체-금속(MIM) 커패시터(high aspect ratio 3D metal-insulator-metal capacitor), DRAM 트렌치 커패시터(DRAM trench capacitor), 3D 게이트-올-어라운드(GAA; Gate-All-Around), 또는 3D NAND 플래시메모리 등일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 도면을 제시하나, 하기 실시예 및 도면은 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
전구체 화합물로는 하기 화학식 1-1로 나타낸 구조를 갖는 화합물을 과 하기 화학식 4로 나타낸 구조를 갖는 화합물을 각각 준비하였다.
[화학식 1-1] (시클로펜타디에닐 리간드 전구체)
Figure PCTKR2023015457-appb-img-000005
[화학식 4] (알킬아민 리간드 전구체)
Figure PCTKR2023015457-appb-img-000006
유전막 활성화제로는 5N HI를 준비하였다.
상기 전구체 화합물과 유전막 활성화제를 사용하여 본 발명에 따른 증착 공정 시퀀스를 1 cycle로 하여 ALD 증착 공정을 수행하였다.
실시예 1,2 및 비교예 1,2의 구체적인 실험방법은 다음과 같다.
실시예 1
상기 화학식 1-1로 나타낸 구조를 갖는 전구체 화합물을 25℃로 유지된 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다. 기화기에서 증기상으로 기화된 전구체 화합물을 1초 동안 VFC(Vapor Flow Controller)를 이용하여 증착 챔버에 투입한 후 아르곤 가스를 3000 sccm으로 5초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다.
다음으로, 유전막 활성화제로서 5N의 HI를 캐니스터에 담아 상온에서 MFC(Mass Flow Controller)를 이용하여 100sccm/cycle로 챔버에 공급하였다. 유전막 활성화제를 2초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 3000 sccm으로 8초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다.
다음으로 반응성 가스로서 오존 1000 sccm을 3초 동안 상기 반응 챔버에 투입한 후, 9초 동안 아르곤 퍼징을 실시하였다. 이때 유전막이 형성될 기판을 300 ℃로 가열하였으며, 상기 기판은 Si 기판 상부에 SiO2가 형성되어 있다.
이와 같은 공정을 200 내지 400회 반복하여 하기 도 1에 나타낸 증착 온도별 증착 속도로 유전막을 제조하였다.
하기 도 1에서 보듯이, 상기 유전막은 각각 증착 속도가 1.41 Å/cycle이었다.
또한, 상기 유전막에 대하여 밀도를 X선 반사 측정(XRR) 장비를 사용하여 측정하였다. 측정된 밀도는 9.83 g/cm3이었다.
나아가, 상기 유전막에 대하여 불순물 함량을 측정하였다.
여기서 불순물은 H-, C-, NH-, 18O-, 30Si-, 등에 대해 SIMS (Secondary-ion mass spectrometry) 장비를 사용하여 측정하였다.
구체적으로, 이온 스퍼터로 유전막을 축방향으로 파고 들어가며 기판 표피층에 있는 오염이 적은 sputter time 50초일 때 해당 불순물 함량 (counts)을 고려하여 SIMS 그래프에서 해당 불순물 값을 확인하였다.
확인한 SIMS 결과값 중에서, 유전막 내 탄소(C)의 평균 불순물 함량은 694 counts/s로 계산되었다. 또한, 탄소뿐 아니라 공정 부산물로 잔류하던 H 불순물 함량은 3340 counts/s에서 2600 count/s로 저감시키는 것을 확인하였다.
실시예 2
상기 화학식 4로 나타낸 구조를 갖는 전구체 화합물을 25℃로 유지된 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다. 기화기에서 증기상으로 기화된 전구체 화합물을 1초 동안 VFC(Vapor Flow Controller)를 이용하여 증착 챔버에 투입한 후 아르곤 가스를 3000 sccm으로 5초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다.
다음으로, 유전막 활성화제로서 5N의 HI를 캐니스터에 담아 상온에서 MFC(Mass Flow Controller)를 이용하여 100sccm/cycle로 챔버에 공급하였다. 유전막 활성화제를 2초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 3000 sccm으로 8초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다.
다음으로 반응성 가스로서 오존 1000 sccm을 3초 동안 상기 반응 챔버에 투입한 후, 9초 동안 아르곤 퍼징을 실시하였다. 이때 유전막이 형성될 기판을 300 ℃로 가열하였으며, 상기 기판은 Si 기판 상부에 SiO2가 형성되어 있다.
이와 같은 공정을 200 내지 400회 반복하여 증착 온도별 증착 속도로 유전막을 제조하였다. 상기 유전막은 증착 속도가 1.46 Å/cycle이었다.
또한, 상기 유전막에 대하여 밀도를 X선 반사 측정(XRR) 장비를 사용하여 측정하였다. 측정된 밀도는 10.08 g/cm3이었다.
나아가, 상기 유전막에 대하여 SIMS (Secondary-ion mass spectrometry) 장비를 사용하여 측정한 유전막 내 탄소(C)의 평균 불순물 함량은 243 counts/s로 계산되었다. 또한, 탄소뿐 아니라 공정 부산물로 잔류하던 H 불순물 함량도 저감시키는 것을 확인하였다.
비교예 1
상기 실시예 1에서 유전막 활성화제로 사용한 5N의 HI를 사용하지 않고, 유전막을 제조한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하고 측정 결과를 하기 도 1에 함께 나타내었다.
하기 도 1에서 보듯이, 상기 유전막의 퇴적속도 증가율(D/R (dep. rate) 증가율)은 0.84 Å/cycle이었다.
그 결과, 실시예 1 대비 33% 정도 불량한 것을 알 수 있다.
또한, 상기 유전막에 대하여 밀도를 X선 반사 측정(XRR) 장비를 사용하여 측정하였다. 측정된 밀도는 평균 9.71 g/cm3으로 계산되었으며, 실시예 1 대비 불량한 것을 알 수 있다.
나아가, 상기 유전막에 대하여 불순물 함량을 측정하였으며, SIMS를 사용하여 확인한 유전막 내 탄소(C)의 불순물 함량은 927 counts/s로 계산되었으며, 실시예 1 대비 33 % 정도 불량한 것을 알 수 있다.
비교예 2
상기 실시예 2에서 유전막 활성화제로 사용한 5N의 HI를 사용하지 않고, 유전막을 제조한 것을 제외하고는 상기 실시예 2와 동일한 공정을 반복하고 측정 결과를 하기 도 1에 함께 나타내었다.
상기 유전막의 퇴적속도 증가율(D/R (dep. rate) 증가율)은 0.91 Å/cycle이었고, 결과적으로 실시예 1 대비 60% 정도 불량한 것을 알 수 있다.
또한, 상기 유전막에 대하여 밀도를 X선 반사 측정(XRR) 장비를 사용하여 측정하였다. 측정된 밀도는 평균 10.08 g/cm3으로 계산되었으며, 실시예 1 대비 불량한 것을 알 수 있다.
나아가, 상기 유전막에 대하여 불순물 함량을 측정하였으며, SIMS를 사용하여 확인한 유전막 내 탄소(C)의 불순물 함량은 243 counts/s로 계산되었으며, 실시예 1 대비 42 % 정도 불량한 것을 알 수 있다.
이상의 결과로부터, 소정 구조를 갖는 유전막 활성화제를 사용한 본 발명에 따르면 유전막 활성화제를 전혀 사용하지 않은 비교예들 대비 증착 두께, 증착 속도 및 박막 밀도가 현저하게 개선될 뿐 아니라 불순물 저감특성이 뛰어나 유전 특성까지 개선됨을 확인할 수 있었다.
특히, 본 발명에 따른 유전막 활성화제를 사용한 실시예 1은 300 ℃의 저온 조건에서 유전막을 제조함에도 불구하고 이를 사용하지 않은 비교예 1에 비하여 사이클당 유전막 퇴적속도 증가율과 유전막의 밀도가 각각 10% 이상이고, 불순물 저감율이 60% 이상으로 뛰어남을 확인할 수 있었다.
추가 실시예 1
300℃에서 Si 기판에 전구체(CpHf)를 주입하고 활성화제 (HI)를 주입하고 리액턴트(O3)로 반응시키는 과정을 반복하여 약 13nm의 박막을 얻었다. SIMS (Secondary-ion mass spectrometry) 분석법은 이온스퍼터로 박막을 축방향으로 파고 들어가며 기판 표피층에 있는 오염이 적은 sputter time 50초일 때 C 불순물 함량 (counts)을 고려하여 C 불순물 값을 도 2의 그래프에서 보듯이, 약 700 counts/s로 확인하였다.
추가 비교예 1
300 ℃에서 Si 기판에 전구체(CpHf)를 주입하고 리액턴트(O3)로 반응시키는 과정을 반복하여 약 13nm의 박막을 얻었다.
SIMS (Secondary-ion mass spectrometry) 분석법은 이온스퍼터로 박막을 축방향으로 파고 들어가며 기판 표피층에 있는 오염이 적은 sputter time 50초일 때 C 불순물 함량 (counts)을 고려하여 C 불순물 값을 도 3의 그래프에서 보듯이, 약 1100 counts/s로 확인하였다.
따라서, 본 발명의 유전막 활성화제로서 소정 화합물을 사용할 경우 유전막의 두께와 퇴적속도 증가율, 밀도, 유전특성이 모두 개선되고 불순물 저감특성도 뛰어나 복잡한 패턴의 기판에도 유전막을 효과적으로 형성하는 것을 확인할 수 있었다.

Claims (16)

  1. 기판에 흡착된 전구체의 중심금속에 직접 연결된 제1 리간드를, 유전막 활성화제에 포함된 제2 리간드로 교환하여 활성화된 기판 흡착-전구체를 제공하는 것을 특징으로 하는 유전막 활성화제.
  2. 제1항에 있어서,
    상기 기판에 흡착한 전구체의 중심금속은 4족 원소인 것을 특징으로 하는 유전막 활성화제.
  3. 제1항에 있어서,
    상기 기판에 흡착한 전구체 분자는 하기 화학식 1로 나타내는 구조 및 하기 화학식 2로 나타내는 구조 중에서 선택되는 것을 특징으로 하는 유전막 활성화제:
    [화학식 1]
    Figure PCTKR2023015457-appb-img-000007
    (상기 화학식 1에서, 상기 M은 Zr 또는 Hf이며, R1은 독립적으로 수소, 탄소수 1 내지 4의 알킬기이고, 상기 n은 0 내지 5의 정수이며, X'1, X'2 및 X'3은 독립적으로 -NR'1R'2 또는 -OR'3, Cl, 또는 F로부터 선택되고, 상기 R'1 내지 R'3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이다.)
    [화학식 2]
    Figure PCTKR2023015457-appb-img-000008
    (상기 화학식 2에서, 상기 M은 Zr 또는 Hf이며, 상기 X1, X2는 독립적으로 -NR1R2 또는 -OR3, Cl, 또는 F이고, 상기 R1 내지 R3은 독립적으로 수소 또는 탄소수 1 내지 6의 알킬기이며, 상기 Y는 탄소수 1 내지 6의 알킬이고, 상기 n은 1 또는 2이다.)
  4. 제1항에 있어서,
    상기 제1 리간드와 제2 리간드는 서로 독립적으로 할로겐, 할로겐과 산소 탄소와 수소, 또는 질소와 탄소를 동시에 포함하는 것을 특징으로 하는 유전막 활성화제.
  5. 제1항에 있어서,
    상기 제1 리간드는 상기 화학식 1 또는 화학식 2의 리간드이며, 상기 기판에 흡착된 전구체의 리간드는 이에 더해 염소, 불소, 브롬 중에서 선택된 1종 이상이 포함되고, 상기 유전막 활성화제에는 아이오딘 및 브롬 중에서 선택된 1종 이상의 할로겐이 포함되는 것을 특징으로 하는 유전막 활성화제.
  6. 제1항에 있어서,
    상기 유전막 활성화제는 요오드화수소 (HI), 브롬화수소 (HBr) 및 이를 불활성 기체에 1 내지 99 몰 분율로 혼합한 혼합가스인 것을 특징으로 하는 유전막 활성화제.
  7. 제1항에 있어서,
    상기 활성화된 기판 흡착-전구체에 의해 전구체보다 먼저 주입하는 전주입 또는 후주입된 반응가스와의 반응이 촉진되는 동시에 잔류 탄소 화합물 불순물 함량이 감소되는 것을 특징으로 하는 유전막 활성화제.
  8. 제7항에 있어서,
    상기 잔류 탄소 화합물 불순물 함량 감소는 전구체 탈착 리간드와 반응물간 결합에 의해 생성된 부생 탄소-산소화물 불순물 함량 감소와 전구체에서 미탈착된 탄소화합물 불순물 함량 감소에 의한 것을 포함하는 것을 특징으로 하는 유전막 활성화제.
  9. 제8항에 있어서,
    상기 미탈착 탄소화합물 불순물 함량 감소는 상기 기판에 흡착한 전구체의 리간드를 상기 유전막 활성화제에 포함된 유전막 활성화제로 교환시킨 것으로부터 유래된 것을 특징으로 하는 유전막 활성화제.
  10. 제1항에 있어서,
    상기 리간드 교환 전 전구체 흡착 상태는 하기 화학식 3-1로 나타내고, 상기 리간드 교환 후 전구체 흡착 상태는 하기 화학식 3-2로 나타내는 것을 특징으로 하는 유전막 활성화제.
    [화학식 3-1]
    기판-M-Xn
    (상기 화학식 3-1에서, M은 Hf 또는 Zr이고, n은 1 내지 4의 정수이며, X는 화학식 1, 화학식 2의 리간드종, F, 또는 Cl으로 서로 다를 수 있다.)
    [화학식 3-2]
    기판-M-Ym
    (상기 화학식 3-2에서, M은 Hf 또는 Zr이고, m은 1 내지 4의 정수이며, Y는 Br 또는 I이다.)
  11. 제1항에 있어서,
    상기 기판은 -H 또는 -OH 말단기를 갖는 실리콘 웨이퍼, 절연막 또는 유전막인 것을 특징으로 하는 유전막 활성화제.
  12. 제1항에 있어서,
    상기 유전막은 증착막이며, 여기서 증착은 원자층 증착법(ALD), 플라즈마 강화 원자층 증착법(PEALD), 기상 증착법(CVD), 플라즈마 강화 기상증착법(PECVD), 유기금속 화학기상 증착법(MOCVD), 또는 저압 기상증착법(LPCVD)을 포함하는 것을 특징으로 하는 유전막 활성화제.
  13. 기판; 및 유전막;을 포함하며,
    상기 유전막은 제1항 내지 제7항, 제10항 내지 제11항 중 어느 한 항의 유전막 활성화제를 사용하여 증착된 막인 것을 특징으로 하는 반도체 기판.
  14. 제13항에 있어서,
    상기 유전막은 2층 이상의 다층 구조인 것을 특징으로 하는 반도체 기판.
  15. 제13항에 있어서,
    상기 유전막은 박막 밀도가 9.5 g/cm3 이상이며, SIMS로 측정된 탄소 불순물이 1000 counts/s 이하이며, SIMS로 측정된 요오드 원자가 50 counts/s 이상인 것을 특징으로 하는 반도체 기판.
  16. 제13항의 반도체 기판을 포함하는 반도체 소자.
PCT/KR2023/015457 2022-10-07 2023-10-06 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자 WO2024076217A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2022-0128694 2022-10-07
KR20220128694 2022-10-07
KR10-2023-0003402 2023-01-10
KR20230003402 2023-01-10
KR10-2023-0005228 2023-01-13
KR20230005228 2023-01-13
KR10-2023-0133350 2023-10-06
KR1020230133350A KR20240049771A (ko) 2022-10-07 2023-10-06 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자

Publications (1)

Publication Number Publication Date
WO2024076217A1 true WO2024076217A1 (ko) 2024-04-11

Family

ID=90608435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015457 WO2024076217A1 (ko) 2022-10-07 2023-10-06 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자

Country Status (1)

Country Link
WO (1) WO2024076217A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100022441A (ko) * 2008-08-19 2010-03-02 삼성전자주식회사 전구체 조성물, 박막 형성 방법, 이를 이용한 게이트 구조물의 제조 방법 및 커패시터의 제조 방법
KR20220009906A (ko) * 2020-07-16 2022-01-25 솔브레인 주식회사 박막 형성용 성장 조절제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
KR20220109350A (ko) * 2021-01-28 2022-08-04 솔브레인 주식회사 박막 형성용 성장 조절제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
KR20220120505A (ko) * 2021-02-22 2022-08-30 솔브레인 주식회사 보조 전구체, 박막 전구체 조성물, 박막 형성 방법, 및 이로부터 제조된 반도체 기판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100022441A (ko) * 2008-08-19 2010-03-02 삼성전자주식회사 전구체 조성물, 박막 형성 방법, 이를 이용한 게이트 구조물의 제조 방법 및 커패시터의 제조 방법
KR20220009906A (ko) * 2020-07-16 2022-01-25 솔브레인 주식회사 박막 형성용 성장 조절제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
KR20220109350A (ko) * 2021-01-28 2022-08-04 솔브레인 주식회사 박막 형성용 성장 조절제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
KR20220120505A (ko) * 2021-02-22 2022-08-30 솔브레인 주식회사 보조 전구체, 박막 전구체 조성물, 박막 형성 방법, 및 이로부터 제조된 반도체 기판

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAN KOK CHEW; JUNG JAESUN; KIM SOJUNG; KIM JONGMOON; LEE SEOK JONG; PARK YOUNG-SOO: "Utilizing tertiary butyl iodide as an effective film quality enhancing agent for atomic layer deposition of HfO2 dielectric thin films", AIP ADVANCES, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 11, no. 7, 2 July 2021 (2021-07-02), 2 Huntington Quadrangle, Melville, NY 11747 , XP012257819, DOI: 10.1063/5.0055847 *

Similar Documents

Publication Publication Date Title
WO2022015098A1 (ko) 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
WO2021060864A1 (ko) 박막 제조 방법
WO2022010214A1 (ko) 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크
WO2012047035A2 (ko) 대칭형 유입구 및 유출구를 통해 반응가스를 공급하는 기판 처리 장치
WO2021060860A1 (ko) 박막 제조 방법
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2019156451A1 (ko) 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 형성용 전구체 조성물, 및 이를 이용하는 막의 형성 방법
WO2015190900A1 (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
WO2022015099A1 (ko) 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
WO2023195653A1 (ko) 활성화제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2020101437A1 (ko) 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법
WO2022255734A1 (ko) 성막 재료, 성막 조성물, 이들을 이용한 성막 방법 및 이로부터 제조된 반도체 소자
WO2024076217A1 (ko) 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자
WO2023200154A1 (ko) 루테늄 전구체 조성물, 이의 제조방법, 및 이를 이용한 루테늄-함유 막의 형성 방법
WO2012047034A2 (ko) 반원 형상의 안테나를 구비하는 기판 처리 장치
WO2023195655A1 (ko) 박막 차폐제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2024076216A1 (ko) 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자
WO2024054065A1 (ko) 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195656A1 (ko) 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023191360A1 (ko) 계단율 개선제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023177091A1 (ko) 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023191361A1 (ko) 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195654A1 (ko) 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195657A1 (ko) 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2021261890A1 (ko) 박막 형성용 프리커서, 이의 제조방법 및 이를 포함하는 박막 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23875278

Country of ref document: EP

Kind code of ref document: A1