WO2020101437A1 - 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법 - Google Patents

실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법 Download PDF

Info

Publication number
WO2020101437A1
WO2020101437A1 PCT/KR2019/015676 KR2019015676W WO2020101437A1 WO 2020101437 A1 WO2020101437 A1 WO 2020101437A1 KR 2019015676 W KR2019015676 W KR 2019015676W WO 2020101437 A1 WO2020101437 A1 WO 2020101437A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicon
sec
sime
formula
Prior art date
Application number
PCT/KR2019/015676
Other languages
English (en)
French (fr)
Inventor
김진식
김명호
이미희
김병관
최준환
안성우
이윤경
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority to JP2021526577A priority Critical patent/JP7436054B2/ja
Priority to CN201980078061.0A priority patent/CN113166178A/zh
Publication of WO2020101437A1 publication Critical patent/WO2020101437A1/ko
Priority to US17/320,326 priority patent/US11905305B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Definitions

  • the present invention relates to a silicon precursor compound, a method for manufacturing the silicon precursor compound, a precursor composition for forming a silicon-containing film containing the silicon precursor compound, and a method for forming a silicon-containing film using the precursor composition.
  • the silicon-containing oxide thin film and nitride thin film are one of the thin films that are essential for driving not only semiconductors (DRAM, Flash Memory, ReRAM, or PCRAM), but also microelectronic devices such as non-semiconductors. In addition, it is used in cutting-edge technologies such as flat panel display fields including oxide thin film transistors (OTFTs), solar cell fields, and organic light emitting diodes (OLEDs). have.
  • OTFTs oxide thin film transistors
  • OLEDs organic light emitting diodes
  • a silicon-containing oxide thin film is used for a dielectric film, a gate insulating film, a tunneling oxide film, a spacer oxide film, an ILD & IMD, and a passivation oxide film, and a diffusion mask, a gate spacer, a gate dielectric film, an etch stopper, Silicon-containing nitride thin films have been used for stressors and passivation.
  • silicon-containing oxide thin films or nitride thin films are used for various thin film layers such as a gate dielectric film, an interlayer dielectric film, an insulating film, and a moisture permeation prevention film.
  • silicon-containing oxide thin films or nitride thin films There is a need for silicon-containing oxide thin films or nitride thin films. Accordingly, silicon-containing precursors suitable for process temperatures for various application fields are required, and silicon-containing precursors usable for atomic layer deposition methods capable of overcoming perfect steps to overcome high step ratios are also required. When forming a silicon-containing oxide thin film or a nitride thin film by using an atomic layer deposition method, it is expected to improve the thickness uniformity and physical properties of the thin film and lower the process temperature, thereby improving the properties of the semiconductor device.
  • atoms that have self-limiting characteristics and are capable of forming a uniform thin film even in order to secure low process temperature and low resistance that may occur due to high integration and scaling down of devices The layer deposition method should be used. Accordingly, many studies have been conducted on the development of a precursor compound for forming a silicon-containing oxide thin film or a nitride thin film capable of obtaining a film having a desired property by atomic layer deposition.
  • US Patent Publication No. 2012/0085733 discloses that when a surface having a concavo-convex surface is covered with a constant thickness spacer layer to increase the pattern density after the lithography process, silicon nitride can be used as a material for the spacer layer.
  • the present application is to provide a silicon precursor compound, a method for preparing the silicon precursor compound, a precursor composition for forming a silicon-containing film containing the silicon precursor compound, and a method for forming a silicon-containing film using the precursor composition.
  • the present application is intended to solve the problems described above, and has a high volatility, exists in a liquid state at room temperature, and can be deposited at a low temperature by using a silicon precursor compound that is silicon-containing oxide or thin film, or nitride film by atomic layer deposition. Another object is to provide a film forming method using a silicon precursor compound capable of depositing a thin film. In addition, the present application is to provide a silicon precursor compound suitable for film or thin film deposition by the atomic layer deposition method and to provide a technique for safely synthesizing the precursor.
  • the first aspect of the present application provides a silicon precursor compound, represented by the following Chemical Formula 1 or Chemical Formula 2:
  • R 1 is hydrogen or -NR a R b ,
  • R a and R b are each independently hydrogen, a linear or branched C 1 -C 5 alkyl group, a trimethylsilyl group, or a dimethylsilyl group, or R a and R b are mutually substituted or unsubstituted C 4 -C 10 cyclic alkyl group, provided that R a and R b are not simultaneously hydrogen,
  • R 2 is a linear or branched C 1 -C 5 alkyl group, trimethylsilyl group, or dimethylsilyl group, provided that when R 1 is hydrogen, R 2 is a linear or branched C 1 -C 5 alkyl group ,
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • R 6 is a linear or branched C 1 -C 5 alkyl group
  • R 7 to R 9 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 7 to R 9 are At the same time, not hydrogen.
  • MN (R 2 ) -SiR 3 R 4 R 5 is subjected to a halide-amine substitution reaction with SiX 6 , followed by a halide-amine substitution reaction by sequentially adding a metal amine salt of MR 1
  • a method for producing a silicon precursor compound according to the following formula (1) comprising obtaining a silicon precursor compound according to the following formula (1) by subjecting to a halide hydrogen substitution reaction by adding M'H to the reaction mixture:
  • M is an alkali metal
  • R 1 is -NR a R b ,
  • R a and R b are each independently hydrogen, a linear or branched C 1 -C 5 alkyl group, a trimethylsilyl group, or a dimethylsilyl group, or R a and R b are mutually substituted or unsubstituted C 4 -C 10 cyclic alkyl group, provided that R a and R b are not simultaneously hydrogen,
  • R 2 is a linear or branched C 1 -C 5 alkyl group, trimethylsilyl group, or dimethylsilyl group,
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • X is a halogen element
  • M'H is a metal hydride reagent.
  • MN (R 2 ) -SiR 3 R 4 R 5 is subjected to a halide-amine substitution reaction with SiX 6 to obtain a reaction mixture, and then M'H is added to the reaction mixture to cause halide-hydrogen substitution.
  • a method of preparing a silicon precursor compound according to Formula 1, comprising reacting to obtain a silicon precursor compound according to Formula 1:
  • M is an alkali metal
  • R 1 is hydrogen
  • R 2 is a linear or branched C 1 -C 5 alkyl group
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • X is a halogen element
  • M'H is a metal hydride reagent.
  • MN (R 6 ) -SiR 7 R 8 R 9 is reacted with H y SiX (4-y) and halide-amine to obtain a reaction mixture, and then M'H is added to the reaction mixture.
  • a method for preparing a silicon precursor compound according to Formula 2 which comprises adding to obtain a silicon precursor compound according to Formula 2 by performing a halide-hydrogen substitution reaction:
  • M is an alkali metal
  • R 6 is a linear or branched C 1 -C 5 alkyl group
  • R 7 to R 9 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 7 to R 9 are At the same time, it is not hydrogen,
  • X is a halogen element
  • M'H is a metal hydride reagent
  • y is an integer from 0 to 2.
  • the fifth aspect of the present application provides a precursor composition for film formation, comprising the silicon precursor compound according to the first aspect.
  • a sixth aspect of the present application provides a method for forming a silicon-containing film, comprising forming a silicon-containing film using a precursor composition for film formation comprising the silicon precursor compound according to the first aspect.
  • thickness and composition can be accurately controlled while lowering the process temperature, and excellent coating properties and uniform composition can be formed even on a substrate having a complicated shape. It is expected that the characteristics of the semiconductor device can be improved accordingly.
  • the film growth per gas supply cycle of the atomic layer deposition method using the silicon compound of the present invention is large, it is possible to form a silicon-containing film having a required thickness with excellent step coverage in a short time.
  • the silicon precursor compound according to Chemical Formula 1 or Chemical Formula 2 according to the embodiments of the present application has hydrogen or various types of amines bonded to Si, and reacts on the surface under the influence of a highly reactive amine and hydrogen having excellent surface adsorption power. This occurs easily and is advantageous to form a silicon-containing oxide thin film (SiO 2 ) and a nitride thin film (SiNx) by reacting with a highly reactive oxidizing agent or nitriding agent.
  • SiO 2 silicon-containing oxide thin film
  • SiNx nitride thin film
  • the higher the Si content in the molecule the higher the deposition rate, and the density of the film is also increased, which has the property of improving the etching property.
  • the silicon-containing film of the present application is applicable in a wide range of about 100 ° C to about 500 ° C.
  • the silicon-containing nitride film or nitride thin film can be lowered to a temperature of about 300 ° C or less.
  • the silicon-containing oxide film or thin film by atomic layer deposition method, or nitride It can be suitably used as a silicon precursor compound for depositing a film or thin film.
  • the silicon-containing oxide film or thin film, the silicon-containing nitride film or thin film, and / or the silicon-containing carbonized film or thin film are dielectric films, gate insulating films, tunneling oxide films, spacer oxidation Silicon-containing oxide thin films are used for films, ILDs & IMDs, and / or passivation oxide films, silicon for diffusion masks, gate spacers, gate dielectric films, etch stoppers, stressors, and / or passivations, etc.
  • a containing nitride thin film is used, and may be variously applied according to its application, but may not be limited thereto.
  • the silicon precursor compound of the present invention included in the precursor composition for film formation is used as a precursor for atomic layer deposition or chemical vapor deposition due to its high vapor pressure, low density, and high thermal stability.
  • a silicon-containing film can be formed, in particular, several nanometers to several micrometers, or about 1 nm in a wide temperature range of about 100 ° C to about 500 ° C even on a substrate or porous substrate having a pattern (groove) on a surface, or a plastic substrate It has an excellent effect of uniformly forming a silicon-containing oxide thin film or a nitride thin film of about 500 nm in thickness.
  • Figure 4 is a graph showing the deposition rate according to the temperature of the silicon-containing oxide thin film grown in the range of 150 °C to 300 °C by the atomic layer deposition method of the silicon compounds prepared according to Examples 3 and 6 herein.
  • FIG 5 is a graph showing the deposition rate according to the temperature of the silicon-containing oxide thin film grown in the range of 150 °C to 500 °C using the atomic layer deposition method of the silicon compounds prepared according to Examples 3 and 6 herein.
  • FIG. 6 is a silicon-containing nitride thin film in which silicon compounds prepared according to Examples 3, 6, and 8 of the present application are grown under NH 3 and N 2 plasma conditions as a reaction gas at 300 ° C. at a low temperature using an atomic layer deposition method. It is a graph showing the refractive index of.
  • Example 7 is a deposition rate according to the temperature of the silicon-containing nitride thin film grown in N 2 plasma conditions as a reaction gas in the range of 250 ° C. to 350 ° C. using the atomic layer deposition method of the silicon compound prepared according to Example 1 of the present application. It is a graph showing (Growth per cycle, GPC) and Reflective index.
  • FIG. 8 is a graph showing the deposition rate and uniformity of a silicon-containing oxide thin film grown at 125 ° C. at a low temperature using an atomic layer deposition method of a silicon compound prepared according to Example 3 of the present application.
  • FIG. 9 is a graph showing the step coverage characteristics of a silicon-containing oxide thin film grown on a pattern substrate at a low temperature of 125 ° C. using atomic layer deposition using silicon compounds prepared according to Example 3 of the present application. .
  • FIG. 10 is a graph showing the step coverage characteristics of a silicon-containing oxide thin film grown on a patterned substrate at 400 ° C. at a high temperature using atomic layer deposition using silicon compounds prepared according to Example 3 of the present application. .
  • steps of ⁇ or “steps of ⁇ ” as used in the present specification does not mean “steps for”.
  • the term “combination (s)” included in the expression of the marki form means one or more mixtures or combinations selected from the group consisting of the components described in the expression of the marki form, It means to include one or more selected from the group consisting of the above components.
  • film or “thin film”, respectively, mean both “film” and “thin film” unless otherwise noted.
  • alkyl or “alkyl group” refers to a linear or branched alkyl group having 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 5 carbon atoms. And all possible isomers thereof.
  • the alkyl or alkyl group is a methyl group (Me), ethyl group (Et), n-propyl group ( n Pr), iso-propyl group ( i Pr), n-butyl group ( n Bu), iso-butyl group ( i Bu), tert-butyl group (tert-Bu, t Bu), sec-butyl group (sec-Bu, sec Bu), n-pentyl group ( n Pe), iso-pentyl group ( iso Pe), sec -Pentyl group ( sec Pe), tert-pentyl group ( t Pe), neo- pentyl group ( neo Pe), 3-pentyl group, n-hexyl group, iso-hexyl group, heptyl group, 4,4-dimethylphene Tilyl group, octyl group, 2,2,4-trimethylpentyl group, nonyl group, decyl group,
  • the first aspect of the present application provides a silicon precursor compound, represented by the following Chemical Formula 1 or Chemical Formula 2:
  • R 1 is hydrogen or -NR a R b ,
  • R a and R b are each independently hydrogen, a linear or branched C 1 -C 5 alkyl group, a trimethylsilyl group, or a dimethylsilyl group, or R a and R b are mutually substituted or unsubstituted C 4 -C 10 cyclic alkyl group, provided that R a and R b are not simultaneously hydrogen,
  • R 2 is a linear or branched C 1 -C 5 alkyl group, trimethylsilyl group, or dimethylsilyl group, provided that when R 1 is hydrogen, R 2 is a linear or branched C 1 -C 5 alkyl group ,
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • R 6 is a linear or branched C 1 -C 5 alkyl group
  • R 7 to R 9 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 7 to R 9 are At the same time, not hydrogen.
  • R 1 is -NR a R b
  • R a and R b are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, dimethylsilyl group, or trimethylsilyl group
  • R 1 is a substituted or unsubstituted C 4 -C 10 cyclic amine group
  • R 2 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl Group, tert-butyl group, trimethylsilyl group, or dimethylsilyl group
  • -SiR 3 R 4 R 5 may be a dimethylsilyl group or a trimethylsilyl group, but may not be limited
  • R 1 is Me 2 N-, EtMeN-, Me n PrN-, Me i PrN-, Me n BuN-, Et 2 N-, Et n PrN- , Et i PrN-, n Pr 2 N-, i Pr 2 N-, i Pr n BuN-, n Bu 2 N-, sec Bu 2 N-, EtHN-, i PrHN-, t BuHN-, C 4 H 8 N-, C 5 H 10 N-, C 6 H 12 N-, C 7 H 14 N-, C 8 H 16 N-, C 9 H 18 N-, C 10 H 20 N-, (Me) ( SiMe 3 ) N-, ( i Pr) (SiMe 3 ) N-, or (Me 2 SiH) 2 N-, R 2 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso
  • R 1 is hydrogen
  • R 2 is methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec -Butyl group, or tert-butyl group
  • -SiR 3 R 4 R 5 may be a dimethylsilyl group or a trimethylsilyl group, but may not be limited thereto.
  • the silicon precursor compound according to Formula 1 may include, but is not limited to, the following compounds:
  • the silicon precursor compound according to Formula 1 is i Pr 2 NSi 2 H 4 N (SiHMe 2 ) 2 , sec Bu 2 NSi 2 H 4 N (SiHMe 2 ) 2 , i Pr 2 NSi 2 H 4 N ( i Pr) (SiMe 3 ), sec Bu 2 NSi 2 H 4 N ( i Pr) (SiMe 3 ), (Me 2 SiH) 2 NSi 2 H 4 N (SiHMe 2 ) 2 , H 5 Si 2 N ( i Pr) (SiMe 3 ), or H 5 Si 2 N ( sec Bu) (SiMe 3 ).
  • R 6 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, or tert-butyl Group
  • -SiR 7 R 8 R 9 may be a dimethylsilyl group or a trimethylsilyl group, but may not be limited thereto.
  • the silicon precursor compounds according to Formula 2 may include, but are not limited to, the following compounds:
  • the silicon precursor compound according to Chemical Formula 2 may be H 3 SiN ( i Pr) (SiMe 3 ) or H 3 SiN ( sec Bu) (SiMe 3 ).
  • the silicon precursor compound according to Chemical Formula 1 or Chemical Formula 2 according to the embodiments of the present application has hydrogen or various types of amines bonded to Si, and reacts on the surface under the influence of a highly reactive amine and hydrogen having excellent surface adsorption power. This occurs easily and is advantageous to form a silicon-containing oxide thin film (SiO 2 ) and a nitride thin film (SiNx) by reacting with a highly reactive oxidizing agent or nitriding agent.
  • SiO 2 silicon-containing oxide thin film
  • SiNx nitride thin film
  • the higher the Si content in the molecule the higher the deposition rate, and the density of the film is also increased, which has the property of improving the etching property.
  • the silicon-containing film of the present application is applicable in a wide range of about 100 ° C to about 500 ° C.
  • the silicon-containing nitride film or nitride thin film can be lowered to a temperature of about 300 ° C or less.
  • the silicon-containing oxide film or thin film by atomic layer deposition method, or nitride It can be suitably used as a silicon precursor compound for depositing a film or thin film.
  • MN (R 2 ) -SiR 3 R 4 R 5 is subjected to a halide-amine substitution reaction with SiX 6 , followed by a halide-amine substitution reaction by sequentially adding a metal amine salt of MR 1
  • a method for producing a silicon precursor compound according to the following formula (1) comprising obtaining a silicon precursor compound according to the following formula (1) by subjecting to a halide hydrogen substitution reaction by adding M'H to the reaction mixture:
  • M is an alkali metal
  • R 1 is -NR a R b ,
  • R a and R b are each independently hydrogen, a linear or branched C 1 -C 5 alkyl group, a trimethylsilyl group, or a dimethylsilyl group, or R a and R b are mutually substituted or unsubstituted C 4 -C 10 cyclic alkyl group, provided that R a and R b are not simultaneously hydrogen,
  • R 2 is a linear or branched C 1 -C 5 alkyl group, trimethylsilyl group, or dimethylsilyl group,
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • X is a halogen element
  • M'H is a metal hydride reagent.
  • the silicon precursor compound according to Chemical Formula 1 may be prepared using various methods, but preferably after selectively substituting an amine ligand under a non-polar solvent according to Reaction Scheme 1 below, polar and non-polar It may be obtained by hydrogenation using a mixed solvent of solvent and then purified, but may not be limited thereto:
  • Step 1 Si 2 X 6 + MN (R 2 ) -SiR 3 R 4 R 5 ⁇ Si 2 X 5 N (R 2 ) -SiR 3 R 4 R 5 + MX
  • Step 2 Si 2 X 5 N (R 2 ) -SiR 3 R 4 R 5 + MR 1 ⁇ R 1 Si 2 X 4 N (R 2 ) -SiR 3 R 4 R 5 + MX
  • Step 3 R 1 Si 2 X 4 N (R 2 ) -SiR 3 R 4 R 5 + 4 M'H ⁇ R 1 Si 2 H 4 N (R 2 R 3 ) + 4 M'X
  • M is an alkali metal, and may be Li or Na
  • M'H is a hydrogenated metal reagent, and may be LiH, NaH, LiBH 4 , LiAlH 4 , NaAlH 4 , or NaBH 4 , but is not limited thereto. have.
  • the silicon precursor compound represented by Chemical Formula 1 is a metal amine salt of about 1 equivalent or less at a low temperature by a primary reaction to a hexahalide disilicon compound as indicated by Reaction Scheme 1 [MN ( R 2 ) -SiR 3 R 4 R 5 , M: Li or Na] is added and maintained at room temperature to perform a substitution reaction between halide and amine, and then the reaction by-product is removed through a filter in the form of a metal halide salt. Thereafter, as a secondary reaction, after adding about 1 equivalent of a metal amine salt (MR 1 ) at a low temperature, after maintaining the room temperature, the substitution reaction of halides and amines was performed.
  • MR 1 metal amine salt
  • reaction by-product is removed through a filter in the form of a metal halide salt.
  • M'H can be easily obtained by replacing the remaining halide with hydrogen.
  • a metal amine salt [MN (R 2 ) -SiR 3 R 4 R 5 , M: Li or Na] is added at a low temperature, about 2 equivalents of amine Method of adding (HN (R 2 ) -SiR 3 R 4 R 5 ), or about 1 equivalent to about 1.5 equivalents of tetraethylamine (TEA, Tetraethylamine) and amine [HN (R 2 R 3 )] It is preferably selected from.
  • X is a halogen element, Cl, Br, or I, preferably, X is Cl.
  • X is Cl.
  • M'H is a reducing agent for reducing X to hydrogen, lithium hydride (LiH), sodium hydride (NaH 4 ), lithium borohydride (LiBH 4 ) , Sodium borohydride (NaBH 4 ), lithium aluminum hydride (LiAlH 4 ), or one or more selected from sodium aluminum hydride (NaAlH 4 ), preferably, M'H is LiAlH 4 . However, it may not be limited to this.
  • R 1 is -NR a R b
  • R a and R b are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, dimethylsilyl group, or trimethylsilyl group
  • R 1 is a substituted or unsubstituted C 4 -C 10 cyclic amine group
  • R 2 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl Group, tert-butyl group, trimethylsilyl group, or dimethylsilyl group
  • -SiR 3 R 4 R 5 may be a dimethylsilyl group or a trimethylsilyl group, but may not be limited
  • R 1 is Me 2 N-, EtMeN-, Me n PrN-, Me i PrN-, Me n BuN-, Et 2 N-, Et n PrN- , Et i PrN-, n Pr 2 N-, i Pr 2 N-, i Pr n BuN-, n Bu 2 N-, sec Bu 2 N-, EtHN-, i PrHN-, t BuHN-, C 4 H 8 N-, C 5 H 10 N-, C 6 H 12 N-, C 7 H 14 N- (for example, ), C 8 H 16 N-, C 9 H 18 N-, C 10 H 20 N-, (Me) (SiMe 3 ) N-, ( i Pr) (SiMe 3 ) N-, or (Me 2 SiH) 2 N-, and R 2 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-
  • the solvents used in steps 1 and 2 of Reaction Scheme 1 may be non-polar solvents, such as pentane, hexane, octane, etc., having 5 to 8 carbon atoms, or weak polarity. Toluene having a may be used, preferably hexane may be used, but may not be limited thereto.
  • the solvent used in step 3 of Reaction Scheme 1 is preferably a mixed ratio of polar / non-polar solvents, and the ratio of the polar solvent to the non-polar solvent is about 2: 1, depending on the structure of the material to be reduced. To about 4, but may not be limited thereto.
  • the polar solvent may be selected from THF, ether, and mono- to tetra-glyme, preferably THF or ether.
  • the non-polar solvent may be selected from alkanes having 5 to 8 carbon atoms such as pentane, hexane, and octane, and preferably hexane may be used. However, it is not limited thereto.
  • MN (R 2 ) -SiR 3 R 4 R 5 is subjected to a halide-amine substitution reaction with SiX 6 to obtain a reaction mixture, and then M'H is added to the reaction mixture to cause halide-hydrogen substitution.
  • a method of preparing a silicon precursor compound according to Formula 1, comprising reacting to obtain a silicon precursor compound according to Formula 1:
  • M is an alkali metal
  • R 1 is hydrogen
  • R 2 is a linear or branched C 1 -C 5 alkyl group
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • X is a halogen element
  • M'H is a metal hydride reagent.
  • the silicon precursor compound according to Formula 1 may be prepared using various methods, but preferably after selectively substituting an amine ligand under a non-polar solvent according to Reaction Scheme 2 below, polar and non-polar It may be obtained by hydrogenation using a mixed solvent of solvent and then purified, but may not be limited thereto:
  • Step 1 Si 2 X 6 + MN (R 2 R 3 ) ⁇ Si 2 X 5 N (R 2 ) -SiR 3 R 4 R 5 + MX
  • Step 2 Si 2 X 5 N (R 2 ) -SiR 3 R 4 R 5 + 5M'H ⁇ Si 2 H 5 N (R 2 ) -SiR 3 R 4 R 5 + 5M'X
  • M is an alkali metal, and may be Li or Na
  • M'H is a hydrogenated metal reagent, and may be LiH, NaH, LiBH 4 , LiAlH 4 , NaAlH 4 , or NaBH 4 , but is not limited thereto. have.
  • the silicon precursor compound represented by Chemical Formula 1 is a metal amine salt of about 1 equivalent at about 1 equivalent at a low temperature as a primary reaction to a hexahalide disilicon compound, as indicated by Reaction Scheme 2 above.
  • R 2 R 3 ), M: Li or Na] and maintained at room temperature, after the substitution reaction of halide and amine, the reaction by-product is removed through a filter in the form of a metal halide salt. Subsequently, the remaining halide can be easily obtained by replacing hydrogen with hydrogen using M'H in the second reaction.
  • X is a halogen element, Cl, Br, or I, preferably, X is Cl.
  • X is Cl.
  • M'H is a reducing agent for reducing X to hydrogen, lithium hydride (LiH), sodium hydride (NaH 4 ), lithium borohydride (LiBH 4 ) , Sodium borohydride (NaBH 4 ), lithium aluminum hydride (LiAlH 4 ), or one or more selected from sodium aluminum hydride (NaAlH 4 ), preferably, M'H is LiAlH 4 . However, it may not be limited to this.
  • R 2 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, or tert-butyl group
  • -SiR 3 R 4 R 5 may be a dimethylsilyl group or a trimethylsilyl group, but may not be limited thereto.
  • a non-polar solvent may be used, for example, pentane, hexane, octane, and other alkanes having 5 to 8 carbon atoms, or toluene having weak polarity. It may be used, and preferably, hexane may be used, but may not be limited thereto.
  • the solvent used in step 2 of Scheme 2 is preferably a mixed ratio of polar / non-polar solvents, and the ratio of the polar solvent to the non-polar solvent is about 2: 1, depending on the structure of the material to be reduced. To about 4, but may not be limited thereto.
  • the polar solvent may be selected from THF, ether, and mono- to tetra-glymes, and preferably THF or ether.
  • the non-polar solvent may be selected from alkanes having 5 to 8 carbon atoms such as pentane, hexane, and octane, and preferably hexane may be used. However, it is not limited thereto.
  • MN (R 6 ) -SiR 7 R 8 R 9 is reacted with H y SiX (4-y) and halide-amine to obtain a reaction mixture, and then M'H is added to the reaction mixture.
  • a method for preparing a silicon precursor compound according to Formula 2 which comprises adding to obtain a silicon precursor compound according to Formula 2 by performing a halide-hydrogen substitution reaction:
  • M is an alkali metal
  • R 6 is a linear or branched C 1 -C 5 alkyl group
  • R 7 to R 9 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 7 to R 9 are At the same time, it is not hydrogen,
  • X is a halogen element
  • M'H is a metal hydride reagent
  • y is an integer from 0 to 2.
  • the silicon precursor compound according to Chemical Formula 2 may be prepared using various methods, but preferably after selectively substituting an amine ligand under a non-polar solvent according to Reaction Scheme 3 below, polar and non-polar It may be obtained by hydrogenation using a mixed solvent of solvent and then purified, but may not be limited thereto:
  • Step 1 H y SiX (4-y) + MN (R 6 ) -SiR 7 R 8 R 9 ⁇ SiH y X (3-y) N (R 6 ) -SiR 7 R 8 R 9 + MX
  • Step 2 SiH y X (3-y) N (R 6 ) -SiR 7 R 8 R 9 + (3-y) M'H ⁇ SiH 3 N (R 6 ) -SiR 7 R 8 R 9 + (3-y) M'X
  • M is an alkali metal, and may be Li or Na
  • M'H is a hydrogenated metal reagent, and may be LiH, NaH, LiBH 4 , LiAlH 4 , NaAlH 4 , or NaBH 4 , but is not limited thereto. have.
  • the silicon precursor compound represented by Chemical Formula 2 is a metal amine salt of about 1 equivalent or less at a low temperature as a primary reaction to a di-tetra-halide silicone compound as indicated by Reaction Scheme 3 (MN After adding (R 6 ) -SiR 7 R 8 R 9 , M: Li or Na) and maintaining the room temperature to perform a substitution reaction between halides and amines, the reaction by-products are removed through a filter in the form of a metal halide salt. Subsequently, the remaining halide can be easily obtained by replacing hydrogen with hydrogen using M'H in the second reaction.
  • X is a halogen element, Cl, Br, or I, preferably, X is Cl.
  • X is Cl.
  • M'H is a reducing agent for reducing X to hydrogen, lithium hydride (LiH), sodium hydride (NaH 4 ), lithium borohydride (LiBH 4 ) , Sodium borohydride (NaBH 4 ), lithium aluminum hydride (LiAlH 4 ), or one or more selected from sodium aluminum hydride (NaAlH 4 ), preferably, M'H is LiAlH 4 . However, it may not be limited to this.
  • R 6 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, or tert-butyl Group
  • -SiR 7 R 8 R 9 may be a dimethylsilyl group or a trimethylsilyl group, but may not be limited thereto.
  • a non-polar solvent may be used, for example, pentane, hexane, octane, and other alkanes having 5 to 8 carbon atoms, or toluene having weak polarity. This may be used, preferably hexane may be used, but may not be limited thereto.
  • the solvent used in step 2 of Scheme 3 is preferably a mixed ratio of polar / non-polar solvents, and the ratio of the polar solvent to the non-polar solvent is about 2: 1, depending on the structure of the material to be reduced. To about 4, but may not be limited thereto.
  • the polar solvent may be selected from THF, ether, and mono- to tetra-glyme, preferably THF or ether.
  • the non-polar solvent may be selected from alkanes having 5 to 8 carbon atoms such as pentane, hexane, and octane, and preferably hexane may be used. However, it is not limited thereto.
  • the fifth aspect of the present application provides a precursor composition for film formation, comprising the silicon precursor compound according to the first aspect.
  • the precursor composition for film formation includes a silicon precursor compound represented by Formula 1 or Formula 2 below:
  • R 1 is hydrogen or -NR a R b ,
  • R a and R b are each independently hydrogen, a linear or branched C 1 -C 5 alkyl group, a trimethylsilyl group, or a dimethylsilyl group, or R a and R b are mutually substituted or unsubstituted C 4 -C 10 cyclic alkyl group, provided that R a and R b are not simultaneously hydrogen,
  • R 2 is a linear or branched C 1 -C 5 alkyl group, trimethylsilyl group, or dimethylsilyl group, provided that when R 1 is hydrogen, R 2 is a linear or branched C 1 -C 5 alkyl group ,
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • R 6 is a linear or branched C 1 -C 5 alkyl group
  • R 7 to R 9 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 7 to R 9 are At the same time, not hydrogen.
  • the silicon precursor compound is i Pr 2 NSi 2 H 4 N (SiHMe 2 ) 2 , sec Bu 2 NSi 2 H 4 N (SiHMe 2 ) 2 , i Pr 2 NSi 2 H 4 N ( i Pr) (SiMe 3 ), sec Bu 2 NSi 2 H 4 N ( i Pr) (SiMe 3 ), (Me 2 SiH) 2 NSi 2 H 4 N (SiHMe 2 ) 2 , H 5 Si 2 N ( i Pr ) (SiMe 3 ), H 5 Si 2 N ( sec Bu) (SiMe 3 ), H 3 SiN ( i Pr) (SiMe 3 ), and H 3 SiN ( sec Bu) (SiMe 3 ) It may, but may not be limited to this.
  • the film may be one or more selected from a silicon-containing oxide film or thin film, a silicon-containing nitride film or thin film, and a silicon-containing carbonized film or thin film, but may not be limited thereto.
  • the precursor composition for film formation may further include one or more nitrogen sources selected from ammonia, nitrogen, hydrazine, and dimethyl hydrazine, but may not be limited thereto.
  • the precursor composition for film formation may further include one or more oxygen sources selected from water vapor, oxygen, and ozone, but may not be limited thereto.
  • a sixth aspect of the present application provides a method for forming a silicon-containing film, comprising forming a silicon-containing film using a precursor composition for film formation comprising the silicon precursor compound according to the first aspect.
  • the precursor composition for film formation includes a silicon precursor compound represented by Formula 1 or Formula 2 below:
  • R 1 is hydrogen or -NR a R b ,
  • R a and R b are each independently hydrogen, a linear or branched C 1 -C 5 alkyl group, a trimethylsilyl group, or a dimethylsilyl group, or R a and R b are mutually substituted or unsubstituted C 4 -C 10 cyclic alkyl group, provided that R a and R b are not simultaneously hydrogen,
  • R 2 is a linear or branched C 1 -C 5 alkyl group, trimethylsilyl group, or dimethylsilyl group, provided that when R 1 is hydrogen, R 2 is a linear or branched C 1 -C 5 alkyl group ,
  • R 3 to R 5 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 3 to R 5 are not simultaneously hydrogen,
  • R 6 is a linear or branched C 1 -C 5 alkyl group
  • R 7 to R 9 are each independently hydrogen or a linear or branched C 1 -C 3 alkyl group, provided that R 7 to R 9 are At the same time, not hydrogen.
  • the silicon precursor compound included in the precursor composition for film formation is i Pr 2 NSi 2 H 4 N (SiHMe 2 ) 2 , sec Bu 2 NSi 2 H 4 N (SiHMe 2 ) 2 , i Pr 2 NSi 2 H 4 N ( i Pr) (SiMe 3 ), sec Bu 2 NSi 2 H 4 N ( i Pr) (SiMe 3 ), (Me 2 SiH) 2 NSi 2 H 4 N (SiHMe 2 ) 2 , H 5 Si 2 N ( i Pr) (SiMe 3 ), H 5 Si 2 N ( sec Bu) (SiMe 3 ), H 3 SiN ( i Pr) (SiMe 3 ), and H 3 SiN ( sec Bu) (SiMe 3 ) may be one or more selected from, but may not be limited thereto.
  • the silicon-containing film may be one or more selected from silicon-containing oxide films or thin films, silicon-containing nitride films or thin films, and silicon-containing carbonized films or thin films, but is not limited thereto. Can be.
  • the silicon-containing oxide film or thin film, the silicon-containing nitride film or thin film, and / or the silicon-containing carbonized film or thin film are dielectric films, gate insulating films, tunneling oxide films, spacer oxidation Silicon-containing oxide thin films are used for films, ILDs & IMDs, and / or passivation oxide films, silicon for diffusion masks, gate spacers, gate dielectric films, etch stoppers, stressors, and / or passivations, etc.
  • a containing nitride thin film is used, and may be variously applied according to its application, but may not be limited thereto.
  • the silicon-containing film may be deposited by chemical vapor deposition (CVD) or atomic layer deposition (ALD), but may not be limited thereto.
  • the silicon-containing film may be deposited by organometallic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), but may not be limited thereto.
  • MOCVD organometallic chemical vapor deposition
  • ALD atomic layer deposition
  • the chemical vapor deposition method or the atomic layer deposition method may be performed using a deposition apparatus known in the art, deposition conditions, and additional reactive gas, but may not be limited thereto.
  • a silicon-containing oxide film or a composite metal silicon-containing oxide film (HfSiOx, ZrSiOx, TiSiOx, HfAlOx, ZrAlSiOx, TiAlSiOx, ZrHfSiOx, ZrHfAlSiOx, SiC, SiCO, or SiON, etc.) when depositing the film
  • a reaction gas to form a vapor H 2 O
  • oxygen oxygen
  • O 2 Plasma oxygen plasma
  • nitrogen oxides NO, N 2 O
  • nitrogen oxide plasma nitrogen oxide plasma
  • oxygen nitride It is preferred to use one or more in (N 2 O 2 ), hydrogen peroxide water (H 2 O 2 ), and ozone (O 3 ).
  • the silicon-containing film may be formed in a temperature range of about 100 ° C to about 500 ° C, but may not be limited thereto.
  • the silicon-containing film is about 100 ° C to about 500 ° C, about 100 ° C to about 450 ° C, about 100 ° C to about 400 ° C, about 100 ° C to about 350 ° C, about 100 ° C to about 300 ° C, about 100 ° C to about 250 ° C, about 100 ° C to about 200 ° C, about 100 ° C to about 150 ° C, about 150 ° C to about 500 ° C, about 150 ° C to about 450 ° C, about 150 ° C to about 400 ° C, about 150 ° C To about 350 ° C, about 150 ° C to about 300 ° C, about 150 ° C to about 250 ° C, about 150 ° C to about 200 ° C, about 200 ° C to about 500 ° C, about 200 ° C to about 450
  • the silicon-containing film may be formed in a thickness range of about 1 nm to about 500 nm, but may be variously applied according to application purposes, and may not be limited thereto.
  • the silicon-containing film is about 1 nm to about 500 nm, about 1 nm to about 400 nm, about 1 nm to about 300 nm, about 1 nm to about 200 nm, about 1 nm to about 100 nm, about 1 nm to about 50 nm, about 1 nm to about 40 nm, about 1 nm to about 30 nm, about 1 nm to about 20 nm, about 1 nm to about 10 nm, about 10 nm to about 500 nm, about 10 nm To about 400 nm, about 10 nm to about 300 nm, about 10 nm to about 200 nm, about 10 nm to about 100 nm, about 10 nm to about 50 nm, about
  • the silicon-containing film may be formed on one or more substrates selected from conventional silicon semiconductor wafers, compound semiconductor wafers, and plastic substrates (PI, PET, PES, and PEN). , It may not be limited. Further, a substrate having holes or grooves may be used, and a porous substrate having a large surface area may be used, but may not be limited thereto. Further, the silicon-containing film may be formed on all or part of the substrate simultaneously or sequentially on a substrate to which two or more different substrates are contacted or connected, but may not be limited thereto.
  • the silicon-containing film may be formed on a substrate including irregularities having an aspect ratio of about 1 to about 50 and a width of about 10 nm to about 1 ⁇ m, but may not be limited thereto. have.
  • the aspect ratio is about 1 to about 50, about 1 to about 40, about 1 to about 30, about 1 to about 20, about 1 to about 10, about 10 to about 50, about 10 to about 40, about 10 to about 30, about 10 to about 20, about 20 to about 50, about 20 to about 40, about 20 to about 30, about 30 to about 50, about 30 to about 40, or about 40 to about 50 , It may not be limited.
  • the width may be about 10 nm to about 1 ⁇ m, about 10 nm to about 900 nm, about 10 nm to about 800 nm, about 10 nm to about 700 nm, about 10 nm to about 600 nm, about 10 nm to about 500 nm, about 10 nm to about 400 nm, about 10 nm to about 300 nm, about 10 nm to about 200 nm, about 10 nm to about 100 nm, about 10 nm to about 90 nm, about 10 nm To about 80 nm, about 10 nm to about 70 nm, about 10 nm to about 60 nm, about 10 to about 50 nm, about 10 nm to about 40 nm, about 10 nm to about 30 nm, about 10 nm to about 20 nm, about 20 nm to about 1 ⁇ m, about 20 nm to about 900 nm, about 20 nm to about
  • the silicon-containing film forming method is a silicon-containing oxide film or thin film by supplying a precursor composition for forming a silicon-containing oxide thin film or forming a nitride thin film in a gaseous state to a substrate located in a deposition chamber, Or it includes forming a nitride film or a thin film, but may not be limited thereto.
  • the method of depositing the film may use methods, apparatus, and the like known in the art of the present application, and if necessary, may be performed by using one or more additional reaction gases together.
  • the silicon precursor compound of the present invention included in the precursor composition for film formation is used as a precursor for atomic layer deposition or chemical vapor deposition, due to its high vapor pressure, low density, and high thermal stability.
  • -It can form a film containing, in particular, a substrate having a pattern (groove) on the surface or a porous substrate, even on a plastic substrate in a wide temperature range of about 100 °C to about 500 °C a few nm to several tens of ⁇ m, or about 1 nm to It has an excellent effect of uniformly forming a silicon-containing oxide film or thin film about 500 nm thick, or a nitride film or thin film.
  • the method for forming a silicon-containing film comprises receiving a substrate in a reaction chamber, and then transferring the silicon precursor compound onto the substrate using a transport gas or a diluent gas to about 100 ° C to about 500 It is preferable to deposit a silicon-containing oxide thin film or a nitride thin film at a deposition temperature in a wide range of °C.
  • a silicon-containing oxide thin film or a nitride thin film at a deposition temperature in a wide range of °C.
  • being capable of forming the silicon-containing film at a wide range of deposition temperatures has great potential for application in various fields by broadly expanding process temperatures applicable to memory devices, logic devices, and display devices.
  • a silicon precursor compound usable in a wide temperature range is required, and deposition in a wide deposition temperature range of about 100 ° C to about 500 ° C is required. It is preferably made. However, it may not be limited to this.
  • the silicon-containing film forming method is one or more selected from argon (Ar), nitrogen (N 2 ), helium (He), and hydrogen (H 2 ) as the transport gas or dilution gas. It is preferred to use a mixed gas.
  • a bubbling method of forcibly vaporizing the precursor using a transport gas and a liquid delivery method of vaporizing through a vaporizer by supplying it in a liquid state at room temperature (Liquid Delivery System, LDS) and various supply methods including a gas flow controller (Vapor Flow Controller, VFC) method for directly supplying the vapor pressure of the precursor may be applied, but most preferably, when the silicon precursor compound has a high vapor pressure,
  • the VFC method may be used, and the LDS method, which is supplied in a liquid phase and vaporized in a vaporizer and supplied to the chamber, or, when the vapor pressure is low, the VFC method, in which the vessel is heated and vaporized, may be used.
  • the silicon precursor compound is contained in a bubbler container, an LDS container or a VFC container, bubbling, LDS or VFC using a transport gas in a pressure range of about 0.1 torr to about 10 torr and a temperature range of room temperature to about 100 ° C.
  • a method of transporting using a high vapor pressure and supplying it into the chamber may be used. However, it may not be limited to this.
  • argon (Ar) or nitrogen (N 2 ) gas it is more preferable to transport with argon (Ar) or nitrogen (N 2 ) gas, use thermal energy or plasma, or apply a bias on the substrate to vaporize the silicon precursor compound.
  • Ar argon
  • N 2 nitrogen
  • the salt produced during the reaction is removed through a filtration process, and the solvent and volatile side reactants are removed by distillation under reduced pressure to remove the colorless liquid compound (iso-propyl) (trimethylsilyl) aminopentachlorodisilane [Cl 5 Si 2 (N ( i Pr) (SiMe 3 )] 114 g (yield: 84%) was obtained.
  • the salt generated during the reaction is removed through a filtration process, and the solvent and volatile side reactants are removed by distillation under reduced pressure to remove the colorless liquid compound (iso-propyl) (trimethylsilyl) aminodisilane [H 5 Si 2 N ( i Pr ) (SiMe 3 )] 50.7 g (yield: 85%) was obtained.
  • the salt produced during the reaction is removed through a filtration process, and the solvent and the volatile side reactants are removed by distillation under reduced pressure to remove the colorless liquid compound 1-di-iso-propylamino-2- (tetramethyldisilyl) amino disilane [ ( i Pr) 2 NSi 2 H 4 N (SiHMe 2 ) 2 ] 173.3 g (yield: 85.4%) was obtained.
  • the salt produced by the reaction is removed through a filtration process, and the solvent and the volatile side reactants are removed by distillation under reduced pressure to remove the colorless liquid compound di-sec-butylamino (tetramethyldisilyl) aminodisilane [( sec Bu ) 2 NSi 2 H 4 N (SiHMe2) 2] 60.2 g (yield: 80%) was obtained.
  • the salt produced during the reaction is removed through a filtration process, and the solvent and volatile side reactants are removed by distillation under reduced pressure to remove the colorless liquid compound 1.2-bis- (tetramethyldisilyl) aminotetrachlorodisilane [( SiHMe 2 ) 2 NSi 2 Cl 4 N (SiHMe 2 ) 2 ] 85.28 g (yield: 71%) was obtained.
  • the mixed solution was added at -20 ° C to -10 ° C for 10 to 20 minutes, then slowly raised to room temperature with stirring, heated to 40 ° C to 50 ° C to react for 4 hours, and then reacted at room temperature for 12 hours. Ordered.
  • the salt generated during the reaction is removed through a filtration process, and the solvent and volatile side reactants are removed by distillation under reduced pressure to remove the colorless liquid compound 1,2-bis- (tetramethyldisilyl) aminodisilane [(SiHMe 2 ) 2 NSi 2 H 4 N (SiHMe 2 ) 2 ] 42 g (yield: 70%) was obtained.
  • the salt produced during the reaction is removed through a filtration process, and the solvent and volatile side reactants are removed by distillation under reduced pressure to give a colorless liquid compound (iso-propyl) (trimethylsilyl) amino (di-iso-propylamino) disilane [ ( i Pr) 2 NSi 2 H 4 N ( i Pr) (SiMe 3 )] 21 g (yield: 64%) was obtained.
  • LiAlH 4 lithium aluminum hydride
  • 250 mL of tetrahydrofuran and 150 mL of anhydrous hexane were mixed.
  • the mixture was added at -10 ° C for 10 minutes to 20 minutes, then slowly raised to room temperature while stirring, heated to 40 ° C to 50 ° C to react for 4 hours, and then reacted at room temperature for 12 hours.
  • the salt generated during the reaction is removed through a filtration process, and the solvent and volatile side reactants are removed by distillation under reduced pressure to remove the colorless liquid compound (iso-propyl) (trimethylsilyl) aminosilane [H 3 SiN ( i Pr) (SiMe 3 )] 21 g (yield: 60%) was obtained.
  • the silicon precursor compound (Compound 13) prepared in Example 6 was confirmed to show Si-H peaks at 4.8 ppm and 4.92 ppm as a result of 1 H-NMR analysis, as shown in FIG. 2.
  • FT-IR analysis it was confirmed that the peak of Si-H in the molecule strongly appears at 2155 cm -1 . From the analysis results of 1 H-NMR and FT-IR, it was confirmed that the compound was 13, and it was confirmed that it is an excellent precursor capable of forming a silicon-containing oxide thin film and a nitride thin film at various temperature ranges from the material structure.
  • TG analysis was performed to analyze the basic thermal properties of the silicon precursor compounds prepared in Examples 1, 3, 6, and 8, respectively, and the results are shown in FIG. 3.
  • the silicon precursor compounds prepared in Examples 1, 3, 6, and 8 each exhibit sufficient volatility to be applied to the atomic layer deposition method.
  • the silicon precursor compounds of the present application exhibit various volatility, it was confirmed that they are excellent precursors capable of forming silicon-containing oxide thin films and nitride thin films in a wide temperature range of about 100 ° C to about 500 ° C.
  • an atomic deposition method using plasma (PEALD-Plasma Enhanced Atomic Layer Deposition) was performed.
  • the reaction gas was used as the O 2 plasma by applying a RF power of 200 W to cause oxygen O 2.
  • a silicon wafer was soaked in a piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide water (H 2 O 2 ) were mixed at a 4: 1 ratio for 10 minutes, then taken out, and then immersed in a dilute HF aqueous solution for 2 minutes. After forming a pure silicon surface, a silicon oxide thin film was prepared by plasma atomic layer deposition (PEALD).
  • PALD plasma atomic layer deposition
  • the ALD cycle was fixed 100 times, and the temperature of the substrate was heated from 150 ° C to 300 ° C, which is a relatively low temperature, at 50 ° C intervals.
  • the silicon precursor compounds are placed in a container made of stainless steel, and the argon (Ar) gas having a flow rate of 200 sccm is heated while heating the container at a temperature of 30 ° C, 60 ° C, and 60 ° C, respectively, at a process pressure of 1 torr in the reactor. It was vaporized by using it as a carrier gas.
  • the ALD cycle was set to 3 sec for each vaporized precursor supply, 10 sec for precursor purge, 10 sec for O 2 plasma exposure, and 10 sec for O 2 plasma purge. The deposition results are shown in FIG. 4.
  • the silicon precursor compounds (compounds 9 and 13) prepared by the methods of Examples 3 and 6 are known diisopropylaminosilane (DIPAS, H 3 SiN i Pr 2 ) or bisdiethyl It showed a high deposition rate compared to aminosilane (BDEAS, H 2 Si (NEt 2 ) 2 ).
  • DIPAS diisopropylaminosilane
  • BDEAS aminosilane
  • compounds 9 and 13 of Examples 3 and 6 including both silylamine and alkylamine it is considered to have a higher deposition rate than DIPAS and BDEAS, and when both alkylamine and silylamine are included, a high deposition rate It was confirmed that it is advantageous to have.
  • the compound 9 of Example 3 containing 2 Si in the silylamine ligand was found to have a higher deposition rate than the compound 13 of Example 6 containing 1 Si in the silylamine ligand, which contained more Si It was confirmed that the silicone compound having silylamine as a ligand was advantageous in having a high deposition rate.
  • the silicon compound 9 prepared by Example 3 has a high deposition rate, it was confirmed that a disilane precursor has a higher deposition rate than a monosilane-based precursor when a silylamine ligand having the same Si number is included. Can be.
  • disilane-based silicon compounds as described above exhibited a significantly higher deposition rate than the previously known DIPAS or BDEAS, and in particular, the precursor compound 9 of Example 3 was found to exhibit a deposition rate more than 2 times higher. .
  • exhibiting a high deposition rate at a low temperature of 150 ° C. to 300 ° C. is a good precursor that can be widely applied in fields other than semiconductors, particularly in the display field.
  • Atom deposition using plasma was performed using silicon precursor compounds 9, 13, and 27 prepared by the methods of Examples 3, 6, and 8, respectively.
  • a silicon wafer was soaked in a piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide water (H 2 O 2 ) were mixed at a 4: 1 ratio for 10 minutes, then taken out and then immersed in a dilute HF aqueous solution for 2 minutes.
  • a silicon oxide thin film was prepared by plasma atomic layer deposition (PEALD).
  • PEALD plasma atomic layer deposition
  • the ALD cycle was fixed 100 times, and the results of the growth rate according to temperature at 50 ° C intervals from 150 ° C to 500 ° C are shown in FIG. 5.
  • the disilane precursor compound 13 prepared by Example 6 exhibited a significantly higher deposition rate than the conventionally known DIPAS.
  • the compound 9 of Example 3 exhibited a high deposition rate of 3.79 ⁇ / cy at 150 ° C and 1.79 ⁇ / cy at 500 ° C, which is a single precursor, even at a temperature range of about 100 ° C to about 500 ° C. It is determined that a silicon-containing oxide thin film can be deposited, and it can be confirmed that it is an excellent precursor that can be used in various fields such as displays other than semiconductors.
  • Atom deposition using plasma was performed using silicon precursor compounds 9, 13, and 27 prepared by the methods of Examples 3, 6, and 8, respectively.
  • the reaction gas was used as N 2 or NH 3 plasma by applying a RF power of 500 W to cause nitrogen N 2 or NH 3.
  • a silicon wafer was soaked in a piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide water (H 2 O 2 ) were mixed at a 4: 1 ratio for 10 minutes, then taken out and then immersed in a dilute HF aqueous solution for 2 minutes. After forming a pure silicon surface, a silicon nitride thin film was prepared by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the ALD cycle was fixed 300 times, and the temperature of the substrate was heated to 300 ° C.
  • the precursors are made of stainless steel, and argon (Ar) gas having a flow rate of 200 sccm is used as a carrier gas of the precursor compound while heating the vessel at a pressure of 1 torr and a temperature of 30 ° C, 60 ° C, and 60 ° C. Vaporized.
  • the ALD cycle was set to 3 sec for each vaporized precursor supply, 5 sec for precursor purge, 12 sec for N 2 or NH 3 plasma exposure time, and 5 sec for N 2 or NH 3 plasma purge. Comparative experiments were performed by exposing N 2 plasma or NH 3 plasma, respectively, and the results are shown in FIG. 6.
  • the refractive index (Reflective Index) value of the silicon nitride thin film was different according to the nitrogen source used at 300 °C. All three silicon precursor compounds have a refractive index of 1.6 or higher (1.6334, 1.6000, and 1.7116) for a thin film using N 2 plasma as a nitrogen source, while a refractive index of a thin film using NH 3 plasma as a nitrogen source has a value of 1.6 or less (1.5020, 1.5920, and 1.4808).
  • the value of the refractive index was changed according to the presence of H in the film, and it was confirmed that the refractive index was changed according to the amount of H originating from NH 3 or present in the precursor.
  • the conditions for forming an excellent silicon-containing nitride thin film were found to be that using N 2 plasma without H is better than using NH 3 .
  • Example 2 Using the silicon precursor compound 3 prepared in Example 1, an atomic deposition method using plasma (PEALD-Plasma Enhanced Atomic Layer Deposition) was performed.
  • the reaction gas was used as the N 2 plasma by applying a RF power of 500 W to cause nitrogen N 2.
  • a silicon wafer was soaked in a piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide water (H 2 O 2 ) were mixed at a 4: 1 ratio for 10 minutes, then taken out and then immersed in a dilute HF aqueous solution for 2 minutes. After forming a pure silicon surface, a silicon nitride thin film was prepared by atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • the ALD cycle was fixed 300 times, and the temperature of the substrate was increased from 250 ° C to 350 ° C in 50 ° C increments and heated.
  • the precursors were vaporized using argon (Ar) gas having a flow rate of 1 torr and 200 sccm at room temperature in a container made of stainless steel as a carrier gas of the precursor compound.
  • the ALD cycle was set to 2 sec for each vaporized precursor supply, 5 sec for precursor purge, 12 sec for N 2 plasma exposure time, and 5 sec for N 2 plasma purge.
  • the silicon nitride thin film was deposited by exposure to N 2 plasma and the results of the deposition rate (growth per cycle) and refractive index are shown in FIG. 7.
  • the deposition rate of the silicon nitride thin film increased as the temperature increased.
  • the refractive indices were 1.8201, 1.8062, and 1.8020 depending on the temperature, and all exhibited a value of 1.8 or higher. It was confirmed that exhibiting a refractive index of 1.8 or more is an excellent precursor that can be used in various fields such as displays other than semiconductors.
  • an atomic deposition method (PEALD-Plasma Enhanced Atomic Layer Deposition) using plasma was performed. Reaction gas, the O 2 plasma was used to apply a RF power of 500 W to cause oxygen O 2.
  • a silicon wafer was soaked in a piranha solution in which sulfuric acid (H 2 SO 4 ) and hydrogen peroxide water (H 2 O 2 ) were mixed at a 4: 1 ratio for 10 minutes, then taken out and then immersed in a dilute HF aqueous solution for 2 minutes. After forming a pure silicon surface, a silicon oxide thin film was prepared by plasma atomic layer deposition (PEALD).
  • PEALD plasma atomic layer deposition
  • the ALD cycle was fixed 400 times, and the temperature of the substrate was heated to 125 ° C.
  • Silicon precursor compound 9 is vaporized by using argon (Ar) gas having a flow rate of 500 sccm as a carrier gas of a precursor compound while heating the vessel at a process pressure of 1 torr and 60 ° C in a vessel made of stainless steel.
  • Ar argon
  • the ALD cycle was 1 sec for each vaporized precursor supply, 1 sec for precursor purge, 2 sec for O 2 plasma exposure time, and 1 sec for O 2 plasma purge. The deposition results are shown in FIG. 8.
  • the deposition rate of the silicon precursor compound 9 prepared by Example 3 is significantly higher than the conventionally known DIPAS or BDMAS, and also of Example 3 deposited on a 6-inch substrate Since the silicon oxide film of the precursor compound 9 was significantly lower in terms of uniformity, it was confirmed that it was most uniformly deposited, and it was confirmed that it is an excellent precursor that can be used in various fields such as displays other than semiconductors.
  • an atomic deposition method (PEALD-Plasma Enhanced Atomic Layer Deposition) using plasma was performed.
  • Reaction gas the O 2 plasma was used to apply a RF power of 500 W to cause oxygen O 2.
  • the ALD cycle was fixed 400 times, and the temperature of the substrate was heated to 125 ° C and 400 ° C.
  • the silicon precursor compound was vaporized using argon (Ar) gas having a flow rate of 200 sccm as a carrier gas of the precursor compound while heating the vessel at a process pressure of 1 torr and 60 ° C. in a container made of stainless steel.
  • the ALD cycle was set to 1 sec for each vaporized precursor supply, 1 sec for precursor purge, 2 sec for O 2 plasma exposure time, and 1 sec for O 2 plasma purge. The deposition results are shown in FIGS. 9 and 10.
  • the aspect ratio of the substrates used in FIGS. 9 and 10 is a substrate having a small micro groove of 10: 1, and is a result of observing the cross section of the film with a transmission electron microscope (TEM). It was confirmed in FIGS. 9 and 10 that the deposition rate of the silicon precursor compound 9 prepared by Example 3 measured in FIGS. 4 and 5 was relatively constant even in a grooved substrate. Both temperatures of 125 °C and 400 °C were applied with relatively high RF power of 500 W, and the ALD period was also within 5 seconds. The top side of the groove and the deepest bottom of the groove had 100% of the same deposition rate. It was possible to check the step coverage, and it can be said to be an excellent precursor that can be used in the semiconductor market, where micronization is rapidly progressing in various fields such as displays other than semiconductors.
  • TEM transmission electron microscope

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본원은 실리콘 전구체 화합물, 상기 실리콘 전구체 화합물의 제조 방법, 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 산화 박막 또는 질화 박막 증착용 전구체 조성물, 및 상기 전구체 조성물을 이용한 실리콘-함유 산화 박막 또는 질화 박막의 증착 방법에 관한 것이다.

Description

실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법
본원은 실리콘 전구체 화합물, 상기 실리콘 전구체 화합물의 제조 방법, 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 전구체 조성물, 및 상기 전구체 조성물을 이용하는 실리콘-함유 막의 형성 방법에 관한 것이다.
실리콘-함유 산화 박막 및 질화 박막은 반도체(DRAM, Flash Memory, ReRAM, 또는 PCRAM 등)뿐만 아니라, 비반도체(Logic)와 같은 마이크로일렉트로닉 소자의 구동에 있어 꼭 필요한 박막 중의 하나이다. 또한, 산화 박막 트랜지스터(Oxide Thin Film Transistor, OTFT)들을 포함하는 평판 디스플레이(Flat Panel Display) 분야, 태양열(Solar Cell) 분야, 및 유기발광소자(Organic Light Emitting Diodes, OLED) 등의 최첨단 기술에 사용되고 있다. 메모리 소자에는 유전막, 게이트 절연막, 터널링 산화막, 스페이서 산화막, ILD & IMD, 및 패시베이션(Passivation) 산화막 등에 실리콘-함유 산화 박막이 사용되고 있으며, 확산 마스크, 게이트 스페이서, 게이트 유전막, 에칭 스토퍼(Etch Stopper), 스트레서, 및 패시베이션 등에 실리콘-함유 질화 박막이 사용되고 있다. 디스플레이 분야에서는 게이트 유전막, 층간 유전막, 절연막, 및 수분침투방지막 등 다양한 박막 층에 실리콘-함유 산화 박막 또는 질화 박막 등이 이용되고 있다. 현재 메모리 분야의 DRAM, Flash Memory, 및 비메모리 분야의 Logic Memory는 물리적 한계에 도달해 있고, 이 한계를 극복하기 위해서 높은 종횡비 (High Aspect Ratio) 및 3차원 구조로 제품을 만들고 있어, 여기에 적합한 실리콘-함유 산화 박막 또는 질화 박막을 요구하고 있다. 이에 따라, 다양한 응용 분야별 공정 온도에 적합한 실리콘-함유 전구체를 요구하고 있으며, 또한 높은 단차비를 극복할 수 있게 완벽한 단차를 극복할 수 있는 원자층 증착법에 사용 가능한 실리콘-함유 전구체를 요구하고 있다. 원자층 증착 방법을 이용하여 실리콘-함유 산화 박막 또는 질화 박막을 형성할 경우, 박막의 두께 균일도 및 물성을 향상시키고 공정온도를 낮추게 되어 반도체 소자의 특성을 향상 시킬 수 있을 것으로 기대된다. 또한, 고 집적화 및 소자의 축소(Scaling Down)에 의해 발생할 수 있는 낮은 공정 온도와 낮은 저항 확보를 위해서라도 자기 제어(self-limiting) 특성을 지니고, 균일한 박막을 형성할 수 있는 증착 방법인 원자층 증착법을 이용해야 한다. 따라서, 원자층 증착법으로 원하는 특성의 막을 얻을 수 있는 실리콘-함유 산화 박막 또는 질화 박막 형성용 전구체 화합물의 개발에 많은 연구가 진행되고 있다.
한편, 미국공개특허 제2012/0085733호에서 리소그라피 공정 후에 패턴 밀도를 높이기 위해 요철이 있는 표면을 일정한 두께 스페이서 층으로 덮을 때, 스페이서 층의 물질로 실리콘 질화물을 사용할 수 있다고 개시하였다.
본원은 실리콘 전구체 화합물, 상기 실리콘 전구체 화합물의 제조 방법, 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 전구체 조성물, 및 상기 전구체 조성물을 이용하는 실리콘-함유 막의 형성 방법을 제공하고자 한다.
본원은 상기와 같은 문제점들을 해결하기 위한 것으로, 휘발성이 높으며, 실온에서 액체 상태로 존재하며 저온에서 증착이 가능한 실리콘 전구체 화합물을 이용하여 원자층 증착법에 의해 실리콘-함유 산화 막 또는 박막, 또는 질화 막 또는 박막을 증착할 수 있는 실리콘 전구체 화합물을 이용하는 막 형성 방법을 제공하고자 하는데 그 목적이 있다. 또한, 본원은 상기 원자층 증착법에 의한 막 또는 박막 증착에 적합한 실리콘 전구체 화합물을 제공하고, 안전하게 전구체를 합성할 수 있는 기술을 제공하고자 하는데 그 목적이 있다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 하기 화학식 1 또는 하기 화학식 2로서 표시되는, 실리콘 전구체 화합물을 제공한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000001
;
[화학식 2]
Figure PCTKR2019015676-appb-I000002
;
상기 화학식 1 및 상기 화학식 2에서,
R1은 수소 또는 -NRaRb이고,
Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
R2는 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이며, 단, R1이 수소인 경우, R2는 선형 또는 분지형의 C1-C5 알킬기이고,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니고,
R6은 선형 또는 분지형의 C1-C5 알킬기이고,
R7 내지 R9은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아님.
본원의 제 2 측면은, M-N(R2)-SiR3R4R5을 SiX6와 할라이드-아민 치환 반응시킨 후, 순차적으로 MR1의 금속 아민염을 첨가하여 할라이드-아민 치환 반응시켜 반응 혼합물을 수득하고, 상기 반응 혼합물에 M'H를 첨가하여 할라이드 수소 치환 반응시켜 하기 화학식 1에 따른 실리콘 전구체 화합물을 수득하는 것을 포함하는, 하기 화학식 1에 따른 실리콘 전구체 화합물의 제조 방법을 제공한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000003
;
M-N(R2)-SiR3R4R5, SiX6, MR1, M'H, 및 상기 화학식 1에서,
M은 알칼리 금속이고,
R1은 -NRaRb이고,
Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
R2는, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이고,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니며,
X는 할로겐 원소이고,
M'H는 수소화금속 시약임.
본원의 제 3 측면은, M-N(R2)-SiR3R4R5을 SiX6와 할라이드-아민 치환 반응시켜 반응 혼합물을 수득한 후, 상기 반응 혼합물에 M'H를 첨가하여 할라이드-수소 치환 반응시켜 하기 화학식 1에 따른 실리콘 전구체 화합물을 수득하는 것을 포함하는, 하기 화학식 1에 따른 실리콘 전구체 화합물의 제조 방법을 제공한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000004
;
M-N(R2)-SiR3R4R5, SiX6, M'H, 및 상기 화학식 1에서,
M은 알칼리 금속이고,
R1은 수소이고,
R2는 선형 또는 분지형의 C1-C5 알킬기이며,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니며,
X는 할로겐 원소이고,
M'H는 수소화금속 시약임.
본원의 제 4 측면은, M-N(R6)-SiR7R8R9을 HySiX(4-y)와 할라이드-아민 치환 반응시켜 반응 혼합물을 수득한 후, 상기 반응 혼합물에 M'H를 첨가하여 할라이드-수소 치환 반응시켜 하기 화학식 2에 따른 실리콘 전구체 화합물을 수득하는 것을 포함하는, 하기 화학식 2에 따른 실리콘 전구체 화합물의 제조 방법을 제공한다:
[화학식 2]
Figure PCTKR2019015676-appb-I000005
;
M-N(R6)-SiR7R8R9, HySiX(4-y), M'H, 및 상기 화학식 2에서,
M은 알칼리 금속이고,
R6은 선형 또는 분지형의 C1-C5 알킬기이고,
R7 내지 R9은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아니며,
X는 할로겐 원소이고,
M'H는 수소화금속 시약이고,
y는 0 내지 2의 정수임.
본원의 제 5 측면은, 제 1 측면에 따른 실리콘 전구체 화합물을 포함하는, 막 형성용 전구체 조성물을 제공한다.
본원의 제 6 측면은, 제 1 측면에 따른 실리콘 전구체 화합물을 포함하는 막 형성용 전구체 조성물을 이용하여 실리콘-함유 막을 형성하는 것을 포함하는, 실리콘-함유 막 형성 방법을 제공한다.
본원의 구현예들에 따른 실리콘 전구체 화합물들을 이용하는 실리콘-함유 막의 형성 방법에 따르면, 공정 온도를 낮추면서도 두께 및 조성을 정확히 제어할 수 있고, 복잡한 형상의 기판에서도 우수한 피복성 및 균일한 조성물을 형성할 수 있으며, 이에 따라 반도체 소자의 특성을 향상시킬 수 있을 것으로 기대된다. 특히, 본 발명의 실리콘 화합물을 사용한 원자층 증착법의 기체 공급 주기당 막 성장이 크기 때문에 짧은 시간에 우수한 단차피복성으로 필요한 두께의 실리콘-함유 막을 형성할 수 있다.
본원의 구현예들에 따른 상기 화학식 1 또는 상기 화학식 2에 따른 상기 실리콘 전구체 화합물은 Si에 수소 또는 여러 형태의 아민이 결합되어 있으며, 반응성이 좋은 아민과 표면 흡착력이 우수한 수소의 영향으로 표면에서 반응이 쉽게 일어나며, 반응성이 큰 산화제 또는 질화제와 반응하여 실리콘-함유 산화 박막(SiO2)과 질화 박막(SiNx)을 형성하기 유리하다. 또한, 분자 내에 Si의 함량이 높을수록 증착 속도가 높아지며, 막의 밀도 또한 증가하여 식각 특성을 좋게 만드는 특성이 있다. 본 증착 메커니즘에 의해 본원의 실리콘-함유 막은 약 100℃ 내지 약 500℃의 넓은 범위에서 응용 가능할 것으로 판단되며, 특히, 실리콘-함유 질화 막 또는 질화 박막은 약 300℃ 이하의 온도까지 낮출 수 있다. 또한, 직접적인 탄소 결합을 갖지 않기 때문에 금속 박막 내에 탄소 함량을 효과적으로 낮출 수 있으며, 저온에서도 높은 휘발성을 갖고 있고, 실온에서 액체 상태로 존재하여 원자층 증착법에 의한 실리콘-함유 산화 막 또는 박막, 또는 질화 막 또는 박막을 증착하기 위한 실리콘 전구체 화합물로서 적합하게 사용될 수 있다.
본원의 구현예들에 있어서, 상기 실리콘-함유 산화 막 또는 박막, 상기 실리콘-함유 질화 막 또는 박막 및/또는 상기 실리콘-함유 탄화 막 또는 박막은 유전 막, 게이트 절연 막, 터널링 산화 막, 스페이서 산화 막, ILD & IMD, 및/또는 패시베이션(Passivation) 산화 막 등에 실리콘-함유 산화 박막이 사용되고 있으며, 확산 마스크, 게이트 스페이서, 게이트 유전막, 에칭 스토퍼(Etch Stopper), 스트레서, 및/또는 패시베이션 등에 실리콘-함유 질화 박막이 사용되고 있으며, 그 적용 용도에 따라 다양하게 응용될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 구현예들에 있어서, 상기 막 형성용 전구체 조성물에 포함되는 본원의 실리콘 전구체 화합물은 높은 증기압과, 낮은 밀도, 및 높은 열 안정성에 기인하여, 원자층 증착법 또는 화학기상 증착법의 전구체로서 사용되어 실리콘-함유 막을 형성할 수 있으며, 특히, 표면에 패턴(홈)이 있는 기재 또는 다공성 기재, 플라스틱 기재 상에도 약 100℃ 내지 약 500℃의 넓은 온도 범위에서 수 nm 내지 수 ㎛, 또는 약 1 nm 내지 약 500 nm 두께의 실리콘-함유 산화 박막 또는 질화 박막을 막을 균일하게 형성할 수 있는 우수한 효과를 가진다.
도 1은, 본원의 실시예 1, 3, 6, 및 8에 따라 제조된 실리콘-함유 화합물들의 1H-NMR 스펙트럼이다.
도 2는, 본원의 실시예 6에 따라 제조된 실리콘-함유 화합물들의 FT-IR 스펙트럼이다.
도 3은, 본원의 실시예 1, 3, 6, 및 8에 따라 제조된 실리콘-함유 화합물들의 TGA 그래프이다.
도 4는, 본원의 실시예 3 및 6에 따라 제조된 실리콘 화합물들을 원자층 증착법에 의해 150℃ 내지 300℃ 범위에서 성장시킨 실리콘-함유 산화 박막의 온도에 따른 증착 속도를 나타낸 그래프이다.
도 5는, 본원의 실시예 3 및 6에 따라 제조된 실리콘 화합물들을 원자층 증착법을 이용하여 150℃ 내지 500℃ 범위에서 성장시킨 실리콘-함유 산화 박막의 온도에 따른 증착 속도를 나타낸 그래프이다.
도 6은, 본원의 실시예 3, 6, 및 8에 따라 제조된 실리콘 화합물들을 원자층 증착법을 이용하여 저온인 300℃에서 반응가스인 NH3와 N2 플라즈마 조건에서 성장시킨 실리콘-함유 질화 박막의 굴절률을 나타낸 그래프이다.
도 7은, 본원의 실시예 1에 따라 제조된 실리콘 화합물을 원자층 증착법을 이용하여 250℃ 내지 350℃ 범위에서 반응가스인 N2 플라즈마 조건에서 성장시킨 실리콘-함유 질화 박막의 온도에 따른 증착 속도(Growth per cycle, GPC)와 굴절률(Reflective index)을 나타낸 그래프이다.
도 8은, 본원의 실시예 3에 따라 제조된 실리콘 화합물을 원자층 증착법을 이용하여 저온인 125℃에서 성장시킨 실리콘-함유 산화 박막의 증착 속도와 균일도를 나타낸 그래프이다.
도 9는, 본원의 실시예 3에 따라 제조된 실리콘 화합물들을 원자층 증착법을 이용하여 저온인 125℃에서 패턴 기판에 성장시킨 실리콘-함유 산화 박막의 단차피복성 (Step Coverage) 특성을 나타낸 그래프이다.
도 10은, 본원의 실시예 3에 따라 제조된 실리콘 화합물들을 원자층 증착법을 이용하여 고온인 400℃에서 패턴 기판에 성장시킨 실리콘-함유 산화 박막의 단차피복성 (Step Coverage) 특성을 나타낸 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
본원 명세서 전체에서, 용어 "막" 또는 "박막" 각각은, 특별히 구별되지 않는 한, "막" 및 "박막" 모두를 의미한다.
본원 명세서 전체에서, 용어 "알킬" 또는 "알킬기"는, 1 내지 12 개의 탄소 원자, 1 내지 10 개의 탄소 원자, 1 내지 8 개의 탄소 원자, 또는 1 내지 5 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬 또는 알킬기는 메틸기(Me), 에틸기(Et), n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), iso-부틸기(iBu), tert-부틸기(tert-Bu, tBu), sec-부틸기(sec-Bu, secBu), n-펜틸기(nPe), iso-펜틸기(isoPe), sec-펜틸기(secPe), tert-펜틸기(tPe), neo-펜틸기(neoPe), 3-펜틸기, n-헥실기, iso-헥실기, 헵틸기, 4,4-디메틸펜틸기, 옥틸기, 2,2,4-트리메틸펜틸기, 노닐기, 데실기, 운데실기, 도데실기, 및 이들의 이성질체들 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원의 제 1 측면은, 하기 화학식 1 또는 하기 화학식 2로서 표시되는, 실리콘 전구체 화합물을 제공한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000006
;
[화학식 2]
Figure PCTKR2019015676-appb-I000007
;
상기 화학식 1 및 상기 화학식 2에서,
R1은 수소 또는 -NRaRb이고,
Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
R2는 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이며, 단, R1이 수소인 경우, R2는 선형 또는 분지형의 C1-C5 알킬기이고,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니고,
R6은 선형 또는 분지형의 C1-C5 알킬기이고,
R7 내지 R9은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아님.
본원의 일 구현예에 있어서, 상기 화학식 1에서, R1은 -NRaRb이며, Ra 및 Rb는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 다이메틸실릴기, 또는 트리메틸실릴기 이거나; 또는 R1은 치환 또는 비치환된 C4-C10 고리형 아민기이고, R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 트리메틸실릴기, 또는 다이메틸실릴기이고, -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1에 있어서, 상기 R1은 Me2N-, EtMeN-, MenPrN-, MeiPrN-, MenBuN-, Et2N-, EtnPrN-, EtiPrN-, nPr2N-, iPr2N-, iPrnBuN-, nBu2N-, secBu2N-, EtHN-, iPrHN-, tBuHN-, C4H8N-, C5H10N-, C6H12N-, C7H14N-, C8H16N-, C9H18N-, C10H20N-, (Me)(SiMe3)N-, (iPr)(SiMe3)N-, 또는 (Me2SiH)2N-이고, R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 트리메틸실릴기, 또는 다이메틸실릴기이고, -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 R1은 하기와 같은 고리형 치환기일 수 있으나, 이에 제한되지 않을 수 있다:
Figure PCTKR2019015676-appb-I000008
.
본원의 일 구현예에 있어서, 상기 화학식 1에 있어서, 상기 R1은 수소이고, 상기 R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 또는 tert-부틸기이고, 상기 -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1에 따른 상기 실리콘 전구체 화합물은 하기의 화합물들을 포함할 수 있으나, 이에 제한되지 않을 수 있다:
Figure PCTKR2019015676-appb-I000009
;
Figure PCTKR2019015676-appb-I000010
;
Figure PCTKR2019015676-appb-I000011
.
본원의 일 구현예에 있어서, 상기 화학식 1에 따른 상기 실리콘 전구체 화합물은 iPr2NSi2H4N(SiHMe2)2, secBu2NSi2H4N(SiHMe2)2, iPr2NSi2H4N(iPr)(SiMe3), secBu2NSi2H4N(iPr)(SiMe3), (Me2SiH)2NSi2H4N(SiHMe2)2, H5Si2N(iPr)(SiMe3), 또는 H5Si2N(secBu)(SiMe3)일 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 2에 있어서, R6는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 또는 tert-부틸기이고, -SiR7R8R9는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 2에 따른 상기 실리콘 전구체 화합물들은 하기의 화합물들을 포함할 수 있으나, 이에 제한되지 않을 수 있다:
Figure PCTKR2019015676-appb-I000012
.
본원의 일 구현예에 있어서, 상기 화학식 2에 따른 상기 실리콘 전구체 화합물은 H3SiN(iPr)(SiMe3) 또는 H3SiN(secBu)(SiMe3)일 수 있다.
본원의 구현예들에 따른 상기 화학식 1 또는 상기 화학식 2에 따른 상기 실리콘 전구체 화합물은 Si에 수소 또는 여러 형태의 아민이 결합되어 있으며, 반응성이 좋은 아민과 표면 흡착력이 우수한 수소의 영향으로 표면에서 반응이 쉽게 일어나며, 반응성이 큰 산화제 또는 질화제와 반응하여 실리콘-함유 산화 박막(SiO2)과 질화 박막(SiNx)을 형성하기 유리하다. 또한, 분자 내에 Si의 함량이 높을수록 증착 속도가 높아지며, 막의 밀도 또한 증가하여 식각 특성을 좋게 만드는 특성이 있다. 본 증착 메커니즘에 의해 본원의 실리콘-함유 막은 약 100℃ 내지 약 500℃의 넓은 범위에서 응용 가능할 것으로 판단되며, 특히, 실리콘-함유 질화 막 또는 질화 박막은 약 300℃ 이하의 온도까지 낮출 수 있다. 또한, 직접적인 탄소 결합을 갖지 않기 때문에 금속 박막 내에 탄소 함량을 효과적으로 낮출 수 있으며, 저온에서도 높은 휘발성을 갖고 있고, 실온에서 액체 상태로 존재하여 원자층 증착법에 의한 실리콘-함유 산화 막 또는 박막, 또는 질화 막 또는 박막을 증착하기 위한 실리콘 전구체 화합물로서 적합하게 사용될 수 있다.
본원의 제 2 측면은, M-N(R2)-SiR3R4R5을 SiX6와 할라이드-아민 치환 반응시킨 후, 순차적으로 MR1의 금속 아민염을 첨가하여 할라이드-아민 치환 반응시켜 반응 혼합물을 수득하고, 상기 반응 혼합물에 M'H를 첨가하여 할라이드 수소 치환 반응시켜 하기 화학식 1에 따른 실리콘 전구체 화합물을 수득하는 것을 포함하는, 하기 화학식 1에 따른 실리콘 전구체 화합물의 제조 방법을 제공한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000013
;
M-N(R2)-SiR3R4R5, SiX6, MR1, M'H, 및 상기 화학식 1에서,
M은 알칼리 금속이고,
R1은 -NRaRb이고,
Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
R2는, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이고,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니며,
X는 할로겐 원소이고,
M'H는 수소화금속 시약임.
본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1에 따른 실리콘 전구체 화합물은 다양한 방법을 이용하여 제조될 수 있으나, 바람직하게는 하기 반응식 1에 따라 비극성 용매 하에서 선택적으로 아민 리간드를 치환시킨 후, 극성과 비극성 용매의 혼합 용매를 사용하여 수소화시킨 후 정제함으로써 수득될 수 있으나, 이에 제한되지 않을 수 있다:
[반응식 1]
1 단계: Si2X6 + M-N(R2)-SiR3R4R5 → Si2X5N(R2)-SiR3R4R5 + MX
2 단계: Si2X5N(R2)-SiR3R4R5 + MR1 → R1Si2X4N(R2)-SiR3R4R5 + MX
3 단계: R1Si2X4N(R2)-SiR3R4R5 + 4 M'H → R1Si2H4N(R2R3) + 4 M'X
여기에서, M은 알칼리 금속으로서, Li 또는 Na일 수 있고, M'H는 수소화금속 시약으로서, LiH, NaH, LiBH4, LiAlH4, NaAlH4, 또는 NaBH4일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1로서 표시되는 실리콘 전구체 화합물은, 상기 반응식 1로서 표시된 것과 같이, 헥사할라이드 다이실리콘 화합물에 1차 반응으로 저온에서 약 1 당량 내외의 금속 아민염 [M-N(R2)-SiR3R4R5, M: Li 또는 Na]을 첨가하고 상온을 유지하여 할라이드와 아민의 치환 반응을 한 후, 반응 부산물을 금속할라이드염 형태로 필터를 통해 제거시킨다. 이후, 2차 반응으로서 저온에서 약 1 당량 내외의 금속 아민염 (MR1)을 첨가한 후 상온을 유지하여 할라이드와 아민의 치환 반응을 한 후. 반응 부산물을 금속할라이드염 형태로 필터를 통해 제거시킨다. 마지막으로, 3차 반응에서 M'H를 이용하여 남아있는 할라이드를 수소로 치환시키면 용이하게 수득될 수 있다. 또한, 상기 반응식 1에서 1차 반응으로는 저온에서 약 1 당량 내외의 금속 아민염[M-N(R2)-SiR3R4R5, M: Li 또는 Na]을 첨가, 약 2 당량 내외의 아민(HN(R2)-SiR3R4R5)을 첨가하거나, 또는 약 1 당량 내지 약 1.5 당량의 테트라에틸아민(TEA, Tetraethylamine)과 아민 [HN(R2R3)]을 첨가하는 방법 중에서 선택되는 것이 바람직하다. 또한, 상기 반응식 1에서 2차 반응으로는 저온에서 약 1 당량 내외의 금속 아민염 (MNRaRb)을 첨가, 약 2 당량 내외의 아민(HNRaRb)을 첨가하거나, 또는 약 1당량 내지 약 1.5 당량의 TEA (Tetraethylamine)와 아민 (HR1, R1 = N(RaRb))을 첨가하는 방법 중에서 선택되는 것이 바람직하다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 1에서, X는 할로겐 원소로서, Cl, Br, 또는 I이며, 바람직하게는, X는 Cl이다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 1에서, M'H는 X를 수소로 환원시키는 환원제로서, 리튬하이드라이드 (LiH), 소듐하이드라이드 (NaH4), 리튬보로하이드라이드 (LiBH4), 소듐보로하이드라이드 (NaBH4), 리튬알루미늄하이드라이드 (LiAlH4), 또는 소듐알루미늄하이드라이드 (NaAlH4)에서 선택되는 하나 이상이며, 바람직하게는, M'H는 LiAlH4이다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1에서, R1은 -NRaRb이며, Ra 및 Rb는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 다이메틸실릴기, 또는 트리메틸실릴기이거나; 또는 R1은 치환 또는 비치환된 C4-C10 고리형 아민기이고, R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 트리메틸실릴기, 또는 다이메틸실릴기이고, -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1에 있어서, 상기 R1은 Me2N-, EtMeN-, MenPrN-, MeiPrN-, MenBuN-, Et2N-, EtnPrN-, EtiPrN-, nPr2N-, iPr2N-, iPrnBuN-, nBu2N-, secBu2N-, EtHN-, iPrHN-, tBuHN-, C4H8N-, C5H10N-, C6H12N-, C7H14N-(예를 들어,
Figure PCTKR2019015676-appb-I000014
), C8H16N-, C9H18N-, C10H20N-, (Me)(SiMe3)N-, (iPr)(SiMe3)N-, 또는 (Me2SiH)2N-이고, R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 트리메틸실릴기, 또는 다이메틸실릴기이고, -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 1의 1 단계 및 2 단계에서 사용되는 용매는 비극성 용매가 사용될 수 있으며, 예를 들어, 펜탄, 헥산, 옥탄 등 탄소수 5 내지 8개의 알칸류, 또는 약한 극성을 갖는 톨루엔이 사용될 수 있으며, 바람직하게는 헥산을 사용할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 반응식 1의 3 단계에서 사용되는 용매는 극성/비극성 혼합 용매로서 일정 비율로서 혼합되어 있는 것이 바람직하며, 환원시켜야 하는 물질의 구조에 따라 극성 용매 대 비극성 용매의 비율은 약 2 : 약 1 내지 약 4의 비율로 선택되는 것이 바람직하나, 이에 제한되지 않을 수 있다. 여기서, 상기 극성 용매로서 THF, 에테르, 및 모노- 내지 테트라-글라임류에서 선택될 수 있으며, 바람직하게는 THF 또는 에테르를 사용할 수 있다. 또한, 여기서 상기 비극성 용매로서 펜탄, 헥산, 옥탄 등 탄소수 5 내지 8의 알칸류에서 선택될 수 있으며, 바람직하게는 헥산을 사용할 수 있다. 그러나, 이에 제한되는 것은 아니다.
본원의 제 3 측면은, M-N(R2)-SiR3R4R5을 SiX6와 할라이드-아민 치환 반응시켜 반응 혼합물을 수득한 후, 상기 반응 혼합물에 M'H를 첨가하여 할라이드-수소 치환 반응시켜 하기 화학식 1에 따른 실리콘 전구체 화합물을 수득하는 것을 포함하는, 하기 화학식 1에 따른 실리콘 전구체 화합물의 제조 방법을 제공한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000015
;
M-N(R2)-SiR3R4R5, SiX6, M'H, 및 상기 화학식 1에서,
M은 알칼리 금속이고,
R1은 수소이고,
R2는 선형 또는 분지형의 C1-C5 알킬기이며,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니며,
X는 할로겐 원소이고,
M'H는 수소화금속 시약임.
본원의 제 1 측면 및 제 2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 및 제 2 측면에 대해 설명한 내용은 본원의 제 3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1에 따른 실리콘 전구체 화합물은 다양한 방법을 이용하여 제조될 수 있으나, 바람직하게는 하기 반응식 2에 따라 비극성 용매 하에서 선택적으로 아민 리간드를 치환시킨 후, 극성과 비극성 용매의 혼합 용매를 사용하여 수소화시킨 후 정제함으로써 수득될 수 있으나, 이에 제한되지 않을 수 있다:
[반응식 2]
1 단계: Si2X6 + M-N(R2R3) → Si2X5N(R2)-SiR3R4R5 + MX
2 단계: Si2X5N(R2)-SiR3R4R5 + 5M'H → Si2H5N(R2)-SiR3R4R5 + 5M'X
여기에서, M은 알칼리 금속으로서, Li 또는 Na일 수 있고, M'H는 수소화금속 시약으로서, LiH, NaH, LiBH4, LiAlH4, NaAlH4, 또는 NaBH4일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1로서 표시되는 실리콘 전구체 화합물은, 상기 반응식 2로서 표시된 것과 같이, 헥사할라이드 다이실리콘 화합물에 1차 반응으로 저온에서 약 1 당량 내외의 금속 아민염 [M-N(R2R3), M : Li or Na]을 첨가하고 상온을 유지하여 할라이드와 아민의 치환 반응 후, 반응 부산물을 금속할라이드염 형태로 필터를 통해 제거시킨다. 이후, 2차 반응에서 M'H를 이용하여 남아있는 할라이드를 수소로 치환시키면 용이하게 수득될 수 있다. 또한, 상기 반응식 2에서 1차 반응으로는 저온에서 약 1 당량 내외의 금속 아민염 [M-N(R2R3), M : Li, Na]을 첨가, 약 2 당량 내외의 아민 [HN(R2R3)]을 첨가하거나, 또는 약 1 당량 내지 약 1.5 당량의 테트라에틸아민 (TEA, Tetraethylamine)과 아민 (HN(R2R3))을 첨가하는 방법 중에서 선택되는 것이 바람직하다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 2에서, X는 할로겐 원소로서, Cl, Br, 또는 I이며, 바람직하게는, X는 Cl이다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 2에서, M'H는 X를 수소로 환원시키는 환원제로서, 리튬하이드라이드 (LiH), 소듐하이드라이드 (NaH4), 리튬보로하이드라이드 (LiBH4), 소듐보로하이드라이드 (NaBH4), 리튬알루미늄하이드라이드 (LiAlH4), 또는 소듐알루미늄하이드라이드 (NaAlH4)에서 선택되는 하나 이상이며, 바람직하게는, M'H는 LiAlH4이다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 또는 tert-부틸기이고, -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 2의 1 단계에서 사용되는 용매는 비극성 용매가 사용될 수 있으며, 예를 들어, 펜탄, 헥산, 옥탄 등 탄소수 5 내지 8개의 알칸류, 또는 약한 극성을 갖는 톨루엔에 사용될 수 있으며, 바람직하게는 헥산을 사용할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 반응식 2의 2 단계에서 사용되는 용매는 극성/비극성 혼합 용매로서 일정 비율로서 혼합되어 있는 것이 바람직하며, 환원시켜야 하는 물질의 구조에 따라 극성 용매 대 비극성 용매의 비율은 약 2 : 약 1 내지 약 4의 비율로 선택되는 것이 바람직하나, 이에 제한되지 않을 수 있다. 여기서, 상기 극성 용매로서 THF, 에테르, 및 모노- 내지 테트라-글라임류 중에서 선택될 수 있으며, 바람직하게는 THF 또는 에테르를 사용할 수 있다. 또한, 여기서 상기 비극성 용매로서 펜탄, 헥산, 옥탄 등 탄소수 5 내지 8의 알칸류에서 선택될 수 있으며, 바람직하게는 헥산을 사용할 수 있다. 그러나, 이에 제한되는 것은 아니다.
본원의 제 4 측면은, M-N(R6)-SiR7R8R9을 HySiX(4-y)와 할라이드-아민 치환 반응시켜 반응 혼합물을 수득한 후, 상기 반응 혼합물에 M'H를 첨가하여 할라이드-수소 치환 반응시켜 하기 화학식 2에 따른 실리콘 전구체 화합물을 수득하는 것을 포함하는, 하기 화학식 2에 따른 실리콘 전구체 화합물의 제조 방법을 제공한다:
[화학식 2]
Figure PCTKR2019015676-appb-I000016
;
M-N(R6)-SiR7R8R9, HySiX(4-y), M'H, 및 상기 화학식 2에서,
M은 알칼리 금속이고,
R6은 선형 또는 분지형의 C1-C5 알킬기이고,
R7 내지 R9은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아니며,
X는 할로겐 원소이고,
M'H는 수소화금속 시약이고,
y는 0 내지 2의 정수임.
본원의 제 1 측면 내지 제 3 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제 3 측면에 대해 설명한 내용은 본원의 제 4 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 2에 따른 실리콘 전구체 화합물은 다양한 방법을 이용하여 제조될 수 있으나, 바람직하게는 하기 반응식 3에 따라 비극성 용매 하에서 선택적으로 아민 리간드를 치환시킨 후, 극성과 비극성 용매의 혼합 용매를 사용하여 수소화시킨 후 정제함으로써 수득될 수 있으나, 이에 제한되지 않을 수 있다:
[반응식 3]
1 단계: HySiX(4-y) + M-N(R6)-SiR7R8R9 → SiHyX(3-y)N(R6)-SiR7R8R9 + MX
2 단계: SiHyX(3-y)N(R6)-SiR7R8R9 + (3-y)M'H → SiH3N(R6)-SiR7R8R9 + (3-y)M'X
여기에서, M은 알칼리 금속으로서, Li 또는 Na일 수 있고, M'H는 수소화금속 시약으로서, LiH, NaH, LiBH4, LiAlH4, NaAlH4, 또는 NaBH4일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 2로서 표시되는 실리콘 전구체 화합물은, 상기 반응식 3로서 표시된 것과 같이, 다이 내지 테트라 할라이드 실리콘 화합물에 1차 반응으로 저온에서 약 1 당량 내외의 금속 아민염 (M-N(R6)-SiR7R8R9, M : Li or Na)을 첨가하고 상온을 유지하여 할라이드와 아민의 치환 반응을 한 후, 반응 부산물을 금속할라이드염 형태로 필터를 통해 제거시킨다. 이후, 2차 반응에서 M'H를 이용하여 남아있는 할라이드를 수소로 치환시키면 용이하게 수득될 수 있다. 또한, 상기 반응식 3에서 1차 반응으로는 저온에서 약 1 당량 내외의 금속 아민염 [M-N(R6)-SiR7R8R9]을 첨가, 약 2 당량 내외의 아민 [HN(R6)-SiR7R8R9]을 첨가하거나, 또는 약 1 당량 내지 약 1.5 당량의 테트라에틸아민 (TEA, Tetraethylamine)과 아민 [HN(R6)-SiR7R8R9]을 첨가하는 방법 중에서 선택되는 것이 바람직하다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 3에서, X는 할로겐 원소로서, Cl, Br, 또는 I이며, 바람직하게는, X는 Cl이다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 3에서, M'H는 X를 수소로 환원시키는 환원제로서, 리튬하이드라이드 (LiH), 소듐하이드라이드 (NaH4), 리튬보로하이드라이드 (LiBH4), 소듐보로하이드라이드 (NaBH4), 리튬알루미늄하이드라이드 (LiAlH4), 또는 소듐알루미늄하이드라이드 (NaAlH4)에서 선택되는 하나 이상이며, 바람직하게는, M'H는 LiAlH4이다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 2에 있어서, R6는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 또는 tert-부틸기이고, -SiR7R8R9는 다이메틸실릴기 또는 트리메틸실릴기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 반응식 3의 1 단계에서 사용되는 용매는 비극성 용매가 사용될 수 있으며, 예를 들어, 펜탄, 헥산, 옥탄 등 탄소수 5 내지 8개의 알칸류, 또는 약한 극성을 갖는 톨루엔이 사용될 수 있으며, 바람직하게는 헥산을 사용할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 반응식 3의 2 단계에서 사용되는 용매는 극성/비극성 혼합 용매로서 일정 비율로서 혼합되어 있는 것이 바람직하며, 환원시켜야 하는 물질의 구조에 따라 극성 용매 대 비극성 용매의 비율은 약 2 : 약 1 내지 약 4의 비율로 선택되는 것이 바람직하나, 이에 제한되지 않을 수 있다. 여기서, 상기 극성 용매로서 THF, 에테르, 및 모노- 내지 테트라-글라임류에서 선택될 수 있으며, 바람직하게는 THF 또는 에테르를 사용할 수 있다. 또한, 여기서 상기 비극성 용매로서 펜탄, 헥산, 옥탄 등 탄소수 5 내지 8의 알칸류에서 선택될 수 있으며, 바람직하게는 헥산을 사용할 수 있다. 그러나, 이에 제한되는 것은 아니다.
본원의 제 5 측면은, 제 1 측면에 따른 실리콘 전구체 화합물을 포함하는, 막 형성용 전구체 조성물을 제공한다.
본원의 제 1 측면 내지 제 4 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제 4 측면에 대해 설명한 내용은 본원의 제 5 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물은 하기 화학식 1 또는 하기 화학식 2로서 표시되는, 실리콘 전구체 화합물을 포함한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000017
;
[화학식 2]
Figure PCTKR2019015676-appb-I000018
;
상기 화학식 1 및 상기 화학식 2에서,
R1은 수소 또는 -NRaRb이고,
Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
R2는 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이며, 단, R1이 수소인 경우, R2는 선형 또는 분지형의 C1-C5 알킬기이고,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니고,
R6은 선형 또는 분지형의 C1-C5 알킬기이고,
R7 내지 R9은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아님.
본원의 일 구현예에 있어서, 상기 실리콘 전구체 화합물은 iPr2NSi2H4N(SiHMe2)2, secBu2NSi2H4N(SiHMe2)2, iPr2NSi2H4N(iPr)(SiMe3), secBu2NSi2H4N(iPr)(SiMe3), (Me2SiH)2NSi2H4N(SiHMe2)2 , H5Si2N(iPr)(SiMe3), H5Si2N(secBu)(SiMe3), H3SiN(iPr)(SiMe3), 및 H3SiN(secBu)(SiMe3)에서 선택되는 하나 이상인 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막은 실리콘-함유 산화 막 또는 박막, 실리콘-함유 질화 막 또는 박막, 및 실리콘-함유 탄화 막 또는 박막에서 선택되는 하나 이상인 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물은 암모니아, 질소, 히드라진, 및 디메틸 히드라진에서 선택되는 하나 이상의 질소원을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물은 수증기, 산소, 및 오존에서 선택되는 하나 이상의 산소원을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 6 측면은, 제 1 측면에 따른 실리콘 전구체 화합물을 포함하는 막 형성용 전구체 조성물을 이용하여 실리콘-함유 막을 형성하는 것을 포함하는, 실리콘-함유 막 형성 방법을 제공한다.
본원의 제 1 측면 내지 제 5 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 내지 제 5 측면에 대해 설명한 내용은 본원의 제 6 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물은 하기 화학식 1 또는 하기 화학식 2로서 표시되는, 실리콘 전구체 화합물을 포함한다:
[화학식 1]
Figure PCTKR2019015676-appb-I000019
;
[화학식 2]
Figure PCTKR2019015676-appb-I000020
;
상기 화학식 1 및 상기 화학식 2에서,
R1은 수소 또는 -NRaRb이고,
Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
R2는 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이며, 단, R1이 수소인 경우, R2는 선형 또는 분지형의 C1-C5 알킬기이고,
R3 내지 R5은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니고,
R6은 선형 또는 분지형의 C1-C5 알킬기이고,
R7 내지 R9은, 각각 독립적으로, 수소 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아님.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물에 포함되는 실리콘 전구체 화합물은 iPr2NSi2H4N(SiHMe2)2, secBu2NSi2H4N(SiHMe2)2, iPr2NSi2H4N(iPr)(SiMe3), secBu2NSi2H4N(iPr)(SiMe3), (Me2SiH)2NSi2H4N(SiHMe2)2 , H5Si2N(iPr)(SiMe3), H5Si2N(secBu)(SiMe3), H3SiN(iPr)(SiMe3), 및 H3SiN(secBu)(SiMe3)에서 선택되는 하나 이상인 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막은 실리콘-함유 산화 막 또는 박막, 실리콘-함유 질화 막 또는 박막, 및 실리콘-함유 탄화 막 또는 박막에서 선택되는 하나 이상인 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 구현예들에 있어서, 상기 실리콘-함유 산화 막 또는 박막, 상기 실리콘-함유 질화 막 또는 박막 및/또는 상기 실리콘-함유 탄화 막 또는 박막은 유전 막, 게이트 절연 막, 터널링 산화 막, 스페이서 산화 막, ILD & IMD, 및/또는 패시베이션(Passivation) 산화 막 등에 실리콘-함유 산화 박막이 사용되고 있으며, 확산 마스크, 게이트 스페이서, 게이트 유전막, 에칭 스토퍼(Etch Stopper), 스트레서, 및/또는 패시베이션 등에 실리콘-함유 질화 박막이 사용되고 있으며, 그 적용 용도에 따라 다양하게 응용될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막은 화학기상증착법(CVD) 또는 원자층 증착법(ALD)에 의해 증착되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 실리콘-함유 막은 유기금속 화학기상증착법 (MOCVD) 또는 원자층 증착법(ALD)에 의해 증착되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 화학기상증착법 또는 원자층 증착법은 본 기술분야에 공지된 증착 장치, 증착 조건, 및 추가 반응기체 등을 이용하여 수행될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 증착 시 실리콘-함유 산화 막이나 복합 금속 실리콘-함유 산화 막 (HfSiOx, ZrSiOx, TiSiOx, HfAlOx, ZrAlSiOx, TiAlSiOx, ZrHfSiOx, ZrHfAlSiOx, SiC, SiCO, 또는 SiON 등)을 형성하기 위해서 반응가스로서 수증기 (H2O), 산소 (O2), 산소 플라즈마 (O2 Plasma), 산화질소 (NO, N2O), 산화질소 플라즈마 (N2O Plasma), 질화산소 (N2O2), 과산화수소수 (H2O2), 및 오존 (O3)에서 하나 이상을 사용하는 것이 바람직하다.
본원의 일 구현예에 있어서, 상기 막 증착 시 실리콘-함유 질화 막 (SiN)이나 복합 금속 질화 막 (HfSiNx, ZrSiNx, TiSiNx, AlSiNx, HfAlSiNx, ZrAlSiNx, TiAlSiNx, HfZrAlSiNx, HfZrTiSiNx, TiAlSiNx, SiCN, SiOCN, 또는 SiBN 등)을 증착하기 위해서 반응가스로 암모니아 (NH3), 암모니아 플라즈마 (NH3 Plasma), 하이드라진 (N2H4), 및 질소 플라즈마 (N2 Plasma)에서 하나 이상을 사용하는 것이 바람직하다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막은 약 100℃ 내지 약 500℃의 온도 범위에서 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 실리콘-함유 막은 약 100℃ 내지 약 500℃, 약 100℃ 내지 약 450℃, 약 100℃ 내지 약 400℃, 약 100℃ 내지 약 350℃, 약 100℃ 내지 약 300℃, 약 100℃ 내지 약 250℃, 약 100℃ 내지 약 200℃, 약 100℃ 내지 약 150℃, 약 150℃ 내지 약 500℃, 약 150℃ 내지 약 450℃, 약 150℃ 내지 약 400℃, 약 150℃ 내지 약 350℃, 약 150℃ 내지 약 300℃, 약 150℃ 내지 약 250℃, 약 150℃ 내지 약 200℃, 약 200℃ 내지 약 500℃, 약 200℃ 내지 약 450℃, 약 200℃ 내지 약 400℃, 약 200℃ 내지 약 350℃, 약 200℃ 내지 약 300℃, 약 200℃ 내지 약 250℃, 약 250℃ 내지 약 500℃, 약 250℃ 내지 약 450℃, 약 250℃ 내지 약 400℃, 약 250℃ 내지 약 350℃, 약 250℃ 내지 약 300℃, 약 300℃ 내지 약 500℃, 약 300℃ 내지 약 450℃, 약 300℃ 내지 약 400℃, 약 300℃ 내지 약 350℃, 약 350℃ 내지 약 500℃, 약 350℃ 내지 약 450℃, 약 350℃ 내지 약 400℃, 약 400℃ 내지 약 500℃, 약 400℃ 내지 약 450℃, 또는 약 450℃ 내지 약 500℃의 온도 범위에서 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막은 약 1 nm 내지 약 500 nm의 두께 범위에서 형성되는 것일 수 있으나, 적용 용도에 따라 다양하게 응용될 수 있으며, 이에 제한되지 않을 수 있다. 예를 들어, 상기 실리콘-함유 막은 약 1 nm 내지 약 500 nm, 약 1 nm 내지 약 400 nm, 약 1 nm 내지 약 300 nm, 약 1 nm 내지 약 200 nm, 약 1 nm 내지 약 100 nm, 약 1 nm 내지 약 50 nm, 약 1 nm 내지 약 40 nm, 약 1 nm 내지 약 30 nm, 약 1 nm 내지 약 20 nm, 약 1 nm 내지 약 10 nm, 약 10 nm 내지 약 500 nm, 약 10 nm 내지 약 400 nm, 약 10 nm 내지 약 300 nm, 약 10 nm 내지 약 200 nm, 약 10 nm 내지 약 100 nm, 약 10 nm 내지 약 50 nm, 약 10 nm 내지 약 40 nm, 약 10 nm 내지 약 30 nm, 약 10 nm 내지 약 20 nm, 약 20 nm 내지 약 500 nm, 약 20 nm 내지 약 400 nm, 약 20 nm 내지 약 300 nm, 약 20 nm 내지 약 200 nm, 약 20 nm 내지 약 100 nm, 약 20 nm 내지 약 50 nm, 약 20 nm 내지 약 40 nm, 약 20 nm 내지 약 30 nm, 약 30 nm 내지 약 500 nm, 약 30 nm 내지 약 400 nm, 약 30 nm 내지 약 300 nm, 약 30 nm 내지 약 200 nm, 약 30 nm 내지 약 100 nm, 약 30 nm 내지 약 50 nm, 약 30 nm 내지 약 40 nm, 약 40 nm 내지 약 500 nm, 약 40 nm 내지 약 400 nm, 약 40 nm 내지 약 300 nm, 약 40 nm 내지 약 200 nm, 약 40 nm 내지 약 100 nm, 약 40 nm 내지 약 50 nm, 약 50 nm 내지 약 500 nm, 약 50 nm 내지 약 400 nm, 약 50 nm 내지 약 300 nm, 약 50 nm 내지 약 200 nm, 약 50 nm 내지 약 100 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 200 nm, 약 200m 내지 약 500 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 300 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 400 nm, 또는 약 400 nm 내지 약 500 nm의 두께 범위에서 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막은 통상적인 실리콘 반도체 웨이퍼, 화합물 반도체 웨이퍼, 및 플라스틱 기판들(PI, PET, PES, 및 PEN)에서 선택되는 하나 이상의 기재 상에 형성될 수 있는 것이나, 이에 제한되지 않을 수 있다. 또한, 구멍이나 홈이 있는 기재를 사용할 수도 있으며, 표면적이 넓은 다공질의 기재를 사용할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 서로 다른 두 종류 이상의 기재가 접촉 또는 연결되어 있는 기재에 동시에 또는 순차적으로 기재 전체 또는 일부에 대하여 상기 실리콘-함유 막이 형성될 수 있는 것이나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막은 종횡비가 약 1 내지 약 50이고, 폭이 약 10 nm 내지 약 1 ㎛인 요철을 포함하는 기재 상에 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 종횡비는 약 1 내지 약 50, 약 1 내지 약 40, 약 1 내지 약 30, 약 1 내지 약 20, 약 1 내지 약 10, 약 10 내지 약 50, 약 10 내지 약 40, 약 10 내지 약 30, 약 10 내지 약 20, 약 20 내지 약 50, 약 20 내지 약 40, 약 20 내지 약 30, 약 30 내지 약 50, 약 30 내지 약 40, 또는 약 40 내지 약 50일 수 있으나, 이에 제한되지 않을 수 있다. 또한, 예를 들어, 상기 폭은 약 10 nm 내지 약 1 ㎛, 약 10 nm 내지 약 900 nm, 약 10 nm 내지 약 800 nm, 약 10 nm 내지 약 700 nm, 약 10 nm 내지 약 600 nm, 약 10 nm 내지 약 500 nm, 약 10 nm 내지 약 400 nm, 약 10 nm 내지 약 300 nm, 약 10 nm 내지 약 200 nm, 약 10 nm 내지 약 100 nm, 약 10 nm 내지 약 90 nm, 약 10 nm 내지 약 80 nm, 약 10 nm 내지 약 70 nm, 약 10 nm 내지 약 60 nm, 약 10 내지 약 50 nm, 약 10 nm 내지 약 40 nm, 약 10 nm 내지 약 30 nm, 약 10 nm 내지 약 20 nm, 약 20 nm 내지 약 1 ㎛, 약 20 nm 내지 약 900 nm, 약 20 nm 내지 약 800 nm, 약 20 nm 내지 약 700 nm, 약 20 nm 내지 약 600 nm, 약 20 nm 내지 약 500 nm, 약 20 nm 내지 약 400 nm, 약 20 nm 내지 약 300 nm, 약 20 nm 내지 약 200 nm, 약 20 nm 내지 약 100 nm, 약 20 nm 내지 약 90 nm, 약 20 nm 내지 약 80 nm, 약 20 nm 내지 약 70 nm, 약 20 nm 내지 약 60 nm, 약 20 내지 약 50 nm, 약 20 nm 내지 약 40 nm, 약 20 nm 내지 약 30 nm, 약 30 nm 내지 약 1 ㎛, 약 30 nm 내지 약 900 nm, 약 30 nm 내지 약 800 nm, 약 30 nm 내지 약 700 nm, 약 30 nm 내지 약 600 nm, 약 30 nm 내지 약 500 nm, 약 30 nm 내지 약 400 nm, 약 30 nm 내지 약 300 nm, 약 30 nm 내지 약 200 nm, 약 30 nm 내지 약 100 nm, 약 30 nm 내지 약 90 nm, 약 30 nm 내지 약 80 nm, 약 30 nm 내지 약 70 nm, 약 30 nm 내지 약 60 nm, 약 30 내지 약 50 nm, 약 30 nm 내지 약 40 nm, 약 40 nm 내지 약 1 ㎛, 약 40 nm 내지 약 900 nm, 약 40 nm 내지 약 800 nm, 약 40 nm 내지 약 700 nm, 약 40 nm 내지 약 600 nm, 약 40 nm 내지 약 500 nm, 약 40 nm 내지 약 400 nm, 약 40 nm 내지 약 300 nm, 약 40 nm 내지 약 200 nm, 약 40 nm 내지 약 100 nm, 약 40 nm 내지 약 90 nm, 약 40 nm 내지 약 80 nm, 약 40 nm 내지 약 70 nm, 약 40 nm 내지 약 60 nm, 약 40 내지 약 50 nm, 약 50 nm 내지 약 1 ㎛, 약 50 nm 내지 약 900 nm, 약 50 nm 내지 약 800 nm, 약 50 nm 내지 약 700 nm, 약 50 nm 내지 약 600 nm, 약 50 nm 내지 약 500 nm, 약 50 nm 내지 약 400 nm, 약 50 nm 내지 약 300 nm, 약 50 nm 내지 약 200 nm, 약 50 nm 내지 약 100 nm, 약 50 nm 내지 약 90 nm, 약 50 nm 내지 약 80 nm, 약 50 nm 내지 약 70 nm, 약 50 nm 내지 약 60 nm, 약 100 nm 내지 약 1 ㎛, 약 100 nm 내지 약 900 nm, 약 100 nm 내지 약 800 nm, 약 100 nm 내지 약 700 nm, 약 100 nm 내지 약 600 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 200 nm, 약 200 nm 내지 약 1 ㎛, 약 200 nm 내지 약 900 nm, 약 200 nm 내지 약 800 nm, 약 200 nm 내지 약 700 nm, 약 200 nm 내지 약 600 nm, 약 200 nm 내지 약 500 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 300 nm, 약 300 nm 내지 약 1 ㎛, 약 300 nm 내지 약 900 nm, 약 300 nm 내지 약 800 nm, 약 300 nm 내지 약 700 nm, 약 300 nm 내지 약 600 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 400 nm, 약 400 nm 내지 약 1 ㎛, 약 400 nm 내지 약 900 nm, 약 400 nm 내지 약 800 nm, 약 400 nm 내지 약 700 nm, 약 400 nm 내지 약 600 nm, 약 400 nm 내지 약 500 nm, 약 500 nm 내지 약 1 ㎛, 약 500 nm 내지 약 900 nm, 약 500 nm 내지 약 800 nm, 약 500 nm 내지 약 700 nm, 약 500 nm 내지 약 600 nm, 약 600 nm 내지 약 1 ㎛, 약 600 nm 내지 약 900 nm, 약 600 nm 내지 약 800 nm, 약 600 nm 내지 약 700 nm, 약 700 nm 내지 약 1 ㎛, 약 700 nm 내지 약 900 nm, 약 700 nm 내지 약 800 nm, 약 800 nm 내지 약 1 ㎛, 약 800 nm 내지 약 900 nm, 또는 약 900 nm 내지 약 1 ㎛일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막 형성 방법은 증착 챔버 내에 위치한 기재에 실리콘-함유 산화 박막 형성용 또는 질화 박막 형성용 전구체 조성물을 기체 상태로 공급하여 실리콘-함유 산화 막 또는 박막, 또는 질화 막 또는 박막을 형성하는 것을 포함하고 있으나, 이에 제한되지 않을 수 있다. 상기 막의 증착 방법은 본원의 기술분야에 공지된 방법, 장치 등을 이용할 수 있고, 필요한 경우, 하나 이상의 추가 반응 기체를 함께 이용하여 수행될 수 있다.
본원의 구현예들에 있어서, 상기 막 형성용 전구체 조성물에 포함되는 본원의 실리콘 전구체 화합물은 높은 증기압, 낮은 밀도, 및 높은 열 안정성에 기인하여, 원자층 증착법 또는 화학기상증착법의 전구체로서 사용되어 실리콘-함유 막을 형성할 수 있으며, 특히, 표면에 패턴(홈)이 있는 기재 또는 다공성 기재, 플라스틱 기재 상에도 약 100℃ 내지 약 500℃의 넓은 온도 범위에서 수 nm 내지 수십 μm, 또는 약 1 nm 내지 약 500 nm 두께의 실리콘-함유 산화 막 또는 박막, 또는 질화 막 또는 박막을 균일하게 형성할 수 있는 우수한 효과를 가진다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막 형성 방법은 반응 챔버 내에 기재를 수용한 뒤, 운송 가스 또는 희석 가스를 사용하여 상기 실리콘 전구체 화합물을 상기 기재 상으로 이송하여 약 100℃ 내지 약 500℃의 넓은 범위의 증착 온도에서 실리콘-함유 산화 박막 또는 질화 박막을 증착시키는 것이 바람직하다. 여기서, 상기 넓은 범위의 증착 온도에서 상기 실리콘-함유 막을 형성할 수 있는 것은, 메모리 소자, 로직 소자, 및 디스플레이 소자에 적용될 수 있는 공정 온도를 넓게 확장하여 다양한 분야에 적용 가능성이 크다. 또한, 실리콘-함유 산화 막, 질화 막, 또는 탄화 막 각각의 필름 특성이 상이하기 때문에, 넓은 온도 범위에서 사용 가능한 실리콘 전구체 화합물이 필요하여 약 100℃ 내지 약 500℃의 넓은 증착 온도 범위에서 증착이 이루어지는 것이 바람직하다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘-함유 막 형성 방법은 상기 운송가스 또는 희석 가스로서 아르곤(Ar), 질소(N2), 헬륨(He), 및 수소(H2)에서 선택되는 하나 이상의 혼합 가스를 사용하는 것이 바람직하다. 또한, 상기 실리콘 전구체 화합물을 기재 상으로 전달하는 방식으로는 전구체를 운송 가스를 이용하여 강제적으로 기화시키는 버블링 (Bubbling) 방식 및 상온에서 액상으로 공급하여 기화기를 통해 기화시키는 액상 공급 방식(Liquid Delivery System, LDS) 및 전구체의 증기압을 이용하여 직접 공급하는 기체 유량 컨트롤러(Vapor Flow Controller, VFC) 방식을 포함하는 다양한 공급 방식이 적용될 수 있으나, 가장 바람직하게는 상기 실리콘 전구체 화합물을 증기압을 높은 경우는 VFC 방식을 사용할 수 있으며, 액상으로 공급하여 기화기에서 기화시켜 챔버로 공급하는 LDS 방식, 증기압이 낮은 경우는 용기를 가열하여 기화시키는 VFC 방식이 사용될 수 있다. 가장 바람직하게는 상기 실리콘 전구체 화합물을 버블러 용기, LDS 용기 또는 VFC 용기에 담아 약 0.1 torr 내지 약 10 torr의 압력 범위 및 상온 내지 약 100℃의 온도 범위에서 운송 가스를 이용하는 버블링, LDS 또는 VFC 등으로 높은 증기압을 이용하여 운송하여 챔버 내로 공급시키는 방식이 사용될 수 있다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 실리콘 전구체 화합물을 기화시키기 위하여 아르곤 (Ar) 또는 질소 (N2) 가스로 운송하거나 열에너지 또는 플라즈마를 이용하거나, 기판상에 바이어스를 인가하는 것이 더욱 바람직하다. 그러나, 이에 제한되지 않을 수 있다.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
[ 실시예 ]
<실시예 1> 화합물 3[H5Si2N(iPr)(SiMe3)]의 제조
2 L 둥근 바닥 플라스크에서, n-부틸리튬 헥산 용액 (n-BuLi in n-hex.) 121g (2.5 M, 0.446 mol)을 무수 헥산 1,000 mL와 혼합하였다. (iso-프로필)(트리메틸실릴)아민 [HN(iPr)(SiMe3)] 58.6g (0.446 mol)을 -20℃ 부근에서 첨가한 후 실온까지 서서히 올린 뒤 4 시간 동안 교반하였다. 상기 생성된 리튬(이소프로필)(트리메틸실릴)아민염 용액에 헥사클로로다이실란 (hexachlorodisilane) 100g (0.372 mol)의 무수 헥산 500 mL 혼합 용액을 -50℃ 내지 -40℃에서 30 분 가량 첨가한 후 교반하면서 서서히 온도를 올린 뒤 17 시간 동안 교반시켰다. 반응 종료 후, 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (iso-프로필)(트리메틸실릴)아미노펜타클로로다이실란 [Cl5Si2(N(iPr)(SiMe3)] 114g (수율: 84 %)을 수득하였다.
또한, 다른 1 L 둥근 바닥 플라스크에서, 리튬알루미늄하이드라이드 (LiAlH4) 25.94g (0.626 mol), 디에틸에테르 350 mL 및 무수 헥산 500 mL를 혼합하여, 혼합물을 -20℃로 냉각시켰다. 상기 용액에 상기 과정에서 회수한 (iso-프로필)(트리메틸실릴)아미노펜타클로로다이실란 114g (0.313 mol), 헥산 200 mL 혼합 용액을 -20℃ 내지 -10℃에서 10 분 내지 20분 동안 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반하였다. 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (iso-프로필)(트리메틸실릴)아미노다이실란 [H5Si2N(iPr)(SiMe3)] 50.7g (수율: 85%)을 수득하였다.
b.p: 50℃ 및 10 torr (167.4℃ 및 760 mmHg)
1H-NMR(C6D6): δ 0.109 (N-Si-C H 3, s, 9H), δ 1.076, 1.060 (N-CH-C H 3, d, 6H), δ 3.354 (Si-Si- H 3, t, 3H), δ 4.872 (Si-Si- H 2, q, 2H), δ 3.132 (N-C H -CH3, m, 1H)
<실시예 2> 화합물 4[H5Si2N(secBu)(SiMe3)]의 제조
상기 실시예 1과 같은 방법으로 제조된 (sec-부틸)(트리메틸실릴)아미노펜타클로로다이실란 [Cl5Si2N(secBu)(SiMe3)] 57.6g (수율: 85%, (0.115 mol)) 및 무수 헥산 100 mL 혼합 용액을 리튬알루미늄하이드라이드 (LiAlH4) 9.2g (0.242 mol), 디에틸에테르 250 mL, 및 무수 헥산 150 mL를 사용하여, 상기 실시예 1과 같은 방법으로 무색의 액체 화합물인 (sec-부틸)(트리메틸실릴)아미노다이실란 [H5Si2N(secBu)(SiMe3)] 23g (수율: 75%)을 수득하였다.
b.p: 80℃ 및 10 torr (204.3℃ 및 760 mmHg)
1H-NMR(C6D6): δ 0.122 (N-Si-C H 3, s, 9H), δ 0.770(N-CH-CH2-C H 3, t, 3H), δ 1.077, 1.061 (N-CH-C H 3, d, 3H), δ 1.338 (N-CH-CH 2-CH3, m, 1H), δ 11.494 (N-CH-CH 2-CH3, m, 1H), δ 2.763 (N-CH-CH3, m, 1H), δ 3.365 (Si-Si- H 3, t, 3H), δ 4.854 (Si-Si- H 2, q, 2H)
<실시예 3> 화합물 9[iPr2NSi2H4N(SiHMe2)2]의 제조
5 L 둥근 바닥 플라스크에서, 하기 실시예 5와 같은 방법으로 제조된 (테트라메틸다이실릴)아미노펜타클로로다이실란 [Cl5Si2N(SiHMe2)2] 328g (0.897 mol)을 무수 헥산 3,000 mL와 혼합하여 제조된 혼합물을 드라이아이스를 사용하여 -30℃로 냉각시켰다. 상기 혼합물에 다이이소프로필아민 (diisopropylamine) 272.23g (2.690 mol)을 무수 헥산 1,000 mL에 혼합시킨 혼합 용액을 -30℃ 내지 -20℃에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반시켰다. 상기 반응 종료 후, 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 1-(다이-iso-프로필)아미노-2-(테트라메틸다이실릴)아미노테트라클로로다이실란 [(iPr)2NSi2Cl4N(SiHMe2)2] 308.84g (수율: 80%)을 얻었다.
3 L 둥근 바닥 플라스크에서, 리튬알루미늄하이드라이드 (LiAlH4) 39.673g (1.045 mol), 테트라하이드로퓨란 1,000 mL 및 무수 헥산 500 mL를 혼합하였다. 상기 과정에서 회수한 1-(다이-iso-프로필)아미노-2-(테트라메틸다이실릴)아미노테트라클로로다이실란 300g (0.697 mol) 을 헥산 500 mL에 혼합시킨 혼합용액을 -20℃ 내지 -10℃에서 30 분 내지 60 분 동안 첨가한 후 교반하면서 실온까지 서서히 올린 뒤, 35℃ 내지 40℃로 가열하여 17 시간 동안 반응 시켰다. 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 1-다이-iso-프로필아미노-2-(테트라메틸다이실릴)아미노 다이실란 [(iPr)2NSi2H4N(SiHMe2)2] 173.3g (수율: 85.4%)을 얻었다.
b.p: 60℃ 및 0.28 torr (252.4℃ 및 760 mmHg)
1H-NMR(C6D6): δ 0.258, 0.266 (N-Si-C H 3, d, 12H), δ 1.051, 1.068(N-CH-C H 3, d, 12H, δ 2.993 (N-C H , m, 2H), δ 4.804 (N-Si- H , m, 2H), δ 4.937 (Si-Si- H 2, t, 2H), δ 4.947 (Si-Si- H 2, t, 2H)
<실시예 4> 화합물 10[secBu2NSi2H4N(SiHMe2)2]의 제조
3 L 둥근 바닥 플라스크에서, 하기 실시예 5와 같은 방법으로 합성한 (테트라메틸다이실릴)아미노-펜타클로로다이실란 [Cl5Si2N(SiHMe2)2] 100g (0.273 mol)을 무수 헥산 1,500 mL와 혼합하여 제조된 혼합물을 드라이아이스를 사용하여 -30℃로 냉각시켰다. 상기 혼합물에 다이-sec-부틸아민 (di-sec-butylamine) 106.01g (0.820 mol)을 무수 헥산 300 mL에 혼합시킨 혼합 용액을 -30℃ 내지 -20℃에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반시켰다. 상기 반응 종료 후, 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 다이-sec-부틸아미노(테트라메틸다이실릴)아미노테트라클로로다이실란 [(secBu)2NSi2Cl4N(SiHMe2)2] 107.85g (수율: 86%)을 얻었다.
3 L 둥근 바닥 플라스크에서, 리튬알루미늄하이드라이드 (LiAlH4) 14.28 g (0.376 mol), 테트라하이드로퓨란 600 mL 및 무수 헥산 400 mL를 혼합하였다. 상기 과정에서 회수한 다이-sec-부틸아미노 (테트라메틸다이실릴)아미노테트라클로로다이실란 107.85 g (0.235 mol) 을 헥산 200 mL에 혼합시킨 혼합용액을 -20℃ 내지 -10℃에서 20 분 내지 30 분 동안 첨가한 후 교반하면서 실온까지 서서히 올린 뒤, 35℃ 내지 40℃로 가열하여 17 시간 동안 반응시켰다. 상기 반응에 의해 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 다이-sec-부틸아미노(테트라메틸다이실릴)아미노다이실란 [(secBu)2NSi2H4N(SiHMe2)2] 60.2g (수율: 80%)을 얻었다.
b.p: 82℃ 및 0.3 torr (282℃ 및 760 mmHg)
1H-NMR(C6D6): δ 0.258, 0.266 (N-Si-C H 3, d, 12H), δ 0.853 (N-CH-CH2-C H 3, t, 3H), δ 0.860 (N-CH-CH2-C H 3, t, 3H), δ 1.052, 1.069 (N-CH-C H 3, d, 3H), δ 1.069, 1.086 (N-CH-C H 3, d, 3H), δ 1.328 (N-CH-C H 2, m, 2H), δ 1.485 (N-CH-C H 2, m, 2H), δ 2.644 (N-C H , m, 2H), δ 4.796 (N-Si- H , m, 2H), δ 4.934 (Si-Si- H 2, t, 2H), δ 4.944 (Si-Si- H 2, t, 2H)
<실시예 5> 화합물 11[(Me2SiH)2NSi2H4N(SiHMe2)2]의 제조
3 L 둥근 바닥 플라스크에서, 헥사클로로다이실란 (hexachlorodisilane) 100g (0.372 mol)을 무수 헥산 500 mL와 혼합하여 제조된 혼합물을 드라이아이스를 사용하여 -40℃로 냉각시켰다. 상기 혼합물에 테트라메틸다이실라잔 (1,1,3,3-tetramethyldisilazane) 49.6g (0.372 mol)과 트리에틸아민 (TEA) 41.40g (0.409 mol)을 헥산 300 mL에 혼합시킨 혼합 용액을 -40℃ 내지 -20℃에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반시켰다. 상기 반응 종료 후, 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (테트라메틸다이실릴)아미노펜타클로로다이실란 [Cl3SiCl2SiN(SiHC2H6)2] 95.25g (수율: 70%)을 얻었다.
3 L 둥근 바닥 플라스크에서, n-부틸리튬 헥산용액 (n-BuLi in n-hex.) 79.77g (2.5 M, 0.286 mol)을 무수 헥산 1,000 mL와 혼합하였다. 테트라메틸다이실라잔 (1,1,3,3-tetramethyldisilazane) 38.13g (0.286 mol)을 -20℃ 근처에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 4 시간 동안 교반시켰다. 형성된 리튬(테트라메틸다이실릴)아민염 용액에 상기 과정에서 회수한 (테트라메틸다이실릴)아미노펜타클로로다이실란 [Cl3SiCl2SiN(SiHC2H6)2] 95.25g (0.260mol)을 -40℃ 내지 -20℃에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반시켰다. 반응 종료 후, 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 1.2-비스-(테트라메틸다이실릴)아미노테트라클로로다이실란 [(SiHMe2)2NSi2Cl4N(SiHMe2)2] 85.28g (수율: 71%)을 얻었다.
1 L 둥근 바닥 플라스크에서, 리튬알루미늄하이드라이드 (LiAlH4) 11.19g (0.295 mol), 테트라하이드로퓨란 350 mL 및 무수 헥산 250 mL를 혼합하였다. 상기 과정에서 회수한 1,2-비스-(테트라메틸다이실릴)아미노테트라클로로다이실란 [(SiHMe2)2NSi2Cl4N(SiHMe2)2] 85.28g (0.184 mol)을 헥산 100 mL에 혼합시킨 혼합 용액을 -20℃ 내지 -10℃에서 10 분 내지 20 분 동안 첨가한 후 교반하면서 실온까지 서서히 올린 뒤, 40℃ 내지 50℃로 가열하여 4 시간 동안 반응시킨 다음 12 시간 동안 상온에서 반응시켰다. 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 1,2-비스-(테트라메틸다이실릴)아미노다이실란 [(SiHMe2)2NSi2H4N(SiHMe2)2] 42g (수율: 70%)을 얻었다.
b.p: 65℃ 및 0.38 torr (254.1℃ 및 760 mmHg)
1H-NMR(C6D6): δ 0.235, 0.244 (N-Si-C H 3, d, 12H), δ 4.791 (N-Si- H , m, 2H), δ 4.947 (Si-Si- H 2, s, 4H)
<실시예 6> 화합물 13[iPr2NSi2H4N(iPr)(SiMe3)]의 제조
1 L 둥근 바닥 플라스크에서, n-부틸리튬 헥산용액 (n-BuLi in n-hex.) 44.7g (2.5 M, 0.165 mol)을 무수 헥산 500 mL와 혼합하였다. 다이아이소프로필아민 (diisopropylamine) 16.7g (0.165 mol)을 -20℃ 근처에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 4 시간 동안 교반시켰다. 생성된 리튬(다이-iso-프로필)아민염 용액에 상기 실시예 4와 같은 방법으로 제조한 (iso-프로필)(트리메틸실릴)아미노펜타클로로다이실란 [Cl5Si2N(iPr)(SiMe3)] 50g (0.137 mol)을 -40℃ 내지 -20℃에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반시켰다. 상기 반응 종료 후, 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 1-(다이-iso-프로필아미노)-2-(iso-프로필)(트리메틸실릴)아미노테트라클로로다이실란 [(iPr)2NSi2Cl4N(iPr)(SiMe3)] 52g (수율: 88%)을 얻었다.
1 L 둥근 바닥 플라스크에서, 리튬알루미늄하이드라이드 (LiAlH4) 6.91g (0.182 mol), 테트라하이드로퓨란 250 mL 및 무수 헥산 150 mL 혼합하였다. 상기 과정에서 회수한 1-(다이-iso-프로필아미노)-2-(iso-프로필)(트리메틸실릴)아미노테트라클로로다이실란 [(iPr)2NSi2Cl4N(iPr)(SiMe3)] 52g (0.121 mol)을 헥산 100 mL에 혼합시킨 혼합 용액을 -20℃ 내지 -10℃에서 10 분 내지 20 분 동안 첨가한 후 교반하면서 실온까지 서서히 올린 뒤, 40℃ 내지 50℃로 가열하여 4 시간 동안 반응시킨 다음 12 시간 동안 상온에서 반응시켰다. 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (iso-프로필)(트리메틸실릴)아미노(다이-iso-프로필아미노)다이실란 [(iPr)2NSi2H4N(iPr)(SiMe3)] 21g (수율: 64%)을 얻었다.
b.p: 58℃ 및 0.4 torr (242.9℃ 및 760 mmHg)
1H-NMR(C6D6) : δ 0.193 (N-Si-C H 3, s, 9H), δ 1.087, 1.070 (N-CH-C H 3 , d, 12H), δ 1.171, 1.155 (N-CH-C H 3 , d, 6H), δ 3.018 (N-C H -CH3, m, 2H), δ 3.181 (N-C H -CH3, m,1H), δ 4.871 (Si-Si- H 2, t, 2H), δ 4.882 (Si-Si- H 2, t, 2H)
<실시예 7> 화합물 14[secBu2NSi2 H4N(iPr)(SiMe3)]의 제조
1 L 둥근 바닥 플라스크에서, 다이-sec-부틸아민((s-Bu)2NH) 26.65g (0.206 mol)과 트리에틸아민 (TEA) 20.87g (0.206 mol)을 헥산 500 mL 혼합 용액에 상기 실시예 4과 같은 방법으로 제조한 (이소프로필)(트리메틸실릴)아미노 펜타클로로다이실란 [Cl5Si2N(iPr)(SiMe3)] 50g (0.137 mol)을 -30℃ 내지 -20℃에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반시켰다. 상기 반응 종료 후, 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 1-(다이-sec-부틸)아미노-2-(iso-프로필)(트리메틸실릴)아미노테트라클로로다이실란 [(secBu)2NSi2Cl4N(iPr)(SiMe3)] 40.9g (수율: 65%)을 수득하였다.
1 L 둥근 바닥 플라스크에서, 리튬알루미늄하이드라이드 (LiAlH4) 5.1g (0.134 mol), 테트라하이드로퓨란 250 mL 및 무수 헥산 150 mL를 혼합하였다. 상기에서 회수한 1-(다이-sec-부틸)아미노-2-(iso-프로필)(트리메틸실릴)아미노테트라클로로다이실란 40.9g (0.0809 mol)을 헥산 100 mL에 혼합시킨 혼합 용액을 -20℃ 내지 -10℃에서 10 분 내지 20 분 동안 첨가한 후 교반하면서 실온까지 서서히 올린 뒤, 40℃ 내지 50℃로 가열하여 4 시간 동안 반응시킨 다음 12 시간 동안 상온에서 반응시켰다. 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 1-(다이-sec-부틸)아미노-2-(이소프로필)(트리메틸실릴)아미노다이실란 [(secBu)2NSi2 H4N(iPr)(SiMe3)] 22g (수율: 77%)을 얻었다.
b.p: 63℃ 및 0.3 torr (255.8℃ 및 760 mmHg)
1H-NMR(C6D6) : δ 0.200 (N-Si-C H 3, s, 9H), δ 0.882(N-CH-CH2-C H 3, t, 6H), δ 1.072, 1.090 (sN-CH-C H 3, d, 6H), δ 1.159, 1.175 (N-CH-C H 3, d, 6H), δ 1.329 (N-CH-CH 2-CH3, m, 2H), δ 1.508 (N-CH-CH 2-CH3, m, 2H), δ 2.663 (sN-CH-CH3, m, 2H), δ 3.164 (N-CH-CH3, q, 61H), δ 4.887 (Si-Si- H 2, t, 2H), δ 4.899 (Si-Si- H 2, t, 2H)
<실시예 8> 화합물 27[H3SiN(iPr)(SiMe3)]의 제조
2 L 둥근 바닥 플라스크에서, n-부틸리튬 헥산 용액 (n-BuLi in n-hex.) 303.3g (2.5 M, 1.089 mol)을 무수 헥산 500 mL와 혼합하였다. (iso-프로필)(트리메틸실릴)아민 [(iPr)(SiMe3)NH] 143g (1.089 mol)을 -20℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 4 시간 동안 교반시켰다. 상기 용액에 트리클로로실란 (SiCl3H) 122g (0.908 mol)을 -40℃ 내지 -20℃에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17 시간 동안 교반시켰다. 상기 반응 종료 후, 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (iso-프로필)(트리메틸실릴)아미노다이클로로실란 [Cl2SiHN(iPr)(SiMe3)] 142g (수율: 68%)을 수득하였다.
또한, 다른 1 L 둥근 바닥 플라스크에서, 리튬알루미늄하이드라이드 (LiAlH4) 4.9g (0.130 mol), 테트라하이드로퓨란 300 mL 및 무수 헥산 300 mL를 혼합하였다. 상기 혼합 용액에 상기 과정에서 회수한 (iso-프로필)(트리메틸실릴)아미노다이클로로실란 [Cl2SiHN(iPr)(SiMe3)] 50g (0.217 mol)을 상온에서 발열에 주의하며 천천히 첨가한 후 40℃ 내지 50℃로 가열하여 17 시간 동안 교반시켰다. 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (iso-프로필)(트리메틸실릴)아미노실란 [H3SiN(iPr)(SiMe3)] 21g (수율: 60%)을 수득하였다.
b.p: 25℃ 및 10 torr (136.6℃ 및 760 mmHg)
1H-NMR(C6D6): δ 0.105 (N-Si-C H 3, s, 9H), δ 1.083 1.100 (N-CH-C H 3, d, 6H), δ 3.097 (N-C H , m, 1H), δ 4.517 (Si- H , s, 3H)
<실시예 9> 화합물 28[H3SiN(secBu)(SiMe3)]의 제조
상기 실시예 8과 같은 방법으로 n-부틸리튬 헥산용액 (n-BuLi in n-hex.) 108.6g (2.5 M, 0.406 mol)과 (sec-부틸)(트리메틸실릴)아민 [(secBu)(SiMe3)NH] 64.36g (0.443 mol)을 반응시킨 용액에 트리클로로실란 (SiCl3H) 50g (0.369 mol)을 첨가하여 반응시켰다. 상기 반응 종료 후, 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (sec-부틸)(트리메틸실릴)아미노다이클로로실란 [Cl2SiHN(secBu)(SiMe3)] 43g (수율: 47.7%)을 수득하였다.
상기 실시예 8과 같은 방법으로 리튬알루미늄하이드라이드 (LiAlH4) 4.02g (0.105 mol)과 상기 과정에서 회수한 (sec-부틸)(트리메틸실릴)아미노다이클로로실란 [Cl2SiHN(secBu)(SiMe3)] 43g (0.176 mol)을 반응시켰다. 상기 반응에서 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 무색의 액체 화합물인 (sec-부틸)(트리메틸실릴)아미노실란 [H3Si N(secBu)(SiMe3)] 18g (수율: 58%)을 수득하였다.
b.p: 34℃ 및 10 torr (147.7℃ 및 760 mmHg)
1H-NMR(C6D6): δ 0.115 (N-Si-C H 3, s, 9H), δ 0.795 (N-CH-CH2-C H 3, t, 3H), δ 1.068 1.084 (N-CH-C H 3, d, 3H), δ 1.340 (N-CH-C H 2, m, 1H), δ 1.507 (N-CH-C H 2, m, 1H), δ 2.762 (N-C H , m, 1H), δ 4.490 (Si- H , s, 3H)
<실험예 1> 실리콘 전구체 화합물들의 구조 분석
상기 실시예들 중에서 실시예 1, 3, 6, 및 8에서 각각 제조된 실리콘 전구체 화합물의 구조를 분석하기 위하여 1H-NMR 분석을 실시하고 (도 1), 실시예 8(화합물 13)은 추가로 FT-IR 분석을 실시하였다 (도 2).
도 1에 나타난 바와 같이, 실시예 6에서 제조한 실리콘 전구체 화합물(화합물 13)은 1H-NMR 분석 결과 4.8ppm과 4.92ppm에서 Si-H peak가 나타남을 확인할 수 있었으며, 도 2에 나타난 바와 같이, FT-IR 분석 결과, 분자 내에 있는 Si-H의 peak이 강하게 2155 cm-1에서 나타남을 확인할 수 있었다. 상기의 1H-NMR과 FT-IR의 분석 결과로부터 화합물 13임을 확인할 수 있었고, 물질 구조로부터 다양한 온도 범위에서 실리콘-함유 산화 박막 및 질화 박막을 형성할 수 있는 우수한 전구체임을 확인할 수 있었다.
<실험예 2> 실리콘 전구체 화합물들의 열적 특성 분석
상기 실시예들 중에서 실시예 1, 3, 6, 및 8에서 각각 제조한 실리콘 전구체 화합물의 기초 열특성을 분석하기 위하여 TG 분석을 실시하고, 그 결과를 도 3에 나타내었다.
도 3에서 확인할 수 있듯이 실시예 1, 3, 6, 및 8에서 각각 제조한 실리콘 전구체 화합물들은 모두 원자층 증착법에 적용하기에 충분한 휘발성을 나타냄을 보여 주고 있음을 알 수 있다. 또한, 본원의 실리콘 전구체 화합물들은 다양한 휘발성을 나타내고 있어 약 100℃ 내지 약 500℃의 넓은 온도 범위에서 실리콘-함유 산화 박막 및 질화 박막을 형성할 수 있는 우수한 전구체임을 확인할 수 있었다.
<실시예 10> 실리콘 전구체 화합물들의 저온 증착
실시예 1, 3, 6, 및 8의 방법에 의해 제조된 실리콘 전구체 화합물들을 사용하여 플라즈마를 이용한 원자 증착법 (PEALD - Plasma Enhanced Atomic Layer Deposition) 공정을 진행하였다. 반응 가스로는 산소원인 O2 에 200 W의 RF 전력을 인가하여 O2 플라즈마를 사용하였다. 우선, 황산(H2SO4)과 과산화수소수(H2O2)를 4:1로 혼합한 피라나(piranha) 용액에 실리콘 웨이퍼를 10 분 동안 담갔다가 꺼낸 후 묽은 HF 수용액에 2 분 동안 담가 순수한 실리콘 표면을 형성한 뒤에 플라즈마 원자층 증착법 (PEALD)으로 실리콘 산화물 박막을 제조하였다. 온도에 따른 증착 특성을 측정하기 위하여 ALD 주기를 100 회로 고정하고, 기질의 온도는 비교적 낮은 온도인 150℃부터 300℃까지 50℃ 간격으로 가열하였다. 실리콘 전구체 화합물들은 스테인레스 스틸을 재질로한 용기에 담아 반응기의 공정압력 1 torr에서, 각각 30℃, 60℃, 60℃ 온도에서 용기를 가열하면서 200 sccm의 유속을 갖는 아르곤 (Ar) 가스를 전구체 화합물의 운반가스로 사용하여 기화시켰다. ALD 주기는 각각의 기화된 전구체 공급 3 sec, 전구체 퍼지 10 sec, O2 플라즈마 노출시간 10 sec, O2 플라즈마 퍼지 10 sec 로 하였다. 상기 증착 결과는 도 4에 나타내었다.
도 4에서 확인할 수 있듯이, 실시예 3 및 6의 방법에 의해 제조된 실리콘 전구체 화합물(화합물 9 및 13)은 기존에 알려진 다이이소프로필아미노실란 (DIPAS, H3SiNiPr2)이나 비스다이에틸아미노실란 (BDEAS, H2Si(NEt2)2) 대비 높은 증착률을 나타내었다. 실릴아민과 알킬아민을 모두 포함한 실시예 3 및 6의 화합물 9 및 13의 경우, 기존에 알려진 DIPAS, BDEAS 대비 높은 증착률을 갖는 것으로 보아, 알킬아민과 실릴아민을 모두 포함할 경우, 높은 증착률을 갖는데 유리하다는 것을 확인 할 수 있었다. 또한, 실릴아민 리간드에 2 개의 Si를 함유한 실시예 3의 화합물 9가 실릴아민 리간드에 1 개의 Si를 함유한 실시예 6의 화합물 13보다 높은 증착률을 갖는 것으로 보아, 더 많은 Si를 함유하고 있는 실릴아민을 리간드로 갖는 실리콘 화합물이 높은 증착률을 갖는데 유리하다는 것을 확인할 수 있었다. 또한 실시예 3에 의해 제조한 실리콘 화합물 9가 높은 증착률을 갖는 것으로 보아, 동일한 Si 개수를 가진 실릴아민 리간드를 포함한 경우 모노실란 계열보다 다이실란 계열의 전구체가 더 높은 증착률을 갖는데 유리함을 확인할 수 있다. 상기와 같은 다이실란 계열의 실리콘 화합물들은 기존에 알려진 DIPAS나 BDEAS에 비해 월등히 높은 증착속도를 나타냄을 확인할 수 있었으며, 특히 실시예 3의 전구체 화합물 9는 2 배 이상 높은 증착률을 나타냄을 확인할 수 있었다. 또한, 낮은 온도인 150℃ 내지 300℃ 구간에서 높은 증착 속도를 나타낸다는 것은 반도체 이외의 다른 분야, 특히 디스플레이 분야에서도 폭 넓게 적용될 수 있는 훌륭한 전구체임을 확인할 수 있었다.
<실시예 11> 실리콘 전구체 화합물들의 온도에 따른 증착
실시예 3, 6, 및 8의 방법에 의해 각각 제조된 실리콘 전구체 화합물 9, 13, 및 27들을 사용하여 플라즈마를 이용한 원자 증착법 (PEALD - Plasma Enhanced Atomic Layer Deposition) 공정을 진행하였다. 우선, 황산 (H2SO4)과 과산화수소수 (H2O2)를 4:1로 혼합한 피라나 (piranha) 용액에 실리콘 웨이퍼를 10 분 동안 담갔다가 꺼낸 후 묽은 HF 수용액에 2 분 동안 담가 순수한 실리콘 표면을 형성한 뒤에 플라즈마 원자층 증착법 (PEALD)으로 실리콘 산화물 박막을 제조하였다. 온도에 따른 증착 특성을 측정하기 위하여 ALD 주기를 100 회로 고정하고, 150℃부터 500℃까지 50℃ 간격으로 온도에 따른 증착률 (growth rate) 결과를 도 5에 나타내었다.
도 5에서 확인할 수 있듯이, 실시예 6에 의해서 제조된 다이실란 전구체인 화합물 13은 기존에 알려진 DIPAS에 비해 월등히 높은 증착 속도를 나타내었다. 특히, 실시예 3의 화합물 9는 150℃에서 3.74 Å/cy를 500℃에서 1.79 Å/cy의 높은 증착속도를 나타냄을 확인할 수 있었으며, 이는 단일 전구체로서 약 100℃ 내지 약 500℃의 온도 대역에서도 실리콘-함유 산화 박막을 증착할 수 있다고 판단되며, 이는 반도체 이외의 디스플레이 등 다양한 분야에서 사용될 수 있는 우수한 전구체라는 것을 확인할 수 있었다.
<실시예 12> 실리콘 전구체 화합물들의 반응 가스의 종류에 따른 증착
실시예 3, 6, 및 8의 방법에 의해 각각 제조된 실리콘 전구체 화합물 9, 13 및 27을 사용하여 플라즈마를 이용한 원자 증착법 (PEALD - Plasma Enhanced Atomic Layer Deposition) 공정을 진행하였다. 반응 가스로는 질소원인 N2 또는 NH3 에 500 W의 RF 전력을 인가하여 N2 또는 NH3 플라즈마를 사용하였다. 우선, 황산 (H2SO4)과 과산화수소수 (H2O2)를 4:1로 혼합한 피라나 (piranha) 용액에 실리콘 웨이퍼를 10 분 동안 담갔다가 꺼낸 후 묽은 HF 수용액에 2 분 동안 담가 순수한 실리콘 표면을 형성한 뒤에 원자층 증착법 (ALD)으로 실리콘 질화물 박막을 제조하였다. 전구체의 질화 실리콘 박막 특성을 측정하기 위하여 ALD 주기를 300 회로 고정하고, 기질의 온도는 300℃로 가열하였다. 전구체들은 스테인레스 스틸을 재질로 한 용기에 담아 1 torr의 압력 및 30℃, 60℃, 60℃ 온도에서 용기를 가열하면서 200 sccm의 유속을 갖는 아르곤(Ar) 가스를 전구체 화합물의 운반가스로 사용하여 기화시켰다. ALD 주기는 각각의 기화된 전구체 공급 3 sec, 전구체 퍼지 5 sec, N2 or NH3 플라즈마 노출시간 12 sec, N2 or NH3 플라즈마 퍼지 5 sec로 하였다. N2 플라즈마 또는 NH3 플라즈마를 각각 노출시켜 비교 실험하였고, 그 결과는 도 6에 나타내었다.
도 6에서 확인할 수 있듯이, 300℃에서 사용된 질소원에 따라서 질화 실리콘 박막의 굴절률(Reflective Index) 값이 다르게 나타났다. 세 가지 실리콘 전구체 화합물 모두 N2 플라즈마를 질소원으로 사용한 박막은 굴절률이 1.6 이상의 값 (1.6334, 1.6000, 및 1.7116)을 나타내는 반면, NH3 플라즈마를 질소원으로 사용한 박막의 굴절률은 1.6 이하의 값 (1.5020, 1.5920, 및 1.4808)을 나타내었다. 상기의 실험을 통해 막내 H의 존재 여부에 따라 굴절률이 값이 달라지는 것을 확인할 수 있었으며, NH3에서 기인되거나 전구체에 존재하는 H의 양에 따라 굴절률이 달라지는 것을 확인할 수 있었다. 우수한 실리콘-함유 질화 박막을 형성하는 조건은 H가 없는 N2 플라즈마를 사용하는 것이 NH3을 사용하는 것보다 좋다는 것을 확인할 수 있었다.
<실시예 13> 실리콘 전구체 화합물의 온도에 따른 질화 실리콘 박막 증착
실시예 1에 의해 제조된 실리콘 전구체 화합물 3을 사용하여 플라즈마를 이용한 원자 증착법 (PEALD - Plasma Enhanced Atomic Layer Deposition) 공정을 진행하였다. 반응 가스로는 질소원인 N2에 500 W의 RF 전력을 인가하여 N2 플라즈마를 사용하였다. 우선, 황산 (H2SO4)과 과산화수소수 (H2O2)를 4:1로 혼합한 피라나 (piranha) 용액에 실리콘 웨이퍼를 10 분 동안 담갔다가 꺼낸 후 묽은 HF 수용액에 2 분 동안 담가 순수한 실리콘 표면을 형성한 뒤에 원자층 증착법 (ALD)으로 실리콘 질화물 박막을 제조하였다. 전구체의 질화 실리콘 박막 특성을 측정하기 위하여 ALD 주기를 300 회로 고정하고, 기질의 온도는 250℃에서 350℃까지 50℃씩 증가하여 가열하였다. 전구체들은 스테인레스 스틸을 재질로 한 용기에 담아 1 torr, 실온에서 200 sccm의 유속을 갖는 아르곤 (Ar) 가스를 전구체화합물의 운반가스로 사용하여 기화시켰다. ALD 주기는 각각의 기화된 전구체 공급 2 sec, 전구체 퍼지 5 sec, N2 플라즈마 노출시간 12 sec, N2 플라즈마 퍼지 5 sec로 하였다. N2 플라즈마 노출시켜 질화 실리콘 박막을 증착하였고 증착률(growth per cycle) 및 굴절률의 결과를 도 7에 나타내었다.
도 7에서 확인할 수 있듯이, 온도가 증가함에 따라서 질화 실리콘 박막의 증착률이 증가하는 경향을 확인하였다. 굴절률은 각 온도에 따라 1.8201, 1.8062, 및 1.8020으로 모두 1.8 이상의 값을 나타냈다. 1.8 이상의 굴절율을 나타낸다는 것은, 반도체 이외의 디스플레이 등 다양한 분야에서 사용될 수 있는 우수한 전구체라는 것을 확인할 수 있었다.
<실시예 14> 실리콘 전구체 화합물의 증착율 및 균일도 비교
실시예 3의 방법에 의해 제조된 실리콘 전구체 화합물 9를 사용하여 플라즈마를 이용한 원자 증착법 (PEALD - Plasma Enhanced Atomic Layer Deposition)공정을 진행하였다. 반응 가스로는 산소원인 O2에 500 W의 RF 전력을 인가하여 O2 플라즈마를 사용하였다. 우선, 황산 (H2SO4)과 과산화수소수 (H2O2)를 4:1로 혼합한 피라나 (piranha) 용액에 실리콘 웨이퍼를 10 분 동안 담갔다가 꺼낸 후 묽은 HF 수용액에 2 분 동안 담가 순수한 실리콘 표면을 형성한 뒤에 플라즈마 원자층 증착법 (PEALD)으로 실리콘 산화물 박막을 제조하였다. 각 전구체에 따른 실리콘 산화 막 특성을 측정하기 위하여 ALD 주기를 400 회로 고정하고, 기질의 온도는 125℃로 가열하였다. 실리콘 전구체 화합물 9는 스테인레스 스틸을 재질로 한 용기에 담아 반응기의 공정압력 1 torr, 60℃ 온도에서 용기를 가열하면서 500 sccm의 유속을 갖는 아르곤 (Ar) 가스를 전구체 화합물의 운반가스로 사용하여 기화시켰다. ALD 주기는 각각의 기화된 전구체 공급 1 sec, 전구체 퍼지 1 sec, O2 플라즈마 노출시간 2 sec, O2 플라즈마 퍼지 1 sec 로 하였다. 증착 결과는 도 8에 나타내었다.
도 8에서 확인할 수 있듯이, 실시예 3에 의해서 제조한 실리콘 전구체 화합물 9의 증착 속도가 기존에 알려진 DIPAS 또는 BDMAS와 비교하여 월등히 높은 것을 알 수 있으며, 또한, 6인치 기판에 증착시킨 실시예 3의 전구체 화합물 9의 실리콘 산화막이 균일도 측면에서도 월등히 낮게 나타났으므로, 가장 균일하게 증착 된 것을 확인할 수 있었고, 이는 반도체 이외의 디스플레이 등 다양한 분야에서 사용될 수 있는 우수한 전구체라는 것을 확인할 수 있었다.
<실시예 15> 실리콘 전구체 화합물들의 패턴 기판에 대한 S/C 특성
실시예 3의 방법에 의해 제조된 실리콘 전구체 화합물 9를 사용하여 플라즈마를 이용한 원자 증착법 (PEALD - Plasma Enhanced Atomic Layer Deposition) 공정을 진행하였다. 반응 가스로는 산소원인 O2에 500 W의 RF 전력을 인가하여 O2 플라즈마를 사용하였다. 온도에 따른 좁은 홈의 기판의 증착 특성을 측정하기 위하여 ALD 주기를 400 회로 고정하고, 기질의 온도는 125℃ 및 400℃로 가열하였다. 실리콘 전구체 화합물은 스테인레스 스틸을 재질로 한 용기에 담아 반응기의 공정압력 1 torr, 60℃ 온도에서 용기를 가열하면서 200 sccm의 유속을 갖는 아르곤(Ar) 가스를 전구체화합물의 운반가스로 사용하여 기화시켰다. ALD 주기는 각각의 기화된 전구체 공급 1 sec, 전구체 퍼지 1 sec, O2 플라즈마 노출시간 2 sec, O2 플라즈마퍼지 1 sec로 하였다. 증착 결과는 도 9 및 10에 나타내었다.
도 9 및 도 10에서 사용한 기판의 종횡비는 10:1의 미세한 작은 홈이 있는 기판을 사용하였고, 막의 단면을 투과전자현미경 (TEM)으로 관찰 한 결과이다. 도 4 및 5에서 측정한 실시예 3에 의해서 제조한 실리콘 전구체 화합물 9의 증착률이 작은 홈이 있는 기판에서도 비교적 일정하게 유지되는 것을 도 9 및 10에서 확인 하였다. 125℃ 및 400℃ 두 온도 모두 500 W의 비교적 높은 RF 전력을 인가하였고, ALD 주기 또한 5 초 이내의 조건임에도 불구하고 홈의 상부 측 옆면과 홈의 가장 깊은 아래 부분이 동일한 증착율을 갖는 100%의 단차피복성(Step Coverage)을 확인할 수 있었으며, 반도체 이외의 디스플레이 등 다양한 분야에서 빠른 속도로 미세화가 진행되는 반도체 시장에서 사용할 수 있는 우수한 전구체라 할 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 하기 화학식 1 또는 하기 화학식 2로서 표시되는, 실리콘 전구체 화합물:
    [화학식 1]
    Figure PCTKR2019015676-appb-I000021
    ;
    [화학식 2]
    Figure PCTKR2019015676-appb-I000022
    ;
    상기 화학식 1 및 상기 화학식 2에서,
    R1은 수소 또는 -NRaRb이고,
    Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
    R2는 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이며, 단, R1이 수소인 경우, R2는 선형 또는 분지형의 C1-C5 알킬기이고,
    R3 내지 R5은, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니고,
    R6은 선형 또는 분지형의 C1-C5 알킬기이고,
    R7 내지 R9은, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아님.
  2. 제 1 항에 있어서,
    상기 화학식 1에서,
    R1은 -NRaRb이며, Ra 및 Rb는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 다이메틸실릴기, 또는 트리메틸실릴기이거나; 또는 R1은 치환 또는 비치환된 C4-C10 고리형 아민기이고,
    R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 트리메틸실릴기, 또는 다이메틸실릴기이고,
    -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기인, 실리콘 전구체 화합물.
  3. 제 1 항에 있어서,
    상기 화학식 1에서,
    R1은 수소이고,
    R2는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 또는 tert-부틸기이고,
    -SiR3R4R5는 다이메틸실릴기 또는 트리메틸실릴기인, 실리콘 전구체 화합물.
  4. 제 1 항에 있어서,
    상기 화학식 2에서,
    R6는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 또는 tert-부틸기이고,
    -SiR7R8R9는 다이메틸실릴기 또는 트리메틸실릴기인, 실리콘 전구체 화합물.
  5. 제 1 항에 있어서,
    상기 실리콘 전구체 화합물은 iPr2NSi2H4N(SiHMe2)2, secBu2NSi2H4N(SiHMe2)2, iPr2NSi2H4N(iPr)(SiMe3), secBu2NSi2H4N(iPr)(SiMe3), (Me2SiH)2NSi2H4N(SiHMe2)2, H5Si2N(iPr)(SiMe3), H5Si2N(secBu)(SiMe3), H3SiN(iPr)(SiMe3), 또는 H3SiN(secBu)(SiMe3)인, 실리콘 전구체 화합물.
  6. M-N(R2)-SiR3R4R5을 SiX6와 할라이드-아민 치환 반응시킨 후, 순차적으로 MR1의 금속 아민염을 첨가하여 할라이드-아민 치환 반응시켜 반응 혼합물을 수득하고,
    상기 반응 혼합물에 M'H를 첨가하여 할라이드 수소 치환 반응시켜 하기 화학식 1에 따른 실리콘 전구체 화합물을 수득하는 것
    을 포함하는,
    하기 화학식 1에 따른 실리콘 전구체 화합물의 제조 방법:
    [화학식 1]
    Figure PCTKR2019015676-appb-I000023
    ;
    M-N(R2)-SiR3R4R5, SiX6, MR1, M'H, 및 상기 화학식 1에서,
    M은 알칼리 금속이고,
    R1은 -NRaRb이고,
    Ra 및 Rb는, 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이거나, 또는 Ra 및 Rb는 서로 연결된 치환 또는 비치환된 C4-C10 고리형 알킬기이며, 단, Ra 및 Rb가 동시에 수소는 아니고,
    R2는, 선형 또는 분지형의 C1-C5 알킬기, 트리메틸실릴기, 또는 다이메틸실릴기이고,
    R3 내지 R5은, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니며,
    X는 할로겐 원소이고,
    M'H는 수소화금속 시약임.
  7. M-N(R2)-SiR3R4R5을 SiX6와 할라이드-아민 치환 반응시켜 반응 혼합물을 수득한 후, 상기 반응 혼합물에 M'H를 첨가하여 할라이드-수소 치환 반응시켜 하기 화학식 1에 따른 실리콘 전구체 화합물을 수득하는 것
    을 포함하는, 하기 화학식 1에 따른 실리콘 전구체 화합물의 제조 방법:
    [화학식 1]
    Figure PCTKR2019015676-appb-I000024
    ;
    M-N(R2)-SiR3R4R5, SiX6, M'H, 및 상기 화학식 1에서,
    M은 알칼리 금속이고,
    R1은 수소이고,
    R2는 선형 또는 분지형의 C1-C5 알킬기이며,
    R3 내지 R5은, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R3 내지 R5가 동시에 수소는 아니며,
    X는 할로겐 원소이고,
    M'H는 수소화금속 시약임.
  8. M-N(R6)-SiR7R8R9을 HySiX(4-y)와 할라이드-아민 치환 반응시켜 반응 혼합물을 수득한 후, 상기 반응 혼합물에 M'H를 첨가하여 할라이드-수소 치환 반응시켜 하기 화학식 2에 따른 실리콘 전구체 화합물을 수득하는 것
    을 포함하는, 하기 화학식 2에 따른 실리콘 전구체 화합물의 제조 방법:
    [화학식 2]
    Figure PCTKR2019015676-appb-I000025
    ;
    M-N(R6)-SiR7R8R9, HySiX(4-y), M'H, 및 상기 화학식 2에서,
    M은 알칼리 금속이고,
    R6은 선형 또는 분지형의 C1-C5 알킬기이고,
    R7 내지 R9은, 각각 독립적으로, 수소, 또는 선형 또는 분지형의 C1-C3 알킬기이며, 단, R7 내지 R9 동시에 수소는 아니며,
    X는 할로겐 원소이고,
    M'H는 수소화금속 시약이고,
    y는 0 내지 2의 정수임.
  9. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 실리콘 전구체 화합물을 포함하는, 막 형성용 전구체 조성물.
  10. 제 9 항에 있어서,
    상기 실리콘 전구체 화합물은 iPr2NSi2H4N(SiHMe2)2, secBu2NSi2H4N(SiHMe2)2, iPr2NSi2H4N(iPr)(SiMe3), secBu2NSi2H4N(iPr)(SiMe3), (Me2SiH)2NSi2H4N(SiHMe2)2, H5Si2N(iPr)(SiMe3), H5Si2N(secBu)(SiMe3), H3SiN(iPr)(SiMe3), 및 H3SiN(secBu)(SiMe3)에서 선택되는 하나 이상인 것인, 막 형성용 전구체 조성물.
  11. 제 9 항에 있어서,
    상기 막은 실리콘-함유 산화 막, 실리콘-함유 질화 막, 및 실리콘-함유 탄화 막에서 선택되는 하나 이상인 것인, 막 형성용 전구체 조성물.
  12. 제 9 항에 있어서,
    암모니아, 질소, 히드라진, 및 디메틸 히드라진에서 선택되는 하나 이상의 질소원을 추가 포함하는, 막 형성용 전구체 조성물.
  13. 제 9 항에 있어서,
    수증기, 산소, 및 오존에서 선택되는 하나 이상의 산소원을 추가 포함하는, 막 형성용 전구체 조성물.
  14. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 실리콘 전구체 화합물을 포함하는 막 형성용 전구체 조성물을 이용하여 실리콘-함유 막을 형성하는 것을 포함하는, 실리콘-함유 막 형성 방법.
  15. 제 14 항에 있어서,
    상기 막 형성용 전구체 조성물에 포함되는 실리콘 전구체 화합물은 iPr2NSi2H4N(SiHMe2)2, secBu2NSi2H4N(SiHMe2)2, iPr2NSi2H4N(iPr)(SiMe3), secBu2NSi2H4N(iPr)(SiMe3), (Me2SiH)2NSi2H4N(SiHMe2)2, H5Si2N(iPr)(SiMe3), H5Si2N(secBu)(SiMe3), H3SiN(iPr)(SiMe3), 및 H3SiN(secBu)(SiMe3)에서 선택되는 하나 이상인 것인, 실리콘-함유 막 형성 방법.
  16. 제 14 항에 있어서,
    상기 실리콘-함유 막은 실리콘-함유 산화 막, 실리콘-함유 질화 막, 및 실리콘-함유 탄화 막에서 선택되는 하나 이상인 것인, 실리콘-함유 막 형성 방법.
  17. 제 14 항에 있어서,
    상기 실리콘-함유 막은 화학기상 증착법 또는 원자층 증착법에 의해 증착되는 것인, 실리콘-함유 막 형성 방법.
  18. 제 14 항에 있어서,
    상기 실리콘-함유 막은 100℃ 내지 500℃의 온도 범위에서 형성되는 것인, 실리콘-함유 막 형성 방법.
  19. 제 14 항에 있어서,
    상기 실리콘-함유 막은 1 nm 내지 500 nm의 두께 범위에서 형성되는 것인, 실리콘-함유 막 형성 방법.
  20. 제 14 항에 있어서,
    상기 실리콘-함유 막은 종횡비가 1 내지 50이고, 폭이 10 nm 내지 1 ㎛인 요철을 포함하는 기재 상에 형성되는 것인, 실리콘-함유 막 형성 방법.
PCT/KR2019/015676 2018-11-15 2019-11-15 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법 WO2020101437A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021526577A JP7436054B2 (ja) 2018-11-15 2019-11-15 シリコン前駆体化合物、製造方法、及びこれを利用するシリコン含有膜の形成方法
CN201980078061.0A CN113166178A (zh) 2018-11-15 2019-11-15 硅前体化合物、制备方法及使用其来形成含硅膜的方法
US17/320,326 US11905305B2 (en) 2018-11-15 2021-05-14 Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0140389 2018-11-15
KR20180140389 2018-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/320,326 Continuation US11905305B2 (en) 2018-11-15 2021-05-14 Silicon precursor compound, preparation method therefor, and silicon-containing film formation method using same

Publications (1)

Publication Number Publication Date
WO2020101437A1 true WO2020101437A1 (ko) 2020-05-22

Family

ID=70731204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015676 WO2020101437A1 (ko) 2018-11-15 2019-11-15 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법

Country Status (5)

Country Link
US (1) US11905305B2 (ko)
JP (1) JP7436054B2 (ko)
KR (1) KR102308644B1 (ko)
CN (1) CN113166178A (ko)
WO (1) WO2020101437A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110948A (zh) * 2020-09-29 2020-12-22 合肥安德科铭半导体科技有限公司 一种液态双氨基取代的乙硅烷制备方法及其产物的应用
WO2023114391A1 (en) * 2021-12-17 2023-06-22 Entegris, Inc. Precursors and related methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093227B1 (ko) * 2017-04-20 2020-03-25 (주)디엔에프 다이실릴아민 화합물, 이의 제조방법 및 이를 포함하는 실리콘 함유 박막증착용 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120132403A (ko) * 2011-05-24 2012-12-05 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 오가노아미노실란 전구체 및 이를 제조하고 사용하는 방법
KR20180027714A (ko) * 2016-09-06 2018-03-15 주식회사 레이크머티리얼즈 실리콘 함유 박막증착용 조성물 및 이의 용도
KR20180118064A (ko) * 2017-04-20 2018-10-30 (주)디엔에프 다이실릴아민 화합물을 포함하는 실리콘 함유 박막증착용 조성물 및 이를 이용하는 실리콘 함유 박막의 제조방법
KR20180118062A (ko) * 2017-04-20 2018-10-30 (주)디엔에프 다이실릴아민 화합물, 이의 제조방법 및 이를 포함하는 실리콘 함유 박막증착용 조성물

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875556B2 (en) 2005-05-16 2011-01-25 Air Products And Chemicals, Inc. Precursors for CVD silicon carbo-nitride and silicon nitride films
EP2193541A1 (en) * 2007-09-18 2010-06-09 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming silicon-containing films
US9330899B2 (en) * 2012-11-01 2016-05-03 Asm Ip Holding B.V. Method of depositing thin film
US9796739B2 (en) * 2013-06-26 2017-10-24 Versum Materials Us, Llc AZA-polysilane precursors and methods for depositing films comprising same
US9905415B2 (en) * 2013-10-03 2018-02-27 Versum Materials Us, Llc Methods for depositing silicon nitride films
US20150125628A1 (en) * 2013-11-06 2015-05-07 Asm Ip Holding B.V. Method of depositing thin film
KR102109679B1 (ko) * 2013-11-07 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
KR102300403B1 (ko) * 2014-11-19 2021-09-09 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
WO2017106587A1 (en) * 2015-12-18 2017-06-22 Dow Corning Corporation Tris(disilanyl)amine
KR102458309B1 (ko) * 2015-12-28 2022-10-24 삼성전자주식회사 SiOCN 물질막의 형성 방법 및 반도체 소자의 제조 방법
KR20210098360A (ko) * 2020-01-31 2021-08-10 주식회사 유피케미칼 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120132403A (ko) * 2011-05-24 2012-12-05 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 오가노아미노실란 전구체 및 이를 제조하고 사용하는 방법
KR20180027714A (ko) * 2016-09-06 2018-03-15 주식회사 레이크머티리얼즈 실리콘 함유 박막증착용 조성물 및 이의 용도
KR20180118064A (ko) * 2017-04-20 2018-10-30 (주)디엔에프 다이실릴아민 화합물을 포함하는 실리콘 함유 박막증착용 조성물 및 이를 이용하는 실리콘 함유 박막의 제조방법
KR20180118062A (ko) * 2017-04-20 2018-10-30 (주)디엔에프 다이실릴아민 화합물, 이의 제조방법 및 이를 포함하는 실리콘 함유 박막증착용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STUGER, H.: "Aminochlorodisilanes: Precursors to multifunctionalized disilane derivatives", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 547, 1997, pages 227 - 233, XP005271652, DOI: 10.1016/S0022-328X(97)00304-5 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112110948A (zh) * 2020-09-29 2020-12-22 合肥安德科铭半导体科技有限公司 一种液态双氨基取代的乙硅烷制备方法及其产物的应用
CN112110948B (zh) * 2020-09-29 2023-07-14 合肥安德科铭半导体科技有限公司 一种液态双氨基取代的乙硅烷制备方法及其产物的应用
WO2023114391A1 (en) * 2021-12-17 2023-06-22 Entegris, Inc. Precursors and related methods

Also Published As

Publication number Publication date
KR102308644B1 (ko) 2021-10-05
JP2022507541A (ja) 2022-01-18
KR20200056950A (ko) 2020-05-25
JP7436054B2 (ja) 2024-02-21
US20210269463A1 (en) 2021-09-02
CN113166178A (zh) 2021-07-23
US11905305B2 (en) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2012067439A2 (ko) 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
WO2020101437A1 (ko) 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
WO2019103500A1 (ko) 실리콘 함유 박막 증착용 조성물 및 이를 이용한 실리콘 함유 박막의 제조방법
WO2019156451A1 (ko) 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 형성용 전구체 조성물, 및 이를 이용하는 막의 형성 방법
WO2015190749A1 (en) Novel amino-silyl amine compound and the manufacturing method of dielectric film containing si-n bond by using atomic layer deposition
WO2015105337A1 (en) Novel trisilyl amine derivative, method for preparing the same and silicon-containing thin film using the same
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2018048124A1 (ko) 5족 금속 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2015142053A1 (ko) 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
WO2023200154A1 (ko) 루테늄 전구체 조성물, 이의 제조방법, 및 이를 이용한 루테늄-함유 막의 형성 방법
WO2021153986A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2023003398A1 (ko) 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2021085810A2 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 포함하는 박막증착용 조성물
WO2018182305A1 (en) Silylamine compound, composition for depositing silicon-containing thin film containing the same, and method for manufacturing silicon-containing thin film using the composition
WO2023287192A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물, 및 실리콘-함유 막 형성용 조성물을 이용한 막 형성 방법
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2023121383A1 (ko) 몰리브데늄 전구체 화합물, 이의 제조방법, 및 이를 이용한 몰리브데늄-함유 막의 증착 방법
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2021172867A1 (ko) 알루미늄 전구체 화합물 및 이의 제조 방법, 이를 이용한 알루미늄 함유 막 형성 방법
WO2022019712A1 (ko) 니오븀 전구체 화합물, 이를 포함하는 막 형성용 전구체 조성물, 및 니오븀-함유 막 형성 방법
WO2023113308A1 (ko) 몰리브데넘 화합물, 이의 제조방법 및 이를 포함하는 박막 증착용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885933

Country of ref document: EP

Kind code of ref document: A1