WO2023003398A1 - 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막 - Google Patents

실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막 Download PDF

Info

Publication number
WO2023003398A1
WO2023003398A1 PCT/KR2022/010713 KR2022010713W WO2023003398A1 WO 2023003398 A1 WO2023003398 A1 WO 2023003398A1 KR 2022010713 W KR2022010713 W KR 2022010713W WO 2023003398 A1 WO2023003398 A1 WO 2023003398A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
containing film
film
forming
group
Prior art date
Application number
PCT/KR2022/010713
Other languages
English (en)
French (fr)
Inventor
김병관
김진식
유다솜
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority to CN202280051499.1A priority Critical patent/CN117677729A/zh
Priority to JP2024501184A priority patent/JP2024526692A/ja
Priority to US18/577,875 priority patent/US20240318305A1/en
Publication of WO2023003398A1 publication Critical patent/WO2023003398A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Definitions

  • the present invention relates to a method for forming a silicon-containing film and a silicon-containing film formed thereby, and more particularly, to a silicon-containing film-forming composition comprising a silicon precursor compound having a specific structure at a high temperature of 600 ° C. or higher. - A method for forming a containing film, and a silicon-containing film formed thereby.
  • a silicon-containing film is one of the essential thin films for driving non-semiconductor devices such as logic devices as well as semiconductors such as DRAM, flash memory, resistive memory (ReRAM), or phase change memory (PCRAM).
  • non-semiconductor devices such as logic devices as well as semiconductors such as DRAM, flash memory, resistive memory (ReRAM), or phase change memory (PCRAM).
  • DRAM non-semiconductor devices
  • flash memory flash memory
  • ReRAM resistive memory
  • PCRAM phase change memory
  • a silicon-containing oxide film has a high deposition rate, whereas a silicon-containing nitride film has a slow deposition rate.
  • a silicon-containing film that can be selectively deposited only on a desired location is required there is.
  • a composition for forming a silicon-containing film including a silicon precursor compound usable for atomic layer deposition (ALD) is required.
  • composition for forming a film including a silicon precursor compound suitable for ALD, forming a uniform and dense film, showing resistance to stress, and having self-limiting film growth characteristics even at a high temperature of 600 ° C. or higher, and silicon-containing using the same
  • Patent Document 1 Korean Patent Registration No. 10-0734393
  • An object of the present invention is to provide a method for forming a silicon-containing film at a high temperature of 600° C. or higher using a composition for forming a silicon-containing film containing a silicon precursor compound having a specific structure, and a silicon-containing film formed thereby.
  • Another object of the present invention is to provide a composition for forming a silicon-containing film including a silicon precursor compound having a specific structure.
  • the present invention uses a composition for forming a silicon-containing film containing a silicon precursor compound represented by the following formula (1) on a substrate by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a method for forming a silicon-containing film is provided, wherein:
  • R 11 and R 12 are each independently selected from the group consisting of hydrogen and a linear or branched C 1 -C 4 alkyl group;
  • R 13 to R 17 are each independently selected from the group consisting of hydrogen, a linear or branched C 1 -C 4 alkyl group, and a linear or branched C 2 -C 6 alkenyl group;
  • At least one of R 13 and R 14 is not hydrogen, and at least one of R 15 to R 17 is not hydrogen.
  • the present invention includes a silicon precursor compound represented by Formula 1, and a silicon-containing film is formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD) at a temperature of 600 ° C or higher. It is used for deposition, and the silicon-containing film includes at least one selected from the group consisting of a silicon-containing oxide film and a silicon-containing composite metal oxide film.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the present invention provides a silicon-containing film formed by the method for forming a silicon-containing film.
  • a method for forming a silicon-containing film according to an embodiment of the present invention uses a composition for forming a silicon-containing film including a silicon precursor compound having a specific structure at a high temperature of 600 ° C. or higher and a silicon-containing oxide film and a silicon-containing composite metal.
  • a silicon-containing film containing at least one selected from the group consisting of an oxide film can be efficiently formed, and the thickness and composition of a desired film can be controlled, and excellent coverage and uniform silicon-containing film can be obtained even on a substrate having a complex shape. can form a barrier.
  • the method of forming a silicon-containing film of the present invention can be applied to various fields such as memory devices and logic devices, display devices, and moisture penetration prevention films of organic light emitting diode (OLED) devices, and at high temperature of 600 ° C. or more during film deposition Since a film having a desired thickness can be obtained, it can be used very effectively in electronic devices requiring excellent film properties and coating properties.
  • OLED organic light emitting diode
  • SIMS secondary ion mass spectrometry method
  • FIG. 3 is a transmission electron microscope showing step coverage by depositing a composition for forming a silicon-containing film including the silicon precursor compound of Example 2 and Comparative Example 1 of the present invention at 750° C. on a patterned wafer. (TEM, Transmission Electron Microscope) image.
  • each of the terms “film” or “thin film” means both “film” and “thin film” unless otherwise specified.
  • alkyl or “alkyl group” includes linear or branched alkyl groups and all possible isomers thereof.
  • the alkyl or alkyl group is a methyl group (Me), an ethyl group (Et), a normal propyl group ( n Pr), an isopropyl group ( i Pr), a normal butyl group ( n Bu), an isobutyl group ( i Bu) , tert-butyl group (tert-Bu, t Bu), sec-butyl group ( sec Bu), etc., as well as isomers thereof, etc., but may not be limited thereto.
  • a composition for forming a silicon-containing film including a silicon precursor compound represented by the following formula (1), chemical vapor deposition (CVD) or atomic layer deposition (Atomic Layer Deposition, depositing a silicon-containing film on a substrate by ALD), wherein the silicon-containing film includes at least one selected from the group consisting of a silicon-containing oxide film and a silicon-containing composite metal oxide film, wherein the deposition comprises:
  • a method for forming a silicon-containing film performed at a temperature of 600° C. or higher can be provided:
  • R 11 and R 12 are each independently selected from the group consisting of hydrogen and a linear or branched C 1 -C 4 alkyl group;
  • R 13 to R 17 are each independently selected from the group consisting of hydrogen, a linear or branched C 1 -C 4 alkyl group, and a linear or branched C 2 -C 6 alkenyl group;
  • At least one of R 13 and R 14 is not hydrogen, and at least one of R 15 to R 17 is not hydrogen.
  • a composition for forming a silicon-containing film including a silicon precursor compound having a specific structure represented by Chemical Formula 1 is used at a high temperature of 600 ° C. or more to form a silicon-containing film.
  • a silicon-containing film containing at least one selected from the group consisting of an oxide film and a silicon-containing composite metal oxide film can be efficiently formed, the thickness and composition of a desired film can be controlled, and excellent performance can be achieved even on a substrate having a complex shape.
  • a covering and uniform silicon-containing film can be formed.
  • the method of forming a silicon-containing film of the present invention can be applied to various fields such as memory devices and logic devices, display devices, and moisture penetration prevention films of organic light emitting diode (OLED) devices, and at high temperature of 600 ° C. or more during film deposition It has a technical significance in that a film having a desired thickness can be obtained.
  • OLED organic light emitting diode
  • the silicon-containing film is formed on a substrate (substrate) using a composition for forming a silicon-containing film including a silicon precursor compound represented by Chemical Formula 1. - Depositing the containing film.
  • the substrate may use a silicon semiconductor wafer, a compound semiconductor wafer, or plastic substrates (PI, PET, PES), but may not be limited thereto.
  • a substrate having holes or grooves may be used, and a porous substrate having a large surface area may be used.
  • silicon having a thickness of several nanometers (nm) to several micrometers ( ⁇ m) at a temperature range of 600 ° C or more, specifically, 600 ° C to 850 ° C, even on a substrate with a pattern (groove) on the surface, a porous substrate, or a plastic substrate.
  • the containing film can be formed uniformly, the aspect ratio is 1 or more, for example, about 1 to 50 or more, and the width is 1 ⁇ m or less, for example, the deepest part of a fine pattern (groove) to about 1 ⁇ m to 10 nm or less It has an excellent effect of forming a silicon-containing film with a uniform thickness on the entire surface of the substrate including the surface of the surface and the surface of the fine irregularities (grooves).
  • the silicon-containing layer may be formed on a substrate including one or more irregularities having an aspect ratio of 1 or more and a width of 1 ⁇ m or less.
  • the method of depositing the silicon-containing film may be performed using a method, apparatus, or the like known in the art, and, if necessary, using one or more additional reaction gases together.
  • the deposition method of the silicon-containing film may be performed by CVD, such as metal organic chemical vapor deposition (MOCVD), or ALD.
  • MOCVD metal organic chemical vapor deposition
  • ALD ALD
  • the MOCVD or ALD may be performed using a deposition apparatus, deposition conditions, and a reactive gas known in the art.
  • the composition for forming a silicon-containing film containing the silicon precursor compound is transferred onto the substrate using a carrier gas or a diluent gas to obtain a temperature of 600° C. or more, specifically 600° C. to 600° C.
  • a silicon-containing film can be deposited at a high deposition temperature of 850°C.
  • the deposition temperature in the above range can be applied to memory devices, logic devices, display devices, etc., and since the process temperature is wide, it is highly applicable to various fields.
  • a composition for forming a silicon-containing film containing the compound deposition is easy in the deposition temperature range of the above range.
  • At least one mixed gas selected from the group consisting of argon (Ar), nitrogen (N 2 ), helium (He), and hydrogen (H 2 ) as the transport gas or diluent gas.
  • the method for supplying the silicon precursor compound into the reaction chamber may include a bubbling method in which the composition for forming a silicon-containing film including the silicon precursor compound is forcibly vaporized using a carrier gas or a dilution gas;
  • a liquid supply system liquid delivery system, LDS
  • Gas flow control vapor flow control, VFC
  • at least one method selected from the group consisting of a bypass method of vaporizing by heating may be used.
  • a composition for forming a silicon-containing film including the silicon precursor compound may be supplied into the reaction chamber by using a method of supplying the silicon precursor compound.
  • the supply method includes a bubbling method or a bypass method, and the bubbling method is performed using a carrier gas or a dilution gas at a temperature range of 0.1 torr to 10 torr and room temperature to 150 ° C.
  • the bypass method may be performed using a vapor pressure of 0.1 torr to 1.5 torr at a temperature range of room temperature to 100 °C.
  • supplying the composition for forming a silicon-containing film including the silicon precursor compound into the reaction chamber may be performed using a carrier gas or a diluent gas at a temperature range of 0.1 torr to 10 torr and room temperature to 100°C.
  • composition for forming a silicon-containing film including the silicon precursor compound for example, transporting it with argon (Ar) or nitrogen (N 2 ) gas, using thermal energy or plasma during deposition, or depositing it on the substrate A bias can be applied.
  • Ar argon
  • N 2 nitrogen
  • the method of forming the silicon-containing film in order to deposit one or more types of silicon-containing films selected from the group consisting of a silicon-containing oxide film and a silicon-containing composite metal oxide film, during the deposition, water vapor (H 2 O), Oxygen (O 2 ), Oxygen Plasma (O 2 Plasma), Nitric Oxide (NO, N 2 O), Nitric Oxide Plasma (N 2 O Plasma), Oxygen Nitride (N 2 O 2 ), Hydrogen Peroxide (H 2 O 2 ), and at least one selected from the group consisting of ozone (O 3 ).
  • the at least one silicon-containing film selected from the group consisting of the silicon-containing oxide film and the silicon-containing composite metal oxide film may be, for example, HfSiO x , ZrSiO x , TiSiO x , HfAlO x , ZrAlSiO x , TiAlSiO x , ZrHfSiO x , ZrHfAlSiO x , SiC, SiCO, and may include one or more selected from the group consisting of SiON, but is not limited thereto. In this case, the x may be 1 to 3.
  • At least one type of silicon-containing film selected from the group consisting of a silicon-containing nitride film and a silicon-containing composite nitride film can be formed using the composition for forming a silicon-containing film including the silicon precursor compound represented by Formula 1. there is.
  • ammonia NH 3
  • ammonia plasma NH 3 Plasma
  • hydrazine N 2 H 4
  • nitrogen plasma N 2 Plasma
  • the silicon-containing nitride film or the silicon-containing composite metal nitride film may be, for example, HfSiN x , ZrSiN x , TiSiN x , AlSiN x , HfAlSiN x , ZrAlSiN x , TiAlSiN x , HfZrAlSiN x , HfZrTiSiN x , TiAlSiN x , SiCN, It may include one or more selected from the group consisting of SiOCN and SiBN, but is not limited thereto. In this case, the x may be 1 to 3.
  • a composition for forming a silicon-containing film including the silicon precursor compound represented by Formula 1 will be described in more detail below.
  • the present invention provides a composition for forming a silicon-containing film including the silicon precursor compound represented by Formula 1 above.
  • the composition for forming a silicon-containing oxide film includes a silicon precursor compound represented by Formula 1, and is subjected to chemical vapor deposition (CVD) or atomic layer deposition (ATO) at a temperature of 600° C. or higher.
  • ALD atomic layer deposition
  • the silicon-containing film may include at least one selected from the group consisting of a silicon-containing oxide film and a silicon-containing composite metal oxide film.
  • the composition for forming a silicon-containing film according to an embodiment of the present invention includes the silicon precursor compound represented by Chemical Formula 1, thereby providing excellent coverage and a uniform silicon-containing film even on a substrate having a complex shape, specifically a silicon-containing film.
  • An oxide film can be formed.
  • Formula 1 in particular, in Formula 1, it has a structure in which various types of amines and alkyl groups are bonded to Si, and in particular, in R 13 -Si-R 14 among various types of bonds, at least one of R 13 and R 14 is hydrogen Since it is not, it may be more advantageous to form a stable film at a high temperature of about 600 ° C to 850 ° C.
  • the silicon precursor compound represented by Chemical Formula 1 first, the amine represented by -NR 11 R 12 in the above structure has excellent surface reactivity and is advantageous in forming a silicon-containing oxide film; Second, in the part represented by R 13 -Si-R 14 in the above structure, at least one of R 13 and R 14 is not hydrogen, that is, at least one of R 13 and R 14 is an alkyl group or an alkenyl group, preferably R 13 And at least one of R 14 has an alkyl group, so that a stable film can be formed without the rapid decomposition of the silicon precursor at high temperature due to the thermally stable combination of Si and C, which requires the characteristics of a silicon-containing film at high temperature.
  • 3D NAND may be suitable for flash memory processing;
  • the structure includes three Si elements, and since GPC is significantly greater in SiO 2 ALD than in conventionally known silicon precursor compounds, it is necessary to form a thick SiO 2 film at high temperature for 3D NAND flash memory. may be suitable for the process.
  • R 11 and R 12 are each independently selected from the group consisting of hydrogen and a linear or branched C 1 -C 4 alkyl group
  • R 13 to R 17 are each independently hydrogen
  • It is selected from the group consisting of a linear or branched C 1 -C 4 alkyl group and a linear or branched C 2 -C 6 alkenyl group, provided that at least one of R 13 and R 14 is not hydrogen, and R 15 to At least one of R 17 is not hydrogen.
  • the silicon precursor compound may include one or more selected from the group consisting of compounds represented by Chemical Formulas 1-1 to 1-25:
  • the silicon precursor compound included in the composition for forming a silicon-containing oxide film may be a compound represented by Formula 1-a:
  • R 11 and R 12 are each independently a linear or branched C 1 -C 4 alkyl group
  • R 13 to R 17 are each independently selected from the group consisting of hydrogen, a linear or branched C 1 -C 4 alkyl group, and a linear or branched C 2 -C 6 alkenyl group;
  • At least one of R 11 and R 12 is not a methyl group, at least one of R 13 and R 14 is not hydrogen, and at least one of R 15 to R 17 is not hydrogen.
  • the silicon precursor compound is represented by Formulas 1-2 to 1-5, 1-7, 1-8, 1-10, 1-11, 1-13 to 1-20, and 1-22 to 1-25. It may contain one or more selected from the group consisting of the compounds shown.
  • the silicon precursor compound may include one or more selected from the group consisting of compounds represented by the following formula.
  • film growth (GPC) per ALD gas supply cycle of 1.5 to 3.0 ⁇ / cycle at 600 ° C to 850 ° C can have
  • a film growth per ALD gas supply cycle (GPC) of 1.75 to 2.25 ⁇ /cycle may be achieved.
  • a silicon-containing film using the composition for forming a silicon-containing film according to an embodiment of the present invention, it is possible to control the thickness of the film and the composition having the desired silicon-content, and to form a pattern (groove) on the surface.
  • a high-quality silicon-containing film can be provided because excellent coverage and a uniform film can be formed even on a substrate with a porous substrate, a porous substrate, a plastic substrate, or a substrate having a complex shape with a three-dimensional structure.
  • a silicon-containing film including at least one selected from the group consisting of a silicon-containing oxide film and a silicon-containing composite metal oxide film on a substrate by CVD or ALD using the composition for forming a silicon-containing film
  • At least one selected from the group consisting of a silicon-containing nitride film, a silicon-containing carbide film, and a silicon-containing composite metal film can be efficiently formed.
  • a silicon-containing film having a desired thickness at a high temperature of 600 ° C. or higher a film of a desired thickness can be obtained with a uniform thickness, a film shrinkage rate and an etch rate at a high temperature are lower, and a pure high-quality silicon-containing film with less impurities can be formed.
  • the silicon precursor compound represented by Chemical Formula 1 may be prepared by various methods.
  • an alkyldisilazane metal salt represented by the following Chemical Formula A is mixed with a dihalide silicon precursor compound represented by the following Chemical Formula B and a die represented by the following Chemical Formula C It may include the step of performing a halide-amine substitution reaction with an alkylamine or dialkylamine metal salt:
  • M 3 is an alkali metal, Li or Na
  • R 15 to R 17 are each independently selected from the group consisting of hydrogen, a linear or branched C 1 -C 4 alkyl group, and a linear or branched C 2 -C 6 alkenyl group;
  • R 15 to R 17 is not hydrogen
  • X 3 and X 4 are each independently Cl, Br, or I as a halogen element
  • R 13 and R 14 are each independently selected from the group consisting of hydrogen, a linear or branched C 1 -C 4 alkyl group, and a linear or branched C 2 -C 6 alkenyl group;
  • R 13 and R 14 are not hydrogen
  • R 11 and R 12 are each independently hydrogen, a linear or branched C 1 -C 4 alkyl group,
  • M 4 is selected from the group consisting of hydrogen, Li and Na.
  • the silicon precursor compound (Formula 1) is prepared by adding 0.5 to 2 mol of a dihalide silicon precursor compound (Formula A) to an alkyldisilazane metal salt (Formula A) at a low temperature (about -30 ° C to -5 ° C).
  • a substitution reaction of the primary halide with the amine can be carried out after addition of formula B).
  • 1 to 3 mol of dialkylamine or dialkylamine metal salt (formula C) is added to the product at a low temperature (about -30 ° C to -5 ° C), followed by a substitution reaction of a secondary halide with an amine.
  • the reaction byproducts included in the reaction product are removed in the form of a metal halide salt or a dialkylamine halide salt through a filter, and the remaining product is purified to obtain the silicon precursor compound represented by Chemical Formula 1.
  • Each of the primary and secondary halide-amine substitution reactions may be performed in a solvent at 0 °C to 30 °C, specifically 20 °C to 30 °C, for example, at room temperature (room temperature) for 2 to 30 hours.
  • the solvent may include at least one selected from the group consisting of alkanes having 5 to 8 carbon atoms, toluene, ether, tetrahydrofuran, and mono to tetraethylene glycol dimethyl ether.
  • a composition for forming a silicon-containing film including a silicon precursor compound may be obtained by using the silicon precursor compound.
  • a silicon-containing film formed by the method for forming a silicon-containing film is provided.
  • the silicon-containing film may have a thickness of several nanometers (nm) to several micrometers ( ⁇ m), and may be applied in various ways depending on the application purpose. Specifically, the silicon-containing layer may be formed in a thickness range of 1 nm to 500 nm.
  • the silicon-containing film may be formed on a substrate (substrate).
  • the substrate is as described above.
  • the silicon-containing layer may include at least one selected from the group consisting of a silicon-containing oxide layer and a silicon-containing composite metal oxide layer.
  • the composition for forming a silicon-containing film including the silicon precursor compound represented by Formula 1 the silicon-containing oxide film and the silicon-containing composite metal oxide film containing at least one selected from the group consisting of silicon-
  • the silicon-containing oxide film and the silicon-containing composite metal oxide film containing at least one selected from the group consisting of silicon-
  • at least one selected from the group consisting of a silicon-containing nitride film, a silicon-containing carbide film, and a silicon-containing composite metal film can be efficiently formed.
  • the silicon-containing film has a low shrinkage rate even at a high temperature of 600 ° C. or higher, for example, 600 ° C. to 850 ° C., It is characterized by low etching rate ( ⁇ /s) of the -containing film.
  • the silicon-containing film may have a shrinkage ratio (S 750 ) of 5.0% or less represented by Equation 1 below:
  • A is the initial thickness ( ⁇ ) of the silicon-containing film formed by ALD at 750° C.
  • B is the thickness ( ⁇ ) of the silicon-containing film formed by ALD at 750° C. after dwelling in an argon (Ar) atmosphere at 750° C. for 60 minutes.
  • the silicon-containing film has a shrinkage ratio (S 750 ) of the silicon-containing film represented by Formula 1, for example, 4.8% or less, 4.5% or less, 4.4% or less, 4.0% or less, 3.9% or less, 3.8% or less, 3.5% or less 3.3% or less, 3.2% or less, 3.0% or less, 2.5% or less, 2.0% or less, 1.5% or less, or 1.0% or less.
  • S 750 shrinkage ratio of the silicon-containing film represented by Formula 1, for example, 4.8% or less, 4.5% or less, 4.4% or less, 4.0% or less, 3.9% or less, 3.8% or less, 3.5% or less 3.3% or less, 3.2% or less, 3.0% or less, 2.5% or less, 2.0% or less, 1.5% or less, or 1.0% or less.
  • the silicon-containing film When the silicon-containing film satisfies the shrinkage ratio (S 750 ) of the silicon-containing film in the above range, it may be advantageous to form a uniform and dense silicon-containing film.
  • the thickness of the silicon-containing film before and after exposing the silicon-containing film to an etching solution of 1% dilute hydrofluoric acid can be measured with an ellipsometer.
  • the etching rate ( ⁇ /s) of the silicon-containing film represented by Equation 2 below may be 4.0 ⁇ /s or less:
  • etch thickness variation ( ⁇ E) may be expressed by Equation 2-1 below:
  • E A is the initial thickness ( ⁇ ) of the silicon-containing film formed by ALD at 750° C.
  • E B is the thickness ( ⁇ ) of the silicon-containing film after etching the silicon-containing film formed by ALD at 750° C. in a 1% dilute HF solution for 30 seconds.
  • Equation 2 "s" means second.
  • the silicon-containing film has an etch rate ( ⁇ /s) of the silicon-containing film represented by Equation 2, for example, 3.8 ⁇ /s or less, 3.5 ⁇ /s or less, 3.2 ⁇ /s or less, 3.0 ⁇ /s or less, or 2.8 ⁇ /s or less.
  • ⁇ /s or less 2.5 ⁇ /s or less, 2.45 ⁇ /s or less, 2.4 ⁇ /s or less, 2.2 ⁇ /s or less, 2.1 ⁇ /s or less, 2.0 ⁇ /s or less, 1.5 ⁇ /s or less, 1.0 ⁇ /s or less s or less, 0.5 ⁇ /s or less, 0.1 ⁇ /s or less, 0.05 ⁇ /s or less, or 0.03 ⁇ /s or less.
  • the silicon-containing film has an etch rate ( ⁇ /s) of the silicon-containing film represented by Equation 2 of 3.8 ⁇ /s to 0.5 ⁇ /s, 3.5 ⁇ /s to 0.5 ⁇ /s, and 3.0 ⁇ /s to 1.0 ⁇ /s, 2.5 ⁇ /s to 1.0 ⁇ /s, or 2.1 ⁇ /s to 1.0 ⁇ /s.
  • the silicon-containing layer When the silicon-containing layer satisfies the etching rate ( ⁇ /s) of the silicon-containing layer within the above range, it may be advantageous to form a uniform and dense silicon-containing layer.
  • the silicon-containing layer may have excellent step coverage.
  • the silicon-containing film has a step coverage (% ) is, for example, 80% or more, such as 82% or more, such as 85% or more, such as 90% or more, such as 92% or more, such as 93% or more, such as 95% or more , or, for example, 96% or more.
  • a step coverage is, for example, 80% or more, such as 82% or more, such as 85% or more, such as 90% or more, such as 92% or more, such as 93% or more, such as 95% or more , or, for example, 96% or more.
  • step coverage (%) of the silicon-containing film satisfies the above range, a high step ratio and fine thickness control are easy, which is useful in manufacturing various semiconductor devices such as DRAM and 3D NAND flash memory. can be used effectively.
  • Example 1 Preparation of dimethylamino-(tetramethyldisilyl)amino-dimethyl silane and a composition for forming a silicon-containing film including the same: [ ⁇ (CH 3 ) 2 N ⁇ Si(CH 3 ) 2 ⁇ N(SiHMe 2 ) 2 ⁇ ]
  • n-butyllithium hexane solution in n-hexane, n-BuLi was mixed with about 1,000 mL of anhydrous hexane.
  • about 61.99 g (about 0.465 mol) of tetramethyldisilazane (1, 1, 3, 3-tetramethyldisilazane) was added at around -20 ° C., and then slowly raised to room temperature while stirring, followed by stirring for 4 hours.
  • Example 2 Preparation of ethylmethylamino-(tetramethyldisilyl)amino-dimethylsilane and a composition for forming a silicon-containing film containing the same: [ ⁇ (CH 3 CH 2 )(CH 3 )N ⁇ Si (CH 3 ) 2 ⁇ N(SiHMe 2 ) 2 ⁇ ]
  • Ethylmethylamino-(tetramethyldisilyl)amino About 62.6 g (yield: about 65%) of -dimethylsilane [ ⁇ (CH 3 CH 2 )(CH 3 )N ⁇ Si(CH 3 ) 2 ⁇ N(SiHMe 2 ) 2 ⁇ ] was obtained, which was formed into a film. used in the composition.
  • Example 3 Preparation of ethylmethylamino-(hexamethyldisilyl)amino-dimethylsilane and a composition for forming a silicon-containing film containing the same: [ ⁇ (CH 3 CH 2 )(CH 3 )N ⁇ Si (CH 3 ) 2 ⁇ N(SiMe 3 ) 2 ⁇ ]
  • n-butyllithium hexane solution in n-hexane, n-BuLi was mixed with 500 mL of anhydrous hexane.
  • about 75.03 g (about 0.465 mol) of hexamethyldisilazane (1, 1, 1, 3, 3, 3-hexamethyldisilazane) was added at around -20 ° C, and then slowly raised to room temperature while stirring, followed by stirring for 4 hours. .
  • n-butyllithium hexane solution in n-hexane, n-BuLi was mixed with about 500 mL of anhydrous hexane.
  • diethylamine was added at about -20° C., and then slowly raised to room temperature while stirring, followed by stirring for about 4 hours.
  • the formed lithium (diethylamine) salt solution was added to the above 3L round-bottom flask at around -20 ° C, and then slowly raised to room temperature while stirring, followed by stirring for about 17 hours.
  • Tris(dimethylamido)silane (3DMAS or TDMAS) [SiH(NMe 2 ) 3 ] was used as a product of UP Chemical Co., Ltd.
  • a silicon-containing film was formed by ALD using compositions for forming a silicon-containing film including the silicon precursor compounds of Examples and Comparative Examples, and ozone (O 3 ) as a reaction gas.
  • the silicon substrate was immersed in a Piranha solution containing a mixture of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) in a ratio of 4:1 for about 10 minutes, then taken out and then soaked in a dilute HF aqueous solution for 2 minutes.
  • a silicon-containing oxide film was formed by ALD on a silicon substrate having a pure surface by soaking.
  • a composition for forming a silicon-containing film containing a silicon precursor compound was placed in a container made of stainless steel, and an argon (Ar) carrier gas was flowed at a flow rate of about 200 sccm under a process pressure of 4 torr in a reactor at room temperature to form the film.
  • the forming composition was supplied to the reaction chamber in a gaseous state.
  • the film-forming composition is supplied in a gaseous state for about 3 seconds ⁇ argon (Ar) gas is supplied for about 10 seconds, and the film-forming composition remaining in the reactor (gas ) removal ⁇ supplying ozone (O 3 ) as a reaction gas for about 5 seconds ⁇ supplying argon (Ar) gas for about 10 seconds to remove ozone (O 3 ) gas remaining in the reactor. was repeated 100 times to form a silicon-containing oxide film.
  • each oxide film formed using the composition for forming a silicon-containing film prepared by the methods of Examples and Comparative Examples was measured using an ellipsometer (J.A. Woollam, M-2000).
  • the film growth (GPC) per ALD gas supply cycle was measured by dividing the measured thickness by the number of gas supply cycles (100 times).
  • the film growth (GPC) per ALD gas supply cycle increased from about 700 ° C., whereas in Examples 1, 2, and 3, In the case of using the composition for forming a silicon-containing film including the silicon compounds of 4 and 5, it was confirmed that film growth (GPC) per ALD gas supply cycle was constant even at a high temperature of 800 °C or 850 °C.
  • composition for forming a silicon-containing film including the silicone compound of the embodiment of the present invention has a constant GPC at a high temperature of 600 ° C to 850 ° C and exhibits self-limiting film growth characteristics, a high-temperature ALD process It can be confirmed that it is a suitable precursor for
  • composition for forming a silicon-containing film including the silicon compound of Examples 1, 2, 3, 4, and 5 and Comparative Example 1, the same thickness was formed by adjusting the ALD gas supply cycle to a flat wafer at 750 ° C.
  • the physical and chemical properties of the SiO 2 film were analyzed.
  • shrinkage and etch rate (WER, wet etch rate, ⁇ /s) of the SiO 2 film were measured.
  • the thickness of the SiO 2 film was measured using an ellipsometer (JA Woollam, M-2000).
  • A is the initial thickness ( ⁇ ) of the silicon-containing film formed by ALD at 750° C.
  • B is the thickness ( ⁇ ) of the silicon-containing film formed by ALD at 750° C. after dwelling in an argon (Ar) atmosphere at 750° C. for 60 minutes.
  • the shrinkage rates of the silicon-containing oxide film (SiO 2 film) deposited using the compositions for forming a silicon-containing film of Examples 1, 2, 3, 4 and 5 were 3.87% and 3.39%, respectively. , 2.71%, 4.40% and 3.98%, whereas the shrinkage of the silicon-containing oxide film deposited using the composition for forming a silicon-containing film of Comparative Example 1 was 6.40%.
  • the silicon-containing oxide film deposited using the composition for forming a silicon-containing film of Examples 1, 2, 3, 4, and 5 was deposited using the composition for forming a silicon-containing film of Comparative Example 1.
  • the film shrinkage at high temperature was lower than that of the containing oxide film.
  • a silicon-containing film formed to an initial thickness of about 500 ⁇ as shown in Table 4 below by adjusting the ALD gas supply cycle to each flat wafer at 750 ° C. was etched in a 1% dilute HF solution for 30 seconds, The thickness change was measured to calculate the etch rate (WER, wet etch rate, ⁇ /s) of Equation 2 below.
  • etch thickness variation ( ⁇ E) may be expressed by Equation 2-1 below:
  • E A is the initial thickness ( ⁇ ) of the silicon-containing film formed by ALD at 750° C.
  • E B is the thickness ( ⁇ ) of the silicon-containing film after etching the silicon-containing film formed by ALD at 750° C. in a 1% dilute HF solution for 30 seconds.
  • Equation 2 "s" means second.
  • the etching rates of the silicon-containing oxide film (SiO 2 film) deposited using the compositions for forming a silicon-containing film of Examples 2, 3, and 4 were 2.45 ⁇ /s and 2.45 ⁇ /s, respectively. , and 2.07 ⁇ / s, whereas the etching rate of the silicon-containing oxide film deposited using the composition for forming a silicon-containing film of Comparative Example 1 was 2.90 ⁇ / s, forming the silicon-containing film of Examples 2, 3 and 4 It was confirmed that the etching rate ( ⁇ /s) of the silicon-containing oxide film formed using the composition was reduced.
  • SIMS secondary ion mass spectrometry
  • the silicon-containing oxide film deposited at about 100 ⁇ was subjected to SIMS
  • the carbon (C) component was analyzed.
  • the content of the carbon component was about 80% in Example 1, about 81% in Example 2, about 76% in Example 3, about 81% in Example 4, and about 83% in Example 5, compared to Comparative Example 1. % decrease, and it was confirmed that a pure silicon-containing oxide film having a carbon component of less than 100 Counts was formed.
  • Figure 3 is a transmission electron microscope (TEM, TEM, Transmission Electron Microscope) image.
  • Table 4 shows the thickness of the silicon-containing oxide film measured at the portion shown in FIG. 3 .
  • the composition for forming a silicon-containing film of Example 2 and Comparative Example 1 was deposited on a stepped substrate and then analyzed using TEM.
  • the composition for forming a silicon-containing film of Example 2 The step coverage (%) of the silicon-containing oxide film deposited using the composition was 93.4%, whereas the step coverage (%) of the silicon-containing oxide film deposited using the composition for forming a silicon-containing film of Comparative Example 1 Silver 78.1%, the step coverage of the silicon-containing oxide film formed using the composition for forming a silicon-containing film of Example 2 is a silicon-containing oxide film formed using the composition for forming a silicon-containing film of Comparative Example 1 It was found to be significantly better than the step coverage of
  • the silicon-containing film can be easily deposited by ALD.
  • the thickness and composition of the film can be precisely controlled, and excellent coverage and a uniform film can be formed even on a substrate having a complex shape.
  • a film having a desired thickness can be obtained at a high temperature of 600 ° C to 850 ° C during deposition, thereby obtaining It can be seen that the physical properties of the silicon-containing oxide film, such as step coverage, shrinkage rate, and etching rate, are significantly improved compared to those of the silicon-containing oxide film using the composition for forming a silicon-containing film including the silicon precursor compound of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막에 관한 것이다. 본 발명의 실리콘-함유 막의 형성 방법은 특정 구조를 갖는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 600℃ 이상의 고온에서 실리콘-함유 산화막 또는 실리콘-함유 복합 금속 산화막을 포함하는 실리콘-함유 막을 효율적으로 형성할 수 있으며, 목적하는 막의 두께 및 조성으로 제어할 수 있고, 복잡한 형상의 기판에서도 우수한 피복성 및 균일한 실리콘-함유 막을 형성할 수 있다.

Description

실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막
본 발명은 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막 에 관한 것으로서, 보다 구체적으로 특정 구조를 갖는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 600℃ 이상의 고온에서 실리콘-함유 막을 형성하는 방법, 및 이에 의해 형성된 실리콘-함유 막에 관한 것이다.
실리콘-함유 막은 디램(DRAM), 플래시 메모리(Flash Memory), 저항 메모리(ReRAM), 또는 상 변화 메모리(PCRAM) 등의 반도체뿐만 아니라, 논리 소자와 같은 비반도체 소자의 구동에 있어 꼭 필요한 박막 중의 하나이다.
이러한 실리콘-함유 막으로서, 실리콘-함유 산화막은 증착 속도가 빠른 반면, 실리콘-함유 질화막은 증착 속도가 느린 특성이 있는데, 다양한 응용을 위해서는 원하는 위치에만 선택적으로 증착될 수 있는 실리콘-함유 막이 요구되고 있다.
또한, 반도체 및 비반도체 분야에서 높은 종횡비(high aspect ratio) 및 3차원 구조의 복잡한 형상 등 제품의 개발이 다양화됨에 따라 다양한 응용 분야별 공정 온도에 적합하고, 높은 단차비를 극복할 수 있는, 원자층 증착법(Atomic Layer Deposition, ALD)에 사용 가능한 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물이 요구하고 있다.
특히, 고집적화 및 소자의 스케일 다운(scale down)에 의해 발생할 수 있는 단차비 극복을 위해서 자기 제한적(self-limiting) 막 성장 특성을 나타내는 것이 중요하다.
이에 ALD에 적합하고, 균일하고 치밀한 막을 형성하고, 스트레스에 강한 특성을 나타내며, 600℃ 이상의 고온에서도 자기 제한적 막 성장 특성을 갖는 실리콘 전구체 화합물을 포함하는 막 형성용 조성물의 개발 및 이를 이용한 실리콘-함유 막의 형성 방법에 대한 다양한 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록 특허 제10-0734393호
본 발명의 목적은 특정 구조를 갖는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 600℃ 이상의 고온에서 실리콘-함유 막을 형성하는 방법, 및 이에 의해 형성된 실리콘-함유 막을 제공하는 것이다.
본 발명의 또 다른 목적은 특정 구조를 갖는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명은 하기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 화학기상 증착법(Chemical Vapor Deposition, CVD) 또는 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 기판 상에 실리콘-함유 막을 증착하는 단계를 포함하고, 상기 실리콘-함유 막은 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하고, 상기 증착은 600℃ 이상의 온도에서 수행되는, 실리콘-함유 막의 형성 방법을 제공한다:
[화학식 1]
Figure PCTKR2022010713-appb-img-000001
상기 화학식 1에서,
R11 및 R12는 각각 독립적으로, 수소, 및 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택되고,
R13 내지 R17은 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고,
단, R13 및 R14 중 하나 이상은 수소가 아니며, R15 내지 R17 중 하나 이상은 수소가 아니다.
또한, 본 발명은 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하고, 600℃ 이상의 온도에서 화학기상 증착법(Chemical Vapor Deposition, CVD) 또는 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 실리콘-함유 막 증착에 사용되고, 상기 실리콘-함유 막은 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 실리콘-함유 막 형성용 조성물을 제공한다.
아울러, 본 발명은 상기 실리콘-함유 막의 형성 방법에 의해 형성된 실리콘-함유 막을 제공한다.
본 발명의 일 실시예에 따른 실리콘-함유 막의 형성 방법은 특정 구조를 갖는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 600℃ 이상의 고온에서 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 실리콘-함유 막을 효율적으로 형성할 수 있으며, 목적하는 막의 두께 및 조성으로 제어할 수 있고, 복잡한 형상의 기판에서도 우수한 피복성 및 균일한 실리콘-함유 막을 형성할 수 있다.
특히, 본 발명의 실리콘-함유 막의 형성 방법은 메모리 소자 및 논리 소자, 디스플레이 소자, 및 유기발광 다이오드(OLED) 소자의 수분 침투 방지막 등의 다양한 분야에서도 적용 가능하며, 막 증착 시 600℃ 이상의 고온에서 원하는 두께의 막을 얻을 수 있으므로, 우수한 막의 물성 및 피복성이 요구되는 전자 소자에서 매우 효과적으로 활용될 수 있다.
도 1은 본 발명의 실시예 1 내지 5, 및 비교예 1의 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 실리콘-함유 막 증착 시, 600℃ 내지 850℃의 온도에 따른 실리콘-함유 산화막의 증착 특성을 나타낸 그래프이다.
도 2는 본 발명의 실시예 1 내지 5, 및 비교예 1의 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 750℃에서 증착된 실리콘-함유 산화막의 2차 이온 질량 분석법(SIMS, Secondary Ion Mass Spectrometry)의 결과를 나타낸 그래프이다.
도 3은 본 발명의 실시예 2 및 비교예 1의 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 750℃에서 패턴 웨이퍼에서 증착하여 단차 피복성(step coverage)을 확인한 투과전자현미경(TEM, Transmission Electron Microscope) 이미지이다.
이하 본 발명에 대해 보다 구체적으로 설명한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술하는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의 될 뿐이다.
또한, 본 명세서에서 어떤 부재가 다른 부재 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약 "이라는 용어로써 수식되는 것으로 이해하여 야 한다.
본 명세서에서, 용어 "막" 또는 "박막" 각각은, 특별히 구별되지 않는 한, "막" 및 "박막" 모두를 의미한다.
본 명세서에서, 용어 "알킬" 또는 "알킬기"는, 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬 또는 알킬기는 메틸기(Me), 에틸기(Et), 노말프로필기(nPr), 아이소프로필기(iPr), 노말부틸기(nBu), 아이소부틸기(iBu), tert-부틸기(tert-Bu, tBu), sec-부틸기(secBu) 등뿐만 아니라, 이들의 이성질체들 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
[실리콘-함유 막의 형성 방법]
본 발명의 일 실시예에 따르면, 하기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 화학기상 증착법(Chemical Vapor Deposition, CVD) 또는 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 기판 상에 실리콘-함유 막을 증착하는 단계를 포함하고, 상기 실리콘-함유 막은 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하고, 상기 증착은 600℃ 이상의 온도에서 수행되는, 실리콘-함유 막의 형성 방법을 제공할 수 있다:
[화학식 1]
Figure PCTKR2022010713-appb-img-000002
상기 화학식 1에서,
R11 및 R12는 각각 독립적으로, 수소, 및 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택되고,
R13 내지 R17은 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고,
단, R13 및 R14 중 하나 이상은 수소가 아니며, R15 내지 R17 중 하나 이상은 수소가 아니다.
본 발명의 일 실시예에 따른 실리콘-함유 막의 형성 방법에 따르면, 상기 화학식 1로 표시되는 특정 구조를 갖는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 600℃ 이상의 고온에서 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 실리콘-함유 막을 효율적으로 형성할 수 있으며, 목적하는 막의 두께 및 조성으로 제어할 수 있고, 복잡한 형상의 기판에서도 우수한 피복성 및 균일한 실리콘-함유 막을 형성할 수 있다.
특히, 본 발명의 실리콘-함유 막의 형성 방법은 메모리 소자 및 논리 소자, 디스플레이 소자, 및 유기발광 다이오드(OLED) 소자의 수분 침투 방지막 등의 다양한 분야에서도 적용 가능하며, 막 증착 시 600℃ 이상의 고온에서 원하는 두께의 막을 얻을 수 있다는 것에 기술적 의의를 갖는다.
구체적으로, 상기 실리콘-함유 막의 증착 방법에 있어서, 상기 실리콘-함유 막의 형성은, 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 기판(기재) 상에 실리콘-함유 막을 증착하는 단계를 포함할 수 있다.
상기 기판은 실리콘 반도체 웨이퍼, 화합물 반도체 웨이퍼, 플라스틱 기판들(PI, PET, PES)을 사용할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 구멍이나 홈이 있는 기판을 사용 할 수도 있으며, 표면적이 넓은 다공질의 기판을 사용할 수 있다.
특히, 표면에 패턴(홈)이 있는 기판 또는 다공성 기판, 플라스틱 기판 상에도 600℃ 이상, 구체적으로 600℃ 내지 850℃의 온도 범위에서 수 나노미터(nm) 내지 수 마이크로미터(㎛) 두께의 실리콘-함유 막을 균일하게 형성할 수 있으며, 종횡비가 1 이상, 예컨대 약 1 내지 50 또는 그 이상이고, 폭이 1 ㎛ 이하, 예컨대 약 1 ㎛ 내지 10nm 또는 그 이하까지 미세한 패턴(홈)의 가장 깊은 곳의 표면 및 상기 미세한 요철(홈)의 표면을 포함하는 기판의 전체 표면 상에 실리콘-함유 막을 균일한 두께로 형성할 수 있는 우수한 효과를 가진다. 예를 들어, 상기 실리콘-함유 막은 종횡비가 1 이상이고, 폭이 1㎛ 이하인 요철을 하나 이상 포함하는 기판 상에 형성될 수 있다.
상기 실리콘-함유 막의 증착 방법은 본 발명의 기술분야에 공지된 방법, 장치 등을 이용할 수 있고, 필요한 경우 하나 이상의 추가 반응 기체를 함께 이용하여 수행될 수 있다.
상기 실리콘-함유 막의 증착 방법은, CVD, 예컨대 유기금속 화학기상 증착법(MOCVD), 또는 ALD에 의해 수행될 수 있다. 상기 MOCVD 또는 ALD는 본 기술분야에서 공지된 증착 장치, 증착 조건, 및 반응기체 등을 이용하여 수행될 수 있다.
구체적으로, 상기 반응 챔버 내에 기판을 수용한 뒤, 운송 기체 또는 희석 기체를 사용하여 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 기판 상으로 이송하여 600℃ 이상, 구체적으로 600℃ 내지 850℃의 고온의 증착 온도에서 실리콘-함유 막을 증착시킬 수 있다.
여기서 상기 증착 온도가 상기 범위인 것은 메모리 소자 및 논리 소자, 및 디스플레이 소자 등에 적용될 수 있고, 공정온도가 넓기 때문에 다양한 분야에 적용 가능성이 크고, 특히 고온에서의 치밀한 막과 스트레스에 강한 상기 실리콘 전구에 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용함으로써, 상기 범위의 증착 온도 범위에서 증착이 용이하다.
또한, 상기 운송기체 또는 희석 기체로는 아르곤(Ar), 질소(N2), 헬륨(He) 및 수소(H2)로 이루어진 군으로부터 선택되는 1종 이상의 혼합 기체를 사용하는 것이 바람직하다.
또한, 상기 실리콘 전구체 화합물을 반응 챔버 내로 공급하는 방식은, 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 운송 기체 또는 희석 기체를 사용하여 강제적으로 기화시키는 버블링(bubbling) 방식; 상온에서 액상으로 공급하여 기화기를 통해 기화시키는 액체 공급 시스템(liquid delivery system, LDS) 방식; 전구체의 증기압을 이용하여 직접 공급하는 기체 유량 제어(vapor flow control, VFC) 방식; 및 열처리(heating)하여 기화시키는 바이패스(bypass)방식으로 이루어진 군으로부터 선택된 하나 이상의 방법을 사용할 수 있다.
예컨대, 증기압이 높은 경우는 기체 유량 제어 방식을 사용하거나, 증기압이 낮은 경우는 용기를 가열하여 기화시키는 바이패스 방식을 사용하거나, 또는 아르곤(Ar) 또는 질소(N2) 기체를 이용하여 버블링 시키는 방식을 사용하여 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 상기 반응 챔버 내로 공급할 수 있다.
더욱 구체적으로, 상기 공급 방식은 버블링 방식 또는 바이패스 방식을 포함하며, 상기 버블링 방식은 0.1 torr 내지 10 torr 및 상온 내지 150℃의 온도 범위에서 운송 기체 또는 희석 기체를 이용하여 수행되고, 상기 바이패스 방식은 상온 내지 100℃의 온도 범위에서 0.1 torr 내지 1.5 torr의 증기압을 이용하여 수행될 수 있다. 예컨대, 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 반응 챔버 내로의 공급은 0.1 torr 내지 10 torr 및 상온 내지 100℃의 온도 범위에서 운송 기체 또는 희석 기체를 사용하여 수행될 수 있다.
또한, 상기 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 기화시키기 위하여, 예컨대 아르곤(Ar) 또는 질소(N2) 기체로 운송하거나, 증착 시 열에너지 또는 플라즈마를 이용하거나, 상기 기판 상에 바이어스를 인가할 수 있다.
한편, 상기 실리콘-함유 막의 형성 방법에 따라, 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택된 1종 이상의 실리콘-함유 막을 증착시키기 위해서, 상기 증착 시, 수증기(H2O), 산소(O2), 산소 플라즈마(O2 Plasma), 산화질소(NO, N2O), 산화질소 플라즈마(N2O Plasma), 질화산소(N2O2), 과산화수소수(H2O2), 및 오존(O3)으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택된 1종 이상의 실리콘-함유 막은 예를 들어, HfSiOx, ZrSiOx, TiSiOx, HfAlOx, ZrAlSiOx, TiAlSiOx, ZrHfSiOx, ZrHfAlSiOx, SiC, SiCO, 및 SiON으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. 이때, 상기 x는 1 내지 3일 수 있다.
또한, 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 실리콘-함유 질화막 및 실리콘-함유 복합 질화막으로 이루어진 군으로부터 선택되는 1종 이상의 실리콘-함유 막을 형성할 수 있다.
구체적으로, 상기 실리콘-함유 질화막 또는 실리콘-함유 복합 금속 질화막을 증착시키기 위해서, 상기 증착 시 암모니아(NH3), 암모니아 플라즈마(NH3 Plasma), 하이드라진(N2H4) 및 질소 플라즈마(N2 Plasma)로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 실리콘-함유 질화막 또는 상기 실리콘-함유 복합 금속 질화막은 예를 들어, HfSiNx, ZrSiNx, TiSiNx, AlSiNx, HfAlSiNx, ZrAlSiNx, TiAlSiNx, HfZrAlSiNx, HfZrTiSiNx, TiAlSiNx, SiCN, SiOCN, 및 SiBN으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있으나, 이에 제한되는 것은 아니다. 이때, 상기 x는 1 내지 3일 수 있다.
상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물은 이하 더욱 구체적으로 설명한다.
[실리콘-함유 막 형성용 조성물]
본 발명은 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 제공한다.
구체적으로, 상기 실리콘-함유 산화막 형성용 조성물은, 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하고, 600℃ 이상의 온도에서 화학기상 증착법(Chemical Vapor Deposition, CVD) 또는 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 실리콘-함유 막 증착에 사용될 수 있고, 상기 실리콘-함유 막은 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
본 발명의 일 실시예에 따른 실리콘-함유 막 형성용 조성물은 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함함으로써, 복잡한 형상의 기판에서도 우수한 피복성 및 균일한 실리콘-함유 막, 구체적으로 실리콘-함유 산화막을 형성할 수 있다.
특히, 상기 화학식 1에 있어서, 상기 Si에 여러 형태의 아민과 알킬기가 결합되어 있는 구조를 갖고, 특히 여러 형태의 결합 중 R13-Si-R14에서, R13 및 R14 중 하나 이상이 수소가 아니므로써, 약 600℃ 내지 850℃의 고온에서 안정한 막을 형성하는 데에 더욱 유리할 수 있다.
즉, 상기 화학식 1로 표시되는 실리콘 전구체 화합물에 있어서, 첫째, 상기 구조에서 -NR11R12로 표기되는 아민은 표면 반응성이 우수하여 실리콘-함유 산화막을 형성하는 데 유리하며; 둘째, 상기 구조에서 R13-Si-R14로 표기되는 부분에서 R13 및 R14 중 하나 이상이 수소가 아닌, 즉 R13 및 R14 중 하나 이상이 알킬기 또는 알케닐기, 바람직하게는 R13 및 R14 중 하나 이상이 알킬기를 가짐으로써 열적으로 안정한 Si와 C의 결합으로 고온에서 실리콘 전구체가 급격하게 분해되지 않고 안정한 막을 형성할 수 있어 고온에서 실리콘-함유 막의 특성을 요구하고 있는 3차원 낸드(NAND) 플래시 메모리 공정에 적합할 수 있고; 셋째, 상기 구조에는 Si 원소를 3개를 포함하는 구조로 기존에 알려진 실리콘 전구체 화합물보다 SiO2 ALD에서 GPC가 월등하게 크기 때문에 고온에서 두꺼운 SiO2 막 형성을 필요로 3차원 낸드(NAND) 플래시 메모리 공정에 적합할 수 있다.
구체적으로 상기 화학식 1에서, R11 및 R12는 각각 독립적으로, 수소, 및 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택되고, R13 내지 R17은 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고, 단, R13 및 R14 중 하나 이상은 수소가 아니며, R15 내지 R17 중 하나 이상은 수소가 아니다.
상기 실리콘 전구체 화합물은 하기 화학식 1-1 내지 1-25로 표시되는 화합물로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다:
[화학식 1-1]
Figure PCTKR2022010713-appb-img-000003
[화학식 1-2]
Figure PCTKR2022010713-appb-img-000004
[화학식 1-3]
Figure PCTKR2022010713-appb-img-000005
[화학식 1-4]
Figure PCTKR2022010713-appb-img-000006
[화학식 1-5]
Figure PCTKR2022010713-appb-img-000007
[화학식 1-6]
Figure PCTKR2022010713-appb-img-000008
[화학식 1-7]
Figure PCTKR2022010713-appb-img-000009
[화학식 1-8]
Figure PCTKR2022010713-appb-img-000010
[화학식 1-9]
Figure PCTKR2022010713-appb-img-000011
[화학식 1-10]
Figure PCTKR2022010713-appb-img-000012
[화학식 1-11]
Figure PCTKR2022010713-appb-img-000013
[화학식 1-12]
Figure PCTKR2022010713-appb-img-000014
[화학식 1-13]
Figure PCTKR2022010713-appb-img-000015
[화학식 1-14]
Figure PCTKR2022010713-appb-img-000016
[화학식 1-15]
Figure PCTKR2022010713-appb-img-000017
[화학식 1-16]
Figure PCTKR2022010713-appb-img-000018
[화학식 1-17]
Figure PCTKR2022010713-appb-img-000019
[화학식 1-18]
Figure PCTKR2022010713-appb-img-000020
[화학식 1-19]
Figure PCTKR2022010713-appb-img-000021
[화학식 1-20]
Figure PCTKR2022010713-appb-img-000022
[화학식 1-21]
Figure PCTKR2022010713-appb-img-000023
[화학식 1-22]
Figure PCTKR2022010713-appb-img-000024
[화학식 1-23]
Figure PCTKR2022010713-appb-img-000025
[화학식 1-24]
Figure PCTKR2022010713-appb-img-000026
,
[화학식 1-25]
Figure PCTKR2022010713-appb-img-000027
.
본 발명의 또 다른 실시예에 따르면, 상기 실리콘-함유 산화막 형성용 조성물에 포함되는 실리콘 전구체 화합물은 하기 화학식 1-a로 표시되는 화합물일 수 있다:
[화학식 1-a]
Figure PCTKR2022010713-appb-img-000028
상기 화학식 1-a에서,
R11 및 R12는 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기이고,
R13 내지 R17은 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고,
단, R11 및 R12 중 하나 이상은 메틸(Methyl)기가 아니며, R13 및 R14 중 하나 이상은 수소가 아니며, R15 내지 R17 중 하나 이상은 수소가 아니다.
구체적으로 상기 실리콘 전구체 화합물은 상기 화학식 1-2 내지 1-5, 1-7, 1-8, 1-10, 1-11, 1-13 내지 1-20, 및 1-22 내지 1-25로 표시되는 화합물로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.
즉, 상기 실리콘 전구체 화합물은 하기 화학식으로 표시되는 화합물로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.
Figure PCTKR2022010713-appb-img-000029
Figure PCTKR2022010713-appb-img-000030
Figure PCTKR2022010713-appb-img-000031
본 발명의 일 실시예에 따르면, 상기 실리콘-함유 막 형성용 조성물을 사용하여 ALD에 의해 증착 시, 600℃ 내지 850℃에서 1.5 내지 3.0 Å/cycle의 ALD 기체 공급 주기 당 막 성장(GPC)을 가질 수 있다.
구체적으로, 상기 실리콘-함유 막 형성용 조성물을 사용하여 ALD에 의해 증착 시, 600℃ 내지 850℃, 예를 들어 800℃에서 예를 들어, 1.5 내지 2.5 Å/cycle, 1.7 내지 2.5 Å/cycle, 또는 1.75 내지 2.25 Å/cycle의 ALD 기체 공급 주기 당 막 성장(GPC)을 달성할 수 있다.
본 발명의 일 실시예에 따라 상기 실리콘-함유 막 형성용 조성물을 이용하여 실리콘-함유 막을 형성하는 경우, 원하는 막의 두께 및 원하는 실리콘-함유량을 갖는 조성으로 제어가 가능하고, 표면에 패턴(홈)이 있는 기판, 다공성 기판, 플라스틱기판, 또는 3차원구조의 복잡한 형상의 기판에서도 우수한 피복성 및 균일한 막을 형성할 수 있으므로, 고품질의 실리콘-함유 막을 제공할 수 있다.
또한, 상기 실리콘-함유 막 형성용 조성물을 이용하여 CVD 또는 ALD에 의해 기판 상에 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 실리콘-함유 막 이외에도, 실리콘-함유 질화막, 실리콘-함유 탄화막, 및 실리콘-함유 복합 금속막으로 이루어진 군으로부터 선택되는 하나 이상을 효율적으로 형성할 수 있다.
특히, 본 발명의 일 실시예에 따라, 상기 실리콘-함유 막 형성용 조성물을 이용하여 ALD에 의해 기판 상에 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 실리콘-함유 막을 형성하는 경우, 600℃ 이상의 고온에서 원하는 두께의 막을 균일한 두께로 얻을 수 있으며, 고온에서의 막 수축률 및 식각률이 더 낮고, 불순물이 적고 순수한 고품질의 실리콘-함유 막을 형성할 수 있는 큰 이점이 있다.
[실리콘 전구체 화합물의 제조방법]
한편, 상기 화학식 1로 표시되는 실리콘 전구체 화합물은 다양한 방법에 의해 제조될 수 있다.
본 발명의 일 실시예에 따른 실리콘 전구체 화합물(화학식 1)의 제조방법은 하기 화학식 A로 표시되는 알킬다이실라잔 금속염을 하기 화학식 B로 표시되는 다이할라이드 실리콘 전구체 화합물 및 하기 화학식 C로 표시되는 다이알킬아민 또는 다이알킬아민금속염과 할라이드-아민 치환 반응하는 단계를 포함할 수 있다:
[반응식 1]
Figure PCTKR2022010713-appb-img-000032
상기 반응식 1에서,
M3은 알칼리 금속으로서, Li 또는 Na이고,
R15 내지 R17은 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고,
단, R15 내지 R17 중 하나 이상은 수소가 아니고,
X3 및 X4는 각각 독립적으로, 할로겐 원소로서, Cl, Br, 또는 I이고,
R13 및 R14는 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고,
단, R13 및 R14 중 하나 이상은 수소가 아니고,
R11 및 R12는 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기이고,
M4는 수소, Li 및 Na로 구성된 군으로부터 선택된다.
상기 반응식 1을 참고하여, 상기 실리콘 전구체 화합물(화학식 1)은, 저온(약 -30℃ 내지 -5℃)에서 알킬다이실라잔 금속염(화학식 A)에 0.5 내지 2 mol의 다이 할라이드 실리콘 전구체 화합물(화학식 B)을 첨가한 후 1차 할라이드와 아민의 치환 반응을 수행할 수 있다. 이 후, 저온(약 -30℃ 내지 -5℃)에서 상기 생성물에 1 내지 3 mol의 다이알킬아민 또는 다이알킬아민 금속염(화학식 C)을 첨가한 후 2차 할라이드와 아민의 치환 반응을 수행할 수 있다. 그 다음, 상기 반응 생성물에 포함되는 반응 부산물을 금속 할라이드염, 또는 다이알킬아민 할라이드염의 형태로 필터를 통해 제거하고, 남은 생성물을 정제함으로써 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 얻을 수 있다.
이때, 상기 반응식 1의 R13-Si-R14 구조에서 R13 및 R14가 각각 알킬기인 경우, 상기 할라이드와 아민의 치환 반응의 속도가 상대적으로 많이 느릴 수 있으며, 이 경우, 반응 온도가 높을수록 치환 반응이 용이하게 이루어져 더욱 유리할 수 있다.
상기 1차 및 2차 할라이드-아민 치환 반응은 각각 용매 중에서 0℃ 내지 30℃, 구체적으로 20℃ 내지 30℃, 예컨대 상온(실온)에서 2 내지 30시간 동안 수행될 수 있다.
또한, 상기 용매는 탄소수 5 내지 8의 알칸, 톨루엔, 에테르, 테트라하이드로퓨란, 및 모노 내지 테트라에틸렌 글리콜 디메틸 에테르로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 실리콘 전구체 화합물을 이용하여 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 얻을 수 있다.
[실리콘-함유 막]
본 발명의 일 실시예에 따르면, 상기 실리콘-함유 막의 형성 방법에 의해 형성된 실리콘-함유 막을 제공한다.
상기 실리콘-함유 막은 수 나노미터(nm) 내지 수 마이크로미터(㎛) 두께를 가질 수 있으며, 적용 용도에 따라 다양하게 응용될 수 있다. 구체적으로, 상기 실리콘-함유 막은 1 nm 내지 500 nm의 두께 범위에서 형성될 수 있다.
상기 실리콘-함유 막은 기판(기재) 상에 형성될 수 있다.
상기 기판은 상술한 바와 같다.
상기 실리콘-함유 막은 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 상기 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 실리콘-함유 막 이외에도, 실리콘-함유 질화막, 실리콘-함유 탄화막, 및 실리콘-함유 복합 금속막으로 이루어진 군으로부터 선택되는 하나 이상을 효율적으로 형성할 수 있다.
또한, 상기 실리콘-함유 막은 열적 안정성이 우수한 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 사용함으로써, 600℃ 이상, 예컨대 600℃ 내지 850℃의 고온에서도 실리콘-함유 막의 수축률이 낮고, 실리콘-함유 막의 식각률(Å/s)이 낮은 것이 특징이다.
구체적으로, 상기 실리콘-함유 막은 하기 식 1로 표시되는 실리콘-함유 막의 수축률(S750)이 5.0% 이하일 수 있다:
Figure PCTKR2022010713-appb-img-000033
상기 식 1에서,
A는 750℃에서 ALD에 의해 형성된 실리콘-함유 막의 초기 두께(Å)이고,
B는 750℃에서 ALD에 의해 형성된 실리콘-함유 막을 750℃에서 아르곤(Ar) 분위기에서 60분 동안 체류 후의 실리콘-함유 막의 두께(Å)이다.
상기 실리콘-함유 막은 상기 식 1로 표시되는 실리콘-함유 막의 수축률(S750)이 예를 들어 4.8% 이하, 4.5% 이하, 4.4% 이하, 4.0% 이하, 3.9% 이하, 3.8% 이하, 3.5% 이하, 3.3% 이하, 3.2% 이하, 3.0% 이하, 2.5% 이하, 2.0% 이하, 1.5% 이하, 또는 1.0% 이하일 수 있다.
상기 실리콘-함유 막이 상기 범위의 실리콘-함유 막의 수축률(S750)을 만족할 경우, 균일하고 치밀한 실리콘-함유 막을 형성하는 데에 유리할 수 있다.
한편, 상기 실리콘-함유 막이 750℃에서 500 Å의 두께로 증착되어 형성된 경우, 상기 실리콘-함유 막을 1%의 묽은 불산의 식각 용액에 노출시키기 전과 후의 실리콘-함유 막의 두께를 엘립소미터로 측정할 때, 하기 식 2로 표시되는 실리콘-함유 막의 식각률(Å/s)이 4.0 Å/s 이하일 수 있다:
Figure PCTKR2022010713-appb-img-000034
상기 식각 두께 변화량(△E)은 하기 식 2-1로 표시될 수 있다:
Figure PCTKR2022010713-appb-img-000035
상기 식 2-1에서,
EA는 750℃에서 ALD에 의해 형성된 실리콘-함유 막의 초기 두께(Å)이고,
EB는 750℃에서 ALD에 의해 형성된 실리콘-함유 막을 1%의 묽은 HF 용액에 30초간 식각한 후 실리콘-함유 막의 두께(Å)이다.
상기 식 2에서 "s"는 초(second)를 의미한다.
상기 실리콘-함유 막은 상기 식 2로 표시되는 실리콘-함유 막의 식각률(Å/s)이 예를 들어 3.8 Å/s 이하, 3.5 Å/s 이하, 3.2 Å/s 이하, 3.0 Å/s 이하, 2.8 Å/s 이하, 2.5 Å/s 이하, 2.45 Å/s 이하, 2.4 Å/s 이하, 2.2 Å/s 이하, 2.1 Å/s 이하, 2.0 Å/s 이하, 1.5 Å/s 이하, 1.0 Å/s 이하, 0.5 Å/s 이하, 0.1 Å/s 이하, 0.05 Å/s 이하, 또한 0.03 Å/s 이하일 수 있다. 구체적으로 상기 실리콘-함유 막은 상기 식 2로 표시되는 실리콘-함유 막의 식각률(Å/s)이 3.8 Å/s 내지 0.5 Å/s, 3.5 Å/s 내지 0.5 Å/s, 3.0 Å/s 내지 1.0 Å/s, 2.5 Å/s 내지 1.0 Å/s, 또는 2.1 Å/s 내지 1.0 Å/s일 수 있다.
상기 실리콘-함유 막이 상기 범위의 실리콘-함유 막의 식각률(Å/s)을 만족할 경우, 균일하고 치밀한 실리콘-함유 막을 형성하는 데에 유리할 수 있다.
아울러, 상기 실리콘-함유 막은 단차 피복성(step coverage)이 매우 우수할 수 있다.
구체적으로, 도 3과 같이, 단차가 있는 홀 패턴의 기판에 실리콘-함유 막을 증착한 후 투과전자현미경(TEM, Transmission Electron Microscope)을 이용하여 분석할 때, 상기 실리콘-함유 막은 단차 피복성(%)이 예를 들어 80% 이상, 예를 들어 82% 이상, 예를 들어 85% 이상, 예를 들어 90% 이상, 예를 들어 92% 이상, 예를 들어 93% 이상, 예를 들어 95% 이상, 또는 예를 들어 96% 이상일 수 있다.
상기 실리콘-함유 막의 단차 피복성(%)이 상기 범위를 만족함으로써, 고 단차비 및 미세한 두께 조절이 용이하여, 디램(DRAM), 3차원 낸드(NAND) 플래시 메모리 등 다양한 반도체 소자를 제조하는 데 효과적으로 활용될 수 있다.
이하 실시예에 의해 본 발명을 보다 구체적으로 설명한다. 이하의 실시예들은 본 발명을 예시하는 것일 뿐이며, 본 발명의 범위가 이들로 한정되지는 않는다.
실시예
<실시예 1> 다이메틸아미노-(테트라메틸다이실릴)아미노-다이메틸 실란, 및 이를 포함하는 실리콘-함유 막 형성용 조성물의 제조: [{(CH3)2N}Si(CH3)2{N(SiHMe2)2}]
[화학식 1-1]
Figure PCTKR2022010713-appb-img-000036
2 L 둥근 바닥 플라스크에서, 노말부틸리튬 헥산용액(n-헥산에서, n-BuLi) 약 118.69g(2.5M, 약 0.426mol)을 무수 헥산 약 1, 000mL와 혼합하였다. 테트라메틸다이실라잔(1, 1, 3, 3-tetramethyldisilazane) 약 61.99g(약 0.465mol)을 약 -20℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 4시간 동안 교반시켰다. 형성된 리튬(1, 1, 3, 3-테트라메틸다이실라잔)염에 다이클로로다이메틸실란(dichlorodimethylsilane) 약 50g(약 0.387mol)을 -20℃ 내지 -10℃에서 천천히 첨가한 후 교반하면서 실온까지 서서히 온도를 올린 뒤 4시간 동안 교반시켰다. 4시간 후, 다이메틸아민(dimethylamine) 약 41.91g(약 0.930mol)을 약 -20℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 약 17시간 동안 교반시켰다. 반응 종료 후, 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압 증류에 의해 제거하여 상기 화학식 1-1로 표시되는 무색의 액체 화합물인 다이메틸아미노-(테트라메틸다이실릴)아미노-다이메틸실란[{(CH3)2N}Si(CH3)2{N(SiHMe2)2}] 약 59.97g (수율: 약 66%)을 수득하였고, 이를 막 형성용 조성물에 사용하였다.
b.p: 72℃ at 10 torr (194.5℃ at 760torr)
1H-NMR(C6D6): δ 0.221 (Si-C H 3, s, 6H), δ 0.249, 0.241 (N-Si-C H 3, d, 12H), δ 2.424 (N-C H 3, s, 6H), δ 4.700 (N-Si- H , m, 2H)
<실시예 2 > 에틸메틸아미노-(테트라메틸다이실릴)아미노-다이메틸실란, 및 이를 포함하는 실리콘-함유 막 형성용 조성물의 제조: [{(CH3CH2)(CH3)N}Si(CH3)2{N(SiHMe2)2}]
[화학식 1-2]
Figure PCTKR2022010713-appb-img-000037
다이메틸아민(dimethylamine) 대신 에틸메틸아민(ethylmethylamine)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 상기 화학식 1-2로 표시되는 무색의 액체 화합물 에틸메틸아미노-(테트라메틸다이실릴)아미노-다이메틸실란[{(CH3CH2)(CH3)N}Si(CH3)2{N(SiHMe2)2}] 약 62.6g (수율: 약 65%)을 수득하였고, 이를 막 형성용 조성물에 사용하였다.
b.p: 76℃ at 10 torr (199.4℃ at 760torr)
1H-NMR(C6D6): δ 0.235 (Si-C H 3, s, 6H), δ 0.257, 0.248 (N-Si-C H 3, d, 12H), δ 0.981 (N-CH2-C H 3, t, 3H), δ 2.425 (N-C H 3, s, 3H), δ 2.774 2.756 (N-C H 2-CH3, q, 2H), δ 4.722 (N-Si- H , m, 2H)
<실시예 3> 에틸메틸아미노-(헥사메틸다이실릴)아미노-다이메틸실란, 및 이를 포함하는 실리콘-함유 막 형성용 조성물의 제조: [{(CH3CH2)(CH3)N}Si(CH3)2{N(SiMe3)2}]
[화학식 1-4]
Figure PCTKR2022010713-appb-img-000038
테트라메틸다이실라잔(1, 1, 3, 3-tetramethyldisilazane) 대신 헥사메틸다이실라잔(1, 1, 1, 3, 3, 3-hexamethyldisilazane)을 사용한 것과 다이메틸아민(dimethylamine) 대신 에틸메틸아민(ethylmethylamine)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 상기 화학식 1-4로 표시되는 무색의 액체 화합물 에틸메틸아미노-(헥사메틸다이실릴)아미노-다이메틸실란[{(CH3CH2)(CH3)N}Si(CH3)2{N(SiMe3)2}] 약 71.81g (수율: 약 67%)을 수득하였고, 이를 막 형성용 조성물에 사용하였다.
b.p: 35℃ at 0.3 torr (216.3℃ at 760torr)
1H-NMR(C6D6): δ 0.236 (Si-C H 3, s, 6H), δ 0.273 (N-Si-C H 3, s, 18H), δ 0.968 (N-CH2-C H 3, t, 3H), δ 2.366 (N-C H 3, s, 3H), δ 2.722, 2.704 (N-C H 2-CH3, q, 2H)
<실시예 4> 다이에틸아미노-(헥사메틸다이실릴)아미노-다이메틸실란, 및 이를 포함하는 실리콘-함유 막 형성용 조성물의 제조: [{(CH3CH2)2N}Si(CH3)2{N(SiMe3)2}]
[화학식 1-5]
Figure PCTKR2022010713-appb-img-000039
3 L 둥근 바닥 플라스크에서, 노말부틸리튬 헥산용액(n-헥산에서, n-BuLi) 118.69g(2.5M, 0.426mol)을 무수 헥산 500mL와 혼합하였다. 헥사메틸다이실라잔(1, 1, 1, 3, 3, 3-hexamethyldisilazane) 약 75.03g(약 0.465mol)을 약 -20℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 4시간 동안 교반시켰다. 형성된 리튬(1, 1, 1, 3, 3, 3-헥사메틸다이실라잔)염 용액에 다이클로로다이메틸실란(dichlorodimethylsilane) 약 50g(약 0.387mol)을 약 -20℃ 내지 -10℃에서 천천히 첨가한 후 교반하면서 실온까지 서서히 온도를 올린 뒤 약 17시간 동안 교반시켰다.
1L 둥근 바닥 플라스크에서, 노말부틸리튬 헥산용액(n-헥산에서, n-BuLi) 약 118.69g(2.5M, 약 0.426mol)을 무수 헥산 약 500mL와 혼합하였다. 다이에틸아민(diethylamine) 약 34g (약 0.465mol)을 약 -20℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 약 4시간 동안 교반시켰다. 형성된 리튬(다이에틸아민)염 용액을 위 3L 둥근 바닥 플라스크에 약 -20℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 약 17시간 교반시켰다. 반응 종료 후, 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압증류에 의해 제거하여 상기 화학식 1-5로 표시되는 무색의 액체 화합물 다이에틸아미노-(헥사메틸다이실릴)아미노-다이메틸실란[{(CH3CH2)2N}Si(CH3)2{N(SiMe3)2}] 약 79.95g (수율: 약 71%)을 수득하였고, 이를 막 형성용 조성물에 사용하였다.
b.p: 45℃ at 0.3 torr (230.4℃ at 760torr)
1H-NMR(C6D6): δ 0.262 (Si-C H 3, s, 6H), δ 0.283 (N-Si-C H 3, s, 18H), δ 0.976 (N-CH2-C H 3, t, 6H), δ 2.806, 2.788 (N-C H 2-CH3, q, 4H)
<실시예 5> N,N-비스(다이메틸실릴)-1,1-다이메틸실란다이아민, 및 이를 포함하는 실리콘-함유 막 형성용 조성물의 제조: [(H2N)Si(CH3)2{N(SiHMe2)2}]
[화학식 1-12]
Figure PCTKR2022010713-appb-img-000040
3 L 둥근 바닥 플라스크에서, 노말부틸리튬 헥산용액(n-헥산에서, n-BuLi) 약 118.69g(2.5M, 약 0.426mol)을 무수 헥산 약 1, 000mL와 혼합하였다. 테트라메틸다이실라잔(1, 1, 3, 3-tetramethyldisilazane) 약 61.99g(약 0.465mol)을 약 -20℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 4시간 동안 교반시켰다. 형성된 리튬(1, 1, 3, 3-테트라메틸다이실라잔)염에 다이클로로다이메틸실란(dichlorodimethylsilane) 약 50g(약 0.387mol)을 -20℃ 내지 -10℃에서 천천히 첨가한 후 교반하면서 실온까지 서서히 온도를 올린 뒤 4시간 동안 교반시켰다. 4시간 후, 암모니아(ammonia) 가스를 약 32.99g(약 1.937mol)을 약 -78℃ 부근에서 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 약 17시간 동안 교반시켰다. 반응 종료 후, 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압 증류에 의해 제거하여 상기 화학식 1-12로 표시되는 무색의 액체 화합물인 N,N-비스(다이메틸실릴)-1,1-다이메틸실란다이아민 [(H2N)Si(CH3)2{N(SiHMe2)2}] 약 62.40g (수율: 약 78%)을 수득하였고, 이를 막 형성용 조성물에 사용하였다.
b.p: 54℃ at 10 torr (172.3℃ at 760torr)
1H-NMR(C6D6): δ 0.202 (Si-C H 3, s, 6H), δ 0.269, 0.261 (N-Si-C H 3, d, 12H), δ 0.373 (N H 2, m, 2H), δ 4.768 (N-Si- H , m, 2H)
비교예 1
트리스(디메틸아미도)실란(tris(dimethylamido)silane, 3DMAS 또는 TDMAS) [SiH(NMe2)3]은 ㈜유피케미칼 자사 제품을 사용하였다.
실험예
<실험예 1> 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물의 고온에서의 증착 특성 분석
실시예 및 비교예의 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물, 및 반응 기체인 오존(O3)을 사용하여 ALD에 의해 실리콘-함유 막을 형성하였다.
우선, 황산(H2SO4)과 과산화수소수(H2O2)를 4:1로 혼합한 피라나(Piranha) 용액에 실리콘 기판을 약 10 분 동안 담갔다가 꺼낸 후 묽은 HF 수용액에 2 분 동안 담가 순수한 표면을 형성한 실리콘 기판에 ALD로 실리콘-함유 산화막을 형성하였다.
실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 스테인리스 스틸을 재질의 용기에 담았고, 상온에서 반응기의 공정 압력 4 torr로 하여, 아르곤(Ar) 운반 기체를 약 200 sccm의 유속으로 흘려서 상기 막 형성용 조성물을 기체 상태로 반응 챔버로 공급하였다.
각각의 실리콘-함유 산화막의 증착 특성을 확인하기 위하여, 약 3초 동안 막 형성용 조성물을 기체 상태로 공급 → 약 10초 동안 아르곤(Ar) 기체를 공급하여 반응기 내에 잔류하는 막 형성용 조성물(기체)를 제거 → 약 5초 동안 반응 기체로서 오존(O3)을 공급 → 약 10초 동안 아르곤(Ar) 기체를 공급하여 반응기 내에 잔류하는 오존(O3) 기체를 제거하는 단계로 이루어진 기체 공급 주기를 100회 반복하여 실리콘-함유 산화막을 형성하였다.
상기 실시예 및 비교예의 방법에 의해 제조된 실리콘-함유 막 형성용 조성물을 이용하여 형성된 각 산화막의 두께를 엘립소미터(J.A. Woollam, M-2000)를 사용하여 측정하였다.
이후, 상기 측정된 두께를 기체 공급 주기 횟수(100회)로 나누어 ALD 기체 공급 주기 당 막 성장(GPC)를 측정하였다.
구체적으로, 600℃ 내지 850℃의 온도(공정 온도)에 따른 ALD 기체 공급 주기 당 막 성장(GPC)을 측정하였고, 그 결과를 도 1 과 표 1에 나타내었다.
[표 1]
Figure PCTKR2022010713-appb-img-000041
표 1 및 도 1에서 볼 수 있듯이, 600℃ 이상의 고온에서 ALD를 수행하는 경우, 비교예 1의 실리콘 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용한 경우에 비하여 600℃ 이상 850℃의 비교적 높은 온도까지 GPC가 일정한 것을 알 수 있었다.
구체적으로, 비교예 1의 실리콘 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용한 경우, 약 700℃부터 ALD 기체 공급 주기 당 막 성장(GPC)이 증가하는 반면, 실시예 1, 2, 3, 4 및 5의 실리콘 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용한 경우, 800℃ 또는 850℃의 고온에서도 ALD 기체 공급 주기 당 막 성장(GPC)이 일정한 것을 확인할 수 있었다. 이로부터 본 발명의 실시예의 실리콘 화합물을 포함하는 실리콘-함유 막 형성용 조성물이 600℃ 내지 850℃의 고온에서 GPC가 일정하고, 자기 제한적(self-limiting) 막 성장 특성을 나타내기 때문에 고온 ALD 공정에 적합한 전구체임을 확인 할 수 있다.
<실험예 2> 고온 증착된 실리콘-함유 산화막의 물리적 특성 분석
실시예 1, 2, 3, 4, 5 및 비교예 1의 실리콘 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 사용하여 750℃에서 평판 웨이퍼에 각각 ALD 기체 공급 주기를 조절하여 동일한 두께로 형성한 SiO2 막의 물리적, 화학적 특성을 분석하였다.
구체적으로 SiO2 막의 수축률(shrinkage) 및 식각률(WER, wet etch rate, Å/s)을 측정하였다. SiO2막의 두께 측정에는 엘립소미터(J.A. Woollam, M-2000)를 사용하여 측정하였다.
750℃에서 평판 웨이퍼에 각각 ALD 기체 공급 주기를 조절하여 하기 표 2와 같이 초기 두께 약 100 Å로 형성한 실리콘-함유 막(SiO2 막)의 두께와, 아르곤(Ar) 분위기에서 750℃에서 60분 동안 열처리(anneal)한 후 실리콘-함유 막(SiO2 막)의 두께를 비교하여 하기 식 1의 수축률(shrinkage)을 계산하였다.
Figure PCTKR2022010713-appb-img-000042
상기 식 1에서,
A는 750℃에서 ALD에 의해 형성된 실리콘-함유 막의 초기 두께(Å)이고,
B는 750℃에서 ALD에 의해 형성된 실리콘-함유 막을 750℃에서 아르곤(Ar) 분위기에서 60분 동안 체류 후의 실리콘-함유 막의 두께(Å)이다.
그 결과를 표 2에 나타내었다.
[표 2]
Figure PCTKR2022010713-appb-img-000043
상기 표 2에서 알 수 있듯이, 실시예 1, 2, 3, 4 및 5의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막(SiO2 막)의 수축률은 각각 3.87%, 3.39%, 2.71%, 4.40% 및 3.98%인데 반해, 비교예 1의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막의 수축률은 6.40%였다. 이와 같이, 실시예 1, 2, 3, 4 및 5의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막이 비교예 1의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막에 비해 고온에서의 막 수축률이 더 낮았다.
한편, 750℃에서 평판 웨이퍼에 각각 ALD 기체 공급 주기를 조절하여 하기 표 4와 같이 초기 두께 약 500Å 두께로 형성한 실리콘-함유 막(SiO2 막)을 1%의 묽은 HF 용액에 30초간 식각하고 두께 변화를 측정하여 하기 식 2의 식각률(WER, wet etch rate, Å/s)을 계산하였다.
Figure PCTKR2022010713-appb-img-000044
상기 식각 두께 변화량(△E)은 하기 식 2-1로 표시될 수 있다:
Figure PCTKR2022010713-appb-img-000045
상기 식 2-1에서,
EA는 750℃에서 ALD에 의해 형성된 실리콘-함유 막의 초기 두께(Å)이고,
EB는 750℃에서 ALD에 의해 형성된 실리콘-함유 막을 1%의 묽은 HF 용액에 30초간 식각한 후 실리콘-함유 막의 두께(Å)이다.
상기 식 2에서 "s"는 초(second)를 의미한다.
그 결과를 하기 표 3에 나타내었다.
[표 3]
Figure PCTKR2022010713-appb-img-000046
상기 표 3에서 알 수 있듯이, 실시예 2, 3 및 4의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막(SiO2 막)의 식각률은 각각 2.45 Å/s, 2.45 Å/s, 및 2.07 Å/s인데 반해, 비교예 1의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막의 식각률은 2.90 Å/s로서 실시예 2, 3 및 4의 실리콘-함유 막 형성용 조성물을 이용하여 형성한 실리콘-함유 산화막의 식각률(Å/s)이 감소한 것을 확인하였다.
한편, 상기 실리콘-함유 산화막의 불순물을 확인하기 위해, 상기 실리콘-함유 산화막의 2차 이온 질량 분석법(SIMS, Secondary Ion Mass Spectrometry)을 측정하였다.
도 2는 본 발명의 실시예 1, 2, 3, 4, 5 및 비교예 1의 실리콘-함유 막 형성용 조성물을 이용하여 750℃에서 증착된 실리콘-함유 산화막의 2차 이온 질량 분석법(SIMS, Secondary Ion Mass Spectrometry)의 결과를 나타낸 그래프이다.
실시예 1, 2, 3, 4, 5 및 비교예 1의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막의 불순물을 확인하기 위해 약 100 Å로 증착된 실리콘-함유 산화막을 SIMS로 탄소(C) 성분을 분석하였다.
그 결과, 탄소 성분의 함량이 비교예 1 보다 실시예 1은 약 80%, 실시예 2는 약 81%, 실시예 3은 약 76%, 실시예 4는 약 81%, 실시예 5는 약 83% 감소한 것으로 나타났으며, 탄소 성분이 100 Counts 미만의 순수한 실리콘-함유 산화막이 형성되었음을 확인할 수 있었다.
도 3은 본 발명의 실시예 2 및 비교예 1의 실리콘-함유 막 형성용 조성물과 오존을 사용한 ALD로 750℃에서 깊은 홈 패턴이 있는 기판에 형성한 실리콘-함유 산화막의 투과전자현미경(TEM, Transmission Electron Microscope) 이미지이다. 도 3에 표시한 부분에서 측정한 실리콘-함유 산화막의 두께를 표 4에 나타내었다.
[표 4]
Figure PCTKR2022010713-appb-img-000047
표 4에서 확인할 수 있는 바와 같이, 실시예 2 및 비교예 1의 실리콘-함유 막 형성용 조성물을 단차가 있는 기판에 증착 후 TEM을 이용하여 분석한 결과, 실시예 2의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막의 단차 피복성(%)이 93.4%인데 반해, 비교예 1의 실리콘-함유 막 형성용 조성물을 이용하여 증착된 실리콘-함유 산화막의 단차 피복성(%)은 78.1%로, 실시예 2의 실리콘-함유 막 형성용 조성물을 이용하여 형성한 실리콘-함유 산화막의 단차 피복성이 비교예 1의 실리콘-함유 막 형성용 조성물을 이용하여 형성한 실리콘-함유 산화막의 단차 피복성보다 월등하게 우수하다는 것을 알 수 있었다.
종합적으로, 본 발명의 일 실시예에 따른 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용한 실리콘-함유 막의 형성 방법에 따르면, ALD에 의해 실리콘-함유 막으로 용이하게 증착시킬 수 있음은 물론, 막의 두께 및 조성을 정확히 제어할 수 있고, 복잡한 형상의 기판에서도 우수한 피복성 및 균일한 막을 형성할 수 있었다.
특히, 본 발명의 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용한 실리콘-함유 막의 형성 방법에 따르면, 증착 시 600℃ 내지 850℃의 고온에서 원하는 두께의 막을 얻을 수 있으며, 이로 인해 얻은 실리콘-함유 산화막은 단차 피복성, 수축률 및 식각률 등의 물리적 특성이 비교예 1의 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용한 실리콘-함유 산화막에 비해 현저히 개선되었음을 알 수 있다.

Claims (15)

  1. 하기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하는 실리콘-함유 막 형성용 조성물을 이용하여 화학기상 증착법(Chemical Vapor Deposition, CVD) 또는 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 기판 상에 실리콘-함유 막을 증착하는 단계를 포함하고,
    상기 실리콘-함유 막은 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하고,
    상기 증착은 600℃ 이상의 온도에서 수행되는, 실리콘-함유 막의 형성 방법:
    [화학식 1]
    Figure PCTKR2022010713-appb-img-000048
    상기 화학식 1에서,
    R11 및 R12는 각각 독립적으로, 수소, 및 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택되고,
    R13 내지 R17은 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고,
    단, R13 및 R14 중 하나 이상은 수소가 아니며, R15 내지 R17 중 하나 이상은 수소가 아니다.
  2. 제 1 항에 있어서,
    상기 실리콘 전구체 화합물이 하기 화학식으로 표시되는 화합물로 이루어진 군으로부터 선택되는 하나 이상을 포함하는, 실리콘-함유 막의 형성 방법:
    Figure PCTKR2022010713-appb-img-000049
    Figure PCTKR2022010713-appb-img-000050
    Figure PCTKR2022010713-appb-img-000051
  3. 제 1 항에 있어서,
    상기 증착은 600℃ 내지 850℃의 온도범위에서 수행되는, 실리콘-함유 막의 형성 방법.
  4. 제 1 항에 있어서,
    상기 실리콘-함유 막 형성용 조성물은, 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 증착 시, 600℃ 내지 850℃에서 1.5 내지 3.0 Å/cycle의 ALD 기체 공급 주기 당 막 성장(GPC)을 갖는, 실리콘-함유 막의 형성 방법.
  5. 제 1 항에 있어서,
    상기 증착 시, 수증기(H2O), 산소(O2), 산소 플라즈마(O2 Plasma), 산화질소(NO, N2O), 산화질소 플라즈마(N2O Plasma), 질화산소(N2O2), 과산화수소수(H2O2), 및 오존(O3)으로 이루어진 군으로부터 선택되는 1종 이상을 사용하는, 실리콘-함유 막의 형성 방법.
  6. 제 1 항에 있어서,
    상기 실리콘-함유 막은 1 nm 내지 500 nm의 두께 범위에서 형성되는, 실리콘-함유 막의 형성 방법.
  7. 제 1 항에 있어서,
    상기 실리콘-함유 막은 종횡비가 1 이상이고, 폭이 1㎛ 이하인 요철을 하나 이상 포함하는 기판 상에 형성되는, 실리콘-함유 막의 형성 방법.
  8. 제 1 항에 있어서,
    상기 실리콘-함유 막의 형성 방법은, 버블링(bubbling) 방식, 액체 공급 시스템(liquid delivery system, LDS) 방식, 기체 유량 제어(vapor flow control, VFC) 방식, 및 바이패스(bypass) 방식으로 이루어진 군으로부터 선택되는 하나 이상을 포함하는 방식을 이용하여 상기 실리콘 전구체 화합물을 반응 챔버 내로 공급하는 단계를 포함하는, 실리콘-함유 막의 형성 방법.
  9. 제 8 항에 있어서,
    상기 실리콘 전구체 화합물을 반응 챔버 내로 공급하는 단계는 0.1 내지 10 torr 및 상온 내지 150℃의 온도 범위에서 운송 기체 또는 희석 기체를 사용하여 수행되는, 실리콘-함유 막의 형성 방법.
  10. 제 1 항에 있어서,
    상기 증착 시, 열에너지 또는 플라즈마를 이용하거나, 기판 상에 바이어스를 인가하는, 실리콘-함유 막의 형성 방법.
  11. 하기 화학식 1로 표시되는 실리콘 전구체 화합물을 포함하고,
    600℃ 이상의 온도에서 화학기상 증착법(Chemical Vapor Deposition, CVD) 또는 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 실리콘-함유 막 증착에 사용되고,
    상기 실리콘-함유 막은 실리콘-함유 산화막 및 실리콘-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 실리콘-함유 막 형성용 조성물:
    [화학식 1]
    Figure PCTKR2022010713-appb-img-000052
    상기 화학식 1에서,
    R11 및 R12는 각각 독립적으로, 수소, 및 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택되고,
    R13 내지 R17은 각각 독립적으로, 수소, 선형 또는 분지형의 C1-C4 알킬기, 및 선형 또는 분지형의 C2-C6 알케닐기로 구성된 군으로부터 선택되고,
    단, R13 및 R14 중 하나 이상은 수소가 아니며, R15 내지 R17 중 하나 이상은 수소가 아니다.
  12. 제 11 항에 있어서,
    상기 실리콘 전구체 화합물이 하기 화학식으로 표시되는 화합물로 이루어진 군으로부터 선택되는 하나 이상을 포함하는, 실리콘-함유 막 형성용 조성물:
    Figure PCTKR2022010713-appb-img-000053
    Figure PCTKR2022010713-appb-img-000054
    Figure PCTKR2022010713-appb-img-000055
  13. 제 1 항의 실리콘-함유 막의 형성 방법에 의해 제조된 실리콘-함유 막.
  14. 제 13 항에 있어서,
    하기 식 1로 표시되는 실리콘-함유 막의 수축률(S750)이 5.0% 이하인, 실리콘-함유 막:
    Figure PCTKR2022010713-appb-img-000056
    상기 식 1에서,
    A는 750℃에서 ALD에 의해 형성된 실리콘-함유 막의 초기 두께(Å)이고,
    B는 750℃에서 ALD에 의해 형성된 실리콘-함유 막을 750℃에서 아르곤(Ar) 분위기에서 60분 동안 체류 후의 실리콘-함유 막의 두께(Å)이다.
  15. 제 13 항에 있어서,
    상기 실리콘-함유 막이 750℃에서 500 Å의 두께로 증착되어 형성된 것이고,
    상기 실리콘-함유 막을 1%의 묽은 불산의 식각 용액에 노출시키기 전과 후의 실리콘-함유 막의 두께를 엘립소미터로 측정할 때, 하기 식 2로 표시되는 실리콘-함유 막의 식각률(Å/s)이 4.0 Å/s 이하인, 실리콘-함유 막:
    Figure PCTKR2022010713-appb-img-000057
    상기 식각 두께 변화량(△E)은 하기 식 2-1로 표시되고,
    Figure PCTKR2022010713-appb-img-000058
    상기 식 2-1에서,
    EA는 750℃에서 ALD에 의해 형성된 실리콘-함유 막의 초기 두께(Å)이고,
    EB는 750℃에서 ALD에 의해 형성된 실리콘-함유 막을 1%의 묽은 HF 용액에 30초간 식각한 후 실리콘-함유 막의 두께(Å)이다.
PCT/KR2022/010713 2021-07-23 2022-07-21 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막 WO2023003398A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280051499.1A CN117677729A (zh) 2021-07-23 2022-07-21 用于形成含硅膜的方法及由此形成的含硅膜
JP2024501184A JP2024526692A (ja) 2021-07-23 2022-07-21 ケイ素含有膜を形成するための方法、及び、その方法によって形成されるケイ素含有膜
US18/577,875 US20240318305A1 (en) 2021-07-23 2022-07-21 Method for forming silicon-containing film, and silicon-containing film formed thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210097389 2021-07-23
KR10-2021-0097389 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023003398A1 true WO2023003398A1 (ko) 2023-01-26

Family

ID=84979346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010713 WO2023003398A1 (ko) 2021-07-23 2022-07-21 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막

Country Status (6)

Country Link
US (1) US20240318305A1 (ko)
JP (1) JP2024526692A (ko)
KR (2) KR102537665B1 (ko)
CN (2) CN117642525A (ko)
TW (1) TW202319389A (ko)
WO (1) WO2023003398A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142591A (ko) * 2014-06-11 2015-12-22 (주)디엔에프 신규한 아미노실릴아민 화합물 및 원자층 증착법을 이용한 Si-N 결합을 포함하는 절연막의 제조방법
KR20170124108A (ko) * 2016-04-29 2017-11-09 세종대학교산학협력단 실리콘 질화막의 증착 방법 및 상기 실리콘 질화막의 증착 장치
US20210032275A1 (en) * 2019-07-30 2021-02-04 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cyclic germanium silylamido precursors for ge-containing film depositions and methods of using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734393B1 (ko) 2005-11-28 2007-07-02 주식회사 에이이티 실리콘 박막의 원자층 증착 방법
KR101703871B1 (ko) * 2014-05-30 2017-02-08 주식회사 유피케미칼 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
US11282745B2 (en) * 2019-04-28 2022-03-22 Applied Materials, Inc. Methods for filling features with ruthenium
KR102364476B1 (ko) * 2020-05-08 2022-02-18 주식회사 한솔케미칼 실리콘 전구체 및 이를 이용한 실리콘 함유 박막의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142591A (ko) * 2014-06-11 2015-12-22 (주)디엔에프 신규한 아미노실릴아민 화합물 및 원자층 증착법을 이용한 Si-N 결합을 포함하는 절연막의 제조방법
KR20170124108A (ko) * 2016-04-29 2017-11-09 세종대학교산학협력단 실리콘 질화막의 증착 방법 및 상기 실리콘 질화막의 증착 장치
US20210032275A1 (en) * 2019-07-30 2021-02-04 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cyclic germanium silylamido precursors for ge-containing film depositions and methods of using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DU LIYONG, YANLONG BAI, WENXIANG CHU, YUQIANG DING: "Synthesis of two aminosilanes as CVD precursors of SiCxNy films: Tuning film composition by molecular Structures", PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS, vol. 193, no. 9, 19 April 2018 (2018-04-19), pages 568 - 573, XP093026259, DOI: 10.1080/10426507.2018.1455682 *
PARK JAE-MIN, JANG SE JIN, YUSUP LUCHANA L., LEE WON-JUN, LEE SANG-ICK: "Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 8, no. 32, 17 August 2016 (2016-08-17), US , pages 20865 - 20871, XP093026255, ISSN: 1944-8244, DOI: 10.1021/acsami.6b06175 *

Also Published As

Publication number Publication date
TW202319389A (zh) 2023-05-16
JP2024526692A (ja) 2024-07-19
CN117677729A (zh) 2024-03-08
US20240318305A1 (en) 2024-09-26
KR20230015855A (ko) 2023-01-31
KR20230088637A (ko) 2023-06-20
KR102537665B1 (ko) 2023-06-20
CN117642525A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2012067439A2 (ko) 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
WO2019156451A1 (ko) 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 형성용 전구체 조성물, 및 이를 이용하는 막의 형성 방법
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
WO2022149854A1 (ko) 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
WO2020101437A1 (ko) 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2018124705A1 (ko) 식각용 조성물 및 이를 이용한 반도체 소자의 제조방법
WO2018048124A1 (ko) 5족 금속 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2015190900A1 (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
WO2021153986A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법
WO2023200154A1 (ko) 루테늄 전구체 조성물, 이의 제조방법, 및 이를 이용한 루테늄-함유 막의 형성 방법
WO2023003398A1 (ko) 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막
WO2024151136A1 (ko) 실리콘-함유 막의 형성 방법, 이에 사용되는 조성물 및 실리콘 전구체 화합물
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2022019712A1 (ko) 니오븀 전구체 화합물, 이를 포함하는 막 형성용 전구체 조성물, 및 니오븀-함유 막 형성 방법
WO2023287192A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물, 및 실리콘-함유 막 형성용 조성물을 이용한 막 형성 방법
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2023287196A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물, 및 실리콘-함유 막 형성용 조성물을 이용한 막 형성 방법
WO2023219446A1 (ko) 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2024225879A1 (ko) 실리콘 함유 박막 증착용 조성물 및 이를 이용하여 제조되는 실리콘 함유 박막
WO2024205189A1 (ko) 사이클로다이실라잔 화합물, 이를 포함하는 실리콘 함유 박막 증착용 조성물 및 이를 이용한 실리콘 함유 박막의 제조방법
WO2021172867A1 (ko) 알루미늄 전구체 화합물 및 이의 제조 방법, 이를 이용한 알루미늄 함유 막 형성 방법
WO2014168312A1 (ko) 4 족 전이금속-함유 전구체 화합물 및 이를 이용하는 박막의 증착 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22846268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501184

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280051499.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22846268

Country of ref document: EP

Kind code of ref document: A1