WO2022015099A1 - 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 - Google Patents
박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 Download PDFInfo
- Publication number
- WO2022015099A1 WO2022015099A1 PCT/KR2021/009167 KR2021009167W WO2022015099A1 WO 2022015099 A1 WO2022015099 A1 WO 2022015099A1 KR 2021009167 W KR2021009167 W KR 2021009167W WO 2022015099 A1 WO2022015099 A1 WO 2022015099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- growth inhibitor
- forming
- ald chamber
- growth
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 308
- 238000000034 method Methods 0.000 title claims abstract description 104
- 239000003966 growth inhibitor Substances 0.000 title claims abstract description 90
- 239000000758 substrate Substances 0.000 title claims abstract description 68
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 47
- 230000008569 process Effects 0.000 claims abstract description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000010494 dissociation reaction Methods 0.000 claims abstract description 15
- 230000005593 dissociations Effects 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 7
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 7
- 239000011737 fluorine Substances 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 92
- 238000000231 atomic layer deposition Methods 0.000 claims description 57
- 239000002243 precursor Substances 0.000 claims description 49
- 238000010926 purge Methods 0.000 claims description 43
- 239000007789 gas Substances 0.000 claims description 30
- 230000009467 reduction Effects 0.000 claims description 23
- 206010037544 Purging Diseases 0.000 claims description 20
- 239000012495 reaction gas Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- 230000008016 vaporization Effects 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 238000005121 nitriding Methods 0.000 claims description 4
- 239000007800 oxidant agent Substances 0.000 claims description 4
- 150000001491 aromatic compounds Chemical class 0.000 claims description 2
- 150000001923 cyclic compounds Chemical class 0.000 claims description 2
- 239000006227 byproduct Substances 0.000 abstract description 27
- 230000000694 effects Effects 0.000 abstract description 22
- 238000007086 side reaction Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 4
- 238000000151 deposition Methods 0.000 description 52
- 230000008021 deposition Effects 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 45
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 38
- 229910052751 metal Inorganic materials 0.000 description 24
- 239000002184 metal Substances 0.000 description 24
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 20
- -1 aluminum Chemical class 0.000 description 19
- 229910052786 argon Inorganic materials 0.000 description 19
- 239000010408 film Substances 0.000 description 18
- 239000006200 vaporizer Substances 0.000 description 18
- 239000000460 chlorine Substances 0.000 description 17
- 239000012535 impurity Substances 0.000 description 15
- 230000008901 benefit Effects 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 9
- 239000012454 non-polar solvent Substances 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000012808 vapor phase Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 150000001924 cycloalkanes Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- RKSOPLXZQNSWAS-UHFFFAOYSA-N tert-butyl bromide Chemical compound CC(C)(C)Br RKSOPLXZQNSWAS-UHFFFAOYSA-N 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 3
- ANGGPYSFTXVERY-UHFFFAOYSA-N 2-iodo-2-methylpropane Chemical compound CC(C)(C)I ANGGPYSFTXVERY-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- ULYZAYCEDJDHCC-UHFFFAOYSA-N isopropyl chloride Chemical compound CC(C)Cl ULYZAYCEDJDHCC-UHFFFAOYSA-N 0.000 description 3
- VSGXTQWTJYAQHO-UHFFFAOYSA-N 1-bromo-1-methylcyclohexane Chemical compound CC1(Br)CCCCC1 VSGXTQWTJYAQHO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000560 X-ray reflectometry Methods 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 125000005131 dialkylammonium group Chemical group 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- NBRKLOOSMBRFMH-UHFFFAOYSA-N tert-butyl chloride Chemical compound CC(C)(C)Cl NBRKLOOSMBRFMH-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 2
- 125000005208 trialkylammonium group Chemical group 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- SYSZENVIJHPFNL-UHFFFAOYSA-N (alpha-D-mannosyl)7-beta-D-mannosyl-diacetylchitobiosyl-L-asparagine, isoform B (protein) Chemical compound COC1=CC=C(I)C=C1 SYSZENVIJHPFNL-UHFFFAOYSA-N 0.000 description 1
- HLVFKOKELQSXIQ-UHFFFAOYSA-N 1-bromo-2-methylpropane Chemical compound CC(C)CBr HLVFKOKELQSXIQ-UHFFFAOYSA-N 0.000 description 1
- NHDODQWIKUYWMW-UHFFFAOYSA-N 1-bromo-4-chlorobenzene Chemical compound ClC1=CC=C(Br)C=C1 NHDODQWIKUYWMW-UHFFFAOYSA-N 0.000 description 1
- UCCUXODGPMAHRL-UHFFFAOYSA-N 1-bromo-4-iodobenzene Chemical compound BrC1=CC=C(I)C=C1 UCCUXODGPMAHRL-UHFFFAOYSA-N 0.000 description 1
- ZDFBKZUDCQQKAC-UHFFFAOYSA-N 1-bromo-4-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=C(Br)C=C1 ZDFBKZUDCQQKAC-UHFFFAOYSA-N 0.000 description 1
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 1
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical compound CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 description 1
- DLKQHBOKULLWDQ-UHFFFAOYSA-N 1-bromonaphthalene Chemical compound C1=CC=C2C(Br)=CC=CC2=C1 DLKQHBOKULLWDQ-UHFFFAOYSA-N 0.000 description 1
- YZWKKMVJZFACSU-UHFFFAOYSA-N 1-bromopentane Chemical compound CCCCCBr YZWKKMVJZFACSU-UHFFFAOYSA-N 0.000 description 1
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 description 1
- UETIKOURPPBJCI-UHFFFAOYSA-N 1-chlorobutane;tin Chemical compound [Sn].CCCCCl UETIKOURPPBJCI-UHFFFAOYSA-N 0.000 description 1
- CXICPEZXBDSHJO-UHFFFAOYSA-N 1-iodo-1-propan-2-ylcyclohexane Chemical compound CC(C)C1(CCCCC1)I CXICPEZXBDSHJO-UHFFFAOYSA-N 0.000 description 1
- UQVVBQGUWVSNAY-UHFFFAOYSA-N 1-iodo-2-methylpentane Chemical compound CCCC(C)CI UQVVBQGUWVSNAY-UHFFFAOYSA-N 0.000 description 1
- SCCCFNJTCDSLCY-UHFFFAOYSA-N 1-iodo-4-nitrobenzene Chemical compound [O-][N+](=O)C1=CC=C(I)C=C1 SCCCFNJTCDSLCY-UHFFFAOYSA-N 0.000 description 1
- UYNNXEYDXOYPIY-UHFFFAOYSA-N 2-(amino-ethyl-methylgermyl)propane Chemical compound C(C)(C)[Ge](N)(CC)C UYNNXEYDXOYPIY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- XZRYRASMCKCEPO-UHFFFAOYSA-N C(C)(C)C(N[Ge]CC)(C(C)C)C(C)C Chemical compound C(C)(C)C(N[Ge]CC)(C(C)C)C(C)C XZRYRASMCKCEPO-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101000735417 Homo sapiens Protein PAPPAS Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102100034919 Protein PAPPAS Human genes 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000005615 azonium group Chemical group 0.000 description 1
- 238000005284 basis set Methods 0.000 description 1
- KMGBZBJJOKUPIA-UHFFFAOYSA-N butyl iodide Chemical compound CCCCI KMGBZBJJOKUPIA-UHFFFAOYSA-N 0.000 description 1
- CVCSGXJPONFHRC-UHFFFAOYSA-N carbon monoxide;cobalt;nitroxyl anion Chemical group [Co].[O+]#[C-].[O+]#[C-].[O+]#[C-].O=[N-] CVCSGXJPONFHRC-UHFFFAOYSA-N 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- UMYVESYOFCWRIW-UHFFFAOYSA-N cobalt;methanone Chemical compound O=C=[Co] UMYVESYOFCWRIW-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-O diazynium Chemical compound [NH+]#N IJGRMHOSHXDMSA-UHFFFAOYSA-O 0.000 description 1
- 125000004989 dicarbonyl group Chemical group 0.000 description 1
- MQIKJSYMMJWAMP-UHFFFAOYSA-N dicobalt octacarbonyl Chemical group [Co+2].[Co+2].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] MQIKJSYMMJWAMP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- RWWNQEOPUOCKGR-UHFFFAOYSA-N tetraethyltin Chemical compound CC[Sn](CC)(CC)CC RWWNQEOPUOCKGR-UHFFFAOYSA-N 0.000 description 1
- VXKWYPOMXBVZSJ-UHFFFAOYSA-N tetramethyltin Chemical compound C[Sn](C)(C)C VXKWYPOMXBVZSJ-UHFFFAOYSA-N 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/045—Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45534—Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
Definitions
- the present invention relates to a growth inhibitor for thin film formation, a thin film formation method using the same, and a semiconductor substrate manufactured therefrom, and more particularly, to appropriately lower the thin film growth rate by suppressing side reactions and to remove process byproducts in the thin film, thereby preventing corrosion or deterioration.
- a growth inhibitor for thin film formation that greatly improves step coverage and thickness uniformity of the thin film even when forming a thin film on a substrate having a complex structure, a thin film formation method using the same, and a semiconductor substrate manufactured therefrom will be.
- the degree of integration of memory and non-memory semiconductor devices is increasing day by day, and as the structure becomes more complex, the importance of step coverage in depositing various thin films on a substrate is increasing.
- the semiconductor thin film is made of a metal nitride, a metal oxide, a metal silicide, and the like.
- the metal nitride thin film includes titanium nitride (TiN), tantalum nitride (TaN), zirconium nitride (ZrN), etc., and the thin film is generally doped with a silicon layer of a semiconductor and aluminum (Al) used as an interlayer wiring material, It is used as a diffusion barrier with copper (Cu) or the like.
- Al aluminum
- Cu copper
- the tungsten (W) thin film is deposited on the substrate, it is used as an adhesion layer.
- ALD atomic layer deposition
- CVD chemical vapor deposition
- An object of the present invention is to provide a growth inhibitor for thin film formation that greatly improves step coverage and thickness uniformity of a thin film, a thin film formation method using the same, and a semiconductor substrate manufactured therefrom.
- An object of the present invention is to improve the density and electrical properties of the thin film by improving the crystallinity of the thin film.
- the A is carbon or silicon, B is hydrogen or alkyl having 1 to 3 carbon atoms, and X is a leaving group having a bond dissociation energy of 50 to 350 KJ/mol, and the Y and Z are independently at least one selected from the group consisting of oxygen, nitrogen, sulfur and fluorine and are not the same, n is an integer of 1 to 15, o is an integer of 1 or more, m is 0 to 2n +1, and i and j are integers from 0 to 3.) to provide a growth inhibitor for thin film formation.
- the growth inhibitor for thin film formation of the present invention can be provided as a film quality improving agent.
- the present invention provides a method for forming a thin film, which includes injecting the growth inhibitor for thin film formation into an ALD chamber and adsorbing it to a loaded substrate surface.
- the present invention provides a semiconductor substrate manufactured by the method for forming the thin film.
- the present invention by suppressing side reactions and reducing the deposition rate to appropriately lower the growth rate of the thin film, and also to remove process by-products in the thin film, corrosion or deterioration is prevented, and even when a thin film is formed on a substrate having a complex structure, step coverage (step coverage) ) and a growth inhibitor for thin film formation that greatly improves the thickness uniformity of the thin film, a thin film formation method using the same, and a semiconductor substrate manufactured therefrom.
- Another object of the present invention is to improve the density and electrical properties of the thin film by improving the crystallinity of the thin film.
- FIG. 1 is a process diagram for explaining a conventional ALD process.
- FIG. 2 is a flowchart illustrating an ALD process according to an embodiment of the present invention.
- FIG 3 and 4 are SIMS analysis graphs showing the reduction rate of Cl element according to the deposition temperature of Example 1 (SP-TiCl 4 ) and Comparative Example 1 (TiCl 4 ) of the present invention.
- Example 5 is a TEM photograph of a cross section near the top and near the bottom of the TIN thin film formed in Example 1 (SP-TiCl 4 ) and Comparative Example 1 (TiCl 4 ) of the present invention.
- FIG. 6 is an explanatory view of the cross-sectional positions of the top and bottom of FIG. 5 .
- Example 7 is a SIMS analysis graph of the SiN thin film prepared in Example 5 and Comparative Example 4.
- Example 8 shows that the growth inhibitor for thin film formation was not added as in Comparative Example 1 (Ref TiN), and in Example 4, the growth inhibitor for thin film formation was added in an amount of 0.1 g/min (tert-BuI (0.1 g) /min)) and the XRD analysis graph for the growth inhibitor for thin film formation in Example 4 (tert-BuI (0.1g/min)) was added in an amount of 0.1g/min.
- Example 9 is a graph analyzing the carbon concentration in the thin film of Example 6 and Comparative Examples 2 and 3;
- the present inventors found that when a compound containing a substituent having a predetermined bond dissociation energy is first adsorbed as a thin film growth inhibitor before adsorbing the thin film precursor compound to the surface of the substrate loaded into the ALD chamber, the growth rate of the thin film formed after deposition is significantly lowered. It was confirmed that the step coverage was significantly improved, and the amount of halides remaining as a process by-product was greatly reduced.
- the thin film precursor compound is first adsorbed on the surface of the substrate loaded into the ALD chamber and a halogen-substituted compound having a predetermined structure is adsorbed as a thin film growth inhibitor, the growth rate of the thin film formed by acting as a film quality improver is different from expected. increase, the amount of halide remaining as a by-product of the process was greatly reduced, and the density and resistivity of the thin film were greatly improved. Based on this, further research was completed and the present invention was completed.
- the growth inhibitory agent for thin film formation of the present invention is represented by the following Chemical Formula 1
- the A is carbon or silicon
- B is hydrogen or alkyl having 1 to 3 carbon atoms
- X is a leaving group having a bond dissociation energy of 50 to 350 KJ/mol
- the Y and Z are independently at least one selected from the group consisting of oxygen, nitrogen, sulfur and fluorine and are not the same
- n is an integer of 1 to 15
- o is an integer of 1 or more
- m is 0 to 2n +1
- i and j are integers from 0 to 3.
- n is preferably an integer from 2 to 15, more preferably an integer from 2 to 10, even more preferably an integer from 2 to 6, even more preferably an integer from 4 to 6, Within this range, the effect of removing process by-products is large and the step coverage is excellent.
- X is preferably a leaving group having a bond dissociation energy of 50 to 350 KJ/mol, and more preferably a bond dissociation energy of 50 to 325 KJ. It is a leaving group of /mol, and more preferably a leaving group having a bond dissociation energy of 50 to 300 KJ/mol, in which case, side reactions are suppressed and process by-products are more effectively removed has the effect of removing it.
- the bond dissociation energy may be measured using a quantum chemistry program (Gaussian09). All calculations were performed using Equation 3 below based on Method (DFT/B3LYP) and Basis Sets (6-31G(d,p), except Iodine: LanL2DZ) at temperature: 460 °C, pressure: 1 torr and scale: 0.9804 is calculated
- EAB is the thermal energy of the optimized compound
- EA and EB are the thermal energy of radicals A and B, respectively.
- X is preferably a mesyl (mesyl), tosyl (tosyl), halogen group, diazonium (azonium) (-N 2 + ), perfluoroalkylsulfonate (-OSO 2 R'), alcohol cation ( -O + HR "), nitrates (nitrate) (- ONO 2) , ammonium groups (ammonium) (- NH 3) , mono-alkyl ammonium group (monoalkylammonium) dialkyl ammonium group (dialkylammonium), trialkylammonium group (trialkylammonium), dialkyl ether cation (-O + R 1 R 2 ), phosphate group (-OPO(OH) 2 ) or thioether cation (-S + R 3 R 4 ), in which case side reactions are suppressed and process by-products are more effectively removed has the effect of removing it.
- o may be preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and still more preferably 1 or 2, and within this range, the effect of reducing the deposition rate is large. There is a more effective advantage in improving the step coverage.
- the m is preferably 1 to 2n+1, more preferably 3 to 2n+1, within this range, the effect of removing process by-products is large and the step coverage is excellent.
- Y and Z are preferably at least one independently selected from the group consisting of oxygen, nitrogen and fluorine, and are not the same as each other.
- both i and j are not 0, and as a specific example, may be an integer of 1 to 3.
- the compound represented by Formula 1 may preferably be a branched, cyclic or aromatic compound, and specific examples thereof include tert-butyl bromide, 1-methyl-1-bromocyclohexane, 1-iodopropane, 1-iodobutane, and 1-iodo.
- the compound represented by Formula 1 is preferably used in an atomic layer deposition (ALD) process, and in this case, it effectively protects the surface of the substrate as a growth inhibitor without interfering with the adsorption of the thin film precursor compound, and removes process byproducts. It has the advantage of effectively removing it.
- ALD atomic layer deposition
- the compound represented by Formula 1 is preferably a liquid at room temperature (22° C.), a density of 0.8 to 2.5 g/cm 3 or 0.8 to 1.5 g/cm 3 , and a vapor pressure (20° C.) of 0.1 to 300 mmHg or 1 to 300 mmHg, and the solubility in water (25° C.) may be 200 mg/L or less, and within this range, there is an excellent effect of step coverage, thin film thickness uniformity, and film quality improvement.
- the compound represented by Formula 1 has a density of 0.85 to 2.0 g/cm 3 or 0.85 to 1.3 g/cm 3 , a vapor pressure (20° C.) of 1 to 260 mmHg, and a solubility in water (25 °C) may be 160 mg/L or less, and within this range, there is an excellent effect of step coverage, thin film thickness uniformity, and film quality improvement.
- the method for forming a thin film of the present invention is represented by the following Chemical Formula 1
- the A is carbon or silicon, B is hydrogen or alkyl having 1 to 3 carbon atoms, and X is a leaving group having a bond dissociation energy of 50 to 350 KJ/mol, and the Y and Z are independently at least one selected from the group consisting of oxygen, nitrogen, sulfur and fluorine and are not the same, n is an integer of 1 to 15, o is an integer of 1 or more, m is 0 to 2n +1, and i and j are integers from 0 to 3.) It characterized in that it comprises the step of injecting a growth inhibitor for thin film formation represented by the ALD chamber into the ALD chamber and adsorbing it to the surface of the loaded substrate, In this case, by suppressing side reactions and slowing the deposition rate to reduce the growth rate of the thin film and also remove process by-products in the thin film, even when forming a thin film on a substrate having a complex structure, step coverage and thickness uniformity of the thin film are improved. It has a significant improvement effect.
- the feeding time of the growth inhibitor for thin film formation on the substrate surface is preferably 1 to 10 seconds per cycle, more preferably 1 to 5 seconds, more preferably It is 2 to 5 seconds, more preferably 2 to 4 seconds, and there is an advantage in that the thin film growth rate is low within this range, and the step coverage and economic efficiency are excellent.
- the feeding time of the growth inhibitor for thin film formation is based on a volume of 15 to 20 L and a flow rate of 0.5 to 5 mg/s of the chamber, and more specifically, a volume of 18 L and a flow rate of 1 to 2 of the chamber. It is based on mg/s.
- the method for forming the thin film may include: i) vaporizing the growth inhibitor for forming the thin film and adsorbing it on the surface of the substrate loaded in the ALD chamber; ii) first purging the inside of the ALD chamber with a purge gas; iii) vaporizing the thin film precursor compound and adsorbing it to the surface of the loaded substrate in the ALD chamber; iv) secondary purging of the inside of the ALD chamber with a purge gas; v) supplying a reaction gas into the ALD chamber; and vi) tertiary purging of the inside of the ALD chamber with a purge gas; in this case, the growth rate of the thin film is appropriately lowered, and even if the deposition temperature is increased when forming the thin film, the process by-products generated are effectively removed to prevent the formation of the thin film.
- the method for forming the thin film includes the steps of: i) vaporizing a thin film precursor compound and adsorbing it to the surface of a substrate loaded in the ALD chamber; ii) first purging the inside of the ALD chamber with a purge gas; iii) vaporizing the growth inhibitor for thin film formation and adsorbing it on the surface of the substrate loaded in the ALD chamber; iv) secondary purging of the inside of the ALD chamber with a purge gas; v) supplying a reaction gas into the ALD chamber; and vi) tertiary purging of the inside of the ALD chamber with a purge gas; in this case, the growth rate of the thin film is increased, and even if the deposition temperature during thin film formation is increased, the process byproducts generated are effectively removed to reduce the specific resistance of the thin film. There is an advantage in that it is reduced and the thin film density and crystallinity are greatly improved.
- the growth inhibitor and thin film precursor compound for forming a thin film may be transferred into the ALD chamber by a VFC method, a DLI method, or an LDS method, and more preferably, is transferred into the ALD chamber by an LDS method.
- the ratio of the growth inhibitor for thin film formation and the precursor compound in the ALD chamber may be preferably 1:1.5 to 1:20, more preferably 1:2 to 1:15, even more preferably 1:2 to 1:12, more preferably 1:2.5 to 1:10, within this range, the reduction rate of thin film growth rate (GPC) per cycle is high and the effect of reducing process by-products is large.
- the thin film precursor compound is not particularly limited if it is a thin film precursor compound typically used in ALD (atomic layer deposition method), but is preferably a metal film precursor compound, a metal oxide film precursor compound, a metal nitride film precursor compound, or a silicon nitride film precursor compound.
- the metal preferably consists of tungsten, cobalt, chromium, aluminum, hafnium, vanadium, niobium, germanium, lanthanide, actinide, gallium, tantalum, zirconium, ruthenium, copper, titanium, nickel, iridium, and molybdenum. It may include one or more selected from the group.
- the metal film precursor, the metal oxide film precursor, and the metal nitride film precursor are, for example, a metal halide, a metal alkoxide, an alkyl metal compound, a metal amino compound, a metal carbonyl compound, and a substituted or unsubstituted cyclopentadienyl metal compound. It may be one or more selected from, but is not limited thereto.
- the metal film precursor, the metal oxide film precursor, and the metal nitride film precursor are tetrachlorotitan, tetrachlorogemanium, tetrachlorotin, tris (isopropyl) ethylmethylaminogermanium (tris), respectively.
- the silicon nitride film precursor is, for example, SiH 4 , SiCl 4 , SiF 4 , SiCl 2 H 2 , Si 2 Cl 6 , TEOS, DIPAS, BTBAS, (NH 2 )Si(NHMe) 3 , (NH 2 )Si(NHEt) 3 , (NH 2 )Si(NH n Pr) 3 , (NH 2 )Si(NH i Pr) 3 , (NH 2 )Si(NH n Bu) 3 , (NH 2 )Si(NH i Bu) 3 , (NH 2 )Si(NH t Bu) 3 , (NMe 2 )Si(NHMe) 3 , (NMe 2 )Si(NHEt) 3 , (NMe 2 )Si(NH n Pr) 3 , (NMe 2 )Si( NH i Pr) 3 , (NMe 2 )Si( NH i Pr) 3 , (NMe
- n Pr means n-propyl
- i Pr means iso-propyl
- n Bu means n-butyl
- i Bu means iso-butyl
- t Bu means tert -butyl
- the thin film precursor compound may be titanium tetrahalide in a preferred embodiment.
- the titanium tetrahalide may be used as a metal precursor of the composition for forming a thin film.
- the titanium tetrahalide may be, for example, at least one selected from the group consisting of TiF 4 , TiCl 4 , TiBr 4 and TiI 4 , and for example, TiCl 4 is preferable in terms of economy, but is not limited thereto.
- the titanium tetrahalide Since the titanium tetrahalide has excellent thermal stability and does not decompose at room temperature and exists in a liquid state, it can be usefully used as a precursor of ALD (atomic layer deposition) to deposit a thin film.
- ALD atomic layer deposition
- the thin film precursor compound may be mixed with a non-polar solvent and introduced into the chamber, for example.
- a non-polar solvent for example.
- the viscosity or vapor pressure of the thin film precursor compound can be easily adjusted.
- the non-polar solvent may preferably be at least one selected from the group consisting of alkanes and cycloalkanes, and in this case, the step coverage ( step coverage) is improved.
- the non-polar solvent may include a C1 to C10 alkane or a C3 to C10 cycloalkane, preferably a C3 to C10 cycloalkane, in which case the reactive and It has the advantage of low solubility and easy water management.
- C1, C3, etc. mean the number of carbon atoms.
- the cycloalkane may preferably be a C3 to C10 monocycloalkane, and among the monocycloalkanes, cyclopentane is a liquid at room temperature and has the highest vapor pressure, which is preferable in the vapor deposition process, but is not limited thereto.
- the non-polar solvent has, for example, a solubility in water (25° C.) of 200 mg/L or less, preferably 50 to 200 mg/L, more preferably 135 to 175 mg/L, and within this range, the thin film precursor compound It has the advantage of low reactivity and easy moisture management.
- solubility is not particularly limited if it is based on a measurement method or standard commonly used in the technical field to which the present invention belongs, and for example, a saturated solution may be measured by an HPLC method.
- the non-polar solvent may preferably include 5 to 95 wt %, more preferably 10 to 90 wt %, more preferably 40 to 95 wt %, based on the total weight of the thin film precursor compound and the non-polar solvent. 90% by weight, most preferably 70 to 90% by weight.
- the content of the non-polar solvent exceeds the upper limit, it causes impurities to increase resistance and impurity levels in the thin film.
- impurities such as chlorine (Cl) ions are small.
- the thin film growth rate per cycle ( ⁇ /Cycle) reduction rate calculated by the following Equation 1 is -5% or less, preferably -10% or less, more preferably -20% or less, It is more preferably -30% or less, still more preferably -40% or less, and most preferably -45% or less, and within this range, the step coverage and the film thickness uniformity are excellent.
- the residual halogen intensity (c/s) in the thin film formed after 200 cycles measured according to SIMS is preferably 10,000 or less, more preferably 8,000 or less, still more preferably 7,000 or less, even more preferably 6,000 or less. and the effect of preventing corrosion and deterioration within this range is excellent.
- the purging is preferably 1,000 to 10,000 sccm, more preferably 2,000 to 7,000 sccm, still more preferably 2,500 to 6,000 sccm, within this range, the thin film growth rate per cycle is reduced to a preferable range, and the effect of reducing process by-products there is
- the ALD atomic layer deposition process
- IC integrated circuit
- ALD atomic layer deposition process
- the thin film forming method may be carried out, for example, at a deposition temperature in the range of 50 to 900 °C, preferably at a deposition temperature in the range of 300 to 700 °C, more preferably at a deposition temperature in the range of 350 to 600 °C , More preferably, it is carried out at a deposition temperature in the range of 400 to 550 °C, and even more preferably, it is carried out at a deposition temperature in the range of 400 to 500 °C. has the effect of growing into
- the thin film formation method may be carried out, for example, at a deposition pressure in the range of 0.1 to 10 Torr, preferably at a deposition pressure in the range of 0.5 to 5 Torr, and most preferably at a deposition pressure in the range of 1 to 3 Torr. , there is an effect of obtaining a thin film of uniform thickness within this range.
- the deposition temperature and the deposition pressure may be measured as the temperature and pressure formed in the deposition chamber, or the temperature and pressure applied to the substrate in the deposition chamber.
- the method for forming the thin film preferably includes: raising the temperature in the chamber to a deposition temperature before introducing the growth inhibitor for forming the thin film into the chamber; and/or purging by injecting an inert gas into the chamber before the growth inhibitor for thin film formation is introduced into the chamber.
- the present invention provides an ALD chamber, a first vaporizer for vaporizing the growth inhibitor for thin film formation, a first transfer means for transferring the vaporized growth inhibitor for forming a thin film into the ALD chamber as a thin film manufacturing apparatus capable of implementing the above thin film manufacturing method;
- a thin film manufacturing apparatus including a second vaporizer for vaporizing the Ti-based thin film precursor and a second transfer means for transferring the vaporized Ti-based thin film precursor into the ALD chamber may be included.
- the vaporizer and the transfer means are not particularly limited in the case of the vaporizer and the transfer means commonly used in the technical field to which the present invention pertains.
- a substrate on which a thin film is to be formed is placed in a deposition chamber capable of atomic layer deposition.
- the substrate may include a semiconductor substrate such as a silicon substrate or silicon oxide.
- the substrate may further have a conductive layer or an insulating layer formed thereon.
- the above-described growth inhibitor for thin film formation In order to deposit the thin film on the substrate positioned in the deposition chamber, the above-described growth inhibitor for thin film formation, the thin film precursor compound, or a mixture of the thin film precursor compound or the non-polar solvent are prepared, respectively.
- the prepared inhibitor for thin film formation is injected into the vaporizer, changed into a vapor phase, transferred to a deposition chamber, and adsorbed on a substrate, and the non-adsorbed inhibitor for thin film formation is purged.
- the vapor phase is transferred to the deposition chamber to be adsorbed on the substrate, and the non-adsorbed composition for forming a thin film is purged.
- the method of transferring the inhibitor for thin film formation and the thin film precursor compound to the deposition chamber is, for example, a method of transferring the volatilized gas using a gas flow controller (MFC) method (Vapor Flow Control; VFC). ) or a liquid delivery system (LDS) using a liquid mass flow controller (LMFC) method, preferably using the LDS method.
- MFC gas flow controller
- LDS liquid delivery system
- LDS liquid mass flow controller
- one or a mixture of two or more selected from argon (Ar), nitrogen (N 2 ), and helium (He) may be used as a transport gas or diluent gas for moving the inhibitor for thin film formation and the thin film precursor compound on the substrate.
- Ar argon
- N 2 nitrogen
- He helium
- an inert gas may be used as an example, and preferably, the transport gas or the diluent gas may be used.
- the reaction gas is not particularly limited if it is a reaction gas commonly used in the technical field to which the present invention belongs, and may preferably include a reducing agent, a nitriding agent, or an oxidizing agent.
- the reducing agent and the thin film precursor compound adsorbed on the substrate react to form a metal thin film, the nitriding agent forms a metal nitride thin film, and the oxidizing agent forms a metal oxide thin film.
- the reducing agent may be ammonia gas (NH 3 ) or hydrogen gas (H 2 ), the nitriding agent may be nitrogen gas (N 2 ), and the oxidizing agent may be H 2 O, H 2 O 2 , O 2 , O 3 and N 2 O may be at least one selected from the group consisting of.
- the unreacted residual reaction gas is purged using the inert gas. Accordingly, it is possible to remove not only the excess reaction gas but also the generated by-products.
- the step of supplying the reaction gas and the step of purging the residual reaction gas are unit cycles, and in order to form a thin film having a desired thickness, the unit cycle may be repeated.
- the unit cycle may be, for example, 100 to 1000 times, preferably 100 to 500 times, and more preferably 150 to 300 times, and within this range, the desired thin film properties are well expressed.
- FIG. 1 is a flowchart illustrating a conventional ALD process
- FIG. 2 is a flowchart illustrating an ALD process according to an embodiment of the present invention.
- the growth inhibitor for thin film formation according to the present invention is adsorbed before adsorbing the thin film precursor compound (eg, TiCl 4 ) to protect the substrate surface. If not, process by-products such as HCl remain in the thin film (eg, TiN) formed by reacting with the reactive gas (eg, NH 3 ), thereby reducing the performance of the substrate due to corrosion or deterioration.
- the thin film precursor compound eg, TiCl 4
- the reactive gas eg, NH 3
- a thin film precursor compound eg, TiCl 4
- TSI growth inhibitor
- SP substrate surface
- process by-products such as HCl generated by reacting with a reaction gas (eg, NH 3 ) are removed together with a growth inhibitor for thin film formation, thereby preventing corrosion or deterioration of the substrate and further reducing the growth rate of the thin film per cycle
- the semiconductor substrate of the present invention is characterized in that it is produced by the method for forming a thin film of the present invention, and in this case, by suppressing side reactions to appropriately lower the growth rate of the thin film, and also by removing process by-products in the thin film, corrosion or deterioration is prevented, and step coverage ( step coverage) and thin film thickness uniformity are greatly excellent.
- the prepared thin film preferably has a thickness of 20 nm or less, a specific resistance value of 0.1 to 400 ⁇ cm, a halogen content of 10,000 ppm or less, a step coverage ratio of 90% or more, and performance as a diffusion barrier within this range This is excellent, and although there is an effect of reducing the corrosion of the metal wiring material, it is not limited thereto.
- the thin film may have a thickness of, for example, 5 to 20 nm, preferably 10 to 20 nm, more preferably 15 to 18.5 nm, and still more preferably 17 to 18.5 nm, and within this range, the thin film properties are excellent.
- the thin film may have, for example, a specific resistance value of 0.1 to 400 ⁇ cm, preferably 50 to 400 ⁇ cm, more preferably 100 to 300 ⁇ cm, and within this range, the thin film properties are excellent. .
- the thin film may have a halogen content of more preferably 9,000 ppm or less, or 1 to 9,000 ppm, more preferably 8,500 ppm or less, or 100 to 8,500 ppm, even more preferably 8,200 ppm or less, or 1,000 to 8,200 ppm, There is an effect of reducing the corrosion of the metal wiring material while having excellent thin film properties within the range.
- the thin film has, for example, a step coverage of 80% or more, preferably 90% or more, and more preferably 92% or more. There are applicable advantages.
- the prepared thin film may be, for example, TiN or TiO 2 thin film.
- TiCl 4 was prepared as a growth inhibitor for thin film formation and a thin film precursor compound described in Table 1 below, respectively.
- the prepared growth inhibitor for thin film formation was placed in a canister and supplied to a vaporizer heated to 150° C. at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- LMFC Liquid Mass Flow Controller
- the prepared TiCl 4 was put in a separate canister and supplied to a separate vaporizer heated to 150° C. at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- TiCl 4 vaporized in the vapor phase in the vaporizer was put into the deposition chamber for 1 second, and then argon purging was performed by supplying argon gas at 5000 sccm for 2 seconds. At this time, the pressure in the reaction chamber was controlled to 2.5 Torr.
- 1000 sccm of ammonia as a reactive gas was introduced into the reaction chamber for 3 seconds, and then argon purging was performed for 3 seconds.
- the substrate on which the metal thin film is to be formed was heated to 460 °C. This process was repeated 200 times to form a TiN thin film as a self-limiting atomic layer.
- Example 1 Tert-butyl bromide 229.86 kJ/mol
- Example 2 1-methyl-1-bromocyclohexane 277.91 kJ/mol
- Examples 3-5 Tert-butyl iodide 197.84 kJ/mol
- Example 6 Tert-butyl chloride 318.71 kJ/mol Comparative
- Comparative Example 2 n-butyl chloride 361.01 kJ/mol Comparative Example 3 2-chloro propane 353.76 kJ/mol
- the growth inhibitor for thin film formation described in Table 1 and TiCl 4 were prepared as thin film precursor compounds, respectively.
- the prepared growth inhibitor for thin film formation was placed in a canister and supplied to a vaporizer heated to 150° C. at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- Prepared TiCl 4 was put in a separate canister and supplied to a separate vaporizer heated to 150° C. at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- LMFC Liquid Mass Flow Controller
- TiCl 4 vaporized in the vapor phase in the vaporizer was put into the deposition chamber for 1 second, and then argon purging was performed by supplying argon gas at 5000 sccm for 2 seconds. At this time, the pressure in the reaction chamber was controlled to 2.5 Torr. Next, a growth inhibitor for thin film formation vaporized in the vapor phase in the vaporizer was put into the deposition chamber loaded with the substrate for 1 second, and then argon gas was supplied at 5000 sccm for 2 seconds to perform argon purging. At this time, the pressure in the reaction chamber was controlled to 2.5 Torr.
- the growth inhibitor for thin film formation described in Table 1 and Si 2 Cl 6 were prepared as thin film precursor compounds, respectively.
- the prepared growth inhibitor for thin film formation was placed in a canister and supplied to a vaporizer heated to 150° C. at a flow rate of 0.05 g/min using an LMFC (Liquid Mass Flow Controller) at room temperature.
- the prepared Si 2 Cl 6 was put in a separate canister and supplied to a separate vaporizer heated to 150° C. at a flow rate of 0.05 g/min using a liquid mass flow controller (LMFC) at room temperature.
- LMFC liquid mass flow controller
- argon gas was supplied at 5000 sccm for 2 seconds to perform argon purging.
- the pressure in the reaction chamber was controlled to 2.5 Torr.
- Si 2 Cl 6 vaporized in the vapor phase in the vaporizer was put into the deposition chamber for 1 second, and then argon gas was supplied at 5000 sccm for 2 seconds to perform argon purging.
- the pressure in the reaction chamber was controlled to 2.5 Torr.
- 1000 sccm of ammonia as a reactive gas was introduced into the reaction chamber for 3 seconds, and then plasma treatment of 200 W was performed.
- argon purging was performed for 3 seconds.
- the substrate on which the metal thin film is to be formed was heated to 460 °C. This process was repeated 300 times to form a SiN thin film as a self-limiting atomic layer.
- a TIN thin film was formed on the substrate in the same manner as in Example 1, except that the growth inhibitor for thin film formation was not used in Example 1 and the step of purging the growth inhibitor for non-adsorbed thin film formation was omitted.
- a TIN thin film was formed on the substrate in the same manner as in Example 1, except that n-butyl chloride and 2-chloro propane having a bond dissociation energy of more than 350 kJ/mol were used as growth inhibitors for thin film formation in Example 1.
- a SiN thin film was formed on the substrate in the same manner as in Example 6, except that the growth inhibitor for thin film formation was not used in Example 5 and the step of purging the growth inhibitor for non-adsorbed thin film formation was omitted.
- Example 1 using tert-butyl bromide as a growth inhibitor for thin film formation was compared with Comparative Example 1 not including the same.
- the deposition rate was 0.19 ⁇ /cycle, and the deposition rate was reduced by more than 40% compared to Comparative Example 1.
- the remaining Examples 2 and 3 and Example 5 also had deposition rates similar to those of Example 1.
- Comparative Examples 2 and 3 in which n-butyl chloride and 2-chloro propane having high bond dissociation energy were respectively used instead of the growth inhibitor for thin film formation according to the present invention had the same deposition rate as in Comparative Example 1. .
- the reduction of the deposition rate means changing the CVD deposition characteristic to the ALD deposition characteristic, it can be used as an index for improving the step coverage characteristic.
- Example 5 compared with Comparative Example 4, the deposition rate was 0.29 ⁇ / cycle It can be seen that 0.32 ⁇ /cycle is reduced by 10% or more.
- Example 7 is a SIMS analysis graph of the SiN thin film prepared in Example 5 and Comparative Example 4, and it was confirmed that Example 5 corresponding to the graph on the right significantly reduced Cl compared to Comparative Example 4 corresponding to the graph on the left. .
- Example 4 where Ter-butyl iodide was used as a growth inhibitor for thin film formation to first adsorb a source precursor, that is, a thin film precursor, and then purged with argon gas, followed by supplying a growth inhibitor for thin film formation.
- the deposition rate was increased by nearly 10% from 0.32 ⁇ /cycle to 0.35 ⁇ /cycle, and when the deposition temperature was increased to 500° C., it was close to 16% to 0.37 ⁇ /cycle. increase could be observed.
- Example 4 the deposition rate is rather increased compared to Comparative Example 1, but unlike the prior art, when the deposition rate is increased, the impurity does not increase, but an unexpected phenomenon in which the impurity is reduced occurs. -put) side, it was confirmed that it provides another great advantage .
- Example 1 Tert-butyl bromide TiN 0.19
- Example 2 1-methyl-1-bromocyclohexane TiN 0.23
- Example 3 Tert-butyl iodide TiN 0.28
- Example 4 Tert-butyl iodide TiN 0.35
- Example 5 Tert-butyl iodide SiN 0.29
- Example 6 Tert-butyl chloride TiN 0.20 (additional) Comparative Example 1 X TiN 0.32 Comparative Example 2 n-butyl chloride TiN 0.31 Comparative Example 3 2-chloro propane TiN 0.30 Comparative Example 4 X SiN 0.35
- Example 2 Example 3
- Example 4 Example 5
- Example 6 Comparative Example 1 Cl reduction rate (Cl intensity(c/s)) 460 °C 48.2% (8043) 34.5% (10174) 39.0% (9475) 56% (6633) 42.8% (712) 41.9% (9014) 0% (15538) 500 °C 68.9% (2728) 24.9% (6589) - - - 38.4% (5412) 0% (8781) 550 °C 49.7% (1591) 21.4% (2491) - - - 17.3% (2620) 0% (3169)
- Example 4 when Example 3 and Example 4 were compared, it was confirmed that the process method of Example 4 was very advantageous for the impurity reduction characteristics.
- FIGS. 3 and 4 are graphs showing the reduction characteristics of process by-products according to the deposition temperature, that is, the Cl reduction rate according to the deposition temperature through Example 1 and Comparative Example 1, and when the growth inhibitor for thin film formation according to the present invention is used, all deposition temperatures In particular, in the 480 to 520 ° C range, it was confirmed that the Cl intensity was significantly reduced compared to the case where the inhibitor for thin film formation according to the present invention was not used.
- the thin film growth rate of the TiN thin film deposited in Examples 1 to 5 and Comparative Examples 1 to 3 was calculated by using the following Equation 1 with the result after measuring the thickness by the Ellipsometery method, and the result is It is shown in Table 4 below.
- Examples 1 to 3 using the growth inhibitor for thin film formation according to the present invention are excellent in the thin film growth rate reduction rate per cycle at a level of 10 to 40% compared to Comparative Example 1 which does not use the same. there was.
- Example 5 and Comparative Example 2 were compared, it was confirmed that Example 5 was excellent in the thin film growth rate reduction rate per cycle compared to Comparative Example 2 at the level of 17%.
- the process method is different, when Example 4 is compared with Comparative Example 1, the deposition rate of Example 4 is rather increased compared to Comparative Example 1, but unlike the prior art, the impurity reduction characteristics are improved even when the deposition rate is increased. It is excellent, but can provide another advantage when it is linked with the through-put aspect.
- Example 1 The TiN thin film deposited in Example 1 and Comparative Example 1 was checked for step coverage using TEM, and the results are shown in Table 5 and FIG. 5 below.
- Example 1 using the growth inhibitor for thin film formation according to the present invention had significantly higher step coverage compared to Comparative Example 1 which did not use it.
- the thickness uniformity of the top and bottom of the TIN thin film deposited in Example 1 (SP-TiCl 4 ) is superior to that of the TIN thin film deposited in Comparative Example 1 (TiCl 4 ).
- the cross-sections of the top and the bottom may be described with reference to FIG. 6, wherein the cross-section of the top is formed at a point 200 nm below the top, and the cross-section of the bottom is formed at a point 100 nm above the bottom.
- a TiN thin film as a self-limiting atomic layer was formed in the same manner as in Example 1, except that Tert-butyl chloride was used instead of Tert-butyl bromide as a growth inhibitor for thin film formation in Example 1.
- SIMS analysis was performed to compare the impurity reduction characteristics of the TiN thin film deposited based on Example 1, ie, process by-product reduction characteristics, and the results are shown in Table 6 below.
- Example 8 shows that the growth inhibitor for thin film formation was not added as in Comparative Example 1 (Ref TiN), and in Example 4, the growth inhibitor for thin film formation was added in an amount of 0.1/min (tert-BuI (0.1 g) /min)) and the XRD analysis graph for the input of the growth inhibitor for thin film formation in an amount of 0.1/min (tert-BuI (0.1g/min)) in Example 4, as in Example 4, the thin film precursor compound It was confirmed that the crystal grains of the thin film were larger, that is, the crystallinity was increased when the growth inhibitor for forming the tert-BuI thin film was adsorbed first, followed by argon purging.
- the size of the grains can be confirmed by the peak at the (200) position of the TiN thin film (the larger and sharper the peak at position 200, the greater the crystallinity), and when the crystallinity is increased in this way, the specific resistance is greatly improved.
- the growth inhibitor for thin film formation was not added (Ref TiN), and in Example 4, the growth inhibitor for thin film formation was added in an amount of 0.1/min (tert-BuI (0.1 g/min)) And in Example 4, the growth inhibitor for thin film formation was added in an amount of 0.1/min (tert-BuI (0.1 g/min)) measured based on X-ray reflectometry (XRR) analysis, the comparative example
- the density of the TiN thin film prepared in 1 was 4.85 g/cm 3 , but the density of the TiN thin film prepared by using tert-BuI in an amount of 0.01 g/min in Example 4 was 5.00 g/cm 3 , in Example 4
- the density of the TiN thin film prepared by using tert-BuI in an amount of 0.1 g/min was 5.23 g/cm 3 , as in Example 4, after adsorbing the thin film precursor compound first and purging with argon, growth for forming a tert-BuI thin
- the present invention can provide a thin film having a thin film density of 4.95 g/cm 3 or more, preferably 5.00 g/cm 3 or more, specifically 4.95 to 5.50 g/cm 3 , and preferably 5.0 to 5.3 g/cm 3 . have.
- Example 6 In order to confirm carbon impurities in the thin film, XPS elemental analysis was performed for each depth of the thin film samples of Example 6 and Comparative Examples 2 and 3 .
- the carbon concentration in the thin film can be described with reference to FIG. 9. In Example 6, carbon was not detected, but in Comparative Examples 2 and 3, 15 and 16% of carbon was detected, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 발명은 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판에 관한 것으로, 보다 상세하게는 하기 화학식 1 [화학식 1] AnBmXoYiZj (상기 A는 탄소 또는 규소이고, 상기 B는 수소 또는 탄소수 1 내지 3의 알킬이며, 상기 X는 결합 해리 에너지가 50 내지 350 KJ/mol인 이탈기(leaving group)이고, 상기 Y와 Z은 독립적으로 산소, 질소, 황 및 플루오린으로 이루어진 군으로부터 선택된 1종 이상이며 서로 같지 않고, 상기 n은 1 내지 15의 정수이며, 상기 o는 1 이상의 정수이고, m은 0 내지 2n+1이며, 상기 i와 j는 0 내지 3의 정수이다.)로 표시되는 화합물인 박막 형성용 성장 억제제 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판에 관한 것이다. 본 발명에 따르면, 부반응을 억제하여 박막 성장률을 낮추고 또한 박막 내 공정 부산물을 제거함으로써, 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 제공하는 효과가 있다. [대표도] 도 3
Description
본 발명은 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판에 관한 것으로, 보다 상세하게는 부반응을 억제하여 박막 성장률을 적절히 낮추고 박막 내 공정 부산물을 제거함으로써, 부식이나 열화를 막고 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판에 관한 것이다.
메모리 및 비메모리 반도체 소자의 집적도는 나날이 증가하고 있으며, 그 구조가 점점 복잡해짐에 따라 다양한 박막을 기판에 증착시키는데 있어서 단차 피복성(step coverage)의 중요성이 점점 증대되고 있다.
상기 반도체용 박막은 질화금속, 산화금속, 규화금속 등으로 이루어진다. 상기 질화금속 박막으로는 질화티타늄(TiN), 질화탄탈륨(TaN), 질화지르코늄(ZrN) 등이 있으며, 상기 박막은 일반적으로 도핑된 반도체의 실리콘층과 층간 배선 재료로 사용되는 알루미늄(Al), 구리(Cu) 등과의 확산 방지막(diffusion barrier)으로 사용된다. 다만, 텅스텐(W) 박막을 기판에 증착할 때에는 접착층(adhesion layer)으로 사용된다.
기판에 증착된 박막이 우수하고 균일한 물성을 얻기 위해서는 형성된 박막의 높은 단차 피복성이 필수적이다. 따라서 기상반응을 주로 활용하는 CVD(chemical vapor deposition) 공정보다 표면반응을 활용하는 ALD(atomic layer deposition) 공정이 활용되고 있지만, 100% step coverage 구현을 위해서는 여전히 문제가 존재한다.
또한, 상기 질화금속 중에서 대표적인 질화티타늄(TiN)을 증착시키기 위해서 사용되는 사염화티타늄(TiCl4)의 경우, 제조된 박막 내 염화물과 같은 공정 부산물이 잔류하게 되어 알루미늄 등과 같은 금속의 부식을 유발하며, 비휘발성 부산물이 생성되는 문제로 막질의 열화를 초래한다.
따라서 복잡한 구조의 박막 형성이 가능하고, 층간 배선재료를 부식시키지 않는 박막의 형성 방법과 이로부터 제조된 반도체 기판 등의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 공개특허 제2006-0037241호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 부반응을 억제하여 박막 성장률을 적절히 낮추고 박막 내 공정 부산물을 제거함으로써, 부식이나 열화를 방지하고 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 제공하는 것을 목적으로 한다.
본 발명은 박막의 결정성을 개선시킴으로써 박막의 밀도 및 전기적 특성을 개선시키는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 하기 화학식 1
[화학식 1]
AnBmXoYiZj
(상기 A는 탄소 또는 규소이고, 상기 B는 수소 또는 탄소수 1 내지 3의 알킬이며, 상기 X는 결합 해리 에너지(bond dissociation energy)가 50 내지 350 KJ/mol인 이탈기(leaving group)이고, 상기 Y와 Z은 독립적으로 산소, 질소, 황 및 플루오린으로 이루어진 군으로부터 선택된 1종 이상이며 서로 같지 않고, 상기 n은 1 내지 15의 정수이며, 상기 o는 1 이상의 정수이고, m은 0 내지 2n+1이며, 상기 i와 j는 0 내지 3의 정수이다.)로 표시되는 화합물인 박막 형성용 성장 억제제를 제공한다.
또한, 본 발명의 박막 형성용 성장 억제제를 막질개선제로 제공할 수 있다.
또한, 본 발명은 상기 박막 형성용 성장 억제제를 ALD 챔버 내로 주입하여 로딩(loading)된 기판 표면에 흡착시키는 단계를 포함하는 박막 형성 방법을 제공한다.
또한, 본 발명은 상기 박막 형성 방법으로 제조된 반도체 기판을 제공한다.
본 발명에 따르면 부반응을 억제하고 증착 속도를 저감시켜 박막 성장률을 적절히 낮추고 또한 박막 내 공정 부산물을 제거함으로써, 부식이나 열화를 막고 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 제공하는 효과가 있다.
또한, 본 발명에 따르면 박막의 결정성을 개선시킴으로써 박막의 밀도 및 전기적 특성을 개선시키는 것을 목적으로 한다.
도 1은 종래의 ALD 공정을 설명하기 위한 공정도이다.
도 2는 본 발명의 일 실시예에 따른 ALD 공정을 설명하기 위한 공정도이다.
도 3, 4는 본 발명의 실시예 1(SP-TiCl4) 및 비교예 1(TiCl4)의 증착 온도에 따른 Cl 원소 등의 감소율을 나타내는 SIMS 분석 그래프이다.
도 5는 본 발명의 실시예 1(SP-TiCl4) 및 비교예 1(TiCl4)에서 형성된 TIN 박막의 Top 부근과 bottom 부근의 단면에 대한 TEM 사진이다.
도 6은 도 5의 Top과 bottom의 단면 위치에 대한 설명도이다.
도 7은 실시예 5와 비교예 4에서 제조된 SiN 박막의 SIMS 분석 그래프이다.
도 8은 비교예 1과 같이 박막 형성용 성장 억제제를 투입하지 않은 것(Ref TiN), 실시예 4에서 박막 형성용 성장 억제제를 0.1g/min의 양으로 투입한 것(tert-BuI (0.1g/min)) 및 실시예 4에서 박막 형성용 성장 억제제를 0.1g/min의 양으로 투입한 것(tert-BuI (0.1g/min))에 대한 XRD 분석 그래프이다.
도 9는 실시예6, 비교예 2,3의 박막내 카본 농도를 분석한 그래프이다.
이하 본 기재의 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 상세하게 설명한다.
본 발명자들은 ALD 챔버 내부에 로딩된 기판 표면에 박막 전구체 화합물을 흡착시키기 전에 소정 결합 해리 에너지를 갖는 치환기를 함유한 화합물을 박막 성장 억제제로서 먼저 흡착시키는 경우에 증착 후 형성되는 박막의 성장률이 크게 낮아져서 단차 피복성이 크게 향상되고, 공정 부산물로 잔류하던 할로겐화물이 크게 줄어드는 것을 확인하였다. 또한, ALD 챔버 내부에 로딩된 기판 표면에 박막 전구체 화합물을 먼저 흡착시키고, 소정 구조를 갖는 할로겐 치환 화합물을 박막 성장 억제제로서 흡착시킨 경우에는 예상과는 달리 막질 개선제로 거동하여 형성되는 박막의 성장률이 증가하고, 공정 부산물로 잔류하던 할로겐화물이 크게 줄어들고, 박막의 밀도, 비저항 등이 크게 개선되는 결과를 확인하였고, 이를 토대로 더욱 연구에 매진하여 본 발명을 완성하게 되었다.
본 발명의 박막 형성용 성장 억제제는 하기 화학식 1
[화학식 1]
AnBmXoYiZj
(상기 A는 탄소 또는 규소이고, 상기 B는 수소 또는 탄소수 1 내지 3의 알킬이며, 상기 X는 결합 해리 에너지(bond dissociation energy)가 50 내지 350 KJ/mol인 이탈기(leaving group)이고, 상기 Y와 Z은 독립적으로 산소, 질소, 황 및 플루오린으로 이루어진 군으로부터 선택된 1종 이상이며 서로 같지 않고, 상기 n은 1 내지 15의 정수이며, 상기 o는 1 이상의 정수이고, m은 0 내지 2n+1이며, 상기 i와 j는 0 내지 3의 정수이다.)로 표시되는 화합물인 것을 특징으로 하고, 이와 같은 경우 박막 형성 시 부반응을 억제하여 박막 성장률을 낮추고 또한 박막 내 공정 부산물을 제거함으로써, 부식이나 열화가 저감되고 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 효과가 있다.
상기 B는 바람직하게 수소 또는 메틸이고, 상기 n은 바람직하게 2 내지 15의 정수, 보다 바람직하게 2 내지 10의 정수, 더욱 바람직하게 2 내지 6의 정수, 보다 더욱 바람직하게 4 내지 6의 정수이며, 이 범위 내에서 공정 부산물 제거 효과가 크고 단차 피복성이 우수하다.
상기 화학식 1에서 X는 바람직하게는 결합 해리 에너지(bond dissociation energy)가 50 내지 350 KJ/mol인 이탈기(leaving group)이고, 보다 바람직하게는 결합 해리 에너지(bond dissociation energy)가 50 내지 325 KJ/mol인 이탈기(leaving group)이며, 더욱 바람직하게는 결합 해리 에너지(bond dissociation energy)가 50 내지 300 KJ/mol인 이탈기(leaving group)이고, 이 경우 부반응을 억제하고 공정 부산물을 보다 효과적으로 제거하는 효과가 있다.
본 기재에서 결합 해리 에너지는 양자화학 프로그램 (Gaussian09)을 이용하여 측정할 수 있다. 모든 계산은 온도: 460 ℃, 압력: 1 torr 및 scale: 0.9804에서 Method (DFT/B3LYP)와 Basis Sets (6-31G(d,p), Iodine 제외: LanL2DZ) 기준으로 하기 수학식 3을 이용하여 산출된다.
[수학식 3]
BDE = EA + EB - EAB
(상기 EAB는 최적화된 화합물의 열 에너지, EA, EB는 각각 라디칼(radical) A와 B의 열 에너지이다.) 모든 계산 결과는 열 에너지에 지정된다.
상기 화학식 1에서 X는 바람직한 예로 메실(mesyl), 토실(tosyl), 할로겐기, 디아조늄(azonium)(-N2
+), 퍼플루오로알킬설포네이트(-OSO2R'), 알코올 양이온(-O+HR”), 나이트레이트(nitrate)(-ONO2), 암모늄기(ammonium)(-NH3), 모노알킬암모늄기(monoalkylammonium) 디알킬암모늄기(dialkylammonium), 트리알킬암모늄기(trialkylammonium), 디알킬에터 양이온(-O+R1R2), 포스페이트기(-OPO(OH)2) 또는 티오에터 양이온(-S+R3R4)이고, 이 경우 부반응을 억제하고 공정 부산물을 보다 효과적으로 제거하는 효과가 있다.
상기 화학식 1에서 상기 o는 바람직하게 1 내지 5의 정수일 수 있고, 보다 바람직하게 1 내지 3의 정수일 수 있으며, 더욱 바람직하게는 1 또는 2일 수 있고, 이 범위 내에서 증착 속도의 감소효과가 커 단차 피복성 개선에 더욱 효과적인 이점이 있다.
상기 m은 바람직하게는 1 내지 2n+1이고, 보다 바람직하게는 3 내지 2n+1이며, 이 범위 내에서 공정 부산물 제거 효과가 크고 단차 피복성이 우수하다.
상기 Y와 Z은 바람직한 예로 독립적으로 산소, 질소 및 플루오린으로 이루어진 군으로부터 선택된 1종 이상이고 서로 같지 않다.
상기 i와 j는 바람직한 예로 둘 다 0은 아니고, 구체적인 예로 1 내지 3의 정수일 수 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게 분지형, 환형 또는 방향족 화합물일 수 있고, 구체적인 예로 tert-부틸 브로마이드, 1-메틸-1-브로모사이클로헥산, 1-iodopropane, 1-iodobutane, 1-iodo-2-methyl propane, 1-iodo-1-isopropylcyclohexane, 1-iodo-4-nitrobenzene, 1-iodo-4-methoxybenzene, 1-iodo-2-methylpentane, 1-iodo-4-trifuloromethylbenzene, tert-부틸 아이오다이드(tert-butyl iodide) 및 1-메틸-1-아이오도사이클로헥산(1-methyl-1-iodocyclohexane), 1-bromo-4-chlorobenzene, 1-bromopropane, 1-bromobutane, 1-bromopentane, 1-bromohexane, 1-bromo-2-methylpropane, 1-bromooctance, 1-bromonaphthalene, 1-bromo-4-iodobenzene 및 1-bromo-4-nitrobenzene으로 이루어진 군으로부터 선택된 1종 이상이고, 이 경우 공정 부산물 제거 효과가 크고 단차 피복성 개선 및 막질 개선효과가 우수하다.
상기 화학식 1로 표시되는 화합물은 바람직하게 원자층 증착(ALD) 공정에 사용되는 것이며, 이 경우 박막 전구체 화합물의 흡착을 방해하지 않으면서 성장 억제제로서 기판의 표면을 효과적으로 보호(protection)하고 공정 부산물을 효과적으로 제거하는 이점이 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게 상온(22℃)에서 액체이고, 밀도가 0.8 내지 2.5 g/cm3 또는 0.8 내지 1.5 g/cm3이며, 증기압(20℃)이 0.1 내지 300 mmHg 또는 1 내지 300 mmHg이고, 물에서의 용해도(25℃)가 200 mg/L 이하일 수 있으며, 이 범위 내에서 단차 피복성, 박막의 두께 균일성 및 막질 개선이 우수한 효과가 있다.
보다 바람직하게는, 상기 화학식 1로 표시되는 화합물은 밀도가 0.85 내지 2.0 g/cm3 또는 0.85 내지 1.3 g/cm3이며, 증기압(20℃)이 1 내지 260 mmHg이고, 물에서의 용해도(25℃)가 160 mg/L 이하일 수 있으며, 이 범위 내에서 단차 피복성, 박막의 두께 균일성 및 막질개선이 우수한 효과가 있다.
본 발명의 박막 형성 방법은 하기 화학식 1
[화학식 1]
AnBmXoYiZj
(상기 A는 탄소 또는 규소이고, 상기 B는 수소 또는 탄소수 1 내지 3의 알킬이며, 상기 X는 결합 해리 에너지(bond dissociation energy)가 50 내지 350 KJ/mol인 이탈기(leaving group)이고, 상기 Y와 Z은 독립적으로 산소, 질소, 황 및 플루오린으로 이루어진 군으로부터 선택된 1종 이상이며 서로 같지 않고, 상기 n은 1 내지 15의 정수이며, 상기 o는 1 이상의 정수이고, m은 0 내지 2n+1이며, 상기 i와 j는 0 내지 3의 정수이다.)로 표시되는 박막 형성용 성장 억제제를 ALD 챔버 내로 주입하여 로딩(loading)된 기판 표면에 흡착시키는 단계를 포함하는 것을 특징으로 하고, 이와 같은 경우 부반응을 억제하고 증착 속도를 늦추어 박막 성장률을 낮추며 또한 박막 내 공정 부산물을 제거함으로써, 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키는 효과가 있다.
상기 박막 형성용 성장 억제제를 기판 표면에 흡착시키는 단계는 기판 표면에 박막 형성용 성장 억제제의 공급 시간(Feeding Time)이 사이클당 바람직하게 1 내지 10 초, 보다 바람직하게 1 내지 5 초, 더욱 바람직하게 2 내지 5 초, 보다 더욱 바람직하게 2 내지 4 초이고, 이 범위 내에서 박막 성장률이 낮고 단차 피복성 및 경제성이 우수한 이점이 있다.
본 기재에서 박막 형성용 성장 억제제의 공급 시간(Feeding Time)은 챔버의 부피 15 내지 20 L 및 유량 0.5 내지 5 mg/s을 기준으로 하고, 보다 구체적으로는 챔버의 부피 18 L 및 유량 1 내지 2 mg/s을 기준으로 한다.
상기 박막 형성 방법은 바람직한 일 실시예로 i) 상기 박막 형성용 성장 억제제를 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계; ii) 상기 ALD 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계; iii) 박막 전구체 화합물을 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계; iv) 상기 ALD 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계; v) 상기 ALD 챔버 내부에 반응가스를 공급하는 단계; 및 vi) 상기 ALD 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계;를 포함할 수 있고, 이러한 경우 박막 성장률이 적절히 낮아지고, 박막 형성 시 증착 온도가 높아지더라도 생성되는 공정 부산물이 효과적으로 제거되어 박막의 비저항이 감소되고 단차 피복성(step coverage)이 크게 향상되는 이점이 있다.
바람직한 또 다른 실시예로, 상기 박막 형성 방법은 i) 박막 전구체 화합물을 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계; ii) 상기 ALD 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계; iii) 상기 박막 형성용 성장 억제제를 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계; iv) 상기 ALD 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계; v) 상기 ALD 챔버 내부에 반응가스를 공급하는 단계; 및 vi) 상기 ALD 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계;를 포함할 수 있고, 이러한 경우 박막 성장률이 높아지고, 박막 형성 시 증착 온도가 높아지더라도 생성되는 공정 부산물이 효과적으로 제거되어 박막의 비저항이 감소되고 박막 밀도, 결정성이 크게 향상되는 이점이 있다.
상기 박막 형성용 성장 억제제 및 박막 전구체 화합물은 바람직하게 VFC 방식, DLI 방식 또는 LDS 방식으로 ALD 챔버 내로 이송될 수 있고, 보다 바람직하게는 LDS 방식으로 ALD 챔버 내로 이송되는 것이다.
상기 박막 형성용 성장 억제제와 상기 전구체 화합물의 ALD 챔버 내 투입량(mg/cycle) 비는 바람직하게 1:1.5 내지 1:20일 수 있고, 보다 바람직하게 1:2 내지 1:15이며, 더욱 바람직하게 1:2 내지 1:12이고, 보다 더욱 바람직하게 1:2.5 내지 1:10이며, 이 범위 내에서 사이클당 박막 성장률(GPC)의 감소율이 높고 공정 부산물의 저감효과가 크다.
상기 박막 전구체 화합물은 통상적으로 ALD(원자층 증착방법)에 사용되는 박막 전구체 화합물인 경우 특별히 제한되지 않으나, 바람직하게는 금속막 전구체 화합물, 금속산화막 전구체 화합물, 금속 질화막 전구체 화합물 또는 실리콘 질화막 전구체 화합물이고, 상기 금속은 바람직하게 텅스텐, 코발트, 크롬, 알루미늄, 하프늄, 바나듐, 니오븀, 게르마늄, 란탄족 원소, 악티늄족 원소, 갈륨, 탄탈륨, 지르코늄, 루테늄, 구리, 티타늄, 니켈, 이리듐, 및 몰리브덴으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 금속막 전구체, 금속산화막 전구체 및 금속 질화막 전구체는 각각 일례로 금속 할라이드, 금속 알콕사이드, 알킬 금속 화합물, 금속 아미노 화합물, 금속 카르보닐 화합물, 및 치환 또는 비치환 시클로펜타디에닐 금속 화합물 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
구체적인 예로, 상기 금속막 전구체, 금속산화막 전구체 및 금속 질화막 전구체는 각각 테트라클로로티탄(tetrachlorotitan), 테트라클로로저머늄(tetrachlorogemanium), 테트라클로로틴(tetrchlorotin), 트리스(아이소프로필)에틸메틸아미노게르마늄(tris(isopropyl)ethylmethyl aminogermanium), 테트라에록시게르마늄(tetraethoxylgermanium), 테트라메틸틴(tetramethyl tin), 테트라에틸틴(tetraethyl tin), 비스아세틸아세토네이트틴(bisacetylacetonate tin), 트리메틸알루미늄(trimethylaluminum), 테트라키스(디메틸아미노) 게르마늄(tetrakis(dimethylamino)germanium), 비스(n-부틸아미노) 게르마늄(bis(n-butylamino) germanium), 테트라키스(에틸메틸아미노) 틴(tetrakis(ethylmethylamino) tin), 테트라키스(디메틸아미노) 틴(tetrakis(dimethylamino)tin), Co2(CO)8(dicobalt octacarbonyl), Cp2Co(biscyclopentadienylcobalt), Co(CO)3(NO)(cobalt tricarbonyl nitrosyl), 및 CpCo(CO)2(cabalt dicarbonyl cyclopentadienyl) 등으로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
상기 실리콘 질화막 전구체는 일례로 SiH4, SiCl4, SiF4, SiCl2H2, Si2Cl6, TEOS, DIPAS, BTBAS, (NH2)Si(NHMe)3, (NH2)Si(NHEt)3, (NH2)Si(NHnPr)3, (NH2)Si(NHiPr)3, (NH2)Si(NHnBu)3, (NH2)Si(NHiBu)3, (NH2)Si(NHtBu)3, (NMe2)Si(NHMe)3, (NMe2)Si(NHEt)3, (NMe2)Si(NHnPr)3, (NMe2)Si(NHiPr)3, (NMe2)Si(NHnBu)3, (NMe2)Si(NHiBu)3, (NMe2)Si(NHtBu)3, (NEt2)Si(NHMe)3, (NEt2)Si(NHEt)3, (NEt2)Si(NHnPr)3, (NEt2)Si(NHiPr)3, (NEt2)Si(NHnBu)3, (NEt2)Si(NHiBu)3, (NEt2)Si(NHtBu)3, (NnPr2)Si(NHMe)3, (NnPr2)Si(NHEt)3, (NnPr2)Si(NHnPr)3, (NnPr2)Si(NHiPr)3, (NnPr2)Si(NHnBu)3, (NnPr2)Si(NHiBu)3, (NnPr2)Si(NHtBu)3, (NiPr2)Si(NHMe)3, (NiPr2)Si(NHEt)3, (NiPr2)Si(NHnPr)3, (NiPr2)Si(NHiPr)3, (NiPr2)Si(NHnBu)3, (NiPr2)Si(NHiBu)3, (NiPr2)Si(NHtBu)3, (NnBu2)Si(NHMe)3, (NnBu2)Si(NHEt)3, (NnBu2)Si(NHnPr)3, (NnBu2)Si(NHiPr)3, (NnBu2)Si(NHnBu)3, (NnBu2)Si(NHiBu)3, (NnBu2)Si(NHtBu)3, (NiBu2)Si(NHMe)3, (NiBu2)Si(NHEt)3, (NiBu2)Si(NHnPr)3, (NiBu2)Si(NHiPr)3, (NiBu2)Si(NHnBu)3, (NiBu2)Si(NHiBu)3, (NiBu2)Si(NHtBu)3, (NtBu2)Si(NHMe)3, (NtBu2)Si(NHEt)3, (NtBu2)Si(NHnPr)3, (NtBu2)Si(NHiPr)3, (NtBu2)Si(NHnBu)3, (NtBu2)Si(NHiBu)3, (NtBu2)Si(NHtBu)3, (NH2)2Si(NHMe)2, (NH2)2Si(NHEt)2, (NH2)2Si(NHnPr)2, (NH2)2Si(NHiPr)2, (NH2)2Si(NHnBu)2, (NH2)2Si(NHiBu)2, (NH2)2Si(NHtBu)2, (NMe2)2Si(NHMe)2, (NMe2)2Si(NHEt)2, (NMe2)2Si(NHnPr)2, (NMe2)2Si(NHiPr)2, (NMe2)2Si(NHnBu)2, (NMe2)2Si(NHiBu)2, (NMe2)2Si(NHtBu)2, (NEt2)2Si(NHMe)2, (NEt2)2Si(NHEt)2, (NEt2)2Si(NHnPr)2, (NEt2)2Si(NHiPr)2, (NEt2)2Si(NHnBu)2, (NEt2)2Si(NHiBu)2, (NEt2)2Si(NHtBu)2, (NnPr2)2Si(NHMe)2, (NnPr2)2Si(NHEt)2, (NnPr2)2Si(NHnPr)2, (NnPr2)2Si(NHiPr)2, (NnPr2)2Si(NHnBu)2, (NnPr2)2Si(NHiBu)2, (NnPr2)2Si(NHtBu)2, (NiPr2)2Si(NHMe)2, (NiPr2)2Si(NHEt)2, (NiPr2)2Si(NHnPr)2, (NiPr2)2Si(NHiPr)2, (NiPr2)2Si(NHnBu)2, (NiPr2)2Si(NHiBu)2, (NiPr2)2Si(NHtBu)2, (NnBu2)2Si(NHMe)2, (NnBu2)2Si(NHEt)2, (NnBu2)2Si(NHnPr)2, (NnBu2)2Si(NHiPr)2, (NnBu2)2Si(NHnBu)2, (NnBu2)2Si(NHiBu)2, (NnBu2)2Si(NHtBu)2, (NiBu2)2Si(NHMe)2, (NiBu2)2Si(NHEt)2, (NiBu2)2Si(NHnPr)2, (NiBu2)2Si(NHiPr)2, (NiBu2)2Si(NHnBu)2, (NiBu2)2Si(NHiBu)2, (NiBu2)2Si(NHtBu)2, (NtBu2)2Si(NHMe)2, (NtBu2)2Si(NHEt)2, (NtBu2)2Si(NHnPr)2, (NtBu2)2Si(NHiPr)2, (NtBu2)2Si(NHnBu)2, (NtBu2)2Si(NHiBu)2, (NtBu2)2Si(NHtBu)2, Si(HNCH2CH2NH)2, Si(MeNCH2CH2NMe)2, Si(EtNCH2CH2NEt)2, Si(nPrNCH2CH2NnPr)2, Si(iPrNCH2CH2NiPr)2, Si(nBuNCH2CH2NnBu)2, Si(iBuNCH2CH2NiBu)2, Si(tBuNCH2CH2NtBu)2, Si(HNCHCHNH)2, Si(MeNCHCHNMe)2, Si(EtNCHCHNEt)2, Si(nPrNCHCHNnPr)2, Si(iPrNCHCHNiPr)2, Si(nBuNCHCHNnBu)2, Si(iBuNCHCHNiBu)2, Si(tBuNCHCHNtBu)2, (HNCHCHNH)Si(HNCH2CH2NH), (MeNCHCHNMe)Si(MeNCH2CH2NMe), (EtNCHCHNEt)Si(EtNCH2CH2NEt), (nPrNCHCHNnPr)Si(nPrNCH2CH2NnPr), (iPrNCHCHNiPr)Si(iPrNCH2CH2NiPr), (nBuNCHCHNnBu)Si(nBuNCH2CH2NnBu), (iBuNCHCHNiBu)Si(iBuNCH2CH2NiBu), (tBuNCHCHNtBu)Si(tBuNCH2CH2NtBu), (NHtBu)2Si(HNCH2CH2NH), (NHtBu)2Si(MeNCH2CH2NMe), (NHtBu)2Si(EtNCH2CH2NEt), (NHtBu)2Si(nPrNCH2CH2NnPr), (NHtBu)2Si(iPrNCH2CH2NiPr), (NHtBu)2Si(nBuNCH2CH2NnBu), (NHtBu)2Si(iBuNCH2CH2NiBu), (NHtBu)2Si(tBuNCH2CH2NtBu), (NHtBu)2Si(HNCHCHNH), (NHtBu)2Si(MeNCHCHNMe), (NHtBu)2Si(EtNCHCHNEt), (NHtBu)2Si(nPrNCHCHNnPr), (NHtBu)2Si(iPrNCHCHNiPr), (NHtBu)2Si(nBuNCHCHNnBu), (NHtBu)2Si(iBuNCHCHNiBu), (NHtBu)2Si(tBuNCHCHNtBu), (iPrNCH2CH2NiPr)Si(NHMe)2, (iPrNCH2CH2NiPr)Si(NHEt)2, (iPrNCH2CH2NiPr)Si(NHnPr)2, (iPrNCH2CH2NiPr)Si(NHiPr)2, (iPrNCH2CH2NiPr)Si(NHnBu)2, (iPrNCH2CH2NiPr)Si(NHiBu)2, (iPrNCH2CH2NiPr)Si(NHtBu)2, (iPrNCHCHNiPr)Si(NHMe)2, (iPrNCHCHNiPr)Si(NHEt)2, (iPrNCHCHNiPr)Si(NHnPr)2, (iPrNCHCHNiPr)Si(NHiPr)2, (iPrNCHCHNiPr)Si(NHnBu)2, (iPrNCHCHNiPr)Si(NHiBu)2 및 (iPrNCHCHNiPr)Si(NHtBu)2 로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
상기 nPr은 n-프로필을 의미하고, iPr은 iso-프로필을 의미하며, nBu은 n-부틸을, iBu은 iso-부틸을, tBu은 tert-부틸을 의미한다.
상기 박막 전구체 화합물은 바람직한 일 실시예로 테트라할로겐화 티타늄일 수 있다.
상기 테트라할로겐화 티타늄은 박막 형성용 조성물의 금속 전구체로서 사용될 수 있다. 상기 테트라할로겐화 티타늄은 일례로 TiF4, TiCl4, TiBr4 및 TiI4로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있고, 예컨대 TiCl4인 것이 경제성 측면에서 바람직하나 이에 한정되는 것은 아니다.
상기 테트라할로겐화 티타늄은 열적 안정성이 우수하여 상온에서 분해되지 않고 액체 상태로 존재하기 때문에, ALD(원자층 증착 방법)의 전구체로 사용하여 박막을 증착시키는데 유용하게 사용될 수 있다.
상기 박막 전구체 화합물은 일례로 비극성 용매와 혼합하여 챔버 내로 투입될 수 있고, 이 경우 박막 전구체 화합물의 점도나 증기압을 용이하게 조절 가능한 이점이 있다.
상기 비극성 용매는 바람직하게 알칸 및 사이클로 알칸으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이러한 경우 반응성 및 용해도가 낮고 수분 관리가 용이한 유기용매를 함유하면서도 박막 형성 시 증착 온도가 증가되더라도 단차 피복성(step coverage)이 향상되는 이점이 있다.
보다 바람직한 예로, 상기 비극성 용매는 C1 내지 C10의 알칸(alkane) 또는 C3 내지 C10의 사이클로알칸(cycloalkane)을 포함할 수 있으며, 바람직하게는 C3 내지 C10의 사이클로알칸(cycloalkane)이고, 이 경우 반응성 및 용해도가 낮고 수분 관리가 용이한 이점이 있다.
본 기재에서 C1, C3 등은 탄소수를 의미한다.
상기 사이클로알칸은 바람직하게는 C3 내지 C10의 모노사이클로알칸일 수 있으며, 상기 모노사이클로알칸 중 사이클로펜탄(cyclopentane)이 상온에서 액체이며 가장 증기압이 높아 기상 증착 공정에서 바람직하나, 이에 한정되는 것은 아니다.
상기 비극성 용매는 일례로 물에서의 용해도(25℃)가 200 mg/L 이하, 바람직하게는 50 내지 200 mg/L, 보다 바람직하게는 135 내지 175 mg/L이고, 이 범위 내에서 박막 전구체 화합물에 대한 반응성이 낮고 수분 관리가 용이한 이점이 있다.
본 기재에서 용해도는 본 발명이 속한 기술분야에서 통상적으로 사용하는 측정 방법이나 기준에 의하는 경우 특별히 제한되지 않고, 일례로 포화용액을 HPLC법으로 측정할 수 있다.
상기 비극성 용매는 바람직하게 박막 전구체 화합물 및 비극성 용매를 합한 총 중량에 대하여 5 내지 95 중량%를 포함할 수 있고, 보다 바람직하게는 10 내지 90 중량%를 포함할 수 있으며, 더욱 바람직하게는 40 내지 90 중량%를 포함할 수 있고, 가장 바람직하게는 70 내지 90 중량%를 포함할 수 있다.
만약, 상기 비극성 용매의 함량이 상기 상한치를 초과하여 투입되면 불순물을 유발하여 저항과 박막내 불순물 수치가 증가하고, 상기 유기용매의 함량이 상기 하한치 미만으로 투입될 경우 용매 첨가로 인한 단차 피복성의 향상 효과 및 염소(Cl) 이온과 같은 불순물의 저감효과가 적은 단점이 있다.
상기 박막 형성 방법은 일례로 하기 수학식 1로 계산되어지는 사이클당 박막 성장률(Å/Cycle) 감소율이 -5 % 이하이고, 바람직하게는 -10 % 이하, 보다 바람직하게는 -20 % 이하이고, 더욱 바람직하게는 -30 % 이하, 보다 더욱 바람직하게는 -40 % 이하, 가장 바람직하게는 -45 % 이하이며, 이 범위 내에서 단차 피복성 및 막의 두께 균일성이 우수하다.
[수학식 1]
사이클당 박막 성장률 감소율(%) = [(박막 형성용 성장 억제제를 사용했을 때 사이클당 박막 성장률 - 박막 형성용 성장 억제제를 사용하지 않았을 때 사이클당 박막 성장률) / 박막 형성용 성장 억제제를 사용하지 않았을 때 사이클당 박막 성장률] Ⅹ 100
상기 박막 형성 방법은 SIMS에 의거하여 측정된, 200 사이클 후 형성된 박막 내 잔류 할로겐 세기(c/s)가 바람직하게 10,000 이하, 보다 바람직하게 8,000 이하, 더욱 바람직하게 7,000 이하, 보다 더욱 바람직하게 6,000 이하일 수 있고, 이러한 범위 내에서 부식 및 열화가 방지되는 효과가 우수하다.
본 기재에서 퍼징은 바람직하게 1,000 내지 10,000 sccm, 보다 바람직하게 2,000 내지 7,000 sccm, 더욱 바람직하게 2,500 내지 6,000 sccm이고, 이 범위 내에서 사이클당 박막 성장률이 바람직한 범위로 감소되고, 공정 부산물이 저감되는 효과가 있다.
상기 ALD(원자층 증착공정)은 높은 종횡비가 요구되는 집적회로(IC: Integrated Circuit) 제작에 있어서 매우 유리하며, 특히 자기제한적인 박막 성장 메커니즘에 의해 우수한 단차 도포성 (conformality), 균일한 피복성 (uniformity) 및 정밀한 두께 제어 등과 같은 이점이 있다.
상기 박막 형성 방법은 일례로 50 내지 900 ℃ 범위의 증착 온도에서 실시할 수 있고, 바람직하게는 300 내지 700 ℃ 범위의 증착 온도에서, 보다 바람직하게는 350 내지 600 ℃ 범위의 증착 온도에서 실시하는 것이며, 더욱 바람직하게는 400 내지 550 ℃ 범위의 증착 온도에서 실시하는 것이고, 보다 더욱 바람직하게는 400 내지 500 ℃ 범위의 증착 온도에서 실시하는 것인데, 이 범위 내에서 ALD 공정 특성을 구현하면서 우수한 막질의 박막으로 성장시키는 효과가 있다.
상기 박막 형성 방법은 일례로 0.1 내지 10 Torr 범위의 증착 압력에서 실시할 수 있고, 바람직하게는 0.5 내지 5 Torr 범위의 증착 압력에서, 가장 바람직하게는 1 내지 3 Torr 범위의 증착 압력에서 실시하는 것인데, 이 범위 내에서 균일한 두께의 박막을 얻는 효과가 있다.
본 기재에서 증착 온도 및 증착 압력은 증착 챔버 내 형성되는 온도 및 압력으로 측정되거나, 증착 챔버 내 기판에 가해지는 온도 및 압력으로 측정될 수 있다.
상기 박막 형성 방법은 바람직하게 상기 박막 형성용 성장 억제제를 챔버 내에 투입하기 전에 챔버 내 온도를 증착 온도로 승온하는 단계; 및/또는 상기 박막 형성용 성장 억제제를 챔버 내에 투입하기 전에 챔버 내에 비활성 기체를 주입하여 퍼징하는 단계를 포함할 수 있다.
또한, 본 발명은 상기 박막 제조 방법을 구현할 수 있는 박막 제조 장치로 ALD 챔버, 박막 형성용 성장 억제제를 기화하는 제1 기화기, 기화된 박막 형성용 성장 억제제를 ALD 챔버 내로 이송하는 제1 이송수단, Ti계 박막 전구체를 기화하는 제2 기화기 및 기화된 Ti계 박막 전구체를 ALD 챔버 내로 이송하는 제2 이송수단을 포함하는 박막 제조 장치를 포함할 수 있다. 여기에서 기화기 및 이송수단은 본 발명이 속한 기술분야에서 통상적으로 사용되는 기화기 및 이송수단인 경우 특별히 제한되지 않는다.
구체적인 예로서, 상기 박막 형성 방법에 대해 설명하면,
먼저 상부에 박막이 형성될 기판을 원자층 증착이 가능한 증착 챔버 내에 위치시킨다.
상기 기판은 실리콘 기판, 실리콘 옥사이드 등의 반도체 기판을 포함할 수 있다.
상기 기판은 그 상부에 도전층 또는 절연층이 더 형성되어 있을 수 있다.
상기 증착 챔버 내에 위치시킨 기판 상에 박막을 증착하기 위해서 상술한 박막 형성용 성장 억제제와, 박막 전구체 화합물 또는 이와 비극성 용매의 혼합물을 각각 준비한다.
이후 준비된 박막 형성용 억제제를 기화기 내로 주입한 후 증기상으로 변화시켜 증착 챔버로 전달하여 기판 상에 흡착시키고, 미흡착된 박막 형성용 억제제를 퍼징(purging)시킨다.
다음으로, 준비된 박막 전구체 화합물 또는 이와 비극성 용매의 혼합물을 기화기 내로 주입한 후 증기상으로 변화시켜 증착 챔버로 전달하여 기판 상에 흡착시키고, 미흡착된 박막 형성용 조성물을 퍼징(purging)시킨다.
본 기재에서 박막 형성용 억제제 및 박막 전구체 화합물 등을 증착 챔버로 전달하는 방식은 일례로 기체상 유량 제어(Mass Flow Controller; MFC) 방법을 활용하여 휘발된 기체를 이송하는 방식(Vapor Flow Control; VFC) 또는 액체상 유량 제어(Liquid Mass Flow Controller; LMFC) 방법을 활용하여 액체를 이송하는 방식(Liquid Delivery System; LDS)을 사용할 수 있고, 바람직하게는 LDS 방식을 사용하는 것이다.
이때 박막 형성용 억제제 및 박막 전구체 화합물 등을 기판 상에 이동시키기 위한 운송 가스 또는 희석 가스로는 아르곤(Ar), 질소(N2), 헬륨(He) 중에서 선택되는 하나 또는 둘 이상의 혼합 기체를 사용할 수 있으나, 제한되는 것은 아니다.
본 기재에서 퍼지 가스로는 일례로 비활성 가스가 사용될 수 있고, 바람직하게는 상기 운송 가스 또는 희석 가스를 사용할 수 있다.
다음으로, 반응가스를 공급한다. 상기 반응가스로는 본 발명이 속한 기술분야에서 통상적으로 사용되는 반응가스인 경우 특별히 제한되지 않고, 바람직하게 환원제, 질화제 또는 산화제를 포함할 수 있다. 상기 환원제와 기판에 흡착된 박막 전구체 화합물이 반응하여 금속 박막이 형성되고, 상기 질화제에 의해서는 금속질화물 박막이 형성되며, 상기 산화제에 의해서는 금속산화물 박막이 형성된다.
바람직하게는 상기 환원제는 암모니아 가스(NH3) 또는 수소 가스(H2)일 수 있고, 상기 질화제는 질소 가스(N2)일 수 있으며, 상기 산화제는 H2O, H2O2, O2, O3 및 N2O으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
다음으로, 비활성 가스를 이용하여 반응하지 않은 잔류 반응가스를 퍼징시킨다. 이에 따라, 과량의 반응가스뿐만 아니라 생성된 부산물도 함께 제거할 수 있다.
위와 같이, 박막 형성용 억제제를 기판 상에 흡착시키는 단계, 미흡착된 박막 형성용 억제제를 퍼징하는 단계, 박막 전구체 화합물을 기판 상에 흡착시키는 단계, 미흡착된 박막 형성용 조성물을 퍼징하는 단계, 반응가스을 공급하는 단계, 잔류 반응가스를 퍼징하는 단계를 단위 사이클로 하며, 원하는 두께의 박막을 형성하기 위해, 상기 단위 사이클을 반복할 수 있다.
상기 단위 사이클은 일례로 100 내지 1000회, 바람직하게는 100 내지 500회, 보다 바람직하게는 150 내지 300회일 수 있고, 이 범위 내에서 목적하는 박막 특성이 잘 발현되는 효과가 있다.
하기 도 1은 종래의 ALD 공정을 설명하기 위한 공정도이고, 하기 도 2는 본 발명의 일 실시예에 따른 ALD 공정을 설명하기 위한 공정도이다. 도 1을 참조하면, 종래의 ALD 공정에서와 같이 본 발명에 따른 박막 형성용 성장 억제제(Inhibitor)를 박막 전구체 화합물(예로, TiCl4)을 흡착시키기 전에 먼저 흡착시켜 기판 표면을 보호(protection)하지 않는 경우 반응가스(예로, NH3)와 반응하여 형성된 박막(예로, TiN)에 HCl과 같은 공정 부산물이 남게 되어 부식이나 열화로 기판의 성능을 저하시킨다. 그러나 도 2에서와 같이 본 발명에 따른 박막 형성용 성장 억제제(Inhibitor; TSI)를 박막 전구체 화합물(예로, TiCl4)을 흡착시키기 전에 먼저 흡착시켜 기판 표면을 보호(Surface Protection; SP)하는 경우 박막(예로, TiN) 형성 시 반응가스(예로, NH3)와 반응하여 발생된 HCl과 같은 공정 부산물이 박막 형성용 성장 억제제와 함께 제거됨으로써 기판의 부식이나 열화를 방지하고, 나아가 사이클당 박막 성장률을 적절히 낮추어 단차 피복성 및 박막 두께의 균일성 또한 개선시킨다.
본 발명의 반도체 기판은 본 기재의 박막 형성 방법으로 제조됨을 특징으로 하고, 이러한 경우 부반응을 억제하여 박막 성장률을 적절히 낮추고 또한 박막 내 공정 부산물을 제거함으로써, 부식이나 열화가 방지되고, 단차 피복성(step coverage) 및 박막의 두께 균일성이 크게 뛰어난 효과가 있다.
상기 제조된 박막은 바람직하게 두께가 20 nm 이하이고, 비저항 값이 0.1 내지 400 μΩ·cm이며, 할로겐 함량이 10,000 ppm 이하이고, 단차피복율이 90% 이상이며, 이 범위 내에서 확산 방지막으로서 성능이 뛰어나고, 금속 배선재료의 부식이 저감되는 효과가 있지만, 이에 한정하는 것은 아니다.
상기 박막은 두께가 일례로 5 내지 20 nm, 바람직하게는 10 내지 20 nm, 보다 바람직하게는 15 내지 18.5 nm, 더욱 바람직하게는 17 내지 18.5 nm일 수 있고, 이 범위 내에서 박막 특성이 우수한 효과가 있다.
상기 박막은 비저항 값이 일례로 0.1 내지 400 μΩ·cm, 바람직하게는 50 내지 400 μΩ·cm, 보다 바람직하게는 100 내지 300 μΩ· cm일 수 있고, 이 범위 내에서 박막 특성이 우수한 효과가 있다.
상기 박막은 할로겐 함량이 보다 바람직하게는 9,000 ppm 이하 또는 1 내지 9,000 ppm, 더욱 바람직하게는 8,500 ppm 이하 또는 100 내지 8,500 ppm, 보다 더욱 바람직하게는 8,200 ppm 이하 또는 1,000 내지 8,200 ppm일 수 있고, 이 범위 내에서 박막 특성이 우수하면서도 금속 배선재료의 부식이 저감되는 효과가 있다.
상기 박막은 일례로 단차 피복률이 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 92% 이상이며, 이 범위 내에서 복잡한 구조의 박막이라도 용이하게 기판에 증착시킬 수 있어 차세대 반도체 장치에 적용 가능한 이점이 있다.
상기 제조된 박막은 일례로 TiN 이거나 TiO2 박막일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 도면을 제시하나, 하기 실시예 및 도면은 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1 내지 3 그리고 6
하기 표 1에 기재된 박막 형성용 성장 억제제와, 박막 전구체 화합물로 TiCl4를 각각 준비하였다. 준비된 박막 형성용 성장 억제제를 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 기화기로 공급하였다. 기화기에서 증기상으로 기화된 박막 형성용 성장 억제제를 1초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다. 다음으로 준비된 TiCl4를 별도의 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다. 기화기에서 증기상으로 기화된 TiCl4를 1초 동안 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다. 다음으로 반응성 가스로서 암모니아 1000 sccm 을 3초 동안 상기 반응 챔버에 투입한 후, 3초 동안 아르곤 퍼징을 실시하였다. 이때 금속 박막이 형성될 기판을 460 ℃로 가열하였다. 이와 같은 공정을 200회 반복하여 자기-제한 원자층인 TiN 박막을 형성하였다.
구분 | 박막 형성용 성장 억제제 | 결합 해리 에너지 |
실시예 1 | Tert-butyl bromide | 292.86 kJ/mol |
실시예 2 | 1-methyl-1-bromocyclohexane | 277.91 kJ/mol |
실시예 3 내지 5 | Tert-butyl iodide | 197.84 kJ/mol |
실시예 6 | Tert-butyl chloride | 318.71 kJ/mol |
비교예 2 | n-butyl chloride | 361.01 kJ/mol |
비교예 3 | 2-chloro propane | 353.76 kJ/mol |
실시예 4
상기 표 1에 기재된 박막 형성용 성장 억제제와, 박막 전구체 화합물로 TiCl4를 각각 준비하였다. 준비된 박막 형성용 성장 억제제를 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 기화기로 공급하였다. 준비된 TiCl4를 별도의 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다.
기화기에서 증기상으로 기화된 TiCl4를 1초 동안 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다. 다음으로 기화기에서 증기상으로 기화된 박막 형성용 성장 억제제를 1초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다. 다음으로 반응성 가스로서 암모니아 1000 sccm을 3초 동안 상기 반응 챔버에 투입한 후, 3초 동안 아르곤 퍼징을 실시하였다. 이때 금속 박막이 형성될 기판을 440~500 ℃로 가열하였다. 이와 같은 공정을 200회 반복하여 자기-제한 원자층인 TiN 박막을 형성하였다.
실시예 5
상기 표 1에 기재된 박막 형성용 성장 억제제와, 박막 전구체 화합물로 Si2Cl6를 각각 준비하였다. 준비된 박막 형성용 성장 억제제를 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 기화기로 공급하였다. 준비된 Si2Cl6를 별도의 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.05 g/min의 유속으로 150 ℃로 가열된 별도의 기화기로 공급하였다.
기화기에서 증기상으로 기화된 박막 형성용 성장 억제제를 1초 동안 기판이 로딩된 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다. 다음으로 기화기에서 증기상으로 기화된 Si2Cl6를 1초 동안 증착 챔버에 투입한 후 아르곤 가스를 5000 sccm으로 2초 동안 공급하여 아르곤 퍼징을 실시하였다. 이때 반응 챔버내 압력은 2.5 Torr로 제어하였다. 다음으로 반응성 가스로서 암모니아 1000 sccm을 3초 동안 상기 반응 챔버에 투입한 후 200 W의 플라즈마 처리를 진행하였다. 다음으로 3초 동안 아르곤 퍼징을 실시하였다. 이때 금속 박막이 형성될 기판을 460 ℃로 가열하였다. 이와 같은 공정을 300회 반복하여 자기-제한 원자층인 SiN 박막을 형성하였다.
비교예 1
실시예 1에서 박막 형성용 성장 억제제를 사용하지 않은 것과 이에 따라 미흡착 박막 형성용 성장 억제제를 퍼징하는 단계를 생략한 것을 제외하고는 실시예 1과 동일한 방법으로 기판 위에 TIN 박막을 형성하였다.
비교예 2 및 3
실시예 1에서 박막 형성용 성장 억제제로 결합 해리 에너지가 350 kJ/mol 초과인 n-butyl chloride와 2-chloro propane을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 기판 위에 TIN 박막을 형성하였다.
비교예 4
실시예 5에서 박막 형성용 성장 억제제를 사용한지 않은 것과 이에 따라 미흡착 박막 형성용 성장 억제제를 퍼징하는 단계를 생략한 것을 제외하고는 실시예 6과 동일한 방법으로 기판 위에 SiN 박막을 형성하였다.
[실험예]
1) 증착평가
하기 표 2에 나타낸 바와 같이, tert-butyl bromide을 박막 형성용 성장 억제제로 사용한 실시예 1과 이를 포함하지 않은 비교예 1을 비교하였다. 그 결과 증착 속도는 0.19 Å/cycle이고, 비교예 1과 비교하였을 때 40 % 이상 증착 속도가 감소하였다. 나머지 실시예 2와 3 그리고 실시예 5도 실시예 1과 유사한 값의 증착 속도를 가지는 것을 확인할 수 있었다. 또한, 본 발명에 따른 박막 형성용 성장 억제제 대신 결합해리 에너지가 큰 n-butyl chloride 및 2-chloro propane을 각각 사용한 비교예 2 및 3도 비교예 1과 동일한 값의 증착 속도를 가지는 것을 확인할 수 있었다. 이때 증착 속도 감소는 CVD 증착 특성을 ALD 증착 특성으로 변화시키는 것을 의미하기 때문에 단차 피복 특성 개선의 지표로 활용될 수 있다.
덧붙여, 결합 해리 에너지가 50 kJ/mol 미만인 박막 형성용 성장 억제제의 경우 불안정하여 증착공정에 활용하기가 용이하지 않으며, 결합 해리 에너지가 350 kJ/mol 초과인 박막 형성용 성장 억제제의 경우 박막 내부에 탄소 등 불순물 농도를 증가시킬 수 있다.
또한, SiN 박막에서 동일한 효과가 구현되는지를 확인하기 위해 하기 표 2를 참조하여 실시예 5와 비교예 4을 비교하면, 그 결과 실시예 5가 비교예 4 대비하여 증착속도는 0.29 Å/cycle에서 0.32 Å/cycle로 10% 이상 감소함을 알 수 있다.
하기 도 7은 실시예 5와 비교예 4에서 제조된 SiN 박막의 SIMS 분석 그래프인데, 우측 그래프에 해당하는 실시예 5가 좌측 그래프에 해당하는 비교예 4 대비하여 Cl이 크게 저감되는 것을 확인할 수 있었다.
또한 하기 표 2를 참조하면, Ter-butyl iodide를 박막 형성용 성장 억제제로 사용하여 소스 전구체, 즉 박막 전구체를 먼저 흡착시킨 후 아르곤 가스 퍼지 후 박막 형성용 성장 억제제를 공급한 실시예 4의 경우 박막 형성용 성장 억제제를 사용하지 않은 비교예 1과 비교하여, 증착속도는 0.32 Å/cycle에서 0.35 Å/cycle 로 10% 가까이 증가하였고, 증착 온도를 500 ℃로 높일 경우 0.37 Å/cycle까지 16% 가까이 증가하는 것을 확인할 수 있었다.
실시예 4는 비교예 1 과 대비하여 오히려 증착속도가 증가하나, 이는 종래 기술과는 달리 증착속도가 증가하면 불순물이 증가하는 것이 아니라, 오히려 불순물이 저감하는 예측 못한 현상이 일어나, 생산능력(through-put) 측면과 연계되었을 때 또 다른 큰 이점을 제공함을 확인할 수 있었다.
구분 | 성장 억제제 | 박막 종류 | 증착 속도 (Å/cycle) |
실시예 1 | Tert-butyl bromide | TiN | 0.19 |
실시예 2 | 1-methyl-1-bromocyclohexane | TiN | 0.23 |
실시예 3 | Tert-butyl iodide | TiN | 0.28 |
실시예 4 | Tert-butyl iodide | TiN | 0.35 |
실시예 5 | Tert-butyl iodide | SiN | 0.29 |
실시예 6 | Tert-butyl chloride | TiN | 0.20 (추가) |
비교예 1 | X | TiN | 0.32 |
비교예 2 | n-butyl chloride | TiN | 0.31 |
비교예 3 | 2-chloro propane | TiN | 0.30 |
비교예 4 | X | SiN | 0.35 |
2) 불순물 저감특성
실시예 1 내지 5 및 비교예 1 내지 2를 토대로 증착된 TiN 박막의 불순물 저감특성, 즉 공정 부산물 저감특성을 비교하기 위해 SIMS 분석을 진행하였고, 그 결과는 아래 표 4 및 도 3, 4에 나타내었다. 여기에서 Cl 저감률(%)은 하기 수학식 2로 계산하였다.
[수학식 2]
구분 | 실시예 1 | 실시예 2 | 실시예 3 | 실시예 4 | 실시예 5 | 실시예 6 | 비교예 1 | |
Cl 저감률 (Cl intensity(c/s)) |
460 ℃ | 48.2% (8043) |
34.5% (10174) |
39.0% (9475) |
56% (6633) |
42.8% (712) |
41.9% (9014) |
0% (15538) |
500 ℃ | 68.9% (2728) |
24.9% (6589) |
- | - | - | 38.4% (5412) |
0% (8781) |
|
550 ℃ | 49.7%(1591) | 21.4% (2491) |
- | - | - | 17.3% (2620) |
0% (3169) |
* 시료 박막의 기준 두께(Thickness): 10 nm상기 표 3에 나타낸 바와 같이, 본 발명에 따른 박막 형성용 성장 억제제를 사용한 실시예 1 내지 5는 이를 사용하지 않은 비교예 1 내지 비교예 2에 비하여 Cl 강도(intensity)가 크게 감소하여 불순물 저감특성이 뛰어남을 확인할 수 있었다.
또한, 실시예 3과 실시예 4를 비교해 보면 실시예 4의 공정 방식이 불순물 저감 특성에 매우 유리함을 확인할 수 있었다.
또한, 하기 도 3, 4는 실시예 1 및 비교예 1을 통한 증착 온도에 따른 공정 부산물 저감특성, 즉 Cl 감소율을 나타내는 그래프로, 본 발명에 따른 박막 형성용 성장 억제제가 사용된 경우 모든 증착 온도에서, 특히 480 내지 520 ℃ 구간에서 본 발명에 따른 박막 형성용 억제제가 사용되지 않은 경우 대비 Cl 강도(intensity)가 크게 떨어지는 것을 확인할 수 있었다.
3) 박막 성장률 감소율
실시예 1 내지 5 및 비교예 1 내지 3에서 증착된 TiN 박막의 박막 성장률은 Ellipsometery 방법으로 두께를 측정한 후 이에 대한 결과를 가지고 하기 수학식 1을 이용하여 박막 성장률 감소율을 계산하였고, 그 결과는 아래 표 4에 나타내었다.
[수학식 1]
사이클당 박막 성장률 감소율(%) = [(박막 형성용 성장 억제제를 사용했을 때 사이클당 박막 성장률 - 박막 형성용 성장 억제제를 사용하지 않았을 때 사이클당 박막 성장률) / 박막 형성용 성장 억제제를 사용하지 않았을 때 사이클당 박막 성장률] X 100
구분 | 실시예 1 | 실시예 2 | 실시예 3 | 실시예4 | 실시예5 | 실시예6 | 비교예 1 | 비교예 2 |
사이클당 박막 성장률(GPC) 감소율(%) | 40 | 28 | 12.5 | -9.3 | 17 | 37.5 | 0 | 3 |
상기 표 4에 나타낸 바와 같이, 본 발명에 따른 박막 형성용 성장 억제제를 사용한 실시예 1 내지 3은 이를 사용하지 않은 비교예 1에 비하여 사이클당 박막 성장률 감소율이 10~40% 수준으로 뛰어남을 확인할 수 있었다. 또한 실시예 5와 비교예 2를 비교하면, 실시예 5가 비교예 2 대비 사이클당 박막 성장률 감소율이 17% 수준으로 우수함을 확인할 수 있었다. 추가로, 공정방식을 다르게 한 경우 실시예 4를 비교예 1과 비교하면, 실시예 4가 비교예 1 대비하여 오히려 증착속도가 증가하나, 종래 기술과는 달리 증착속도가 증가함에도 불순물 저감 특성이 뛰어나, 오히려 생산능력(through-put) 측면과 연계되었을 때 또 다른 유리함을 제공할 수 있다.
4) 단차 피복 특성
실시예 1 및 비교예 1에서 증착된 TiN 박막을 TEM을 이용하여 단차 피복성을 확인하였고, 그 결과는 하기 표 5 및 하기 도 5에 나타내었다.
구분 | 실시예 1 | 비교예 1 |
단차 피복율(%) | 84 | 48 |
상기 표 5에 나타낸 바와 같이, 본 발명에 따른 박막 형성용 성장 억제제를 사용한 실시예 1은 이를 사용하지 않은 비교예 1에 비하여 단차 피복율이 현저히 높은 것을 확인할 수 있었다.또한, 하기 도 5의 TEM 사진을 참작하면, 실시예 1(SP-TiCl4)에서 증착된 TIN 박막의 Top과 bottom의 두께 균일도는 비교예 1(TiCl4)에서 증착된 TIN 박막 대비 단차 도포성(conformality)이 더 우수함을 확인할 수 있었다. 여기에서 Top과 bottom의 단면은 하기 도 6으로 설명되어질 수 있는데, 상기 top의 단면은 top에서 200 nm 아래 지점에서, 상기 bottom의 단면은 bottom에서 100 nm 위 지점에서 형성된 것이다.
참조예 1
상기 실시예 1에서 박막 형성용 성장 억제제로 Tert-butyl bromide 대신 Tert-butyl chloride를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 공정을 수행하여 자기-제한 원자층인 TiN 박막을 형성하였고, 실시예 1을 토대로 증착된 TiN 박막의 불순물 저감특성, 즉 공정 부산물 저감특성과 비교하기 위해 SIMS 분석을 진행하였고, 그 결과는 하기 표 6에 나타내었다.
구분 | 실시예 1 | 참조예 1 | |
Cl 저감률 (Cl intensity(c/s)) |
460 ℃ | 48.2% (8043) |
32.4% (9014) |
500 ℃ | 68.9% (2728) |
24.3% (5412) |
|
550 ℃ | 49.7%(1591) | 21.7% (2620) |
* 시료 박막의 기준 두께(Thickness): 10 nm상기 표 6에 나타낸 바와 같이, 본 발명에 따른 브롬화물 박막 형성용 성장 억제제를 사용한 실시예 1이 염화물 박막 형성용 성장 억제제를 사용한 참고예 1에 비하여 Cl 저감률이 더욱 높아 불순물 저감특성이 보다 우수함을 확인할 수 있었다.
5) 박막 결정성
하기 도 8은 비교예 1과 같이 박막 형성용 성장 억제제를 투입하지 않은 것(Ref TiN), 실시예 4에서 박막 형성용 성장 억제제를 0.1/min의 양으로 투입한 것(tert-BuI (0.1g/min)) 및 실시예 4에서 박막 형성용 성장 억제제를 0.1/min의 양으로 투입한 것(tert-BuI (0.1g/min))에 대한 XRD 분석 그래프인데, 실시예 4와 같이 박막 전구체 화합물을 먼저 흡착시키고 아르곤 퍼징한 후에 tert-BuI 박막 형성용 성장 억제제를 흡착시키는 경우 박막의 결정립이 더 커지는 것, 즉 결정성이 증가하는 것을 확인할 수 있었다. 여기에서 결정립의 크기는 TiN 박막의 (200) 위치의 피크로 확인 가능하고(200 위치의 피크가 크고 샤프할수록 결정성이 큼), 이와 같이 결정성이 증가하면 비저항이 크게 개선되는 이점이 있다.
6) 박막 밀도
비교예 1과 같이 박막 형성용 성장 억제제를 투입하지 않은 것(Ref TiN), 실시예 4에서 박막 형성용 성장 억제제를 0.1/min의 양으로 투입한 것(tert-BuI (0.1g/min)) 및 실시예 4에서 박막 형성용 성장 억제제를 0.1/min의 양으로 투입한 것(tert-BuI (0.1g/min))에 대한 X선 반사측정(XRR) 분석에 의거하여 측정된, 상기 비교예 1에서 제조된 TiN 박막의 밀도는 4.85 g/cm3이었으나, 실시예 4에서 tert-BuI를 0.01g/min의 양으로 사용하여 제조된 TiN 박막의 밀도는 5.00 g/cm3, 실시예 4에서 tert-BuI를 0.1 g/min의 양으로 사용하여 제조된 TiN 박막의 밀도는 5.23 g/cm3으로, 실시예 4와 같이 박막 전구체 화합물을 먼저 흡착시키고 아르곤 퍼징한 후에 tert-BuI 박막 형성용 성장 억제제를 흡착시키는 경우 박막 밀도가 크게 증가하는 것을 확인할 수 있었다. 따라서 본 발명에 따른 박막은 DRAM capacitance와 같이 high aspect ratio를 갖는 집적화된 구조체의 휨 특성을 개선하고, 또한 barrier metal 특성이 더 우수한 이점을 갖는다.
따라서, 본 발명은 박막 밀도가 4.95 g/cm3 이상, 바람직하게는 5.00 g/cm3 이상, 구체적인 예로 4.95 내지 5.50 g/cm3, 바람직한 예로 5.0 내지 5.3 g/cm3인 박막을 제공할 수 있다.
7) 박막 내 carbon 불순물
박막 내 carbon 불순물 확인을 위해 실시예 6과 비교예 2, 3 박막샘플들의 깊이별 XPS 원소 분석을 진행하였다. 박막 내의 carbon 농도는 도 9에서 설명되어 질 수 있는데 실시예 6의 경우 carbon이 미검출되었지만, 비교예 2, 3의 경우 carbon이 각각 15, 16% 검출되는 것을 알 수 있다.
Claims (15)
- 하기 화학식 1[화학식 1]AnBmXoYiZj(상기 A는 탄소 또는 규소이고, 상기 B는 수소 또는 탄소수 1 내지 3의 알킬이며, 상기 X는 결합 해리 에너지(bond dissociation energy)가 50 내지 350 KJ/mol인 이탈기(leaving group)이고, 상기 Y와 Z은 독립적으로 산소, 질소, 황 및 플루오린으로 이루어진 군으로부터 선택된 1종 이상이며 서로 같지 않고, 상기 n은 1 내지 15의 정수이며, 상기 o는 1 이상의 정수이고, m은 0 내지 2n+1이며, 상기 i와 j는 0 내지 3의 정수이다.)로 표시되는 화합물인 것을 특징으로 하는박막 형성용 성장 억제제.
- 제 1항에 있어서,상기 화학식 1에서 상기 o는 1 내지 5의 정수인 것을 특징으로 하는박막 형성용 성장 억제제.
- 제 1항에 있어서,상기 화학식 1로 표시되는 화합물은 분지형, 환형 또는 방향족 화합물인 것을 특징으로 하는박막 형성용 성장 억제제.
- 제 1항에 있어서,상기 화학식 1로 표시되는 화합물은 원자층 증착(ALD) 공정에 사용되는 것을 특징으로 하는박막 형성용 성장 억제제.
- 제 1항에 있어서,상기 화학식 1로 표시되는 화합물은 상온(22℃)에서 액체이고, 밀도가 0.8 내지 1.5 g/cm3이며, 증기압(20℃)이 1 내지 300 mmHg이고, 물에서의 용해도(25℃)가 200 mg/L 이하인 것을 특징으로 하는박막 형성용 성장 억제제.
- 하기 화학식 1[화학식 1]AnBmXoYiZj(상기 A는 탄소 또는 규소이고, 상기 B는 수소 또는 탄소수 1 내지 3의 알킬이며, 상기 X는 결합 해리 에너지가 50 내지 350 KJ/mol인 이탈기(leaving group)이고, 상기 Y와 Z은 독립적으로 산소, 질소, 황 및 플루오린으로 이루어진 군으로부터 선택된 1종 이상이며 서로 같지 않고, 상기 n은 1 내지 15의 정수이며, 상기 o는 1 이상의 정수이고, m은 0 내지 2n+1이며, 상기 i와 j는 0 내지 3의 정수이다.)로 표시되는 박막 형성용 성장 억제제를 ALD 챔버 내로 주입하여 로딩(loading)된 기판 표면에 흡착시키는 단계를 포함하는 것을 특징으로 하는박막 형성 방법.
- 제 6항에 있어서,i) 상기 박막 형성용 성장 억제제를 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계;ii) 상기 ALD 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계;iii) 박막 전구체 화합물을 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계;iv) 상기 ALD 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계;v) 상기 ALD 챔버 내부에 반응가스를 공급하는 단계; 및vi) 상기 ALD 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계;를 포함하는 것을 특징으로 하는박막 형성 방법.
- 제 6항에 있어서,i) 박막 전구체 화합물을 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계;ii) 상기 ALD 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계;iii) 상기 박막 형성용 성장 억제제를 기화하여 ALD 챔버 내 로딩된 기판 표면에 흡착시키는 단계;iv) 상기 ALD 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계; v) 상기 ALD 챔버 내부에 반응가스를 공급하는 단계; 및vi) 상기 ALD 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계;를 포함 포함하는 것을 특징으로 하는박막 형성 방법.
- 제 7항 또는 제 8항에 있어서,상기 박막 형성용 성장 억제제 및 박막 전구체 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 ALD 챔버 내로 이송되는 것을 특징으로 하는박막 형성 방법.
- 제 7항 또는 제 8항에 있어서,상기 박막 형성용 성장 억제제와 상기 전구체 화합물의 ALD 챔버 내 투입량(mg/cycle) 비는 1 : 1.5 내지 1 : 20인 것을 특징으로 하는박막 형성 방법.
- 제 7항 또는 제 8항에 있어서,상기 박막 형성 방법은 하기 수학식 1로 계산되어지는 사이클당 박막 성장률(Å/Cycle) 감소율이 -5 % 이하인 것을 특징으로 하는박막 형성 방법.[수학식 1]사이클당 박막 성장률 감소율(%) = [(박막 형성용 성장 억제제를 사용했을 때 사이클당 박막 성장률 - 박막 형성용 성장 억제제를 사용하지 않았을 때 사이클당 박막 성장률) / 박막 형성용 성장 억제제를 사용하지 않았을 때 사이클당 박막 성장률] Ⅹ 100
- 제 7항 또는 제 8항에 있어서,상기 박막 형성 방법은 SIMS에 의거하여 측정된, 200 사이클 후 형성된 박막 내 잔류 할로겐 세기(c/s)가 10,000 이하인 것을 특징으로 하는박막 형성 방법.
- 제 7항 또는 제 8항에 있어서,상기 반응가스는 환원제, 질화제 또는 산화제인 것을 특징으로 하는박막 형성 방법.
- 제 6항에 따른 박막 형성 방법으로 제조됨을 특징으로 하는반도체 기판.
- 제 14항에 있어서,상기 제조된 박막은 두께가 20 nm 이하이고, 비저항 값이 0.1 내지 400 μΩ·cm이며, 할로겐 함량이 10,000 ppm 이하이고, 단차피복율이 80% 이상인 것을 특징으로 하는반도체 기판.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180046637.2A CN115735021A (zh) | 2020-07-17 | 2021-07-16 | 薄膜形成用生长抑制剂、利用其的薄膜形成方法以及由此制造的半导体基板 |
JP2022581010A JP2023532104A (ja) | 2020-07-17 | 2021-07-16 | 薄膜形成用成長抑制剤、これを用いた薄膜形成方法、及びこれから製造された半導体基板 |
US18/014,452 US20230257881A1 (en) | 2020-07-17 | 2021-07-16 | Growth inhibitor for forming thin film, method of forming thin film using growth inhibitor, and semiconductor substrate fabricated by method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0089035 | 2020-07-17 | ||
KR1020200089035A KR102254395B1 (ko) | 2020-07-17 | 2020-07-17 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022015099A1 true WO2022015099A1 (ko) | 2022-01-20 |
Family
ID=76152651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/009167 WO2022015099A1 (ko) | 2020-07-17 | 2021-07-16 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230257881A1 (ko) |
JP (1) | JP2023532104A (ko) |
KR (2) | KR102254395B1 (ko) |
CN (1) | CN115735021A (ko) |
TW (1) | TWI784620B (ko) |
WO (1) | WO2022015099A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102254395B1 (ko) * | 2020-07-17 | 2021-05-24 | 솔브레인 주식회사 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
KR102374622B1 (ko) * | 2020-07-17 | 2022-03-16 | 솔브레인 주식회사 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
CN117328035A (zh) * | 2023-10-31 | 2024-01-02 | 拓荆科技(上海)有限公司 | TiAlC薄膜的制备方法、制备装置及NMOS器件 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002097414A (ja) * | 2000-09-25 | 2002-04-02 | Jsr Corp | 膜形成用組成物および絶縁膜形成用材料 |
KR20140035818A (ko) * | 2012-09-14 | 2014-03-24 | 가부시키가이샤 히다치 고쿠사이 덴키 | 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 |
KR20180120119A (ko) * | 2017-04-26 | 2018-11-05 | 솔브레인 주식회사 | 박막 형성용 조성물 및 박막의 제조방법 |
KR20190036794A (ko) * | 2017-09-28 | 2019-04-05 | 에스케이하이닉스 주식회사 | 박막 형성용 조성물 및 이를 이용한 박막 형성 방법 |
KR20190061877A (ko) * | 2017-11-28 | 2019-06-05 | 주식회사 원익아이피에스 | 박막 증착 방법 |
KR102254395B1 (ko) * | 2020-07-17 | 2021-05-24 | 솔브레인 주식회사 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1780935B (zh) | 2003-07-16 | 2010-05-05 | 柯尼卡美能达控股株式会社 | 薄膜制造方法以及具有由此薄膜制造方法形成的薄膜的基材 |
US10900120B2 (en) * | 2017-07-14 | 2021-01-26 | Asm Ip Holding B.V. | Passivation against vapor deposition |
US10403504B2 (en) * | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
-
2020
- 2020-07-17 KR KR1020200089035A patent/KR102254395B1/ko active IP Right Grant
-
2021
- 2021-05-11 KR KR1020210060574A patent/KR20220010418A/ko not_active Application Discontinuation
- 2021-07-16 TW TW110126310A patent/TWI784620B/zh active
- 2021-07-16 US US18/014,452 patent/US20230257881A1/en active Pending
- 2021-07-16 JP JP2022581010A patent/JP2023532104A/ja active Pending
- 2021-07-16 CN CN202180046637.2A patent/CN115735021A/zh active Pending
- 2021-07-16 WO PCT/KR2021/009167 patent/WO2022015099A1/ko active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002097414A (ja) * | 2000-09-25 | 2002-04-02 | Jsr Corp | 膜形成用組成物および絶縁膜形成用材料 |
KR20140035818A (ko) * | 2012-09-14 | 2014-03-24 | 가부시키가이샤 히다치 고쿠사이 덴키 | 반도체 장치의 제조 방법, 기판 처리 장치 및 기록 매체 |
KR20180120119A (ko) * | 2017-04-26 | 2018-11-05 | 솔브레인 주식회사 | 박막 형성용 조성물 및 박막의 제조방법 |
KR20190036794A (ko) * | 2017-09-28 | 2019-04-05 | 에스케이하이닉스 주식회사 | 박막 형성용 조성물 및 이를 이용한 박막 형성 방법 |
KR20190061877A (ko) * | 2017-11-28 | 2019-06-05 | 주식회사 원익아이피에스 | 박막 증착 방법 |
KR102254395B1 (ko) * | 2020-07-17 | 2021-05-24 | 솔브레인 주식회사 | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 |
Also Published As
Publication number | Publication date |
---|---|
CN115735021A (zh) | 2023-03-03 |
US20230257881A1 (en) | 2023-08-17 |
TWI784620B (zh) | 2022-11-21 |
KR102254395B1 (ko) | 2021-05-24 |
TW202208313A (zh) | 2022-03-01 |
KR20220010418A (ko) | 2022-01-25 |
JP2023532104A (ja) | 2023-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022015098A1 (ko) | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 | |
WO2021060864A1 (ko) | 박막 제조 방법 | |
WO2022015099A1 (ko) | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 | |
WO2022010214A1 (ko) | 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크 | |
WO2021060860A1 (ko) | 박막 제조 방법 | |
KR102138149B1 (ko) | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 | |
WO2023195653A1 (ko) | 활성화제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
KR102271042B1 (ko) | 막질 개선제, 이를 이용한 하드마스크 질화막 형성 방법 및 이로부터 제조된 반도체 소자 | |
WO2022186644A1 (ko) | 금속 박막 전구체 조성물, 이를 이용한 박막 형성 방법, 및 이로부터 제조된 반도체 기판 | |
WO2023038484A1 (ko) | 막질 개선제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 | |
WO2022177403A1 (ko) | 보조 전구체, 박막 전구체 조성물, 박막 형성 방법, 및 이로부터 제조된 반도체 기판 | |
WO2023195656A1 (ko) | 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023195654A1 (ko) | 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023195657A1 (ko) | 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023191360A1 (ko) | 계단율 개선제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023167483A1 (ko) | 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2024090846A1 (ko) | 진공 기반 박막 개질제, 이를 포함한 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2024076216A1 (ko) | 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자 | |
WO2023195655A1 (ko) | 박막 차폐제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023153647A1 (ko) | 산화막 반응면제어제, 이를 이용한 산화막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023191361A1 (ko) | 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2023096216A1 (ko) | 막질 개선제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
WO2024054065A1 (ko) | 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 | |
KR102374622B1 (ko) | 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 | |
WO2024076217A1 (ko) | 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21842230 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022581010 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21842230 Country of ref document: EP Kind code of ref document: A1 |