WO2023167483A1 - 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 - Google Patents

박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 Download PDF

Info

Publication number
WO2023167483A1
WO2023167483A1 PCT/KR2023/002766 KR2023002766W WO2023167483A1 WO 2023167483 A1 WO2023167483 A1 WO 2023167483A1 KR 2023002766 W KR2023002766 W KR 2023002766W WO 2023167483 A1 WO2023167483 A1 WO 2023167483A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film
chamber
substrate
composition
Prior art date
Application number
PCT/KR2023/002766
Other languages
English (en)
French (fr)
Inventor
연창봉
이승현
정재선
남지현
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220140808A external-priority patent/KR20230131086A/ko
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Publication of WO2023167483A1 publication Critical patent/WO2023167483A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present invention relates to a thin film modifying composition, a method of forming a thin film using the same, and a semiconductor substrate and a semiconductor device manufactured therefrom, and more particularly, to a thin film modification composed of a film growth/film quality improving compound having a predetermined structure and a solvent having a specified dielectric constant.
  • the present invention relates to a thin film modification composition capable of improving efficiency and significantly reduced impurity contamination, a method of forming a thin film using the same, and a semiconductor substrate manufactured therefrom.
  • the width and depth of the microstructure (hereinafter referred to as 'aspect ratio') is increasing to 20:1 or more and 100:1 or more, and the larger the aspect ratio, the more difficult it is to form a sedimentary layer with a uniform thickness along the complex microstructure surface. There is a problem that gets difficult.
  • step coverage which defines the thickness ratio of the upper and lower layers in the depth direction of the microstructure, remains at the 90% level, making it increasingly difficult to express the electrical characteristics of the device.
  • step coverage of 100% means that the thickness of the deposited layers formed on the top and bottom of the microstructure is the same, it is necessary to develop technology so that the step coverage approaches 100% as much as possible.
  • the semiconductor thin film is made of a nitride film, a thin film, a metal film, or the like.
  • the nitride film includes silicon nitride (SiN), titanium nitride (TiN), tantalum nitride (TaN), and the like, and the thin film includes silicon oxide (SiO 2 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), and the like.
  • the metal film includes a molybdenum film (Mo), tungsten (W), and the like.
  • the thin film is generally used as a diffusion barrier between a silicon layer of a doped semiconductor and aluminum (Al) or copper (Cu) used as an interlayer wiring material.
  • Al aluminum
  • Cu copper
  • tungsten (W) thin film it is used as an adhesion layer.
  • step coverage of the thin film is essential, so ALD (atomic layer deposition) process is utilized, but there is still a problem in realizing 100% step coverage.
  • a thin film formation method capable of effectively forming a thin film having a complex structure even at a high temperature, having a low residual amount of impurities, and greatly improving film quality such as step coverage, thickness uniformity and electrical characteristics of the thin film, and manufacturing therefrom
  • film quality such as step coverage, thickness uniformity and electrical characteristics of the thin film, and manufacturing therefrom
  • the present invention provides a thin film modifying composition composed of a film growth / film quality improvement compound having a predetermined structure and a solvent having a specified dielectric constant to appropriately lower the growth rate of the deposited film during a vacuum-based thin film process Even when a thin film is formed on a substrate having a complicated structure, the step coverage and thickness uniformity of the thin film can be greatly improved, the efficiency of the etching film can be improved, and the impurity contamination is significantly reduced.
  • An object of the present invention is to provide a modified composition, a method of forming a thin film using the same, a semiconductor substrate manufactured therefrom, and a semiconductor device including the same.
  • An object of the present invention is to improve the density and dielectric properties of a thin film by improving the crystallinity and oxidation fraction of the thin film.
  • the present invention is a liquid halogen compound having a vapor pressure of 1 torr (25 °C) or more; and a non-polar solvent having a dielectric constant of 25 or less.
  • the thin film may be a vacuum-based deposition film or a vacuum-based etching film.
  • the liquid halogen compound may be an alkyl halide having 1 to 10 carbon atoms.
  • the liquid halogen compound may have a refractive index of 1.40 to 1.60, 1.40 to 1.58, or 1.40 to 1.56.
  • the liquid halogen compound may include compounds represented by Chemical Formulas 1-1 to 1-9 when the corresponding thin film is a deposited film.
  • the liquid halogen compound may include compounds represented by Chemical Formulas 2-1 to 2-3 when the thin film is an etchant.
  • the liquid halogen compound may control the reaction surface of the above-described deposited film or etched film.
  • a non-polar solvent having a dielectric constant of 25 or less may be used in combination with the liquid halogen compound.
  • the dielectric constant is, for example, 25 or less, in specific examples, 15 or less, preferably 10 or less. You can maximize the desired effect.
  • the non-polar solvent having a dielectric constant of 25 or less may be, for example, a hydrocarbon-based solvent, a halogen-based solvent, a heterocycle-containing solvent, or an alcohol-based solvent.
  • the non-polar solvent having a dielectric constant of 25 or less is a specific example, 1 selected from octane, 1,2-dichloroethane, dimethylethyl amine, tetrahydrofuran, N,N dimethylformamide, isobutyl alcohol and ethyl alcohol There may be more than one species.
  • Injecting a precursor compound and a reaction gas sequentially into a chamber and forming a vacuum-based deposition thin film on the substrate in a vacuum state of 20 to 800 ° C. and less than 760 torr; includes,
  • the reaction gas provides a thin film forming method, characterized in that the oxidizing agent or reducing agent.
  • the chamber may be an ALD chamber, a CVD chamber, a PEALD chamber or a PECVD chamber.
  • the thin film modifying composition and the precursor compound may be transferred into the chamber using a VFC method, a DLI method, or an LDS method.
  • the heating temperature of the deposition transfer line (hereinafter, referred to as 'injection line') may be within the range of 25 to 200 °C for the substrate.
  • the thin film may be an oxide film or a nitride film.
  • the reaction gas may include O2, O3, N2O, NO2, H2O, or O2 plasma.
  • the thin film is Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re , Os, Ir, La, Ce, and Nd may be a thin film in which one or more layers are stacked.
  • the thin film may be a diffusion barrier film, an etch stop film, an electrode film, a dielectric film, a gate insulating film, a block film, or a charge trap.
  • Forming a vacuum-based etching film on the substrate by injecting an etching material into the chamber includes,
  • the etching material provides a thin film forming method, characterized in that at least one selected from Cl2, CCl4, CF2Cl2, CF3Cl, CF4, CHF3, C2F6, SF6, BCl3, Br2, and CF3Br.
  • the chamber may be an ALD chamber, a CVD chamber, a PEALD chamber or a PECVD chamber.
  • the thin film modifying composition and the precursor compound may be transferred into the chamber using a VFC method, a DLI method, or an LDS method.
  • the etching material may be used in combination with Ar, H2, or O2.
  • the thin film modifier composition may be supplied by applying it to a substrate loaded in the chamber at 20 to 800 °C.
  • the liquid halogen compound and the non-polar solvent constituting the thin film reforming composition may be separately injected into the chamber or may be injected into the chamber in a pre-mixed state.
  • the thin film modifier composition may be supplied by applying it to a substrate loaded in the chamber at 20 to 800 °C.
  • the liquid halogen compound and the non-polar solvent constituting the thin film reforming composition may be separately injected into the chamber or may be injected into the chamber in a pre-mixed state.
  • the precursor compound is Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, It is a molecule composed of at least one selected from the group consisting of Re, Os, Ir, La, Ce, and Nd, and may be a precursor having a vapor pressure of greater than 0.01 mTorr and less than 100 Torr at 25 °C.
  • the thin film reforming composition or the precursor compound may be evaporated and injected, and then subjected to plasma post-treatment.
  • the amount of the purge gas introduced into the chamber may be 10 to 100,000 times greater than the volume of the modified film composition or the precursor compound.
  • the reaction gas is an oxidizing agent or a reducing agent, and the reaction gas, the thin film reforming composition, and the precursor compound may be transferred into the chamber by a VFC method, a DLI method, or an LDS method.
  • the substrate loaded into the chamber is heated at 100 to 800° C., and a ratio of the thin film modifier composition and the precursor compound in the chamber (mg/cycle) may be 1:1 to 1:20.
  • the present invention provides a semiconductor substrate comprising a thin film manufactured by the above-described thin film forming method.
  • the thin film may have a multilayer structure of two layers or three or more layers.
  • the present invention provides a semiconductor device including the semiconductor substrate described above.
  • the semiconductor substrate includes low resistive metal gate interconnects, a high aspect ratio 3D metal-insulator-metal (MIM) capacitor, and a DRAM trench capacitor. , 3D Gate-All-Around (GAA), or 3D NAND flash memory.
  • MIM metal-insulator-metal
  • GAA Gate-All-Around
  • a film growth/film quality improvement compound having a predetermined structure and a thin film modifying composition composed of a solvent having a specific dielectric constant are used to appropriately lower the growth rate of a deposited film during a vacuum-based thin film process to form a complex structure. Even when a thin film is formed on a substrate having a thin film, step coverage and thickness uniformity of the thin film can be greatly improved, the efficiency of the etching film can be improved, and impurity contamination can be remarkably reduced. There is an effect of providing a composition.
  • process by-products are more effectively reduced during thin film formation, thereby preventing corrosion or deterioration and improving the crystallinity of the thin film by reforming the film quality, thereby improving the electrical properties of the thin film.
  • FIG. 1 to 3 are graphs measuring 1H NMR to confirm reactivity during synthesis and deposition of a modified film composition
  • FIG. 1 is a thin film (top) obtained by using 2-chloro-2-methyl butane alone
  • Figure 2 shows a thin film (bottom) obtained using a combination of -2-methylbutane and octane in a 1:1 molar ratio
  • Figure 2 shows a thin film (top) obtained using iodocyclopentane alone
  • FIG. 1 is a thin film (top) obtained by using 2-chloro-2-methyl butane alone
  • Figure 2 shows a thin film (bottom) obtained using a combination of -2-methylbutane and octane in a 1:1 molar ratio
  • Figure 2 shows a thin film (top) obtained using iodocyclopentane alone
  • FIG. 3 shows a thin film obtained using 1-chloro-1-methylcyclohexane alone (top), 1-chloro-1 -The thin films obtained using a 1:1 molar ratio blend of methylcyclohexane and octane (below) are shown respectively.
  • thin film modification means controlling the surface of a substrate to be used as a surface chemical reaction surface in a deposition process, unless otherwise specified.
  • film growth/improvement of film quality refers not only to reducing, preventing, or blocking the adsorption of a precursor compound for forming a thin film onto a substrate, but also reducing the adsorption of process by-products onto the substrate. , Improving film growth by blocking or blocking, or improving film quality such as electrical characteristics and thin film density.
  • the dielectric constant may use a value known in the art (calculated value at 20 ° C) ( https://macro.lsu.edu/howto/solvents/Dielectric%20Constant%20.htm reference).
  • the present inventors use a film growth/film quality improvement compound having a predetermined structure and a solvent having a specified dielectric constant as a thin film modifying composition for modifying the surface of a substrate and improving the deposition or etching process in a vacuum-based deposition or etching process. Even when a thin film is formed on a substrate having a complex structure by appropriately lowering the growth rate, step coverage and thickness uniformity of the thin film can be greatly improved, and the efficiency of the etching film can be improved. It was confirmed that it can be deposited, and that O, Si, metal, metal oxide remaining as a by-product of the process, and even the remaining amount of carbon, which was not easy to reduce in the past, are improved. Based on this, the present invention was completed by concentrating on research on film growth / film quality improvement compounds.
  • An object to which the thin film improvement composition of the present invention is applied may be a vacuum-based deposited film or a vacuum-based etched film.
  • the deposited film or etched film is, for example, Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, It can be provided as one or more precursors selected from the group consisting of Ta, W, Re, Os, Ir, La, Ce, and Nd, and can provide a modified region for an oxide film, a nitride film, a metal film, or a selective thin film thereof, , In this case, the effect to be achieved in the present invention can be sufficiently obtained.
  • the thin film may have a film composition of, for example, a silicon oxide film or a silicon nitride film.
  • the thin film may be used in a semiconductor device for use as an etch stop film, an electrode film, a dielectric film, a gate insulating film, a block film, or a charge trap, as well as a generally used diffusion barrier film.
  • a compound represented by Formula 3 below may be used as an example.
  • M is Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, At least one selected from Ta, W, Re, Os, Ir, La, Ce, and Nd, and L1, L2, L3, and L4 are -H, -X, -R, -OR, -NR2, or Cp (cyclopentadiene ), where -X is F, Cl, Br, or I, and -R is C1-C10 alkyl, C1-C10 alkene, or C1-C10 alkane, which can be linear or cyclic. And, the L1, L2, L3 and L4 may be formed from 2 to 6 depending on the oxidation value of the central metal.
  • L1 and L2 may be attached to the central metal as ligands
  • L1, L2, L3, L4, L5, and L6 may be attached to the central metal
  • L1 to L2 may be attached to the central metal.
  • Ligands corresponding to L6 may be the same as or different from each other.
  • M may be a trivalent metal, a tetravalent metal, a pentavalent metal, or a kind corresponding to a hexavalent metal, and is preferably hafnium (Hf), zirconium (Zr), aluminum (Al), niobium (Nb), or tel. It is rurium (Ta), and in this case, it has a large process by-product reduction effect, excellent step coverage , thin film density improvement effect, and excellent electrical properties, insulation and dielectric properties of the thin film.
  • L1, L2, L3 and L4 are -R, -X or Cp, which may be the same as or different from each other, wherein -R is a C1-C10 alkyl, a C1-C10 alkene, or a C1-C10 alkane, and is linear or It may have a cyclic structure.
  • L1, L2, L3 and L4 may be the same as or different from each other as -NR2 or Cp, where -R is H, C1-C10 alkyl, C1-C10 alkene, C1-C10 alkane, iPr, or It may be tBu.
  • L1, L2, L3, and L4 may be the same as or different from each other as -H or -X, where -X may be F, Cl, Br, or I.
  • Al(CH 3 ) 3 , AlCl 4 and the like may be used as an example of an aluminum precursor compound.
  • hafnium precursor compounds include tris(dimethylamido)cyclopentadienyl hafnium of CpHf(NMe 2 ) 3 ) and (methyl-3-cyclopentadiene of Cp(CH 2 ) 3 NM 3 Hf(NMe 2 ) 2 .
  • Nylpropylamino)bis(dimethylamino)hafnium and the like can be used.
  • silicon precursor compound examples include hexachlorodisilane (HCDS), dichlorosilane (DCS), tris(dimethylamino)silane (3DMAS), bis(diethylamino)silane (BDEAS), and octamethylcyclotetrasiloxane (OMCTS).
  • HCDS hexachlorodisilane
  • DCS dichlorosilane
  • DMAS tris(dimethylamino)silane
  • BDEAS bis(diethylamino)silane
  • OMC octamethylcyclotetrasiloxane
  • the thin film modifying composition of the present invention can control the growth of a vacuum-based thin film or control the film quality by reducing the adsorption rate of the precursor compound to the substrate by previously controlling the surface on which the precursor compound is adsorbed to the substrate.
  • the thin film modification composition may include a liquid halogen compound having a vapor pressure of 1 torr (25° C.) or higher; and a non-polar solvent having a dielectric constant of 25 or less.
  • a liquid halogen compound having a vapor pressure of 1 torr (25° C.) or higher
  • a non-polar solvent having a dielectric constant of 25 or less.
  • the halogen compound may have a refractive index in the range of 1.40 to 1.60, 1.40 to 1.58, or 1.40 to 1.56, and in this case, the effect of reducing process by-products is excellent, the step coverage is excellent, the effect of improving the density of the thin film and the electrical properties of the thin film characteristics can be better.
  • the liquid halogen compound is preferably used in an atomic layer deposition (ALD) process, and in this case, it effectively protects the surface of the substrate without interfering with the adsorption of the precursor compound or etching by an etching material, and effectively removes process by-products. There are benefits to removing it.
  • ALD atomic layer deposition
  • the liquid halogen compound is preferably liquid at room temperature (22°C), has a density of 0.8 to 2.5 g/cm 3 or 0.8 to 1.5 g/cm 3 , and has a vapor pressure (20°C) of 0.1 to 300 mmHg or 1 to 300 mmHg. Within this range, a modified region is effectively formed, and step coverage, thickness uniformity of the thin film, and film quality are improved.
  • the liquid halogen compound may have a density of 0.75 to 2.0 g/cm 3 or 0.8 to 1.3 g/cm 3 and a vapor pressure (20° C.) of 1 to 260 mmHg, within this range the modified region It is formed effectively, and has excellent effects in step coverage, thickness uniformity and film quality improvement.
  • the liquid halogen compound is preferably used in an atomic layer etching (ALE) process, and in this case, since chemical etching is used, there is an effect of implementing selective etching and isostatic etching characteristics of an etching film to be provided.
  • ALE atomic layer etching
  • the liquid halogen compound includes an alkyl halide having 1 to 10 carbon atoms, the effect of reducing process by-products is excellent, and the step coverage is excellent, and the effect of improving the density of the thin film and the electrical properties of the thin film may be more excellent.
  • the halogen included in the alkyl halide may be fluorine, bromine, chlorine, or iodine, and at least one or more may be included in the alkyl halide, in which case, the effect of reducing process by-products is high, the step coverage is excellent, and the thin film density There is an advantage in that the improvement effect and electrical properties of the thin film are more excellent.
  • the liquid halogen compound may be preferably one or more selected from compounds represented by the following Chemical Formulas 1-1 to 1-9.
  • the liquid halogen compound may preferably be a compound represented by the following Chemical Formulas 2-1 to 2-3 when the thin film is an etching film, and in this case, the etching process can be effectively performed while minimizing contamination of impurities. .
  • the aforementioned liquid halogen compound may be used alone, but considering the harsh atmosphere under vacuum, it is preferable to use it together with a specific organic solvent to efficiently perform the process.
  • the non-polar solvent having a dielectric constant of 25 or less may include a hydrocarbon-based solvent, a halogen-based solvent (excluding the aforementioned liquid halogen compound), a solvent containing a heterocyclic ring, or an alcohol-based solvent.
  • the hydrocarbon-based solvent may be a linear hydrocarbon compound having an alkyl group having 1 to 10 carbon atoms, and for example, octane (d: 1.9 at 25° C.) may be used.
  • the halogen-based solvent may be a linear hydrocarbon compound substituted with a terminal halogen, wherein at least one halogen is substituted, preferably two or more, for example, 1,2-dichloroethane (d: 10.7 at 25 ° C. ) can be used.
  • the heterocycle-containing solvent may include nitrogen or oxygen.
  • nitrogen-containing solvent examples include dimethylethyl amine (d: 3.2 at 25° C.).
  • oxygen-containing solvent examples include tetrahydrofuran (d: 7.6 at 25° C.).
  • alcohol-based solvent examples include isobutyl alcohol (d: 16.68 at 25°C) and ethyl alcohol (d: 24.55 at 25°C).
  • the vacuum-based thin film reforming composition may include a non-polar solvent having a dielectric constant of 25 or less in at least one compound selected from the compounds represented by Formulas 1-1 to 1-9,
  • a non-polar solvent having a dielectric constant of 25 or less in at least one compound selected from the compounds represented by Formulas 1-1 to 1-9,
  • the effect of controlling the growth rate of the deposited film is great, the effect of removing process by-products is also great, and the step coverage and film quality improvement effects are excellent, and even when applied to a substrate with a complex structure, the uniformity of the thin film is secured, so the step coverage is greatly increased.
  • It can be deposited with a particularly thin thickness, and can provide an effect of improving O, Si, metal, metal oxide remaining as a by-product of the process, and even the remaining amount of carbon, which has not been easy to reduce in the past, and improves film quality even when manufacturing an etching film. effect can be provided.
  • the reaction gas may include O 2 , NH 3 , or H 2 .
  • the thin film is Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re , Os, Ir, La, Ce, and Nd may be a thin film in which one or more layers are stacked.
  • the thin film modification composition may provide a modified region for a thin film.
  • the thin film modifying composition is characterized in that it does not remain in the thin film.
  • non-residue means, unless otherwise specified, when analyzing the components by XPS, less than 0.1 atom% of C element, less than 0.1 atom% of Si element, less than 0.1 atom% of N element, halogen It refers to the case where an element is present in less than 0.1 atomic % (atom%).
  • the rate of increase and decrease in intensity of each element species does not exceed 5%.
  • the thin film may include, for example, 100 ppm or less of a halogen compound.
  • the thin film may be used as a diffusion barrier layer, an etch stop layer, an electrode layer, a dielectric layer, a gate insulating layer, a block thin layer, or a charge trap, but is not limited thereto.
  • the liquid halogen compound, the organic solvent, and the precursor compound may preferably be a compound having a purity of 99.9% or more, a compound having a purity of 99.95% or more, or a compound having a purity of 99.99% or more.
  • impurities it is recommended to use a material of 99% or more as much as possible because it may remain in the thin film or cause a side reaction with the precursor or reactant.
  • the method of forming a thin film of the present invention includes the steps of treating the surface of a substrate loaded into a chamber with the above-described thin film modifying composition; and sequentially injecting a precursor compound and a reaction gas into the chamber and forming a vacuum-based deposited thin film on the substrate in a vacuum state of 20 to 800 ° C. and less than 760 torr, wherein the reaction gas is an oxidizing agent or a reducing agent.
  • the reaction gas is an oxidizing agent or a reducing agent.
  • the feeding time (sec) of the thin film modifying composition on the substrate surface is preferably 0.01 to 10 seconds, more preferably 0.02 to 8 seconds, more preferably 0.04 to 6 seconds per cycle, It is more preferably 0.05 to 5 seconds, and within this range, there are advantages in that the thin film growth rate is low, step coverage and economy are excellent, and impurity contamination is minimized.
  • the feeding time of the precursor compound is based on a flow rate of 0.1 to 500 mg/cycle in a chamber volume of 15 to 20 L, and more specifically, a flow rate of 0.8 to 200 mg/cycle in a chamber volume of 18 L. based on cycle.
  • the method for modifying a thin film of the present invention includes the steps of: i) forming a modified region on the surface of a substrate loaded into a chamber by vaporizing the above-described composition for modifying a thin film; and ii) firstly purging the inside of the chamber with a purge gas.
  • the method of modifying the thin film, and furthermore, the method of forming the thin film includes: i) vaporizing the thin film modifying composition and treating the surface of the substrate loaded in the chamber; ii) first purging the inside of the chamber with a purge gas; iii) vaporizing the precursor compound and adsorbing it to the surface of the loaded substrate in the chamber; iv) secondarily purging the inside of the chamber with a purge gas; v) supplying a reactive gas into the chamber; and vi) thirdly purging the inside of the chamber with a purge gas.
  • the above steps i) to vi) may be repeated as a unit cycle until a thin film having a desired thickness is obtained, and thus, within one cycle, the thin film modified composition of the present invention
  • the precursor compound is added before the precursor compound and adsorbed onto the substrate, the thin film growth rate can be appropriately lowered even when deposited at a high temperature, and the process by-products produced are effectively removed, thereby reducing the resistivity of the thin film and greatly improving the step coverage.
  • the substrate may be prepared by applying the thin film modifying composition to a substrate loaded in a chamber at 20 to 800 °C.
  • the surface of the substrate may be activated by introducing the thin film modification composition of the present invention prior to the precursor compound within one cycle, and then the precursor compound may be introduced and adsorbed to the substrate,
  • the thin film is deposited at a high temperature, by appropriately reducing the thin film growth rate, process by-products can be greatly reduced and step coverage can be greatly improved, and the formation of the thin film can be increased to reduce the resistivity of the thin film.
  • the thickness uniformity of the thin film is greatly improved, thereby securing the reliability of the semiconductor device.
  • the thin film modified composition when the thin film modified composition is deposited before or after the precursor compound is deposited, 1 to 99,999 unit cycles may be repeated as needed, preferably 10 to 10,000 unit cycles, More preferably, it can be repeated 50 to 5,000 times, and even more preferably 100 to 2,000 times, and the effect to be achieved in the present invention can be sufficiently obtained while obtaining a desired thin film thickness within this range.
  • the precursor compound is Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Consisting of C, N, O, H, X (halogen), Cp (cyclopentadiene) with at least one selected from the group consisting of Re, Os, Ir, La, Ce and Nd as the central metal atom (M)
  • a precursor having a vapor pressure of 1 mTorr to 100 Torr at 25° C. as a molecule having one or more ligands
  • the effect of forming a modified region by the above-described thin film modifying composition can be maximized despite natural oxidation.
  • the chamber may be, for example, an ALD chamber, a CVD chamber, a PEALD chamber or a PECVD chamber.
  • the thin film may be a silicon oxide film, a silicon nitride film, a titanium oxide film, a titanium nitride film, a hafnium oxide film, a hafnium nitride film, a zirconium oxide film, a zirconium nitride film, a tungsten oxide film, a tungsten nitride film, an aluminum oxide film, or an aluminum nitride film. , a niobium oxide film, a niobium nitride film, a thallium oxide film, or a thallurium nitride film.
  • the liquid halogen compound or the precursor compound may be vaporized and injected, and then plasma post-processing may be included.
  • the growth rate of the thin film may be improved while process by-products may be reduced.
  • the amount of the purge gas introduced into the chamber in the step of purging the unadsorbed thin film modifier or the thin film modified composition is It is not particularly limited as long as it is sufficient to remove the unadsorbed thin film modifying composition, but may be, for example, 10 to 100,000 times, preferably 50 to 50,000 times, more preferably 100 to 10,000 times, and within this range By sufficiently removing the unadsorbed film-modifying composition, the film can be evenly formed and deterioration of film quality can be prevented.
  • the input amounts of the purge gas and the thin film modifying composition are based on one cycle, respectively, and the volume of the thin film modifying composition is the volume of the thin film modifying composition or the volume of the vaporized liquid halogen compound and the vapor of the non-polar solvent, respectively. it means.
  • the injection amount of the thin film modifying composition is 200 sccm and the flow rate of the purge gas is 5000 sccm in the step of purging the unadsorbed thin film modifying composition
  • the injection amount of the purge gas is 25 times the injected amount of the thin film modifying composition.
  • the amount of purge gas introduced into the chamber is not particularly limited as long as it is an amount sufficient to remove the unadsorbed precursor compound, but for example, the volume of the precursor compound introduced into the chamber It may be 10 to 10,000 times, preferably 50 to 50,000 times, and more preferably 100 to 10,000 times based on, and within this range, unadsorbed precursor compounds are sufficiently removed to form a thin film evenly and to prevent deterioration of film quality. It can be prevented.
  • the input amounts of the purge gas and the precursor compound are based on one cycle, respectively, and the volume of the precursor compound means the volume of the vapor of the precursor compound given opportunity.
  • the amount of the purge gas introduced into the chamber may be 10 to 10,000 times the volume of the reaction gas injected into the chamber, and preferably 50 to 50,000 times the volume of the reaction gas introduced into the chamber. It may be twice, more preferably 100 to 10,000 times, and the desired effect can be sufficiently obtained within this range.
  • the input amounts of the purge gas and the reactive gas are each based on one cycle.
  • the thin film modifying composition and the precursor compound may be preferably transferred into the chamber using a VFC method, a DLI method, or an LDS method, and more preferably, they are transferred into the chamber using an LDS method.
  • the liquid halogen compound and the non-polar solvent constituting the thin film reforming composition may be transferred into the chamber, respectively, or may be transferred together in a blended state.
  • the substrate loaded into the chamber may be heated to, for example, 100 to 650 ° C., specifically, 150 to 550 ° C., and the thin film reforming composition or precursor compound may be injected onto the substrate in an unheated or heated state. And, depending on the deposition efficiency, it may be injected without being heated and then the heating conditions may be adjusted during the deposition process. For example, it may be implanted on a substrate at 100 to 650 °C for 1 to 20 seconds.
  • the ratio of the precursor compound and the modified film composition in the chamber may be preferably 1:1.5 to 1:20, more preferably 1:2 to 1:15, and still more preferably 1:2 to 1:20. It is 1:12, more preferably 1:2.5 to 1:10, and within this range, the effect of improving step coverage and reducing process by-products is great.
  • the deposition rate reduction rate represented by Equation 1 below may be 20% or more, preferably 50% or more, and in this case, having the above-described structure
  • a relatively coarse thin film is formed using a film growth/film quality improvement compound or a film modification composition, and at the same time, the growth rate of the formed thin film is greatly reduced, so that the uniformity of the thin film is ensured even when applied to a substrate with a complex structure under high temperature, and step coverage is greatly improved.
  • it can be deposited with a thin thickness, and can provide an effect of improving O, Si, metal, metal oxide remaining as a by-product of the process, and even carbon remaining, which has not been easy to reduce in the past.
  • Deposition rate reduction rate [ ⁇ (DR i )-(DR f ) ⁇ /(DR i )] ⁇ 100
  • DR Deposition rate, ⁇ /cycle
  • DR i initial deposition rate
  • DR f final deposition rate
  • DR deposition rate of the thin film formed by injecting the thin film modification composition during the above process, where the deposition rate (DR) is 3 to 30 nm thick using an ellipsometer device The value of the thin film of is measured under conditions of room temperature and normal pressure, and the unit of ⁇ /cycle is used.
  • the thin film growth rate per cycle when using and not using the thin film modification composition means the thin film deposition thickness per cycle ( ⁇ / cycle), that is, the deposition rate, and the deposition rate is, for example, ellipsometery
  • the average deposition rate can be obtained by measuring the final thickness of a thin film with a thickness of 3 to 30 nm at room temperature and normal pressure and then dividing by the total number of cycles.
  • Equation 1 "when the thin film modification composition is not used” means a case in which a thin film is prepared by adsorbing only a precursor compound on a substrate in a thin film deposition process. This refers to a case where the thin film is formed by omitting the adsorption step and the step of purging the unadsorbed thin film modifying composition.
  • the residual halogen intensity (c / s) in the thin film based on the thin film thickness of 100 ( ⁇ / cycle) measured based on SIMS is preferably 100,000 or less, more preferably 70,000 or less, still more preferably 50,000 or less, more It may be more preferably 10,000 or less, and in a preferred embodiment, 5,000 or less, more preferably 1,000 to 4,000, and even more preferably 1,000 to 3,800, and the effect of preventing corrosion and deterioration within this range is excellent .
  • Purging in the present substrate is preferably 1,000 to 50,000 sccm (Standard Cubic Centimeter per Minute), more preferably 2,000 to 30,000 sccm, still more preferably 2,500 to 15,000 sccm, and within this range, the thin film growth rate per cycle is appropriately controlled, It is deposited as an atomic mono-layer or close to it, which is advantageous in terms of film quality.
  • the ALD atomic layer deposition process
  • IC integrated circuit
  • ALD atomic layer deposition process
  • the thin film formation method may be carried out, for example, at a deposition temperature in the range of 50 to 800 ° C., preferably at a deposition temperature in the range of 300 to 700 ° C., more preferably at a deposition temperature in the range of 400 to 650 ° C. , More preferably, it is carried out at a deposition temperature in the range of 400 to 600 ° C, and even more preferably, it is carried out at a deposition temperature in the range of 450 to 600 ° C. has the effect of growing into
  • the thin film formation method may be carried out, for example, at a deposition pressure in the range of 0.01 to 20 Torr, preferably at a deposition pressure in the range of 0.1 to 20 Torr, more preferably at a deposition pressure in the range of 0.1 to 10 Torr, and most preferably at a deposition pressure in the range of 0.1 to 10 Torr.
  • it is carried out at a deposition pressure in the range of 0.3 to 7 Torr, and there is an effect of obtaining a thin film of uniform thickness within this range.
  • the deposition temperature and the deposition pressure may be measured as the temperature and pressure formed in the deposition chamber or the temperature and pressure applied to the substrate in the deposition chamber.
  • the method of forming the thin film may preferably include raising the temperature in the chamber to a deposition temperature before introducing the precursor compound into the chamber; and/or purging by injecting an inert gas into the chamber before introducing the precursor compound into the chamber.
  • the present invention is a thin film manufacturing apparatus capable of implementing the thin film manufacturing method, including an ALD chamber, a first vaporizer for vaporizing a precursor compound, a first transport means for transferring the vaporized precursor compound into the ALD chamber, and a first vaporizer for vaporizing the thin film precursor.
  • It may include a thin film manufacturing apparatus including a vaporizer and a second transfer means for transferring the vaporized thin film precursor into the ALD chamber.
  • the vaporizer and transfer means are not particularly limited in the case of vaporizers and transfer means commonly used in the technical field to which the present invention belongs.
  • the heating temperature of the transfer unit (hereinafter referred to as 'injection line') of the deposition may be in the range of 25 to 200 ° C for the substrate, and the reaction gas is O2, O3, N2O, NO2, H2O, or O2 plasma.
  • the reaction gas is O2, O3, N2O, NO2, H2O, or O2 plasma.
  • the step of treating the surface of the substrate loaded in the chamber with the above-described thin film modification composition and injecting an etching material into the chamber to form a vacuum-based etching film on the substrate, wherein the etching material is selected from among Cl2, CCl4, CF2Cl2, CF3Cl, CF4, CHF3, C2F6, SF6, BCl3, Br2, and CF3Br. It is possible to provide a thin film formation method characterized in that one or more types.
  • the etching material may be used in combination with Ar, H2, or O2. Except for this, details overlapping with the formation of the deposition film will be omitted.
  • the present invention also provides a semiconductor substrate, characterized in that the semiconductor substrate is manufactured by the thin film formation method of the present description, and in this case, the step coverage of the thin film and the thickness uniformity of the thin film are greatly excellent, and the thickness of the thin film is excellent.
  • the semiconductor substrate is manufactured by the thin film formation method of the present description, and in this case, the step coverage of the thin film and the thickness uniformity of the thin film are greatly excellent, and the thickness of the thin film is excellent.
  • the thin film may have a thickness of, for example, 0.1 to 20 nm, preferably 0.5 to 20 nm, more preferably 1.5 to 15 nm, and even more preferably 2 to 10 nm, and thin film properties within this range. This has an excellent effect.
  • the thin film may have a carbon impurity content of preferably 5,000 counts/sec or less or 1 to 3,000 counts/sec, more preferably 10 to 1,000 counts/sec, and still more preferably 50 to 500 counts/sec. There is an effect of reducing the thin film growth rate while excellent thin film characteristics within the range.
  • the thin film has, for example, a step coverage of 90% or more, preferably 92% or more, and more preferably 95% or more. There are applicable benefits.
  • the prepared thin film preferably has a thickness of 20 nm or less, a dielectric constant of 5 to 29 based on a thin film thickness of 10 nm, a carbon, nitrogen, and halogen content of 5,000 counts/sec or less, and a step coverage of 90 % or more, and within this range, there is an effect of excellent performance as a dielectric film or a blocking film, but is not limited thereto.
  • the thin film may have, for example, a multi-layer structure of two or three or more layers, preferably a multi-layer structure of two or three layers, if necessary.
  • the multilayer film having a two-layer structure may have a lower film-middle layer structure as a specific example, and the multilayer film having a three-layer structure may have a lower film-middle layer-upper layer structure as a specific example.
  • the lower layer film is, for example, Si, SiO 2 , MgO, Al 2 O 3 , CaO, ZrSiO 4 , ZrO 2 , HfSiO 4 , Y 2 O 3 , HfO 2 , LaLuO 2 , Si 3 N 4 , SrO, La 2 O 3 , Ta 2 O 5 , BaO, TiO 2 It may be made of including one or more selected from the group consisting of.
  • the intermediate layer may include, for example, Ti x N y , preferably TN.
  • the upper layer film may include, for example, one or more selected from the group consisting of W and Mo.
  • the semiconductor substrate includes low resistive metal gate interconnects, a high aspect ratio 3D metal-insulator-metal (MIM) capacitor, and a DRAM trench capacitor. , 3D Gate-All-Around (GAA), or 3D NAND flash memory.
  • MIM metal-insulator-metal
  • GAA Gate-All-Around
  • Reference Example 2 in which the compound represented by Formula 4-6 having a dielectric constant of slightly more than 15 was blended, was also observed to have no reactivity in the case of iodocyclopentane, so that the deposition process was performed according to the type of liquid halogen compound. It is considered appropriate for improvement.
  • Comparative Example 1 in which the compound represented by Formula 4-7 having a dielectric constant far exceeding 25 was formulated, it was observed to have reactivity regardless of the type of liquid halogen compound, and thus was not suitable for improving the deposition process. judged
  • An ALD deposition process was performed using the components and processes shown in Table 1 above.
  • HCDS hexachlorodisilane
  • the canister heating temperature was maintained at 50 °C and the N2 carrier flow rate was injected for 3 seconds at 100 sccm.
  • 100 to 150 cycles are repeated using a process of separately injecting the materials represented by the above-described formulas 1-1, 1-4, and 1-7 for 3 seconds, respectively.
  • the materials represented by Chemical Formulas 1-1, 1-4, and 1-7 are mixed in the organic solvents represented by Chemical Formulas 4-1 to 4-6 in a 1:1 mole ratio with the composition shown in Table 1, respectively. Therefore, the liquid delivery system (LDS) was used.
  • LDS liquid delivery system
  • the thin films obtained in Examples 1 to 4, Comparative Example 1, and Reference Examples 1 to 2 were analyzed for thickness of 10 nm SiN thin films through ellipsometry optical analysis.
  • the thin films obtained in Examples 1 to 4, Comparative Example 1, and Reference Examples 1 to 2 were obtained by measuring the thickness of a SiN thin film formed to a thickness of 10 nm through ellipsometry optical analysis fitting, dividing the obtained thickness by the total ALD cycle The deposition rate ( ⁇ /cycle) of the thickness per cycle was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자에 관한 것으로, 소정 구조의 막성장/막질 개선 화합물과 유전상수가 특정된 용제로 구성된 박막 개질 조성물을 사용하여 진공 기반의 박막 공정시 증착막의 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 수 있고, 식각막의 효율을 개선할 수 있으며, 불순물 오염이 현저하게 저감되는 효과가 있다.

Description

박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
본 발명은 박막 개질 조성물, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판 및 반도체 소자에 관한 것으로, 보다 상세하게는 소정 구조의 막성장/막질 개선 화합물과 유전상수가 특정된 용제로 구성된 박막 개질 조성물을 사용하여 진공 기반의 박막 공정시 증착막의 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 수 있고, 식각막의 효율을 개선할 수 있으며, 불순물 오염이 현저하게 저감된 박막 개질 조성물, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판에 관한 것이다.
메모리 및 비메모리 반도체 소자의 집적도 향상으로 인해 기판의 미세 구조는 나날이 복잡해지고 있다.
일례로, 미세 구조의 폭과 깊이(이하, '종횡비'라고도 함)가 20:1 이상, 100:1 이상까지 증가하고 있으며, 종횡비가 클수록 복잡한 미세 구조면을 따라 균일한 두께로 퇴적층을 형성하기 어려워지는 문제가 있다.
이로 인해 미세 구조의 깊이 방향으로 상부와 하부에 형성된 퇴적층의 두께비를 정의하는 단차 피복성(계단율, step coverage)이 90% 수준에 머물게 되어 소자의 전기적 특성 발현이 점차 어려워지는 등 그 중요성이 점점 증대되고 있다. 상기 단차 피복성이 100%인 것이 미세 구조의 상부와 하부에 형성된 퇴적층의 두께가 같음을 의미하므로, 가급적 단차 피복성이 100%에 근접하도록 기술을 개발할 필요가 있다.
상기 반도체용 박막은 질화막, 박막, 금속막 등으로 이루어진다. 상기 질화막으로는 질화규소(SiN), 질화티타늄(TiN), 질화탄탈륨(TaN) 등이 있으며, 상기 박막으로는 산화규소(SiO2), 산화하프늄(HfO2), 산화지르코늄(ZrO2) 등이 있으며, 상기 금속막으로는 몰리브덴막(Mo), 텅스텐(W) 등이 있다.
상기 박막은 일반적으로 도핑된 반도체의 실리콘층과 층간 배선 재료로 사용되는 알루미늄(Al), 구리(Cu) 등과의 확산 방지막(diffusion barrier)으로 사용된다. 다만, 텅스텐(W) 박막을 기판에 증착할 때에는 접착층(adhesion layer)으로 사용된다.
앞서 살펴본 바와 같이 기판에 증착된 박막이 우수하고 균일한 물성을 얻기 위해서는 박막의 높은 단차 피복성이 필수적이므로, 기상반응을 주로 활용하는 CVD(chemical vapor deposition) 공정보다 표면반응을 활용하는 ALD(atomic layer deposition) 공정이 활용되나 100%의 단차 피복성 구현에 여전히 문제가 존재한다.
100%의 단차 피복성을 구현할 목적으로 증착 온도를 올릴 경우 단차 피복성이 어려움이 따르는데, 우선 전구체와 반응물 2가지로 구성된 증착 공정에 있어 증착온도의 증가는 가파른 박막성장속도(GPC)의 증가를 초래할 뿐 아니라 증착 온도 증가에 따른 GPC 증가를 완화시키기 위해 300 ℃에서 사용하여 ALD 공정을 수행하더라도 공정도중 증착 온도가 증가되므로 해결책이라 하기 어렵다.
또한 반도체 소자에서 우수한 막질의 금속박막을 구현하고자 고온 공정이 요구되고 있다. 원자층 증착 온도를 400℃까지 높여 박막 내 잔류하는 탄소와 수소 농도가 감소하는 연구 결과가 보고되고 있다(J. Vac. Sci. Technol. A, 35(2017) 01B130 논문 참조).
그러나 증착 온도가 고온일수록 단차 피복율을 확보하기 어렵게 된다. 우선, 전구체와 반응물 2가지로 구성된 증착 공정에 있어 증착온도 증가는 가파른 GPC(박막성장속도)의 증가를 초래할 수 있다. 또한, 증착 온도 증가에 따른 GPC 증가를 완화시키기 위해 공지된 차폐제를 적용하더라도 300℃에서 GPC가 약 10% 증가하는 것으로 확인되고 있다. 즉, 360℃ 이상에서 증착할 경우 종래 공지된 차폐제가 제공하던 GPC 저감 효과는 기대하기 어려워진다.
따라서 고온에서도 효과적으로 복잡한 구조의 박막 형성이 가능하고, 불순물의 잔류량이 낮으며, 단차 피복성(step coverage), 박막의 두께 균일성과 전기적 특성 등의 막질을 크게 향상시키는 박막의 형성 방법과 이로부터 제조된 반도체 기판 등의 개발이 필요한 실정이다.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 소정 구조의 막성장/막질 개선 화합물과 유전상수가 특정된 용제로 구성된 박막 개질 조성물로 제공하여 진공 기반의 박막 공정시 증착막의 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 수 있고, 식각막의 효율을 개선할 수 있으며, 불순물 오염이 현저하게 저감된 박막 개질 조성물, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판, 그리고 이를 포함하는 반도체 소자를 제공하는 것을 목적으로 한다.
본 발명은 박막의 결정성과 산화분율을 개선시킴으로써 박막의 밀도 및 유전특성을 개선시키는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 1 torr (25℃) 이상의 증기압을 갖는 액상 할로겐 화합물; 및 유전상수(dielectric constant)가 25 이하인 비극성 용제를 포함하는 것을 특징으로 하는 박막 개질 조성물을 제공한다.
상기 박막은 진공 기반 증착막 또는 진공 기반 식각막일 수 있다.
상기 액상 할로겐 화합물은 탄소수 1 내지 10의 알킬 할라이드일 수 있다.
상기 액상 할로겐 화합물은 굴절률이 1.40 내지 1.60, 1.40 내지 1.58, 또는 1.40 내지 1.56일 수 있다.
상기 액상 할로겐 화합물은, 해당 박막이 증착막인 경우 하기 화학식 1-1 내지 1-9로 표시되는 화합물을 포함할 수 있다.
[화학식 1-1 내지 1-9]
Figure PCTKR2023002766-appb-img-000001
상기 액상 할로겐 화합물은, 해당 박막이 식각막인 경우 하기 화학식 2-1 내지 2-3으로 표시되는 화합물을 포함할 수 있다.
[화학식 2-1 내지 2-3]
Figure PCTKR2023002766-appb-img-000002
상기 액상 할로겐 화합물은, 전술한 증착막 또는 식각막의 반응면을 제어할 수 있다.
본 발명에서 상기 액상 할로겐 화합물과 병용하여 유전상수(dielectric constant)가 25 이하인 비극성 용제를 사용할 수 있다.
상기 유전상수(dielectric constant)는 일례로 25 이하, 구체적인 예로 15 이하, 바람직하게는 10 이하인 것이 바람직하며, 해당 범위에서 전술한 액상 할로겐 화합물과 반응성을 나타내지 않아 공정에 악영향 없이 액상 할로겐 화합물에 의해 제공하고자 하는 효과를 극대화할 수 있다.
상기 유전상수가 25 이하인 비극성 용제는 일례로 탄화수소계 용제, 할로겐계 용제, 헤테로고리 포함 용제, 또는 알코올계 용제일 수 있다.
상기 유전상수(dielectric constant)가 25 이하인 비극성 용제는 구체적인 예로, 옥테인, 1,2-디클로로에탄, 디메틸에틸 아민, 테트라하이드로퓨란, N,N 디메틸포름아미드, 이소부틸 알코올 및 에틸 알코올 중에서 선택된 1종 이상일 수 있다.
또한, 본 발명은
챔버 내에 로딩(loading)된 기판의 표면을 제1항의 박막 개질 조성물로 처리하는 단계; 및
전구체 화합물과 반응 가스를 챔버 내로 순차 주입하고 20 내지 800 ℃ 및 760 torr 미만의 진공상태에서 상기 기판에 진공 기반 증착 박막을 형성하는 단계;를 포함하며,
상기 반응 가스는 산화제 또는 환원제인 것을 특징으로 하는 박막 형성 방법을 제공한다.
상기 챔버는 ALD 챔버, CVD 챔버, PEALD 챔버 또는 PECVD 챔버일 수 있다.
상기 박막 개질 조성물과 전구체 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있다.
이때 상기 증착의 이송라인(이하,'주입라인'이라 함)의 히팅(heating) 온도는 기판에 25 내지 200 ℃ 범위 내일 수 있다.
상기 박막은 산화막 또는 질화막일 수 있다.
상기 반응 가스는 O2, O3, N2O, NO2, H2O, 또는 O2 플라즈마를 포함할 수 있다.
상기 박막은 Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce 및 Nd로 이루어지는 그룹으로부터 1종 이상 선택된 금속이 1층 또는 2층 이상 적층된 박막일 수 있다.
상기 박막은 확산방지막, 에칭정지막, 전극막, 유전막, 게이트절연막, 블럭박막 또는 차지트랩 용도일 수 있다.
또한, 본 발명은
식각 물질을 챔버 내로 주입하여 기판에 진공 기반 식각막을 형성하는 단계;를 포함하며,
상기 식각 물질은 Cl2, CCl4, CF2Cl2, CF3Cl, CF4, CHF3, C2F6, SF6, BCl3, Br2, 및 CF3Br 중에서 선택된 1종 이상인 것을 특징으로 하는 박막 형성 방법을 제공한다.
상기 챔버는 ALD 챔버, CVD 챔버, PEALD 챔버 또는 PECVD 챔버일 수 있다.
상기 박막 개질 조성물과 전구체 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있다.
상기 식각 물질은 Ar, H2, 또는 O2와 혼합하여 사용될 수 있다.
상기 박막 개질 조성물을 사용한 박막 형성 방법은,
i) 전술한 박막 개질 조성물을 기화하여 챔버 내 로딩된 기판 표면에 개질 영역을 형성하는 단계; 및
ii) 상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계를 포함하는 것을 특징으로 한다.
상기 박막 개질제 조성물은 챔버 내에 로딩(loading)된 기판에 20 내지 800 ℃ 하에 도포하여 공급될 수 있다.
상기 박막 개질 조성물을 구성하는 액상 할로겐 화합물과 비극성 용제는 각각 별도로 챔버 내로 주입되거나 혹은 미리 혼합한 상태로 챔버 내로 주입될 수 있다.
상기 박막 형성 방법은,
i) 전술한 박막 개질 조성물을 기화하여 챔버 내 로딩된 기판 표면에 개질 영역을 형성하는 단계;
ii) 상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계;
iii) 전구체 화합물을 기화하여 상기 개질 영역을 벗어난 영역에 흡착시키는 단계;
iv) 상기 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계;
v) 상기 챔버 내부에 반응 가스를 공급하는 단계; 및
vi) 상기 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계;를 포함하는 것을 특징으로 하는 박막 형성 방법을 제공한다.
상기 박막 개질제 조성물은 챔버 내에 로딩(loading)된 기판에 20 내지 800 ℃ 하에 도포하여 공급될 수 있다.
상기 박막 개질 조성물을 구성하는 액상 할로겐 화합물과 비극성 용제는 각각 별도로 챔버 내로 주입되거나 혹은 미리 혼합한 상태로 챔버 내로 주입될 수 있다.
상기 전구체 화합물은 Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce 및 Nd로 이루어진 군으로부터 선택된 1종 이상으로 구성된 분자로서 25 ℃에서 증기압이 0.01 mTorr 초과, 100 Torr 이하인 전구체일 수 있다.
상기 박막 개질 조성물, 또는 전구체 화합물은 기화하여 주입된 다음 플라즈마 후처리하는 단계를 포함할 수 있다.
상기 ii) 단계와 상기 iv) 단계에서 각각 챔버 내부로 투입되는 퍼지 가스의 양은 투입된 박막 개질 조성물, 또는 전구체 화합물의 부피를 기준으로 10 내지 100,000배일 수 있다.
상기 반응 가스는 산화제 또는 환원제이고, 상기 반응 가스, 박막 개질 조성물 및 전구체 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있다.
상기 챔버 내 로딩된 기판은 100 내지 800 ℃로 가열되며, 상기 박막 개질제 조성물과, 상기 전구체 화합물의 챔버 내 투입량(mg/cycle) 비는 1 : 1 내지 1 : 20일 수 있다.
또한, 본 발명은 전술한 박막 형성 방법으로 제조된 박막을 포함함을 특징으로 하는 반도체 기판을 제공한다.
상기 박막은 2층 또는 3층 이상의 다층 구조일 수 있다.
또한, 본 발명은 전술한 반도체 기판을 포함하는 반도체 소자를 제공한다.
상기 반도체 기판은 저 저항 금속 게이트 인터커넥트(low resistive metal gate interconnects), 고 종횡비 3D 금속-절연체-금속(MIM) 커패시터(high aspect ratio 3D metal-insulator-metal capacitor), DRAM 트렌치 커패시터(DRAM trench capacitor), 3D 게이트-올-어라운드(GAA; Gate-All-Around), 또는 3D NAND 플래시메모리 일 수 있다.
본 발명에 따르면, 진공 기반의 박막 공정시 소정 구조의 막성장/막질 개선 화합물과 유전상수가 특정된 용제로 구성된 박막 개질 조성물을 사용하여 진공 기반의 박막 공정시 증착막의 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 수 있고, 식각막의 효율을 개선할 수 있으며, 불순물 오염이 현저하게 저감될 수 있는 박막 개질 조성물을 제공하는 효과가 있다.
또한 박막 형성시 공정 부산물이 보다 효과적으로 감소되어, 부식이나 열화를 막고 막질을 개질하여 박막의 결정성을 개선시킴으로써 박막의 전기적 특성을 개선시키는 효과가 있다.
또한 박막 형성시 공정 부산물이 감소되고 반응 속도를 저감하고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성과 박막 밀도를 개선시킬 수 있고, 나아가 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 제공하는 효과가 있다.
도 1 내지 3은 박막 개질 조성물의 합성 및 증착시 반응성을 확인하도록 1H NMR을 측정한 그래프로서, 도 1은 2-클로로-2-메틸 부탄을 단독 사용하여 수득한 박막(위), 2-클로로-2-메틸 부탄과 옥탄의 1:1 몰비 배합물을 사용하여 수득한 박막 (아래)을 나타내고, 도 2는 아이오도시클로펜탄을 단독 사용하여 수득한 박막(위), 아이오도시클로펜탄과 1,2-디클로로에탄의 1:1 몰비 배합물을 사용하여 수득한 박막 (아래)을, 그리고 도 3은 1-클로로-1-메틸 시클로헥산을 단독 사용하여 수득한 박막(위), 1-클로로-1-메틸 시클로헥산과 옥탄의 1:1 몰비 배합물을 사용하여 수득한 박막 (아래)을 각각 나타낸다.
이하 본 기재의 박막 개질 조성물, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판을 상세하게 설명한다.
본 기재에서 용어 “박막 개질”는 달리 특정하지 않는 한, 증착 공정에서 표면 화학반응면으로 사용될 기판 표면을 제어한 것을 의미한다.
본 기재에서 용어 “막성장/막질개선”은 달리 특정하지 않는 한, 박막을 형성하기 위한 전구체 화합물이 기판 상에 흡착되는 것을 저감, 저지 또는 차단할 뿐 아니라 공정 부산물이 기판 상에 흡착되는 것까지 저감, 저지 또는 차단하여 막성장을 개선하는 것, 또는 전기적 특성, 박막 밀도 등의 막질을 개선하는 것을 의미한다.
본 기재에서 유전상수는 당 분야에 공지된 값(20℃ 계산값)을 사용할 수 있다( https://macro.lsu.edu/howto/solvents/Dielectric%20Constant%20.htm 참조).
본 발명자들은 진공 기반의 증착 또는 식각 공정에서 기판의 표면을 개질하고 증착 또는 식각 공정을 개선하기 위한 박막 개질 조성물로서 소정 구조의 막성장/막질 개선 화합물과 유전상수가 특정된 용제를 사용하여 증착막의 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 수 있고, 식각막의 효율을 개선할 수 있으며, 특히 얇은 두께로 증착 가능하고, 공정 부산물로 잔류하던 O, Si, 금속, 금속 산화물, 나아가 종래 줄이기 쉽지 않던 탄소 잔량까지 개선시키는 것을 확인하였다. 이를 토대로 막성장/막질개선 화합물에 대한 연구에 매진하여 본 발명을 완성하게 되었다.
본 발명의 박막 개선 조성물이 적용되는 대상은 진공 기반 증착막 또는 진공 기반 식각막일 수 있다.
상기 증착막 또는 식각막은 일례로 Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce 및 Nd로 이루어진 군으로부터 선택된 1종 이상의 전구체로 제공될 수 있는 것으로, 산화막, 질화막, 금속막 또는 이들의 선택적 박막용 개질 영역을 제공할 수 있고, 이 경우 본 발명에서 달성하고자 하는 효과를 충분히 얻을 수 있다.
상기 박막은 구체적인 예로 실리콘 산화막 또는 실리콘 질화막의 막 조성을 가질 수 있다.
상기 박막은 일반적으로 사용하는 확산방지막 뿐 아니라 에칭정지막, 전극막, 유전막, 게이트절연막, 블럭박막 또는 차지트랩의 용도로 반도체 소자에 활용될 수 있다.
본 발명에서 박막을 형성하는데 사용하는 전구체 화합물은 일례로 하기 화학식 3으로 표시되는 화합물을 사용할 수 있다.
[화학식 3]
Figure PCTKR2023002766-appb-img-000003
(상기 화학식 3에서, M은 Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce 및 Nd 중에서 선택된 1종 이상이고, L1, L2, L3 및 L4는 -H, -X, -R, -OR, -NR2 또는 Cp(시클로펜타디엔)로서 서로 같거나 다를 수 있고, 여기서 -X는 F, Cl, Br, 또는 I이고, -R은 C1-C10의 알킬, C1-C10의 알켄, 또는 C1-C10의 알칸으로 선형 또는 환형일 수 있고, 상기 L1, L2, L3 및 L4는 중심금속의 산화가에 따라 2 내지 6까지 형성될 수 있다.)
일예로 중심금속이 2가인 경우 L1과 L2가 중심금속에 리간드로 붙어있을 수 있고, 중심금속이 6가인 경우 L1, L2, L3, L4, L5, L6이 중심금속에 붙어있을 수 있으며, L1 내지 L6에 해당되는 리간드는 서로 같거나 다를 수 있다.
상기 M은 3가 금속, 4가 금속, 5가 금속 또는 6가 금속에 해당하는 종류일 수 있고, 바람직하게는 하프늄(Hf), 지르코늄(Zr), 알루미늄(Al), 니오븀(Nb) 또는 텔루륨(Ta)이며, 이 경우에 공정 부산물 감소 효과가 크고 단차 피복성이 우수하며, 박막 밀도 향상 효과, 박막의 전기적 특성, 절연 및 유전특성이 보다 뛰어난 이점이 있다.
상기 L1, L2, L3 및 L4는 -R, -X 또는 Cp로서 서로 같거나 다를 수 있고, 여기서 -R은 C1-C10의 알킬, C1-C10의 알켄, 또는 C1-C10의 알칸이며, 선형 또는 환형 구조를 갖는 것일 수 있다.
또한, 상기 L1, L2, L3 및 L4는 -NR2 또는 Cp로서 서로 같거나 다를 수 있고, 여기서 -R은 H, C1-C10의 알킬, C1-C10의 알켄, C1-C10의 알칸, iPr, 또는 tBu 일 수 있다.
또한, 상기 화학식 3에서 L1, L2, L3 및 L4는 -H, 또는 -X로서 서로 같거나 다를 수 있고, 여기서 -X는 F, Cl, Br, 또는 I일 수 있다.
구체적으로, 알루미늄 전구체 화합물을 예로 들면, Al(CH3)3, AlCl4 등을 사용할 수 있다.
하프늄 전구체 화합물을 예로 들면, CpHf(NMe2)3)의 트리스(디메틸아미도)시클로펜타디에닐 하프늄과 Cp(CH2)3NM3Hf(NMe2)2의 (메틸-3-시클로펜타디에닐프로필아미노)비스(디메틸아미노)하프늄 등을 사용할 수 있다.
실리콘 전구체 화합물을 예로 들면, Hexachlorodisilane (HCDS), dichlorosilane (DCS), tris(dimethylamino)silane (3DMAS), Bis(diethylamino)silane (BDEAS), octamethylcyclotetrasiloxane (OMCTS) 등을 사용할 수 있다.
본 발명의 박막 개질 조성물은 기판에 전구체 화합물을 흡착할 표면을 미리 제어함으로써 기판에 전구체 화합물을 흡착시키는 속도를 저감하여 진공 기반 박막의 성장을 제어하거나, 막질을 제어할 수 있다.
상기 박막 개질 조성물은 1 torr (25℃) 이상의 증기압을 갖는 액상 할로겐 화합물; 및 유전상수(dielectric constant)가 25 이하인 비극성 용제를 포함할 수 있고, 이와 같은 경우 증착막 또는 식각막 형성 시 부반응을 억제하고 박막 성장률을 조절하여 박막 내 공정 부산물이 저감되어 부식이나 열화가 저감되고, 박막의 결정성이 향상되며, 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키면서 불순물 오염을 최소화하는 효과가 있다.
구체적인 예로, 상기 할로겐 화합물은 굴절률이 1.40 내지 1.60, 1.40 내지 1.58, 또는 1.40 내지 1.56 범위 내일 수 있고, 이 경우에 공정 부산물 감소 효과가 크고 단차 피복성이 우수하며, 박막 밀도 향상 효과 및 박막의 전기적 특성이 보다 뛰어날 수 있다.
상기 액상 할로겐 화합물은 바람직하게 원자층 증착(ALD) 공정에 사용되는 것이며, 이 경우 전구체 화합물의 흡착 또는 식각 물질에 의한 식각을 방해하지 않으면서 기판의 표면을 효과적으로 보호(protection)하고 공정 부산물을 효과적으로 제거하는 이점이 있다.
상기 액상 할로겐 화합물은 바람직하게 상온(22℃)에서 액체이고, 밀도가 0.8 내지 2.5 g/cm3 또는 0.8 내지 1.5 g/cm3이며, 증기압(20℃)이 0.1 내지 300 mmHg 또는 1 내지 300 mmHg일 수 있으며, 이 범위 내에서 개질 영역을 효과적으로 형성하고, 단차 피복성, 박막의 두께 균일성 및 막질 개선이 우수한 효과가 있다.
보다 바람직하게는, 상기 액상 할로겐 화합물은 밀도가 0.75 내지 2.0 g/cm3 또는 0.8 내지 1.3 g/cm3이며, 증기압(20℃)이 1 내지 260 mmHg일 수 있으며, 이 범위 내에서 개질 영역을 효과적으로 형성하고, 단차 피복성, 박막의 두께 균일성 및 막질개선이 우수한 효과가 있다.
상기 액상 할로겐 화합물은 바람직하게 원자층 식각(ALE) 공정에 사용되는 것이며, 이 경우 화학적 식각을 이용하기 때문에 제공하고자 하는 식각막의 선택적 식각 및 등방석 식각특성 등을 구현하는 효과가 있다.
상기 액상 할로겐 화합물은 탄소수 1 내지 10의 알킬 할라이드를 포함함으로써 공정 부산물 감소 효과가 크고 단차 피복성이 우수하며, 박막 밀도 향상 효과 및 박막의 전기적 특성이 보다 뛰어날 수 있다.
상기 알킬 할라이드에 포함되는 할로겐은 불소, 브롬, 염소, 또는 아이오딘일 수 있고, 해당 알킬 할라이드에 적어도 하나 이상 포함될 수 있으며, 이 경우에 공정 부산물 감소 효과가 크고 단차 피복성이 우수하며, 박막 밀도 향상 효과 및 박막의 전기적 특성이 보다 뛰어난 이점이 있다.
상기 액상 할로겐 화합물은 해당 박막이 증착막인 경우에 바람직하게는 하기 화학식 1-1 내지 1-9로 표시되는 화합물 중에서 선택된 1종 이상일 수 있고, 이 경우에 증착막 형성시 상대적으로 성긴 박막을 형성하는 동시에 부반응을 억제하고 박막 성장률을 조절하여, 박막 내 공정 부산물이 저감되어 부식이나 열화가 저감되고, 박막의 결정성이 향상되며, 복잡한 구조를 갖는 기판 위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시킬 뿐 아니라 불순물의 오염을 최소화할 수 있다.
[화학식 1-1 내지 1-9]
Figure PCTKR2023002766-appb-img-000004
상기 액상 할로겐 화합물은 해당 박막이 식각막인 경우에 바람직하게는 하기 화학식 2-1 내지 2-3으로 표시되는 화합물일 수 있고, 이 경우에 불순물의 오염을 최소화하면서 식각 공정을 효과적으로 수행할 수 있다.
[화학식 2-1 내지 2-3]
Figure PCTKR2023002766-appb-img-000005
전술한 액상 할로겐 화합물은 단독 사용될 수 있으나, 진공 기반 하에 가혹한 분위기를 고려할 때 특정 유기용제와 함께 사용되는 것이 효율적으로 공정을 수행할 수 있어 바람직하다.
이때 사용되는 유기용제는 유전상수(dielectric constant)가 15 이하인 종류를 사용하는 것이 전술한 액상 할로겐 화합물의 진공 하에서 반응 메커니즘에 영향을 미치지 않으면서 공정을 개선할 수 있다.
상기 유전상수(dielectric constant)가 25 이하인 비극성 용제는 탄화수소계 용제, 할로겐계 용제(전술한 액상 할로겐 화합물은 제외), 헤테로고리 포함 용제, 또는 알코올계 용제 등을 들 수 있다.
상기 탄화수소계 용제는 탄소수가 1 내지 10인 알킬기를 갖는 선형 탄화수소 화합물일 수 있으며, 일례로 옥테인 (d : 1.9 at 25℃) 등을 사용할 수 있다.
상기 할로겐계 용제는 말단 할로겐으로 치환된 선형 탄화수소 화합물일 수 있으며, 이때 할로겐은 적어도 하나 이상, 바람직하게는 2개 이상 치환된 것으로, 예를 들면 1,2-디클로로에탄 (d : 10.7 at 25℃) 등을 사용할 수 있다.
상기 헤테로고리 포함 용제는 질소 또는 산소를 포함할 수 있다.
상기 질소를 포함하는 용제는 일례로 디메틸에틸 아민 (d : 3.2 at 25℃) 등을 들 수 있다.
상기 산소를 포함하는 용제는 일례로 테트라하이드로퓨란 (d : 7.6 at 25℃) 등을 들 수 있다.
상기 알코올계 용제는 일례로 이소부틸 알코올 (d : 16.68 at 25℃), 에틸 알코올 (d : 24.55 at 25℃) 등을 들 수 있다.
구체적인 예로, 상기 진공 기반 박막 개질 조성물은 전술한 화학식 1-1 내지 1-9로 표시되는 화합물 중에서 1종 이상 선택되는 화합물에 상기 유전상수(dielectric constant)가 25 이하인 비극성 용제를 포함할 수 있고, 이 경우 증착막의 성장률을 조절하는 효과가 크고, 공정 부산물 제거 효과 또한 크고, 단차 피복성 개선 및 막질 개선효과가 우수할 뿐 아니라 복잡한 구조의 기판에 적용하더라도 박막의 균일성을 확보하여 단차 커버리지가 크게 향상되고, 특히 얇은 두께로 증착 가능하고, 공정 부산물로 잔류하던 O, Si, 금속, 금속 산화물, 나아가 종래 줄이기 쉽지 않던 탄소 잔량까지 개선시키는 효과를 제공할 수 있으며, 식각막을 제조하는 경우에도 막질 개선 효과를 제공할 수 있다.
상기 반응 가스는 O2, NH3, 또는 H2를 포함할 수 있다.
상기 박막은 Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce 및 Nd로 이루어지는 그룹으로부터 1종 이상 선택된 금속이 1층 또는 2층 이상 적층된 박막일 수 있다.
상기 박막 개질 조성물은 박막용 개질 영역을 제공할 수 있다.
상기 박막 개질 조성물은 상기 박막에 잔류하지 않는 것을 특징으로 한다.
이때 잔류하지 않는다는 것은, 달리 특정하지 않는 한, XPS로 성분 분석 시 C 원소 0.1 원자%(atom %), Si 원소 0.1 원자%(atom%) 미만, N 원소 0.1 원자%(atom%) 미만, 할로겐 원소 0.1 원자%(atom%) 미만으로 존재하는 경우를 지칭한다. 보다 바람직하게 기판을 깊이 방향으로 파고 들어가며 측정하는 Secondary-ion mass spectrometry (SIMS) 측정방법 또는 X-ray Photoelectron Spectroscopy (XPS) 측정방법에 있어서, 같은 증착 조건 하에서 박막 개질 조성물을 사용하기 전후의 C, N, Si, 할로겐 불순물의 증감율을 고려할 때 각 원소종의 신호감도(intensity) 증감율이 5%를 초과하지 않는 것이 바람직하다.
상기 박막은 일례로 할로겐 화합물을 100 ppm 이하로 포함할 수 있다.
상기 박막은 확산방지막, 에칭정지막, 전극막, 유전막, 게이트절연막, 블럭박막 또는 차지트랩 용도로 사용될 수 있으며, 이에 한정하는 것은 아니다.
상기 액상 할로겐 화합물, 유기용제 및 전구체 화합물은 바람직하게는 순도 99.9% 이상의 화합물, 순도 99.95% 이상의 화합물, 또는 순도 99.99% 이상의 화합물일 수 있으며, 참고로 순도 99% 미만의 화합물을 사용할 경우에는 불순물이 박막에 잔류하거나 전구체 또는 반응물과의 부반응을 초래할 수 있어 가급적 99% 이상의 물질을 사용하는 것이 좋다.
본 발명의 박막 형성 방법은 챔버 내에 로딩(loading)된 기판의 표면을 전술한 박막 개질 조성물로 처리하는 단계; 및 전구체 화합물과 반응 가스를 챔버 내로 순차 주입하고 20 내지 800 ℃ 및 760 torr 미만의 진공상태에서 상기 기판에 진공 기반 증착 박막을 형성하는 단계;를 포함하며, 상기 반응 가스는 산화제 또는 환원제인 것을 특징으로 하고, 이와 같은 경우 기판에 박막의 증착 속도를 저감시키고 박막 성장률을 적절히 낮추어 복잡한 구조를 갖는 기판위에 박막을 형성하는 경우에도 단차 피복성(step coverage) 및 박막의 두께 균일성을 크게 향상시키면서 불순물 오염을 최소화하는 효과가 있다.
상기 박막 개질 조성물로 처리하는 단계는 기판 표면에 박막 개질 조성물의 공급 시간(Feeding Time, sec)이 사이클당 바람직하게 0.01 내지 10 초, 보다 바람직하게 0.02 내지 8 초, 더욱 바람직하게 0.04 내지 6 초, 보다 더욱 바람직하게 0.05 내지 5 초이고, 이 범위 내에서 박막 성장률이 낮고 단차 피복성 및 경제성이 우수할 뿐 아니라 불순물 오염을 최소화한 이점이 있다.
본 기재에서 전구체 화합물의 공급 시간(Feeding Time)은 챔버의 부피 15 내지 20 L 기준에서 유량 0.1 내지 500 mg/cycle을 기준으로 하고, 보다 구체적으로는 챔버의 부피 18 L에서 유량 0.8 내지 200 mg/cycle을 기준으로 한다.
본 발명의 박막 개질 방법은, i) 전술한 박막 개질 조성물을 기화하여 챔버 내 로딩된 기판 표면에 개질 영역을 형성하는 단계; 및 ii) 상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계를 포함할 수 있다.
상기 박막 개질 방법, 나아가 박막 형성 방법은 바람직한 일 실시예로 i) 상기 박막 개질 조성물을 기화하여 챔버 내 로딩된 기판 표면에 처리하는 단계; ii) 상기 챔버 내부를 퍼지 가스로 1차 퍼징하는 단계; iii) 전구체 화합물을 기화하여 챔버 내 로딩된 기판 표면에 흡착시키는 단계; iv) 상기 챔버 내부를 퍼지 가스로 2차 퍼징하는 단계; v) 상기 챔버 내부에 반응 가스를 공급하는 단계; 및 vi) 상기 챔버 내부를 퍼지 가스로 3차 퍼징하는 단계를 포함할 수 있다.
이때, 상기 i) 단계 내지 vi) 단계를 단위 사이클(cycle)로 하여 목적하는 두께의 박막을 얻을 때까지 상기 사이클을 반복하여 수행할 수 있고, 이와 같이 한 사이클 내에서 본 발명의 박막 개질조성물을 전구체 화합물보다 먼저 투입하여 기판에 흡착시키는 경우, 고온에서 증착하더라도 박막 성장률이 적절히 낮출 수 있고, 생성되는 공정 부산물이 효과적으로 제거되어 박막의 비저항이 감소되고 단차 피복성이 크게 향상되는 이점이 있다.
바람직한 또 다른 실시예로, 상기 기판은, 상기 박막 개질 조성물을 챔버 내에 로딩(loading)된 기판에 20 내지 800 ℃ 하에 도포하여 제조될 수 있다.
본 발명의 박막 형성 방법은 바람직한 일례로 한 사이클 내에서 본 발명의 박막 개질 조성물을 전구체 화합물보다 먼저 투입하여 기판의 표면을 활성화시킬 수 있고, 그런 다음 전구체 화합물을 투입하여 기판에 흡착시킬 수 있고, 이 경우 고온에서 박막을 증착시키더라도 박막 성장률을 적절히 감소시킴으로써 공정 부산물이 크게 감소되고 단차 피복성이 크게 향상될 수 있고, 박막의 결성성이 증가하여 박막의 비저항이 감소될 수 있으며, 종횡비가 큰 반도체 소자에 적용하더라도 박막의 두께 균일도가 크게 향상되어 반도체 소자의 신뢰성을 확보하는 이점이 있다.
상기 박막 형성 방법은 일례로 상기 박막 개질 조성물을 전구체 화합물의 증착 전 또는 후에 증착시키는 경우, 필요에 따라 단위 사이클을 1 내지 99,999회 반복 수행할 수 있고, 바람직하게는 단위 사이클을 10 내지 10,000회, 보다 바람직하게는 50 내지 5,000회, 보다 더욱 바람직하게는 100 내지 2,000회 반복 수행할 수 있으며, 이 범위 내에서 목적하는 박막의 두께를 얻으면서 본 발명에서 달성하고자 하는 효과를 충분히 얻을 수 있다.
상기 전구체 화합물은 Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce 및 Nd로 이루어지는 그룹으로부터 선택된 1종 이상을 중심 금속원자(M)로 하여, C, N, O, H, X(할로겐), Cp(시클로펜타디엔)로 이루어진 리간드를 1종 이상으로 갖는 분자로서 25 ℃에서 증기압이 1 mTorr 내지 100 Torr인 전구체의 경우에, 자연 산화에도 불구하고 전술한 박막 개질 조성물에 의한 개질 영역을 형성하는 효과를 극대화할 수 있다.
본 발명에서 상기 챔버는 일례로 ALD 챔버, CVD 챔버, PEALD 챔버 또는 PECVD 챔버일 수 있다.
상기 박막은 산화실리콘막, 질화실리콘막, 산화티탄막, 질화티탄막, 산화하프늄막, 질화하프늄막, 산화지르코늄막, 질화지르코늄막, 산화텅스텐막, 질화텅스텐막, 산화알루미늄막, 질화알루미늄막, 산화니오븀막, 질화니오븀막, 산화탈루륨막, 또는 질화탈루륨막일 수 있다.
본 발명에서 상기 액상 할로겐 화합물, 또는 전구체 화합물은 기화하여 주입된 다음 플라즈마 후처리하는 단계를 포함할 수 있고, 이 경우에 박막의 성장률을 개선하면서 공정 부산물을 줄일 수 있다.
기판 상에 상기 박막 개질 조성물을 먼저 흡착시킨 후 상기 전구체 화합물을 흡착시키고 이어서 전구체 화합물을 흡착시키는 경우, 상기 미흡착 박막 개질제 또는 박막 개질 조성물을 퍼징하는 단계에서 상기 챔버 내부로 투입되는 퍼지 가스의 양은 상기 미흡착 박막 개질 조성물을 제거하는 데 충분한 양이면 특별히 제한되지 않으나, 일례로 10 내지 100,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 미흡착 박막 개질 조성물을 충분히 제거하여 박막이 고르게 형성되고 막질의 열화를 방지할 수 있다. 여기서, 상기 퍼지 가스, 박막 개질 조성물의 투입량은 각각 한 사이클을 기준으로 하며, 상기 박막 개질 조성물의 부피는 기회된 박막 개질 조성물의 부피, 혹은 각각 기화된 액상 할로겐 화합물과 비극성 용제의 증기의 부피를 의미한다.
구체적인 일례로, 상기 박막 개질 조성물을 주입량을 200 sccm으로 하고, 미흡착 박막 개질 조성물을 퍼징하는 단계에서 퍼지 가스를 유량 5000 sccm 으로 하는 경우, 퍼지 가스의 주입량은 박막 개질조성물 주입량의 25배이다.
또한, 상기 미흡착 전구체 화합물을 퍼징하는 단계에서 상기 챔버 내부로 투입되는 퍼지 가스의 양은 상기 미흡착 전구체 화합물을 제거하는 데 충분한 양이면 특별히 제한되지 않으나, 일례로 상기 챔버 내부로 투입된 전구체 화합물의 부피를 기준으로 10 내지 10,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 미흡착 전구체 화합물을 충분히 제거하여 박막이 고르게 형성되고 막질의 열화를 방지할 수 있다. 여기서, 상기 퍼지 가스 및 전구체 화합물의 투입량은 각각 한 사이클을 기준으로 기준으로 하며, 상기 전구체 화합물의 부피는 기회된 전구체 화합물 증기의 부피를 의미한다.
또한, 상기 반응 가스 공급 단계 직후 수행하는 퍼징 단계에서 상기 챔버 내부로 투입되는 퍼지 가스의 양은 일례로 상기 챔버 내부로 투입된 반응 가스의 부피를 기준으로 10 내지 10,000배일 수 있고, 바람직하게는 50 내지 50,000배, 보다 바람직하게는 100 내지 10,000배일 수 있으며, 이 범위 내에서 원하는 효과를 충분히 얻을 수 있다. 여기서, 상기 퍼지 가스 및 반응 가스의 투입량은 각각 한 사이클을 기준으로 한다.
상기 박막 개질 조성물 및 전구체 화합물은 바람직하게 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있고, 보다 바람직하게는 LDS 방식으로 챔버 내로 이송되는 것이다.
상기 박막 개질 조성물을 구성하는 액상 할로겐 화합물과 비극성 용제는 각각 챔버 내로 이송되거나 또는 배합된 상태로 함께 이송되어도 무방하다.
상기 챔버 내 로딩된 기판은 일례로 100 내지 650 ℃, 구체적인 예로 150 내지 550 ℃로 가열될 수 있으며, 상기 박막 개질 조성물 또는 전구체 화합물은 상기 기판 상에 가열되지 않은 채로 혹은 가열된 상태로 주입될 수 있으며, 증착 효율에 따라 가열되지 않은 채 주입된 다음 증착 공정 도중에 가열 조건을 조절하여도 무방하다. 일례로 100 내지 650 ℃ 하에 1 내지 20초간 기판 상에 주입할 수 있다.
상기 전구체 화합물과 박막 개질 조성물의 챔버 내 투입량(mg/cycle) 비는 바람직하게 1:1.5 내지 1:20일 수 있고, 보다 바람직하게 1:2 내지 1:15이며, 더욱 바람직하게 1:2 내지 1:12이고, 보다 더욱 바람직하게 1:2.5 내지 1:10이며, 이 범위 내에서 단차 피복성 향상 효과 및 공정 부산물의 저감 효과가 크다.
상기 박막 형성 방법은 일례로 상기 박막 개질 조성물과 상기 전구체 화합물을 사용할 경우, 하기 수학식 1로 나타내는 증착속도 저감율이 20% 이상, 바람직하게는 50% 이상일 수 있고, 이 경우에 전술한 구조를 갖는 막성장/막질개선 화합물 또는 박막 개질 조성물을 사용하여 상대적으로 성긴 박막을 형성하는 동시에 형성되는 박막의 성장률이 크게 낮아져서 복잡한 구조의 기판에 고온 하에 적용하더라도 박막의 균일성을 확보하여 단차 커버리지가 크게 향상되고, 특히 얇은 두께로 증착 가능하고, 공정 부산물로 잔류하던 O, Si, 금속, 금속 산화물, 나아가 종래 줄이기 쉽지 않던 탄소 잔량까지 개선시키는 효과를 제공할 수 있다.
[수학식 1]
증착속도 저감율 = [{(DRi)-(DRf)}/(DRi)]×100
(상기 식에서, DR (Deposition rate, Å/cycle)은 박막이 증착되는 속도이다. 전구체와 반응물로 형성되는 박막 증착에 있어서, DRi (initial deposition rate)은 박막 개질 조성물을 투입하지 않고 형성된 박막의 증착속도이다. DRf (final deposition rate)은 상기 같은 공정을 진행할 때 박막 개질 조성물을 투입하며 형성된 박막의 증착속도이다. 여기서 증착속도(DR)은 엘립소미터 장비를 사용하여 3 내지 30 nm 두께의 박막을 상온, 상압 조건에서 측정된 값으로, Å/cycle 단위를 사용한다.)
상기 수학식 1에서, 박막 개질 조성물을 사용했을 때 및 사용하지 않았을 때 사이클당 박막 성장률은 각각의 사이클 당 박막 증착 두께(Å/cycle) 즉, 증착 속도를 의미하고, 상기 증착 속도는 일례로 Ellipsometery로 3 내지 30 nm 두께의 박막을 상온, 상압 조건에서 박막의 최종 두께를 측정한 후 총 사이클 회수로 나누어 평균 증착 속도로 구할 수 있다.
상기 수학식 1에서, " 박막 개질 조성물을 사용하지 않았을 때"는 박막 증착 공정에서 기판 상에 전구체 화합물만을 흡착시켜 박막을 제조하는 경우를 의미하고, 구체적인 예로는 상기 박막 형성 방법에서 박막 개질 조성물을 흡착시키는 단계 및 미흡착 박막 개질 조성물을 퍼징시키는 단계를 생략하여 박막을 형성한 경우를 가리킨다.
상기 박막 형성 방법은 SIMS에 의거하여 측정된, 박막 두께 100(Å/cycle) 기준 박막 내 잔류 할로겐 세기(c/s)가 바람직하게 100,000 이하, 보다 바람직하게 70,000 이하, 더욱 바람직하게 50,000 이하, 보다 더욱 바람직하게 10,000 이하일 수 있고, 바람직한 일 실시예로 5,000 이하, 보다 바람직하게는 1,000 내지 4,000, 보다 더 바람직하게는 1,000 내지 3,800일 수 있으며, 이러한 범위 내에서 부식 및 열화가 방지되는 효과가 우수하다.
본 기재에서 퍼징은 바람직하게 1,000 내지 50,000 sccm(Standard Cubic Centimeter per Minute), 보다 바람직하게 2,000 내지 30,000 sccm, 더욱 바람직하게 2,500 내지 15,000 sccm이고, 이 범위 내에서 사이클당 박막 성장률이 적절히 제어되고, 단일 원자층(atomic mono-layer)으로 혹은 이에 가깝게 증착이 이루어져 막질 측면에서 유리한 이점이 있다.
상기 ALD(원자층 증착공정)은 높은 종횡비가 요구되는 집적회로(IC: Integrated Circuit) 제작에 있어서 매우 유리하며, 특히 자기제한적인 박막 성장 메커니즘에 의해 우수한 단차 도포성 (conformality), 균일한 피복성 (uniformity) 및 정밀한 두께 제어 등과 같은 이점이 있다.
상기 박막 형성 방법은 일례로 50 내지 800 ℃ 범위의 증착 온도에서 실시할 수 있고, 바람직하게는 300 내지 700 ℃ 범위의 증착 온도에서, 보다 바람직하게는 400 내지 650 ℃ 범위의 증착 온도에서 실시하는 것이며, 더욱 바람직하게는 400 내지 600 ℃ 범위의 증착 온도에서 실시하는 것이고, 보다 더욱 바람직하게는 450 내지 600 ℃ 범위의 증착 온도에서 실시하는 것인데, 이 범위 내에서 ALD 공정 특성을 구현하면서 우수한 막질의 박막으로 성장시키는 효과가 있다.
상기 박막 형성 방법은 일례로 0.01 내지 20 Torr 범위의 증착 압력에서 실시할 수 있고, 바람직하게는 0.1 내지 20 Torr 범위의 증착 압력에서, 보다 바람직하게는 0.1 내지 10 Torr 범위의 증착 압력에서, 가장 바람직하게는 0.3 내지 7 Torr 범위의 증착 압력에서 실시하는 것인데, 이 범위 내에서 균일한 두께의 박막을 얻는 효과가 있다.
본 기재에서 증착 온도 및 증착 압력은 증착 챔버 내 형성되는 온도 및 압력으로 측정되거나, 증착 챔버 내 기판에 가해지는 온도 및 압력으로 측정될 수 있다.
상기 박막 형성 방법은 바람직하게 상기 전구체 화합물을 챔버 내에 투입하기 전에 챔버 내 온도를 증착 온도로 승온하는 단계; 및/또는 상기 전구체 화합물을 챔버 내에 투입하기 전에 챔버 내에 비활성 기체를 주입하여 퍼징하는 단계를 포함할 수 있다.
또한, 본 발명은 상기 박막 제조 방법을 구현할 수 있는 박막 제조 장치로 ALD 챔버, 전구체 화합물을 기화하는 제1 기화기, 기화된 전구체 화합물을 ALD 챔버 내로 이송하는 제1 이송수단, 박막 전구체를 기화하는 제2 기화기 및 기화된 박막 전구체를 ALD 챔버 내로 이송하는 제2 이송수단을 포함하는 박막 제조 장치를 포함할 수 있다. 여기에서 기화기 및 이송수단은 본 발명이 속한 기술분야에서 통상적으로 사용되는 기화기 및 이송수단인 경우 특별히 제한되지 않는다.
상기 증착의 이송수단(이하,'주입라인'이라 함)의 히팅(heating) 온도는 기판에 25 내지 200 ℃ 범위 내일 수 있으며, 상기 반응 가스는 O2, O3, N2O, NO2, H2O, 또는 O2 플라즈마를 포함할 수 있다.
본 발명의 다른 견지에 따르면, 챔버 내에 로딩(loading)된 기판의 표면을 전술한 박막 개질 조성물로 처리하는 단계; 및 식각 물질을 챔버 내로 주입하여 기판에 진공 기반 식각막을 형성하는 단계;를 포함하며, 상기 식각 물질은 Cl2, CCl4, CF2Cl2, CF3Cl, CF4, CHF3, C2F6, SF6, BCl3, Br2, 및 CF3Br 중에서 선택된 1종 이상인 것을 특징으로 하는 박막 형성 방법을 제공할 수 있다.
상기 식각 물질은 Ar, H2, 또는 O2와 혼합하여 사용될 수 있으며, 이를 제외하고 상기 증착막 형성과 중복된 사항들은 구체적인 기재를 생략한다.
본 발명은 또한 반도체 기판을 제공하고, 상기 반도체 기판은 본 기재의 박막 형성 방법으로 제조됨을 특징으로 하며, 이러한 경우 박막의 단차 피복성(step coverage) 및 박막의 두께 균일성이 크게 뛰어나고, 박막의 밀도 및 전기적 특성이 뛰어난 과가 있다.
상기 박막(박막)은 두께가 일례로 0.1 내지 20 nm, 바람직하게는 0.5 내지 20 nm, 보다 바람직하게는 1.5 내지 15 nm, 더욱 바람직하게는 2 내지 10 nm일 수 있고, 이 범위 내에서 박막 특성이 우수한 효과가 있다.
상기 박막은 탄소 불순물 함량이 바람직하게는 5,000 counts/sec 이하 또는 1 내지 3,000 counts/sec, 더욱 바람직하게는 10 내지 1,000 counts/sec, 보다 더욱 바람직하게는 50 내지 500 counts/sec일 수 있고, 이 범위 내에서 박막 특성이 우수하면서도 박막 성장률이 저감되는 효과가 있다.
상기 박막은 일례로 단차 피복률이 90% 이상, 바람직하게는 92% 이상, 보다 바람직하게는 95% 이상이며, 이 범위 내에서 복잡한 구조의 박막이라도 용이하게 기판에 증착시킬 수 있어 차세대 반도체 장치에 적용 가능한 이점이 있다.
상기 제조된 박막은 바람직하게 두께가 20 nm 이하이고, 박막 두께 10 nm 기준 유전상수(Dielectric constants)가 5 내지 29 이며, 탄소, 질소, 할로겐 함량이 5,000 counts/sec 이하이고, 단차피복율이 90% 이상이며, 이 범위 내에서 유전막 또는 블록킹막으로서 성능이 뛰어난 효과가 있지만, 이에 한정하는 것은 아니다.
상기 박막은 일례로 필요에 따라 2층 또는 3층 이상의 다층 구조, 바람직하게는 2층 또는 3층의 다층 구조일 수 있다. 상기 2층 구조의 다층막은 구체적인 일례로 하층막-중층막 구조일 수 있고, 상기 3층 구조의 다층막은 구체적인 일례로 하층막-중층막-상층막 구조일 수 있다.
상기 하층막은 일례로 Si, SiO2, MgO, Al2O3, CaO, ZrSiO4, ZrO2, HfSiO4, Y2O3, HfO2, LaLuO2, Si3N4, SrO, La2O3, Ta2O5, BaO, TiO2로 이루어진 군에서 선택된 1종 이상을 포함하여 이루어질 수 있다.
상기 중층막은 일례로 TixNy, 바람직하게는 TN을 포함하여 이루어질 수 있다.
상기 상층막은 일례로 W, Mo로 이루어진 군에서 선택된 1종 이상을 포함하여 이루어질 수 있다.
상기 반도체 기판은 저 저항 금속 게이트 인터커넥트(low resistive metal gate interconnects), 고 종횡비 3D 금속-절연체-금속(MIM) 커패시터(high aspect ratio 3D metal-insulator-metal capacitor), DRAM 트렌치 커패시터(DRAM trench capacitor), 3D 게이트-올-어라운드(GAA; Gate-All-Around), 또는 3D NAND 플래시메모리일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 도면을 제시하나, 하기 실시예 및 도면은 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
<시험예1>
실시예 1 내지 4, 비교예 1, 참고예 1 내지 2
실험을 위해 dielectric constant 값이 15 이하인 용매 중 하기 화학식 4-1로 표시되는 화합물 (d : 1.9 at 25℃), 하기 화학식 4-2로 표시되는 화합물 (d : 3.2 at 25℃), 하기 화학식 4-3으로 표시되는 화합물(d : 7.6 at 25℃), 하기 화학식 4-4로 표시되는 화합물 (d : 10.7 at 25℃), 하기 화학식 4-5로 표시되는 화합물 (d : 16.7 at 25℃), 하기 화학식 4-6으로 표시되는 화합물 (d : 24.6 at 25℃), 하기 화학식 4-7로 표시되는 화합물(d : 36.7 at 25℃), 을 전술한 화학식 1-1, 1-4, 1-7로 표시되는 화합물과 각각 1:1 mole 비로 혼합하고 1H-NMR 을 통해 신규 불순물 peak 여부를 통해 반응성 정도를 확인하였다.
[화학식 4-1]
Figure PCTKR2023002766-appb-img-000006
[화학식 4-2]
Figure PCTKR2023002766-appb-img-000007
[화학식 4-3]
Figure PCTKR2023002766-appb-img-000008
[화학식 4-4]
Figure PCTKR2023002766-appb-img-000009
[화학식 4-5]
Figure PCTKR2023002766-appb-img-000010
[화학식 4-6]
Figure PCTKR2023002766-appb-img-000011
[화학식 4-7]
Figure PCTKR2023002766-appb-img-000012
[화학식 1-1]
Figure PCTKR2023002766-appb-img-000013
[화학식 1-4]
Figure PCTKR2023002766-appb-img-000014
[화학식 1-7]
Figure PCTKR2023002766-appb-img-000015
*얻어진 결과는 하기 표 1 및 하기 도 1 내지 3에 정리하였다. 여기서 신규 불순물 peak가 관찰되는 경우에는 반응성이 있는 것으로 보아 O로 표시하였고, 신규 불순물 peak가 관찰되지 않는 경우에는 반응성이 없는 것으로 보아 X로 표시하였다.
액상 할로겐 화합물
비극성 용제
화학식 1-1 화학식 1-4 화학식 1-7
화학식 4-1(실시예 1) X X X
화학식 4-2(실시예 2) X X X
화학식 4-3(실시예 3) X X X
화학식 4-4(실시예 4) X X X
화학식 4-5(참고예 1) O O X
화학식 4-6(참고예 2) O O X
화학식 4-7(비교예 1) O O O
상기 표 1 및 하기 도 1 내지 3에서 보듯이, 유전상수가 15 이하인 화학식 4-1, 4-2, 4-3, 4-4로 표시되는 화합물을 배합한 실시예 1 내지 4의 경우에는 액상 할로겐 화합물의 종류와 무관하게 반응성이 없는 것으로 관찰되어 증착 공정을 개선하는데 효과적일 것으로 판단된다. 한편, 유전상수가 15를 다소 초과하는 화학식 4-5로 표시되는 화합물을 배합한 참고예 1의 경우에는 아이오도시클로펜테인의 경우 반응성을 갖지 않는 것으로 관찰되어 액상 할로겐 화합물의 종류에 따라 증착 공정을 개선하는데 적절할 것으로 판단된다.
한편, 유전상수가 15를 조금 더 초과하는 화학식 4-6으로 표시되는 화합물을 배합한 참고예 2 또한 아이오도시클로펜테인의 경우 반응성을 갖지 않는 것으로 관찰되어 액상 할로겐 화합물의 종류에 따라 증착 공정을 개선하는데 적절할 것으로 판단된다.
반면, 유전상수가 25를 훨씬 초과하는 화학식 4-7로 표시되는 화합물을 배합한 비교예 1의 경우에는 액상 할로겐 화합물의 종류와 무관하게 반응성을 갖는 것으로 관찰되어 증착 공정을 개선하는데 적절하지 않을 것으로 판단된다.
<시험예2>
상기 표 1에 나타낸 성분들과 공정을 사용하여 ALD 증착 공정을 수행하였다.
구체적으로, 하기 표 1에서 비교예 1-1의 SiN 증착을 위해 Hexachlorodisilane (HCDS) 전구체를 활용하였고, canister heating 온도는 35℃, N2 carrier 유량은 40 sccm 의 3초 주입조건이고, NH3 유량은 1000 sccm 30초 주입, N2 purge 유량은 1000 sccm 12초 주입 조건으로 하여, 100~150 cycle 반복한다.
이때 canister heaing 온도는 50℃ 조건에서 N2 carrier 유량을 100 sccm 3초 주입조건을 유지하였다. 또한, 전술한 화학식 1-1, 1-4, 1-7로 표시되는 물질을 각각 별도로 3초간 주입하는 공정을 사용하여 100~150 cycle 반복한다.
구체적으로, 상기 화학식 1-1, 1-4, 1-7로 표시되는 물질은 각각 하기 화학식 4-1 내지 4-6으로 표시되는 유기용제 중에서 상기 표 1에 나타낸 조성으로 1:1 mole 비로 혼합하여 liquid delievery system (LDS) 을 활용하였다.
상기 실시예 1 내지 4, 비교예 1, 참고예 1 내지 2에서 수득된 박막은 ellipsometry 광학분석을 통해 10nm SiN 박막의 두께를 분석하였다.
또한, 상기 실시예 1 내지 4, 비교예 1, 참고예 1 내지 2에서 수득된 박막은 10 nm 두께로 성막된 SiN 박막을 ellipsometry 광학분석 fitting을 통해 두께를 측정하여 얻어진 두께를 전체 ALD cycle로 나누어 cycle 당 두께의 증착속도(Å/cycle)를 측정하였다.
그 결과, 비교예 1 대비하여, 실시예 1 내지 4의 경우에 증착 속도가 20% 이상 저감된 것을 확인하였다. 반면 참고예 1 내지 2의 경우에는 사용하는 화학식 1-7로 표시되는 화합물을 사용한 경우에만 증착 속도가 20% 이상 저감된 것으로 확인되었다.

Claims (14)

1 torr (25℃) 이상의 증기압을 갖는 액상 할로겐 화합물; 및
유전상수(dielectric constant)가 25 이하인 비극성 용제를 포함하는 것을 특징으로 하는 박막 개질 조성물.
제1항에 있어서,
상기 액상 할로겐 화합물은 탄소수 1 내지 10의 알킬 할라이드인 것을 특징으로 하는 박막 개질 조성물.
제1항에 있어서,
상기 액상 할로겐 화합물은 굴절률이 1.40 내지 1.60인 것을 특징으로 하는 박막 개질 조성물.
제1항에 있어서,
상기 액상 할로겐 화합물은 상기 박막이 증착막인 경우 하기 화학식 1-1 내지 1-9로 표시되는 화합물을 포함하고, 상기 박막이 식각막인 경우 하기 화학식 2-1 내지 2-3으로 표시되는 화합물을 포함하는 것을 특징으로 하는 박막 개질 조성물.
[화학식 1-1 내지 1-9]
Figure PCTKR2023002766-appb-img-000016
[화학식 2-1 내지 2-3]
Figure PCTKR2023002766-appb-img-000017
제1항에 있어서,
상기 유전상수(dielectric constant)가 25 이하인 비극성 용제는 탄화수소계 용제, 할로겐계 용제, 헤테로고리 포함 용제, 또는 알코올계 용제인 것을 특징으로 하는 진공 기반 박막 개질 조성물.
제5항에 있어서,
상기 유전상수(dielectric constant)가 25 이하인 비극성 용제는 옥테인, 1,2-디클로로에탄, 디메틸에틸 아민, 테트라하이드로퓨란, N,N 디메틸포름아미드, 이소부틸 알코올 및 에틸 알코올 중에서 선택된 1종 이상인 것을 특징으로 하는 진공 기반 박막 개질 조성물.
챔버 내에 로딩(loading)된 기판의 표면을 제1항의 박막 개질 조성물로 처리하는 단계; 및
전구체 화합물과 반응 가스를 챔버 내로 순차 주입하고 20 내지 800 ℃ 및 760 torr 미만의 진공상태에서 상기 기판에 진공 기반 증착 박막을 형성하는 단계;를 포함하며,
상기 반응 가스는 산화제 또는 환원제인 것을 특징으로 하는 박막 형성 방법.
챔버 내에 로딩(loading)된 기판의 표면을 제1항의 박막 개질 조성물로 처리하는 단계; 및
식각 물질을 챔버 내로 주입하여 기판에 진공 기반 식각막을 형성하는 단계;를 포함하며,
상기 식각 물질은 Cl2, CCl4, CF2Cl2, CF3Cl, CF4, CHF3, C2F6, SF6, BCl3, Br2, 및 CF3Br 중에서 선택된 1종 이상인 것을 특징으로 하는 박막 형성 방법.
제7항 또는 제8항에 있어서,
상기 챔버는 ALD 챔버, CVD 챔버, PEALD 챔버 또는 PECVD 챔버인 것을 특징으로 하는 박막 형성 방법.
제9항에 있어서,
상기 박막 개질 조성물과 전구체 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송되며, 상기 주입라인의 히팅(heating) 온도는 기판에 25 내지 200 ℃인 것을 특징으로 하는 박막 형성 방법.
제8항에 있어서,
상기 식각 물질은 Ar, H2, 또는 O2와 혼합하여 사용되는 것을 특징으로 하는 박막 형성 방법.
제7항 또는 제8항에 따른 박막 형성 방법으로 제조된 박막을 포함함을 특징으로 하는 반도체 기판.
제12항에 있어서,
상기 박막은 2층 또는 3층 이상의 다층 구조인 것을 특징으로 하는 반도체 기판.
제12항의 반도체 기판을 포함하는 반도체 소자.
PCT/KR2023/002766 2022-03-04 2023-02-28 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자 WO2023167483A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0028013 2022-03-04
KR20220028013 2022-03-04
KR10-2022-0140808 2022-10-28
KR1020220140808A KR20230131086A (ko) 2022-03-04 2022-10-28 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자

Publications (1)

Publication Number Publication Date
WO2023167483A1 true WO2023167483A1 (ko) 2023-09-07

Family

ID=87883956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002766 WO2023167483A1 (ko) 2022-03-04 2023-02-28 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자

Country Status (2)

Country Link
TW (1) TW202343165A (ko)
WO (1) WO2023167483A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027093A (ko) * 2013-07-19 2016-03-09 제온 코포레이션 2-플루오로부탄의 정제 방법
KR102095710B1 (ko) * 2019-11-05 2020-04-01 주식회사 유진테크 머티리얼즈 표면 보호 물질을 이용한 박막 형성 방법
KR20200067224A (ko) * 2015-11-13 2020-06-12 삼성전자주식회사 원자층 식각 공정을 수행하는 것을 포함하는 반도체 소자 제조 방법
KR102156663B1 (ko) * 2019-09-25 2020-09-21 솔브레인 주식회사 박막 제조 방법
KR102366555B1 (ko) * 2021-01-05 2022-02-23 주식회사 이지티엠 핵성장 지연을 이용한 영역 선택적 박막 형성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027093A (ko) * 2013-07-19 2016-03-09 제온 코포레이션 2-플루오로부탄의 정제 방법
KR20200067224A (ko) * 2015-11-13 2020-06-12 삼성전자주식회사 원자층 식각 공정을 수행하는 것을 포함하는 반도체 소자 제조 방법
KR102156663B1 (ko) * 2019-09-25 2020-09-21 솔브레인 주식회사 박막 제조 방법
KR102095710B1 (ko) * 2019-11-05 2020-04-01 주식회사 유진테크 머티리얼즈 표면 보호 물질을 이용한 박막 형성 방법
KR102366555B1 (ko) * 2021-01-05 2022-02-23 주식회사 이지티엠 핵성장 지연을 이용한 영역 선택적 박막 형성 방법

Also Published As

Publication number Publication date
TW202343165A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2022015098A1 (ko) 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
WO2021060864A1 (ko) 박막 제조 방법
WO2022010214A1 (ko) 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크
WO2021060860A1 (ko) 박막 제조 방법
WO2012047035A2 (ko) 대칭형 유입구 및 유출구를 통해 반응가스를 공급하는 기판 처리 장치
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2022015099A1 (ko) 박막 형성용 성장 억제제, 이를 이용한 박막 형성 방법 및 이로부터 제조된 반도체 기판
WO2023195653A1 (ko) 활성화제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2019156451A1 (ko) 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 형성용 전구체 조성물, 및 이를 이용하는 막의 형성 방법
WO2022149854A1 (ko) 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
WO2023167483A1 (ko) 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2024090846A1 (ko) 진공 기반 박막 개질제, 이를 포함한 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023191360A1 (ko) 계단율 개선제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195654A1 (ko) 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023153647A1 (ko) 산화막 반응면제어제, 이를 이용한 산화막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195656A1 (ko) 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195657A1 (ko) 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195655A1 (ko) 박막 차폐제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023191361A1 (ko) 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2022177403A1 (ko) 보조 전구체, 박막 전구체 조성물, 박막 형성 방법, 및 이로부터 제조된 반도체 기판
WO2024076216A1 (ko) 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2023177091A1 (ko) 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2021153986A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법
WO2024054065A1 (ko) 차폐 화합물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763682

Country of ref document: EP

Kind code of ref document: A1