WO2024051575A1 - 电池模组和电池包 - Google Patents
电池模组和电池包 Download PDFInfo
- Publication number
- WO2024051575A1 WO2024051575A1 PCT/CN2023/116210 CN2023116210W WO2024051575A1 WO 2024051575 A1 WO2024051575 A1 WO 2024051575A1 CN 2023116210 W CN2023116210 W CN 2023116210W WO 2024051575 A1 WO2024051575 A1 WO 2024051575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating film
- battery
- thermal expansion
- heating
- expansion layer
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 232
- 239000000853 adhesive Substances 0.000 claims description 9
- 230000001070 adhesive effect Effects 0.000 claims description 9
- 238000005507 spraying Methods 0.000 claims description 5
- 230000009970 fire resistant effect Effects 0.000 abstract description 3
- 230000001960 triggered effect Effects 0.000 abstract description 3
- 230000000630 rising effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000009434 installation Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the technical field of new energy batteries, and in particular to a battery module and a battery pack.
- battery modules are usually equipped with a heating device to heat them when in use to prevent them from working at a lower temperature.
- the temperature of the battery module surface gradually increases, and the current heating device is easy to fall off and dry out at higher temperatures, posing great risks to the use of the battery module.
- embodiments of the present application provide a battery core heating film, a battery module and a battery pack.
- the battery core heating film can be maintained between the battery cores in the battery module at high temperatures. The fit improves the safety of using the battery module.
- an embodiment of the present application provides a battery module, which includes:
- At least one battery cell group any one of the at least one battery cell group including at least two cells;
- At least one heating film Any one of the at least one heating films includes a heating film body and a thermal expansion layer, wherein the thermal expansion layer is provided on the heating film body, and the thermal expansion layer expands when heated, and at least one heating film is connected to at least one heating film.
- the battery packs correspond one to one.
- a thermal expansion layer that expands when heated is provided on the heating film body, so that the thickness of the heating film becomes thicker with the expansion of the thermal expansion layer at a specific temperature, and the heating film body is subjected to
- the force toward the corresponding battery core group allows the battery core heating film to fit more firmly to the corresponding battery core group, ensuring the heating effect while avoiding the situation of the heating film falling off and drying, and improving the battery model. Group security.
- At least one battery core group includes: a first battery core group and a second battery core group; at least one heating film includes: a first heating film and a second heating film;
- the heating film body of the first heating film is disposed along the length direction of the first battery core group, and the thermal expansion layer of the first heating film is disposed on the side of the heating film body of the first heating film away from the first battery core group;
- the heating film body of the second heating film is disposed along the length direction of the second battery core group, and the thermal expansion layer of the second heating film is disposed on a side of the heating film body of the second heating film away from the second battery core group.
- the first heating film is provided on the side of the first battery group close to the second battery group;
- the second heating film is disposed on the side of the second cell group close to the first cell group;
- the first heating film and the second heating film are arranged opposite to each other.
- the first heating film is provided on the side of the first cell group away from the second cell group;
- the second heating film is disposed on the side of the second battery core group away from the first battery core group.
- the first heating film is provided on the first side of the first battery cell group
- the second heating film is provided on the second side of the second battery cell group
- the position of the first side in the first battery core group is the same as the position of the second side in the second battery core group.
- the thickness of the thermal expansion layer is three times the thickness of the heating film body.
- the thermal expansion layer has a minimal impact on the heating effect of the heating film on the battery pack.
- the thickness of the thermal expansion layer is 1.5-1.8 mm.
- the thickness of the thermal expansion layer after expansion is 20 times the thickness before expansion.
- the expansion temperature point of the thermal expansion layer is 90°C to 110°C.
- the expansion temperature point of the thermal expansion layer coincides with the temperature point of adhesive failure, and then the thermal expansion layer will only start to expand when the adhesive fails, extending the thermal expansion layer service life.
- the heating film body and the battery core group are fixed by adhesive.
- the adhesive fixation method has low cost and is easy to disassemble and adjust.
- the thermal expansion layer is disposed on the heating film body by spraying.
- the spraying installation method has a lower cost and can make the thermal expansion layer more firmly installed on the heating film body.
- the heating film body includes: a plurality of protruding heating elements and a heating element body;
- a plurality of protruding heating elements are arranged at intervals on one side of the heating element body. Any one of the plurality of protruding heating elements extends along the width of the heating element body, and the gap between any two protruding heating elements is The spacing distance is equal to the width of any cell in the cell group.
- the above-mentioned heating film body is used.
- the protruding heating element is disposed at the gap between two adjacent battery cores, so that the contact between the heating film body and the battery core is The area is larger and the heating effect is improved.
- the protruding heating element is sandwiched between two adjacent battery cores, so that the heating film can be more firmly attached to the battery core group.
- the thermal expansion layer is disposed on a side of the heating element body that is different from the plurality of protruding heating elements.
- the thermal expansion layer is disposed on a side of the heating element body that is different from the plurality of protruding heating elements, which can ensure the heating effect of the heating film body on the battery pack.
- an embodiment of the present application provides a battery pack.
- the battery pack includes the battery module disclosed in the first aspect of the embodiment of the present invention.
- the thermal expansion layer is fire-resistant, so when other modules experience thermal runaway, the thermal expansion layer can trigger the expansion temperature point and expand rapidly, thereby isolating the impact of thermal runaway of other modules on the heating film body and battery core.
- Figure 1 is a schematic structural diagram of a battery module provided by an embodiment of the present application.
- FIG. 2 is a schematic structural diagram of another battery module provided by an embodiment of the present application.
- Figure 3 is a schematic structural diagram of a heating film provided by an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of another heating film provided by an embodiment of the present application.
- Figure 5 is a schematic diagram of the installation position of the heating film in a battery module provided by an embodiment of the present application.
- Figure 6 is a schematic diagram of the installation position of the heating film in another battery module provided by the embodiment of the present application.
- FIG. 7 is a schematic diagram of the installation position of the heating film in yet another battery module provided by the embodiment of the present application.
- an embodiment means that a particular feature, result or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- the battery module can include at least one battery cell group and at least one heating film.
- the at least one heating film has a one-to-one correspondence with at least one battery core group, wherein any one of the at least one battery core group includes at least two batteries; any one of the at least one heating film has It includes a heating film body and a thermal expansion layer, wherein the thermal expansion layer is provided on the heating film body, and the thermal expansion layer expands when heated.
- the battery module may include: a battery pack 110 , and the battery pack 110 may include at least Two electric cores 111; heating film 120.
- the heating film 120 may include a heating film body 121 and a thermal expansion layer 122, and the thermal expansion layer 122 is disposed on the side of the heating film body 121 away from the battery core group 110.
- a heating film provided with a thermal expansion layer is used. Then, at high temperatures, the thermal expansion layer of the heating film expands and becomes thicker, and is in contact with the external box or other battery modules where the battery module is located. The squeezing force is generated between the groups, and then through the reaction force, the heating film body is pressed against the side of the battery core group, ensuring that the heating film is firmly attached to the battery core group.
- the battery module may include: a first battery cell group 211 and a second battery cell group 212, wherein the Either one of the first battery core group and the second battery core group includes at least two battery cells. Specifically, after at least two battery cells are installed between two battery cell holders, the two battery cell holders are connected and fixed, such as fastening, welding, etc., and then multiple battery cells are combined together. , forming the first battery core group 211 or the second battery core group 212. In other optional implementations, the battery module may also include a plurality of such first cell groups 211 or second cell groups 212 .
- the battery module may further include: a first heating film 221 and a second heating film 222, wherein the first heating film 221 is provided corresponding to the first battery core group 211, and the second heating film 222 is provided corresponding to the second heating film 221.
- the battery core groups 212 are arranged correspondingly, and any one of the first heating film 221 and the second heating film 222 includes a heating film body and a thermal expansion layer.
- the number of heating films in the heating module 220 is equal to the number of battery packs in the battery module, and maintain a one-to-one correspondence. That is, each cell group has a unique corresponding heating film.
- the heating film body 201 is in the shape of a ruler with a smooth surface, and the thermal expansion layer 202 is disposed on one side of the heating film body 201, partially covering the heating film.
- Membrane body 201 one side of the heating film body 201 is attached to the battery pack, and the thermal expansion layer 202 can be disposed on any one or more sides except this side.
- the battery module provided by the present application will be described by taking the case where the thermal expansion layer 202 is disposed on the other side of the heating film body opposite to the side bonded to the battery pack as an example.
- the thermal expansion layer 202 can also completely cover the heating film body 201.
- the thickness of the thermal expansion layer may be three times the thickness of the heating film body.
- the thickness of the thermal expansion layer may be 1.5-1.8 mm, and the thickness of the heating film body may be 0.5-0.6 mm. This thickness ratio can ensure that the heat emitted by the heating film body can maintain a higher temperature after passing through the thermal expansion layer to heat the battery core group, thereby minimizing the impact of the thermal expansion layer on the heating effect of the heating film on the battery core group. .
- the thermal expansion layer 202 will expand when heated.
- a foaming agent is added to the thermal expansion layer, so that the thickness of the thermal expansion layer after expansion is 20 times the thickness before expansion, and the expansion temperature point of the thermal expansion layer is 90°C ⁇ 110°C. From this, it can be seen that the increased expansion ratio can ensure that the expanded thermal expansion layer fully fills the gaps between the battery core groups, and then exerts sufficient force on the heating film body to maintain fit with the battery core groups. .
- the expansion temperature point of the thermal expansion layer is consistent with the temperature point of adhesive failure, and then the thermal expansion layer will only start to expand when the adhesive fails, extending the service life of the thermal expansion layer.
- the thermal expansion layer is made of refractory material and is extremely resistant to fire.
- the thermal expansion layer can also expand rapidly when the thermal runaway temperature triggers the expansion temperature point, isolating the thermal runaway of other modules from affecting the battery module corresponding to the heating film body where the expansion layer is located. Impact.
- the heating film body and the battery core group are fixed by adhesive, such as double-sided tape or structural adhesive. Then, while ensuring that the heating film can be attached to the battery pack under normal conditions, it is easy to disassemble and adjust, and the production cost is reduced.
- the thermal expansion layer is disposed on the heating film body by spraying. The spraying method has lower cost and can make the thermal expansion layer more firmly disposed on the heating film body.
- the heating film body 203 may include a plurality of protruding heating elements 204 and a heating element body 205 .
- the heating element body 205 is in the shape of a ruler with a smooth surface.
- a plurality of protruding heating elements 204 are arranged at intervals on one side of the heating element body 205, and any one of the plurality of protruding heating elements 204 is heated along the heating element body 205.
- the width of the piece body 205 extends. At the same time, the distance between any two protruding heating elements is equal, and the distance between them is equal to the width of any one cell in the corresponding cell group.
- the thermal expansion layer 202 is disposed on the heating film body 201 on a side different from the side where the plurality of protruding heating elements 204 are located, for example: with the plurality of protruding heating elements 204 The side opposite to the side on which it is located.
- the characteristics of the thermal expansion layer are consistent with the characteristics of the thermal expansion layer in the above-mentioned embodiment of the smooth ruler-shaped heating film body, and will not be described again here. Meanwhile, in this embodiment, the plurality of protruding heating elements 204 and the heating element body 205 can be integrally formed.
- the above-mentioned heating film body is used.
- the protruding heating element is disposed at the gap between two adjacent battery cores and is connected to each other. Two adjacent cells are clamped. Then, the contact area between the heating film body and the electric core is made larger, which improves the heating effect. At the same time, the protruding heating element can be sandwiched between two adjacent electric cores, so that the heating film can fit more firmly. On the battery pack.
- the heating film body of the first heating film 221 is disposed along the length direction of the first battery core group 211 , and the thermal expansion layer of the first heating film 221 is disposed on the first heating film.
- the side of the film 221 that is far away from the first battery core group 211 on the film body is heated. To put it simply, even if the side of the first heating film 221 that is not covered by the thermal expansion layer is attached to the first battery core group 211, and then when the first heating film 221 is heated and separated from the first battery core group 211, it will move away from the first battery core group 211.
- the thermal expansion layer provided in the battery core group 211 is heated and expands, exerting a force on the heating film body to push it to the first battery core group 211, and reattach it to the first battery core group.
- the above arrangement causes the heating film body to be directly attached to the first battery core group 211, ensuring the heating effect of the first heating film 221 on the first battery core group 211.
- the heating film body of the second heating film 222 is disposed along the length direction of the second battery core group 212 , and the thermal expansion layer of the second heating film 222 is disposed on the heating film body of the second heating film 222 away from the second battery core.
- Group 212 on one side.
- the first heating film 221 is provided on the side of the first battery group 211 close to the second battery group 212
- the second heating film 222 is provided on the side of the second battery group 212 close to the first battery group 211.
- a heating film 221 and a second heating film 222 are arranged opposite to each other.
- the thermal expansion layer 202 is disposed on the outer surface of the heating film body 201 away from the battery core, and then expands due to heat during actual operation.
- the expanded thermal expansion layer 202 will be affected by adjacent battery cores.
- the force of the group or box generates pressure from the thermal expansion layer 202 to the heating film body 201, so that the heating film body 201 is reattached and fixed on the battery core.
- the present application also provides another way to arrange the heating film in the battery module.
- the first heating film 221 is provided on the first battery cell group 211 away from the second battery cell.
- the second heating film 222 is provided on the side of the second battery group 212 away from the first battery group 211 .
- the present application also provides yet another way of arranging the heating film in the battery module.
- the first heating film 221 is provided on the first side of the first battery cell group 211.
- the second heating film 222 is provided on the second side of the second battery cell group 212, and the position of the first side in the first battery group is the same as the position of the second side in the second battery group.
- the first heating film 221 and the second heating film 222 are respectively disposed on the same side of the first cell group 211 and the second cell group 212, as shown in Figure 7.
- Figure 7 shows the first The heating film 221 and the second heating film 222 are respectively provided on the left side of the first cell group 211 and the second cell group 212.
- the above three heating film arrangements can also be used in any combination of two or three, which is not limited in this application.
- the expansion temperature point of the thermal expansion layer will be triggered, causing the thermal expansion layer to rapidly expand, and the expansion force will be used to heat the battery module.
- the film is reattached to the battery pack to ensure the safety of the heating film body and the battery pack.
- the thermal expansion layer is fire-resistant, so when other modules experience thermal runaway, the thermal expansion layer can trigger the expansion temperature point and expand rapidly, thereby isolating the impact of thermal runaway of other modules on the heating film body and battery core.
- the embodiment of the present invention provides a battery pack, which includes the battery module provided by any of the above embodiments of the invention.
- the battery module in the battery pack is the same as the battery module described in any of the above embodiments of the invention, and will not be described again here.
- the disclosed device can be implemented in other ways.
- the device implementation described above is only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
一种电池模组和电池包,其中,电池模组包括:至少一个电芯组,至少一个电芯组中的任意一个电芯组包括至少两个电芯;至少一个加热膜,至少一个加热膜中的任意一个加热膜包括加热膜本体和热膨胀层,其中,热膨胀层设置于加热膜本体,且热膨胀层在受热时发生膨胀,且至少一个加热膜与至少一个电芯组一一对应。由此,在加热膜在发生脱落时,由于温度的升高,会触发热膨胀层的膨胀温度点,使热膨胀层迅速膨胀,利用膨胀力将加热膜重新与电芯组贴合,以保证加热膜本体与电芯组的安全。此外,热膨胀层耐火烧,既而当其他模组出现热失控情况时,热膨胀层能够触发膨胀温度点,迅速膨胀,隔绝其他模组的热失控对加热膜本体与电芯的影响。
Description
本申请要求于2022年9月9日提交中国专利局、申请号为202211099892.6、申请名称为“电池模组和电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及新能源电池技术领域,具体涉及一种电池模组和电池包。
电池模组在使用过程中,如果温度过低,则可能会生成一些低温下的副产物,使电芯隔膜刺穿,既而损坏电芯,并形成安全隐患。基于此,目前,电池模组在使用时通常会配备一个加热装置对其进行加热,以避免其工作在较低的温度中。但是,随着电池模组的使用,电池模组表面的温度逐渐升高,目前的加热装置在较高的温度下容易脱落干烧,给电池模组的使用造成极大的风险。
发明内容
为了解决现有技术中存在的上述问题,本申请实施方式提供了一种电芯加热膜、电池模组和电池包,该电芯加热膜可以在高温下保持与电池模组中电芯之间的贴合,提升电池模组使用的安全性。
第一方面,本申请的实施方式提供了一种电池模组,该电池模组包括:
至少一个电芯组,至少一个电芯组中的任意一个电芯组包括至少两个电芯;
至少一个加热膜,至少一个加热膜中的任意一个加热膜包括加热膜本体和热膨胀层,其中,热膨胀层设置于加热膜本体,且热膨胀层在受热时发生膨胀,且至少一个加热膜与至少一个电芯组一一对应。
可以看出,在本实施方式中,通过在加热膜本体上设置受热时会发生膨胀的热膨胀层,使加热膜的厚度在特定温度下随着热膨胀层的膨胀而变厚,对加热膜本体施加朝向各自贴合的电芯组的力,使电芯加热膜可更加稳固的贴合在对应的电芯组上,保证加热效果的同时,避免了加热膜脱落干烧的情况,提升了电池模组的安全性。
在本发明的一个实施方式中,至少一个电芯组包括:第一电芯组和第二电芯组;至少一个加热膜包括:第一加热膜和第二加热膜;
其中,
第一加热膜的加热膜本体沿第一电芯组的长度方向设置,第一加热膜的热膨胀层设置于第一加热膜的加热膜本体上的远离第一电芯组的一侧;
第二加热膜的加热膜本体沿第二电芯组的长度方向设置,第二加热膜的热膨胀层设置于第二加热膜的加热膜本体上的远离第二电芯组的一侧。
在本发明的一个实施方式中,第一加热膜设于第一电芯组靠近第二电芯组一侧;
第二加热膜设于第二电芯组靠近第一电芯组一侧;
第一加热膜和第二加热膜相对设置。
在本发明的一个实施方式中,第一加热膜设于第一电芯组远离第二电芯组的一侧;
第二加热膜设于第二电芯组远离第一电芯组的一侧。
在本发明的一个实施方式中,第一加热膜设于第一电芯组的第一侧;
第二加热膜设于第二电芯组的第二侧;
其中,第一侧在第一电芯组中的位置与第二侧在第二电芯组中的位置相同。
在本发明的一个实施方式中,热膨胀层的厚度是加热膜本体的厚度的3倍。
可以看出,在本实施方式中,可以保证热膨胀层对加热膜对电芯组的加热效果的影响最小。
在本发明的一个实施方式中,热膨胀层的厚度为1.5-1.8mm。
在本发明的一个实施方式中,热膨胀层膨胀后的厚度为膨胀前的厚度的20倍。
可以看出,在本实施方式中,可以保证膨胀后可以对加热膜本体施加足够的力,使其与电芯组之间保持贴合。
在本发明的一个实施方式中,热膨胀层的膨胀温度点为90℃~110℃。
可以看出,在本实施方式中,热膨胀层的膨胀温度点和胶黏剂失效的温度点相切合,继而只有在胶黏剂失效的情况下该热膨胀层才会开始膨胀,延长了该热膨胀层的使用寿命。
在本发明的一个实施方式中,加热膜本体与电芯组之间通过胶粘的方式固定。
可以看出,在本实施方式中,胶粘的固定方式成本较低,且易于拆卸调整。
在本发明的一个实施方式中,热膨胀层通过喷涂的方式设置于加热膜本体上。
可以看出,在本实施方式中,喷涂的设置方式成本较低,且可以使热膨胀层更加牢固的设置在加热膜本体上。
在本发明的一个实施方式中,加热膜本体包括:多个凸出加热件和加热件本体;
其中,
多个凸出加热件间隔设置于加热件本体的一侧,多个凸出加热件中的任意一个凸出加热件均沿加热件本体的宽度延伸,且任意两个凸出加热件之间的间隔距离等于电芯组中任意一个电芯的宽度。
可以看出,在本实施方式中,采用上述的加热膜本体,在实际使用中,凸出加热件设置在相邻的两个电芯的间隙处,使加热膜本体与电芯之间的接触面积更大,提升加热效果。同时,使相邻的两个电芯夹住凸出加热件,使加热膜可以更加牢固的贴合在电芯组上。
在本发明的一个实施方式中,热膨胀层设置于加热件本体上不同于多个凸出加热件所在的一侧。
可以看出,在本实施方式中,热膨胀层设置于加热件本体上不同于多个凸出加热件所在的一侧,可以保证加热膜本体对电芯组的加热效果。
第二方面,本申请实施方式提供一种电池包,该电池包包括如本发明实施方式第一方面公开的电池模组。
实施本申请实施方式,具有如下有益效果:
本实施方式中的电池模组,在加热膜在发生脱落时,由于温度的升高,会触发热膨胀层的膨胀温度点,使该热膨胀层迅速膨胀,利用膨胀力将加热膜重新与电芯组贴合,以保证加热膜本体与电芯组的安全。此外,该热膨胀层耐火烧,既而当其他模组出现热失控情况时,该热膨胀层能够触发膨胀温度点,迅速膨胀,隔绝其他模组的热失控对加热膜本体与电芯的影响。
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施方式提供的一种电池模组的结构示意图;
图2为本申请实施方式提供的另一种电池模组的结构示意图;
图3为本申请实施方式提供的一种加热膜的结构示意图;
图4为本申请实施方式提供的另一种加热膜的结构示意图;
图5为本申请实施方式提供的一种电池模组中加热膜的设置位置的示意图;
图6为本申请实施方式提供的另一种电池模组中加热膜的设置位置的示意图;
图7为本申请实施方式提供的再一种电池模组中加热膜的设置位置的示意图。
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施方式”意味着,结合实施方式描述的特定特征、结果或特性可以包含在本申请的至少一个实施方式中。在说明书中的各个位置出现该短语并不一定均是指相同的实施方式,也不是与其它实施方式互斥的独立的或备选的实施方式。本领域技术人员显式地和隐式地理解的是,本文所描述的实施方式可以与其它实施方式相结合。
本申请实施方式提供了一种电池模组,具体而言,该电池模组可以至少一个电芯组和至少一个加热膜。具体而言,该至少一个加热膜与至少一个电芯组一一对应,其中,至少一个电芯组中的任意一个电芯组包括至少两个电芯;至少一个加热膜中的任意一个加热膜包括加热膜本体和热膨胀层,其中,热膨胀层设置于加热膜本体,且热膨胀层在受热时发生膨胀。
以下将以一个电芯组和一个加热膜,以及两个电芯组和两个加热膜的情况,分别对本申请所提供的电池模组进行详细的说明:
(1)一个电芯组和一个加热膜:
在该情况下,参阅图1,图1为本申请实施方式提供的一种电池模组,如图1所示,该电池模组可以包括:电芯组110,该电芯组110可以包括至少两个电芯111;加热膜120,该加热膜120可以包括加热膜本体121和热膨胀层122,且热膨胀层122设置于加热膜本体121上远离电芯组110的一侧。
由此,在本实施方式中,使用了设置有热膨胀层的加热膜,继而在高温下,该加热膜的热膨胀层膨胀变厚,与该电池模组所处的外部箱体、或其他电池模组之间产生挤压的力量,继而通过反作用力,将加热膜本体压在电芯组的侧面,保证加热膜稳固的贴合在电芯组上。
(2)两个电芯组和两个加热膜:
参阅图2,图2为本申请实施方式提供的另一种电池模组,如图2所示,该电池模组可以包括:第一电芯组211和第二电芯组212,其中,第一电芯组和第二电芯组中的任意一个电芯组均包括至少两个电芯。具体而言,将至少两个电芯装至两个电芯保持架之间后,将两个电芯保持架进行连接固定,例如:扣合、焊接等,继而将多个电芯组合在一起,形成第一电芯组211或第二电芯组212。在可选的其他实施方式中,电池模组也可以包括多个这样的第一电芯组211或第二电芯组212。
在本实施方式中,电池模组还可以包括:第一加热膜221和第二加热膜222,其中,第一加热膜221与第一电芯组211对应设置,第二加热膜222与第二电芯组212对应设置,且第一加热膜221和第二加热膜222中的任意一个加热膜均包括加热膜本体和热膨胀层。在本实施方式中,加热模组220中加热膜的数量与电池模组中电芯组的数量相等,且保持着一一对应的关系。即,每个电芯组都有一个唯一对应的加热膜。
示例性的,如图3所示,第一加热膜221或第二加热膜222中,加热膜本体201呈表面光滑的尺状,热膨胀层202设置于加热膜本体201的一侧,部分覆盖加热膜本体201。具体而言,加热膜本体201的一个侧面与电芯组贴合,而热膨胀层202可以设置在除了该侧面之外的任意一个或多个侧面。在本实施方式中,将以该热膨胀层202设置在加热膜本体上与电芯组贴合的一侧相对的另一侧的情况为示例,对本申请所提供的电池模组进行说明。当然,在其他可选的实施方式中,该热膨胀层202也可以全部覆盖加热膜本体201。
具体而言,该热膨胀层的厚度可以是加热膜本体的厚度的3倍。在本实施方式中,热膨胀层的厚度可以为1.5-1.8mm,加热膜本体的厚度可以为0.5-0.6mm。该厚度比例可以保证加热膜本体散发出的热量在闯过热膨胀层后还可以保持较高的温度,对电芯组进行加热,继而使热膨胀层对加热膜对电芯组的加热效果的影响最小。
同时,该热膨胀层202在受热时会发生膨胀,热膨胀层中添加有发泡剂,使得热膨胀层膨胀后的厚度为膨胀前的厚度的20倍,且该热膨胀层的膨胀温度点为90℃~110℃。由此,可以看出,加高的膨胀倍率可以保证膨胀后的热膨胀层充分填充电芯组之间的缝隙,继而对加热膜本体施加足够的力,使其与电芯组之间保持贴合。同时,热膨胀层的膨胀温度点和胶黏剂失效的温度点相切合,继而只有在胶黏剂失效的情况下该热膨胀层才会开始膨胀,延长了该热膨胀层的使用寿命。
此外,在本实施方式中,热膨胀层为耐火材料制成,极耐火烧。在其他模组出现热失控情况时,该热膨胀层还能够在热失控的温度触发膨胀温度点时,迅速膨胀,隔绝其他模组的热失控对该膨胀层所在的加热膜本体对应的电池模组的影响。
在本实施方式中,加热膜本体与电芯组之间通过胶粘的方式固定,例如:双面胶或结构胶。继而在保证常规条件下加热膜可以贴合在电芯组上的同时,易于拆卸调整,并降低生产成本。热膨胀层则通过喷涂的方式设置于加热膜本体上,喷涂的设置方式成本较低,且可以使热膨胀层更加牢固的设置在加热膜本体上。
在可选的实施方式中,如图4所示,第一加热膜221或第二加热膜222中,加热膜本体203可以包括多个凸出加热件204和加热件本体205。其中,加热件本体205呈表面光滑的尺状,多个凸出加热件204间隔设置于加热件本体205的一侧,且多个凸出加热件204中的任意一个凸出加热件均沿加热件本体205的宽度延伸。同时,任意两个凸出加热件之间的间隔相等,且间隔的距离等于对应的电芯组中任意一个电芯的宽度。热膨胀层202设置于加热膜本体201上,与多个凸出加热件204所在的一侧不同的一侧,例如:与多个凸出加热件204
所在的一侧相对的一侧。
在本实施方式中,热膨胀层的特性与上述光滑尺状加热膜本体的实施方式中的热膨胀层的特性一致,在此不再赘述。同时,在本实施方式中,多个凸出加热件204和加热件本体205可以一体成型。
由此,在本实施方式中,采用上述的加热膜本体,相对于平滑尺状的加热膜本体,在实际使用中,凸出加热件设置在相邻的两个电芯的间隙处,被相邻的两个电芯夹住。继而在使加热膜本体与电芯之间的接触面积更大,提升加热效果的同时,还可以使相邻的两个电芯夹住凸出加热件,使加热膜可以更加牢固的贴合在电芯组上。
同时,如图5所示,在本实施方式中个,该第一加热膜221的加热膜本体沿第一电芯组211的长度方向设置,第一加热膜221的热膨胀层设置于第一加热膜221的加热膜本体上的远离第一电芯组211的一侧。简单而言,即使第一加热膜221上未被热膨胀层覆盖的一侧贴合于第一电芯组211上,继而在第一加热膜221受热脱离第一电芯组211时,远离第一电芯组211设置的热膨胀层受热膨胀对加热膜本体施加将其推向第一电芯组211的力,将其重新贴合于第一电芯组上。同时,上述设置方式使加热膜本体与第一电芯组211之间直接贴合,确保了第一加热膜221对第一电芯组211的加热效果。
同样的,第二加热膜222的加热膜本体沿第二电芯组212的长度方向设置,第二加热膜222的热膨胀层设置于第二加热膜222的加热膜本体上的远离第二电芯组212的一侧。且第一加热膜221设于第一电芯组211靠近第二电芯组212的一侧,第二加热膜222设于第二电芯组212靠近第一电芯组211的一侧,第一加热膜221和第二加热膜222相对设置。
由此,在本实施方式中,该热膨胀层202设置于加热膜本体201上远离电芯一侧的外表面上,继而在实际工作中受热膨胀,膨胀后的热膨胀层202会受到相邻电芯组或箱体的作用力,产生由热膨胀层202向加热膜本体201方向的压力,使加热膜本体201重新贴合固定在电芯上。
在可选的实施方式中,本申请还提供了另一种电池模组中加热膜的设置方式,如图6所示,第一加热膜221设于第一电芯组211远离第二电芯组212的一侧,第二加热膜222设于第二电芯组212远离第一电芯组211的一侧。
在可选的实施方式中,本申请还提供了再一种电池模组中加热膜的设置方式,如图7所示,第一加热膜221设于第一电芯组211的第一侧,第二加热膜222设于第二电芯组212的第二侧,该第一侧在第一电芯组中的位置与第二侧在第二电芯组中的位置相同。简而言之,即第一加热膜221和第二加热膜222分别设置于第一电芯组211和第二电芯组212的同一侧,如图7所示,图7示出了第一加热膜221和第二加热膜222分别设置于第一电芯组211和第二电芯组212的左侧的情况。
此外,在本实施方式中,上述三种加热膜的设置方式也可以任意两两或三三组合使用,本申请对此不作限制。
综上所述,本实施方式所提供的电池模组,在加热膜在发生脱落时,由于温度的升高,会触发热膨胀层的膨胀温度点,使该热膨胀层迅速膨胀,利用膨胀力将加热膜重新与电芯组贴合,以保证加热膜本体与电芯组的安全。此外,该热膨胀层耐火烧,既而当其他模组出现热失控情况时,该热膨胀层能够触发膨胀温度点,迅速膨胀,隔绝其他模组的热失控对加热膜本体与电芯的影响。
在一个可能的实施方式中,本发明实施方式提供了一种电池包,该电池包包括上述任一发明实施方式所提供的电池模组。
其中,该电池包中的电池模组与上述任一发明实施方式中描述的电池模组相同,在此不再叙述。
需要说明的是,对于前述的各发明实施方式,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施方式均属于可选实施方式,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施方式中,对各个实施方式的描述都各有侧重,某个实施方式中没有详述的部分,可以参见其他实施方式的相关描述。
在本申请所提供的几个实施方式中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上对本申请实施方式进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (14)
- 一种电池模组,其特征在于,所述电池模组包括:至少一个电芯组,所述至少一个电芯组中的任意一个电芯组包括至少两个电芯;至少一个加热膜,所述至少一个加热膜中的任意一个加热膜包括加热膜本体和热膨胀层,其中,所述热膨胀层设置于所述加热膜本体,且所述热膨胀层在受热时发生膨胀,且所述至少一个加热膜与所述至少一个电芯组一一对应。
- 根据权利要求1所述的电池模组,其特征在于,所述至少一个电芯组包括:第一电芯组和第二电芯组;所述至少一个加热膜包括:第一加热膜和第二加热膜;其中,所述第一加热膜的加热膜本体沿所述第一电芯组的长度方向设置,所述第一加热膜的热膨胀层设置于所述第一加热膜的加热膜本体上的远离所述第一电芯组的一侧;所述第二加热膜的加热膜本体沿所述第二电芯组的长度方向设置,所述第二加热膜的热膨胀层设置于所述第二加热膜的加热膜本体上的远离所述第二电芯组的一侧。
- 根据权利要求2所述的电池模组,其特征在于,所述第一加热膜设于所述第一电芯组靠近所述第二电芯组的一侧;所述第二加热膜设于所述第二电芯组靠近所述第一电芯组的一侧;所述第一加热膜和所述第二加热膜相对设置。
- 根据权利要求2所述的电池模组,其特征在于,所述第一加热膜设于所述第一电芯组远离所述第二电芯组的一侧;所述第二加热膜设于所述第二电芯组远离所述第一电芯组的一侧。
- 根据权利要求2所述的电池模组,其特征在于,所述第一加热膜设于所述第一电芯组的第一侧;所述第二加热膜设于所述第二电芯组的第二侧;其中,所述第一侧在所述第一电芯组中的位置与所述第二侧在所述第二电芯组中的位置相同。
- 根据权利要求1-5中任意一项所述的电池模组,其特征在于,所述热膨胀层的厚度是所述加热膜本体的厚度的3倍。
- 根据权利要求1-5中任意一项所述的电池模组,其特征在于,所述热膨胀层的厚度为1.5-1.8mm。
- 根据权利要求1-5中任意一项所述的电池模组,其特征在于,所述热膨胀层膨胀后的厚度为膨胀前的厚度的20倍。
- 根据权利要求1-5中任意一项所述的电池模组,其特征在于,所述热膨胀层的膨胀温度点为90℃~110℃。
- 根据权利要求1-5中任意一项所述的电池模组,其特征在于,所述加热膜本体与所述电芯组之间通过胶粘的方式固定。
- 根据权利要求1-5中任意一项所述的电池模组,其特征在于,所述热膨胀层通过喷涂的方式设置于所述加热膜本体上。
- 根据权利要求1-5中任意一项所述的电池模组,其特征在于,所述加热膜本体包括:多个凸出加热件和加热件本体;其中,所述多个凸出加热件间隔设置于所述加热件本体的一侧,所述多个凸出加热件中的任意一个凸出加热件均沿所述加热件本体的宽度延伸,且任意两个凸出加热件之间的间隔距离等于所述电芯组中任意一个电芯的宽度。
- 根据权利要求12所述的电池模组,其特征在于,所述热膨胀层设置于所述加热件本体上不同于所述多个凸出加热件所在的一侧。
- 一种电池包,其特征在于,所述电池包包括如权利要求1-13中任意一项所述的电池模组。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211099892.6A CN115189074B (zh) | 2022-09-09 | 2022-09-09 | 电池模组和电池包 |
CN202211099892.6 | 2022-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024051575A1 true WO2024051575A1 (zh) | 2024-03-14 |
Family
ID=83524273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/116210 WO2024051575A1 (zh) | 2022-09-09 | 2023-08-31 | 电池模组和电池包 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115189074B (zh) |
WO (1) | WO2024051575A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115189074B (zh) * | 2022-09-09 | 2022-12-09 | 深圳海润新能源科技有限公司 | 电池模组和电池包 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019050139A (ja) * | 2017-09-11 | 2019-03-28 | トヨタ自動車株式会社 | 加熱装置 |
US20200335737A1 (en) * | 2017-12-22 | 2020-10-22 | Cummins Inc. | Thermal runaway mitigation system for high capacity energy cell |
CN212967833U (zh) * | 2020-09-04 | 2021-04-13 | 欣旺达电动汽车电池有限公司 | 具有热失控防护功能的圆柱电池模组 |
CN214706051U (zh) * | 2021-03-24 | 2021-11-12 | 远景动力技术(江苏)有限公司 | 一种电池模组、电池包及电动汽车 |
CN113764780A (zh) * | 2020-06-02 | 2021-12-07 | 郑州宇通集团有限公司 | 一种加热膜及使用该加热膜的电池模组 |
CN113921979A (zh) * | 2021-09-10 | 2022-01-11 | 东风时代(武汉)电池系统有限公司 | 一种电池模组和电池包 |
CN217182275U (zh) * | 2022-04-01 | 2022-08-12 | 宁德时代新能源科技股份有限公司 | 电池模块、电池、用电设备 |
CN115189074A (zh) * | 2022-09-09 | 2022-10-14 | 深圳海润新能源科技有限公司 | 电池模组和电池包 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013145611A1 (ja) * | 2012-03-30 | 2015-12-10 | 日本電気株式会社 | 蓄電デバイス及び蓄電デバイスの放熱方法 |
CN208368563U (zh) * | 2018-05-18 | 2019-01-11 | 南京晶能新能源智能汽车制造有限公司 | 一种新能源汽车锂电池组保护装置 |
JP7068135B2 (ja) * | 2018-10-22 | 2022-05-16 | 昭和電工パッケージング株式会社 | シート型伝熱器および熱処理システム |
CN210984898U (zh) * | 2019-10-09 | 2020-07-10 | 南安艺同工业产品设计有限公司 | 一种车辆用蓄电池的升温设备 |
CN211320267U (zh) * | 2020-02-28 | 2020-08-21 | 宁德时代新能源科技股份有限公司 | 电池模块、电池组及装置 |
CN212412133U (zh) * | 2020-06-07 | 2021-01-26 | 厦门海辰新能源科技有限公司 | 一种加热片及电池模组 |
CN114079101A (zh) * | 2020-08-12 | 2022-02-22 | 郑州宇通集团有限公司 | 具有加热功能的电池模组及电池箱 |
CN212874605U (zh) * | 2020-09-11 | 2021-04-02 | 湖北亿纬动力有限公司 | 一种电池加热膜结构及电池模组 |
CN215266456U (zh) * | 2021-04-27 | 2021-12-21 | 蜂巢能源科技有限公司 | 用于电池模组的加热膜组件、电池模组和电池包 |
CN214898600U (zh) * | 2021-06-25 | 2021-11-26 | 凯博能源科技有限公司 | 电池组和电池包 |
CN113991233B (zh) * | 2021-09-28 | 2024-04-19 | 上海空间电源研究所 | 一种高膨胀率锂离子电池组用温控复合夹板 |
CN216980686U (zh) * | 2021-12-09 | 2022-07-15 | 比亚迪股份有限公司 | 电池包加热膜、电池包及车辆 |
CN217361733U (zh) * | 2022-04-07 | 2022-09-02 | 上海兰钧新能源科技有限公司 | 电池模组 |
-
2022
- 2022-09-09 CN CN202211099892.6A patent/CN115189074B/zh active Active
-
2023
- 2023-08-31 WO PCT/CN2023/116210 patent/WO2024051575A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019050139A (ja) * | 2017-09-11 | 2019-03-28 | トヨタ自動車株式会社 | 加熱装置 |
US20200335737A1 (en) * | 2017-12-22 | 2020-10-22 | Cummins Inc. | Thermal runaway mitigation system for high capacity energy cell |
CN113764780A (zh) * | 2020-06-02 | 2021-12-07 | 郑州宇通集团有限公司 | 一种加热膜及使用该加热膜的电池模组 |
CN212967833U (zh) * | 2020-09-04 | 2021-04-13 | 欣旺达电动汽车电池有限公司 | 具有热失控防护功能的圆柱电池模组 |
CN214706051U (zh) * | 2021-03-24 | 2021-11-12 | 远景动力技术(江苏)有限公司 | 一种电池模组、电池包及电动汽车 |
CN113921979A (zh) * | 2021-09-10 | 2022-01-11 | 东风时代(武汉)电池系统有限公司 | 一种电池模组和电池包 |
CN217182275U (zh) * | 2022-04-01 | 2022-08-12 | 宁德时代新能源科技股份有限公司 | 电池模块、电池、用电设备 |
CN115189074A (zh) * | 2022-09-09 | 2022-10-14 | 深圳海润新能源科技有限公司 | 电池模组和电池包 |
Also Published As
Publication number | Publication date |
---|---|
CN115189074A (zh) | 2022-10-14 |
CN115189074B (zh) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024051575A1 (zh) | 电池模组和电池包 | |
CN106785225A (zh) | 被动防护电池模组结构及其制作方法 | |
CN110828747A (zh) | 动力电池热防护系统 | |
EP3391436A1 (en) | Passive thermal management system for battery | |
CN218827565U (zh) | 防火储能电池包 | |
CN107919492B (zh) | 锂离子电池、电池组及电动大巴 | |
CN210668585U (zh) | 一种锂离子电池 | |
CN213342718U (zh) | 一种电池加热膜结构及电池模组 | |
CN213816278U (zh) | 一种软包电池电芯防火装置及软包电池模组 | |
WO2023151494A1 (zh) | 一种加热组件、电池以及用电装置 | |
CN212967831U (zh) | 一种电池包厚膜加热系统 | |
CN112201890A (zh) | 一种软包电池电芯防火装置及软包电池模组 | |
WO2024179421A1 (zh) | 用于电芯组件的分隔件、电芯组件和用电设备 | |
CN209374617U (zh) | 一种电池模组及其隔热垫片 | |
CN213752828U (zh) | 具有隔热阻燃结构的锂离子电池组 | |
CN206564306U (zh) | 被动防护电池模组结构 | |
WO2018166218A1 (zh) | 电池预警灭火系统和电池系统 | |
CN219067142U (zh) | 一种电池隔膜及含有该电池隔膜的电池 | |
CN115923258A (zh) | 二氧化硅气凝胶玻纤毡平板防火隔热组件 | |
CN216288634U (zh) | 一种平流层飞行器用锂硫电池组热管理装置 | |
CN216127882U (zh) | 一种隔热绝缘复合板 | |
CN210467919U (zh) | 电池芯模组 | |
CN214528807U (zh) | 一种锂离子电池用抗刺穿防跌落热熔双面胶 | |
CN212323115U (zh) | 一种软包锂电池组防延烧结构 | |
CN219203306U (zh) | 电芯组储能防护装置以及家用储能电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202317082468 Country of ref document: IN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23862269 Country of ref document: EP Kind code of ref document: A1 |