WO2024048102A1 - 電極、それを用いた電池及び電極の製造方法 - Google Patents

電極、それを用いた電池及び電極の製造方法 Download PDF

Info

Publication number
WO2024048102A1
WO2024048102A1 PCT/JP2023/026326 JP2023026326W WO2024048102A1 WO 2024048102 A1 WO2024048102 A1 WO 2024048102A1 JP 2023026326 W JP2023026326 W JP 2023026326W WO 2024048102 A1 WO2024048102 A1 WO 2024048102A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
particles
oxide
solid electrolyte
active material
Prior art date
Application number
PCT/JP2023/026326
Other languages
English (en)
French (fr)
Inventor
健二 松原
秀治 武澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024048102A1 publication Critical patent/WO2024048102A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an electrode, a battery using the same, and a method for manufacturing the electrode.
  • Patent Document 1 discloses that an electrode sintered body containing a solid electrolyte material and an electrode active material at high density is obtained by setting the ratio of the average particle size of the electrode active material to the average particle size of the solid electrolyte material from 12 times to 79 times. Disclose what you get.
  • electrode active material a solid electrolyte in contact with the electrode active material; Equipped with The electrode active material contains an oxide containing titanium and not containing lithium, The oxide is present in the form of particles having a median diameter of more than 2 ⁇ m and less than 7 ⁇ m, Provide electrodes.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an electrode in the first embodiment.
  • FIG. 2 is a process diagram showing a method for manufacturing an electrode.
  • FIG. 3 is a sectional view showing a schematic configuration of a battery in the second embodiment.
  • FIG. 4 is a process diagram showing a method for manufacturing a battery.
  • FIG. 5 is a graph showing the charge/discharge curve of the first cycle of a half cell using the electrode of Example 1.
  • FIG. 6 is a graph showing the particle size distribution of TiO 2 particles.
  • FIG. 7A is a SEM image (3000x magnification) of the cross section of the electrode of Example 1.
  • FIG. 7B is a SEM image (10,000 times) of the cross section of the electrode of Example 1.
  • FIG. 7A is a SEM image (3000x magnification) of the cross section of the electrode of Example 1.
  • FIG. 7B is a SEM image (10,000 times) of the cross section of the electrode of Example 1.
  • FIG. 8 is a SEM image (10,000 times magnification) of the cross section of the electrode of Example 2.
  • FIG. 9A is a SEM image (3000x magnification) of the cross section of the electrode of Comparative Example 2.
  • FIG. 9B is a SEM image (10,000 times magnification) of the cross section of the electrode of Comparative Example 2.
  • FIG. 10 is a SEM image (10,000 times) of the cross section of the electrode of Comparative Example 4.
  • FIG. 11A is a SEM image (3000x magnification) of the cross section of the electrode of Example 3.
  • FIG. 11B is a SEM image (10,000 times magnification) of the cross section of the electrode of Example 3.
  • Oxides containing titanium have advantages such as being able to be mass-produced at low cost, having excellent charge/discharge characteristics, and being highly safe, and are therefore considered promising as electrode active materials for solid-state batteries.
  • Oxides containing titanium are known to be used in pigments, cosmetics, catalysts, etc. Oxides for these applications typically have the shape of particles on the nano-order.
  • titanium-containing oxide nanoparticles tend to exist in the gaps between particles of the solid electrolyte at the stage of molding the electrode material. In this case, the total contact area between the oxide nanoparticles and the solid electrolyte particles becomes large. Therefore, the oxide nanoparticles become a factor that inhibits the sinterability between particles of the solid electrolyte, worsening the sinterability of the electrode, and ultimately deteriorating the ionic conductivity within the electrode.
  • oxide nanoparticles tend to exist in gaps between particles of the conductive additive, and become a factor that inhibits the electron path, thereby deteriorating the electrical conductivity within the electrode. That is, oxide nanoparticles are not necessarily suitable for producing electrodes with practical electrical conductivity and practical ionic conductivity. Therefore, when using an oxide containing titanium as an electrode active material, it is important to note that sintering between particles of the solid electrolyte and the formation of electron paths between particles of the conductive additive are inhibited. There is a need for a technology to improve the sinterability of electrodes while suppressing the sinterability.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an electrode 10 in the first embodiment.
  • Electrode 10 includes an electrode active material and a solid electrolyte.
  • the electrode 10 is an electrode manufactured by firing a molded body of a powder material containing powder of an electrode active material and powder of a solid electrolyte.
  • the electrode 10 is used, for example, as a positive electrode or a negative electrode of a solid-state battery.
  • sintering refers to a phenomenon in which bonding occurs between particles when a molded body of powder material is heated, and the molded body becomes dense with volumetric contraction. "Calcination” means heat treatment for sintering.
  • the electrode active material is a material that has the ability to absorb and release metal ions such as lithium ions.
  • the electrode active material includes an oxide that contains titanium and does not contain lithium.
  • the oxide as the electrode active material exists in the form of particles having a median diameter of more than 2 ⁇ m and less than 7 ⁇ m. The oxide particles are bound together by a sintered phase of solid electrolyte. The median diameter of the oxide particles may be more than 3 ⁇ m and less than 7 ⁇ m, or more than 3.4 ⁇ m and less than 6 ⁇ m.
  • the electrode 10 has oxide particles on the order of micrometers as an electrode active material. Oxide particles of such size may exist between solid electrolyte particles during molding of powder materials, but compared to the case where oxide particles of nanometer order size are used, oxidation The total contact area between particles of the object and particles of the solid electrolyte can be reduced. Therefore, the influence of the oxide particles on the order of micrometers as a sintering inhibiting factor can be reduced, and the sinterability of the electrode 10 can be improved. That is, it becomes possible to form a good contact interface between the oxide and the solid electrolyte. This reduces the resistance of the electrode 10. The quality of the sinterability of the electrode 10 can be determined based on the porosity of the electrode 10, for example.
  • the median diameter of the oxide particles as the electrode active material may be a value calculated from an electron microscope image of the cross section of the electrode 10. Specifically, a cross section of the electrode 10 is observed using a scanning electron microscope. The magnification is, for example, 3000 times. Image analysis software is used to measure the Feret diameter of oxide particles present in two different observation fields. "Ferret diameter" is the length of a perpendicular line formed by sandwiching a particle between two parallel lines in a fixed direction. The number of particles to be measured is, for example, 185 or more. That is, the width of the observation fields is adjusted so that 185 or more particles are included in two different observation fields.
  • the coarse particles are, for example, particles having a Feret diameter of 16.5 ⁇ m or more.
  • the volume of each particle is calculated assuming that it is a sphere having the measured Feret diameter.
  • the above median diameter may be the median diameter of secondary particles.
  • Secondary particles may be produced by granulating primary particles with a size on the order of nanometers.
  • primary particles on the order of micrometers can be produced by hydrothermal synthesis.
  • oxides containing titanium include titanium (IV) oxide and composite oxides containing titanium and transition metals other than titanium. These materials have the ability to insert and release metal ions such as lithium ions, and are therefore suitable for the electrode 10 of this embodiment.
  • the oxide as the electrode active material can be co-sintered with the solid electrolyte. Specifically, it is desirable that it is difficult to react with the solid electrolyte and that the crystal structure of the oxide is maintained even after sintering.
  • titanium (IV) oxide is suitable for the electrode 10 of this embodiment because it hardly reacts with a NASICON type oxide solid electrolyte, which is a typical oxide solid electrolyte.
  • titanium (IV) oxide examples include anatase-type (tetragonal) titanium oxide, rutile-type (tetragonal) titanium oxide, and brookite-type (rectangular) titanium oxide.
  • the titanium oxide may include anatase type titanium oxide.
  • the main component of the titanium oxide may be anatase type titanium oxide.
  • Anatase-type titanium oxide is suitable, for example, as an active material for lithium ion secondary batteries. Further, by using anatase-type titanium oxide, the sinterability of the electrode 10 is improved.
  • "Main component" means the component contained in the largest amount in terms of mass ratio. 90% by mass or more of the titanium oxide may be anatase type titanium oxide.
  • the titanium oxide may include substantially only anatase-type titanium oxide.
  • titanium oxide can be investigated by X-ray diffraction measurement or Raman spectroscopy.
  • the ratio of components contained in titanium oxide can be confirmed by analyzing the results of X-ray diffraction measurement using the Rietveld method.
  • composite oxides suitable for electrode active materials include composite oxides containing titanium and niobium.
  • a composite oxide containing titanium and niobium also has the ability to insert and release metal ions such as lithium ions, and is therefore suitable for the electrode 10 of this embodiment.
  • the composite oxide containing titanium and niobium has a composition of, for example, TiNb 2 O 7 .
  • the oxide particles as the electrode active material may contain secondary particles.
  • the secondary particles have a plurality of voids inside them.
  • the voids absorb changes in the volume of the particles.
  • one of the causes of deterioration of sintered oxide all-solid-state batteries is that cracks occur in the electrodes during charging and discharging, resulting in poor contact between the active material and the solid electrolyte. If secondary particles are used as the active material, it is possible to reduce such deterioration.
  • a solid electrolyte may be an electrolyte suitable for forming the electrode 10.
  • Such electrolytes include oxide solid electrolytes.
  • the oxide solid electrolyte include a solid electrolyte having a NASICON type structure, a solid electrolyte having a perovskite type structure, a solid electrolyte having a LISICON type structure, a solid electrolyte having a garnet type structure, and the like.
  • a lithium-containing phosphoric acid compound having a NASICON type structure is suitable for the electrode 10.
  • the NASICON type solid electrolyte is a material that can be sintered at a lower temperature than other oxide solid electrolytes such as a solid electrolyte with a perovskite structure and a solid electrolyte with a garnet structure. Being able to sinter at low temperatures means that it is advantageous for suppressing the reaction between the electrode active material and the solid electrolyte. Furthermore, if sintering is possible at low temperatures, the transition from anatase-type titanium oxide to rutile-type titanium oxide can also be avoided.
  • the lithium-containing phosphoric acid compound may have a composition of Li 1+x Al x Ge 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2).
  • LAGP a compound having the above composition
  • lithium-containing phosphate compounds include Li 1+x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 2). This compound may be referred to herein as "LATP.”
  • LAGP is more suitable for the electrode 10 of the present disclosure. That is, since LAGP does not contain Ti, it has a wider potential window on the base side (minus side) than LATP. In this case, it is possible to select a negative electrode active material with a lower potential. This is advantageous in providing high voltage and high capacity batteries.
  • An example of such an effect is a combination of LAGP and titanium (IV) oxide.
  • LAGP is an electrolyte that can be sintered at a lower temperature than LATP. Being able to sinter at low temperatures means that it is advantageous for suppressing the reaction between the electrode active material and the solid electrolyte.
  • the solid electrolyte constitutes a network-like sintered phase.
  • the length of the interface where the particles of the electrode active material and the sintered phase of the solid electrolyte are in contact with each other without a gap is on the order of micrometers, and the sintered phase of the solid electrolyte is in contact with the sintered phase of the electrode active material. forms a good interface with the particles. The presence of such a contact interface contributes to reducing the resistance of the electrode 10.
  • the sintered phase of the solid electrolyte may be a phase in which particles of the solid electrolyte are bonded to each other and grain boundaries are lost.
  • a sintered phase without grain boundaries exhibits excellent ionic conductivity and can form a good contact interface with particles of the electrode active material.
  • Such a structure can be formed by using an amorphous solid electrolyte as a raw material for the electrode 10.
  • the structure of the sintered phase can be confirmed by observing the cross section of the electrode 10 at a magnification of 10,000 times using a scanning electron microscope.
  • the sintered phase of the solid electrolyte includes a crystalline phase and an amorphous phase. It is desirable when the sintered phase of the solid electrolyte includes a crystalline phase because the electrode 10 exhibits higher ionic conductivity.
  • a crystalline phase can be formed by appropriately adjusting the calcination temperature. For example, if firing is performed at a temperature equal to or higher than the crystallization temperature of the solid electrolyte, an electrode 10 containing a crystalline solid electrolyte can be obtained.
  • an amorphous phase may be included in the solid electrolyte. When an amorphous phase is included, the flexibility of the solid electrolyte increases, so volume changes due to expansion and contraction of the electrode active material are easily absorbed by the solid electrolyte.
  • the crystallinity of the solid electrolyte can be examined by X-ray diffraction measurement or a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the electrode 10 may further contain a conductive aid.
  • the conductive aid include carbon materials such as graphite, carbon black, carbon fiber, and carbon nanotubes.
  • Graphite may be natural graphite or artificial graphite.
  • Examples of carbon black include acetylene black and Ketjen black.
  • the carbon material may be crystalline or amorphous.
  • the conductive aid typically has a particle shape on the order of nanometers or micrometers. Examples of the shape of the particles include spherical, ellipsoidal, scaly, and fibrous shapes.
  • the porosity of the electrode 10 is, for example, 30% or less.
  • the lower limit of the porosity is not particularly limited, and is, for example, 5%.
  • the porosity can be calculated from the true density of each material included in the electrode 10, the content of each material, the mass of the electrode 10, and the dimensions of the electrode 10.
  • the content of the electrode active material in the electrode 10 is, for example, 15% by mass or more and 60% by mass or less.
  • the content of the solid electrolyte in the electrode 10 is, for example, 30% by mass or more and 80% by mass or less.
  • the content of the conductive aid in the electrode 10 is, for example, 0.1% by mass or more and 10% by mass or less.
  • FIG. 2 is a process diagram showing a method for manufacturing the electrode 10.
  • the electrode 10 is manufactured by firing a molded body of a mixture of an electrode active material and a solid electrolyte.
  • raw materials are mixed to prepare a slurry.
  • Raw materials for the slurry include, for example, an electrode active material, a solid electrolyte, a conductive aid, a binder, and a solvent.
  • a binder solution may be prepared by mixing a binder and a solvent in advance, and a slurry may be prepared by mixing an electrode active material, a solid electrolyte, and a conductive aid with the binder solution.
  • the oxide particles as the electrode active material have a median diameter of more than 3 ⁇ m and less than 10 ⁇ m, for example, as measured by a laser diffraction particle size distribution analyzer. With such a configuration, the sinterability of the electrode 10 can be improved.
  • the median diameter measured by a laser diffraction particle size distribution analyzer is usually larger than the median diameter determined from a cross-sectional SEM image.
  • the electrode active material, solid electrolyte, and conductive aid may each be powder materials.
  • the median diameter of the solid electrolyte particles is desirably smaller than the median diameter of the electrode active material particles.
  • the ratio of the median diameter of the electrode active material particles to the median diameter of the solid electrolyte particles is, for example, 2 or more and 30 or less.
  • the ratio of the median diameter of the electrode active material particles to the median diameter of the solid electrolyte particles may be 4 or more and 30 or less, or 4 or more and 20 or less.
  • the oxide particles as the electrode active material may have a particle diameter (D90) in a range of more than 6 ⁇ m and less than 15 ⁇ m.
  • D90 is a particle diameter when the cumulative volume is 90% in a volume-based particle size distribution, and can be measured by a laser diffraction particle size distribution measuring device.
  • the BET specific surface area of the oxide particles as the electrode active material may be 1 m 2 /g or more and 7 m 2 /g or less.
  • the BET specific surface area of the oxide particles is appropriately adjusted, side reactions between the oxide particles and the solid electrolyte particles during firing are suppressed.
  • the electrode 10 can have high ionic conductivity. If a side reaction occurs between the oxide particles and the solid electrolyte particles, an interfacial resistance layer will be formed, and such side reactions should be suppressed.
  • the oxide particles as the electrode active material may include primary particles and secondary particles.
  • the ratio (Dp/D50) of the average particle diameter (Dp) of the primary particles to the median diameter (D50) of the particles of the electrode active material is, for example, 0.6 or less.
  • the ratio (Dp/D50) is preferably 0.16 or less.
  • the average particle diameter (Dp) of the primary particles of the oxide can be determined by the following method. Observe the oxide particles with a scanning electron microscope (30,000x magnification). Fifty primary particles whose contours can be confirmed in the obtained image are selected. Measure the particle diameter on the long axis side of the selected primary particle. The average particle diameter of 50 primary particles is calculated. The calculated value is regarded as the average particle diameter (Dp) of the primary particles.
  • the oxide particles serving as the electrode active material may have a bimodal particle size distribution.
  • the sinterability of the electrode 10 can be improved.
  • the resistance of the electrode 10 can be lowered.
  • a first peak exists in the range of 0.5 ⁇ m or more and 2.5 ⁇ m or less, and a second peak exists in the range of 3 ⁇ m or more and 9 ⁇ m or less. sell.
  • the second peak is larger than the first peak.
  • a peak may exist in the range of 0.2 ⁇ m or more and 2 ⁇ m or less.
  • the solid electrolyte particles have a median diameter of, for example, 100 nm or more and 2000 nm or less.
  • the solid electrolyte particles as a raw material may be amorphous.
  • the amorphous solid electrolyte can form a good interface with particles of the electrode active material at low temperatures by performing pre-calcination in a temperature range above the glass transition temperature and below the crystallization temperature. This is because the solid electrolyte has good flexibility in a temperature range above the glass transition temperature and below the crystallization temperature. Thereafter, the ionic conductivity of the electrode 10 is improved by increasing the crystallinity of the solid electrolyte by firing at an appropriate temperature range above the crystallization temperature and below the melting point. Furthermore, an amorphous solid electrolyte can be sintered at a lower temperature than a crystalline solid electrolyte. The fact that it can be sintered at a low temperature means that it is advantageous in terms of suppressing the reaction between the electrode active material and the solid electrolyte.
  • the solid electrolyte is amorphous using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the degree of crystallinity is determined by the following formula.
  • the measured heat of crystallization means the amount of heat generated during crystallization of the solid electrolyte that is the sample to be measured.
  • Completely amorphous crystallization heat amount means the heat amount associated with crystallization in an amorphous solid electrolyte in which only a halo pattern is observed in the X-ray diffraction pattern.
  • Crystallinity (%) 100 x (Qa-Qs)/Qa Qs: Measured crystallization heat (J/g) Qa: Completely amorphous crystallization heat (J/g)
  • volume diameter means the particle diameter when the cumulative volume in the volume-based particle size distribution is 50%.
  • the volume-based particle size distribution is measured at the raw material stage using a laser diffraction particle size distribution measuring device. At the electrode 10 stage, measurement is performed by cross-sectional image analysis.
  • the binder is decomposed and removed by firing.
  • thermoplastic resins such as polyvinyl butyral, polyvinylidene fluoride, cellulose, acrylic, urethane, and polyvinyl alcohol can be used.
  • the solvent is typically an organic solvent such as absolute alcohol (eg, absolute ethanol), toluene, butyl acetate, NMP, and the like.
  • the slurry may contain a plasticizer.
  • the type of plasticizer is not particularly limited, and phthalate esters such as dioctyl phthalate and diisononyl phthalate can be used.
  • the conductive aid may be a carbon material.
  • the carbon material may include amorphous carbon.
  • the carbon material particles may have a median diameter of 70 nm or less and a BET specific surface area of 60 m 2 /g or less. By using such a carbon material, the sinterability of the electrode 10 can be improved.
  • the lower limit of the median diameter of the carbon material particles is not particularly limited, and is, for example, 10 nm.
  • the lower limit of the BET specific surface area of the carbon material particles is not particularly limited, and is, for example, 10 m 2 /g.
  • step S2 the slurry is applied to the base material to form a coating film.
  • the substrate can be a resin substrate, a glass substrate, a ceramic substrate or a metal substrate.
  • the solvent is removed from the coating film. Thereby, a molded body for an electrode is obtained.
  • the coating film may be heated or the coating film may be naturally dried. If necessary, the coating film may be subjected to press processing or hot press processing.
  • the slurry may be shaped and dried without the use of a substrate.
  • the coating film After applying the slurry to a base material to form a coating film, the coating film may be pulverized, and the raw material powder obtained by the pulverization may be pressed or hot-pressed to produce an electrode molded body.
  • step S3 the electrode molded body is pre-fired.
  • Temporary firing is performed, for example, in the air or in an inert atmosphere.
  • the inert atmosphere is, for example, a nitrogen gas atmosphere or a rare gas atmosphere. It is also possible to mix small amounts of oxygen into the inert atmosphere.
  • the temperature for pre-firing is, for example, from 250°C to 600°C.
  • the firing time for the temporary firing is, for example, 1 hour to 60 hours.
  • the pre-calcination be performed in a temperature range where the binder is sufficiently removed, the solid electrolyte is softened above the glass transition temperature, and where crystallization of the solid electrolyte does not proceed. In this way, a good interface is formed between the electrode active material and the solid electrolyte as the binder is removed.
  • step S4 the electrode molded body is fired.
  • the main firing is performed, for example, in the air or in an inert atmosphere.
  • the inert atmosphere is, for example, a nitrogen gas atmosphere or a rare gas atmosphere. It is also possible to mix small amounts of oxygen into the inert atmosphere.
  • the main firing temperature (ambient temperature) is, for example, 550°C to 900°C.
  • the firing time for the main firing is, for example, 1 hour to 15 hours.
  • the main firing particles of the solid electrolyte are bonded to each other to form a sintered phase without grain boundaries.
  • the main firing is desirably carried out in a temperature range where crystallization of the solid electrolyte progresses appropriately. As the crystallinity of the solid electrolyte improves, the ionic conductivity of the electrode 10 improves.
  • the electrode 10 can be manufactured through the above steps.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a battery 100 in the second embodiment.
  • the battery 100 includes a positive electrode 20, a negative electrode 30, and an electrolyte layer 40. Electrolyte layer 40 is arranged between positive electrode 20 and negative electrode 30.
  • the electrode 10 described in the first embodiment is used as the positive electrode 20 or the negative electrode 30.
  • the effect of lowering the resistance can be obtained in the positive electrode 20 or the negative electrode 30.
  • the electrode 10 described in the first embodiment is preferably used as the negative electrode 30.
  • an oxide containing titanium acts as a negative electrode active material.
  • Electrode 10 is suitable for negative electrode 30 because titanium-containing oxides are suitable for negative electrode active materials.
  • the titanium-containing oxide does not contain lithium in a state where the battery 100 is not charged or discharged after assembly. In other words, the battery 100 is in a fully discharged state.
  • the electrode 10 is also possible to use the electrode 10 as a positive electrode.
  • a material less noble than the titanium-containing oxide, such as lithium metal, is used for the negative electrode active material.
  • the positive electrode 20 includes a positive electrode active material.
  • the positive electrode active material is a material that has the ability to absorb and release metal ions such as lithium ions.
  • Examples of the positive electrode active material include lithium-containing transition metal oxides, lithium-containing transition metal phosphates, and the like. Among these, lithium-containing transition metal phosphates are suitable for electrode 10. Examples of lithium-containing transition metal phosphates include lithium iron phosphate, lithium vanadium phosphate, lithium cobalt phosphate, and lithium nickel phosphate.
  • the positive electrode 20 may contain a solid electrolyte, a conductive additive, and the like.
  • the electrolyte layer 40 includes a solid electrolyte.
  • the solid electrolyte include a sulfide solid electrolyte, a halide solid electrolyte, a complex hydride solid electrolyte, a porous oxide solid electrolyte impregnated with an electrolytic solution, and an oxide solid electrolyte.
  • the composition of the solid electrolyte included in the electrolyte layer 40 may be the same as or different from the composition of the solid electrolyte included in the positive electrode 20.
  • the composition of the solid electrolyte included in the electrolyte layer 40 may be the same as or different from the composition of the solid electrolyte included in the negative electrode 30.
  • the positive electrode 20, the electrolyte layer 40, and the negative electrode 30 may contain solid electrolytes of the same composition.
  • the positive electrode 20, the negative electrode 30, and the electrolyte layer 40 may be made of a sintered body.
  • the positive electrode 20, negative electrode 30, and electrolyte layer 40 can be integrally formed by co-firing.
  • the positive electrode 20, negative electrode 30, and electrolyte layer 40 are integrated by simultaneous firing, mutual contact between the positive electrode 20, negative electrode 30, and electrolyte layer 40 can be ensured, which improves the conductivity of metal ions such as lithium ions. can be improved.
  • FIG. 4 is a process diagram showing a method for manufacturing the battery 100.
  • a slurry is prepared. Specifically, a positive electrode slurry, an electrolyte layer slurry, and a negative electrode slurry are prepared. These slurries can be prepared following the method described in step S1 of FIG. Note that the electrolyte slurry does not contain an electrode active material or a conductive aid.
  • a green sheet is produced. Specifically, a positive electrode green sheet, an electrolyte layer green sheet, and a negative electrode green sheet are produced using a positive electrode slurry, an electrolyte layer slurry, and a negative electrode slurry.
  • a green sheet can be produced by applying the slurry to a base material to form a coating film, and drying the coating film. The green sheet is peeled off from the base material at an appropriate timing.
  • step ST3 green sheets are stacked. Specifically, a positive electrode green sheet, an electrolyte layer green sheet, and a negative electrode green sheet are laminated in this order and pressed together. As a result, a laminate including a positive electrode green sheet, an electrolyte layer green sheet, and a negative electrode green sheet is obtained.
  • step ST4 and step ST5 the steps of preliminary firing and main firing are performed.
  • the preliminary firing and main firing are as explained in step S3 and step S4 of FIG.
  • a sintered battery 100 is obtained through the above steps.
  • Electrode active material a solid electrolyte in contact with the electrode active material; Equipped with The electrode active material contains an oxide containing titanium and not containing lithium, The oxide is present in the form of particles having a median diameter of more than 2 ⁇ m and less than 7 ⁇ m, electrode.
  • Titanium oxide has the ability to absorb and release metal ions such as lithium ions, so it is suitable for the electrode of the present disclosure.
  • a composite oxide containing titanium and niobium also has the same ability and is therefore suitable for the electrode of the present disclosure.
  • the resistance of the battery can be lowered.
  • the electrode active material includes oxide particles containing titanium and not containing lithium, The oxide particles have a median diameter of more than 3 ⁇ m and less than 10 ⁇ m, Method of manufacturing electrodes.
  • the positive electrode green sheet or the negative electrode green sheet is a molded body of a mixture containing an electrode active material and a solid electrolyte,
  • the electrode active material includes oxide particles containing titanium and not containing lithium, The oxide particles have a median diameter of more than 3 ⁇ m and less than 10 ⁇ m, How to manufacture batteries.
  • Example 1 20 parts by mass of TiO 2 (anatase type), 75 parts by mass of LAGP (amorphous), 5 parts by mass of acetylene black (manufactured by Denka, Li-400), 38.75 parts by mass of binder solution, and 116 parts by mass
  • a slurry was prepared by mixing .25 parts by mass of super dehydrated ethanol. These raw materials were mixed using a rotation and revolution mixer (manufactured by Shinky Co., Ltd., Rentaro) at 2000 rpm for 30 minutes.
  • a binder solution was prepared by mixing 15 parts by mass of polyvinyl butyral (BM-1, manufactured by Sekisui Chemical Co., Ltd.) and 140 parts by mass of super-dehydrated ethanol.
  • the TiO 2 particles used were secondary particles.
  • the particle size distribution of TiO 2 , the BET specific surface area of TiO 2 , and the particle size distribution of LAGP were measured in advance.
  • the particle size distribution of TiO 2 and the particle size distribution of LAGP were measured using a laser diffraction particle size distribution analyzer (Mastersizer 3000, manufactured by Malvern Panalytical). D10, D50, and D90 were calculated from the particle size distribution. The results are shown in Table 1.
  • the median diameter of TiO 2 was 4.180 ⁇ m.
  • the median diameter of LAGP was 0.888 ⁇ m.
  • D10 is the particle diameter when the cumulative volume is 10% in the volume-based particle size distribution.
  • Mastersizer is a registered trademark of Malvern Panalytical.
  • the average particle diameter (Dp) of the primary particles of TiO 2 was calculated by the method described above using a scanning electron microscope.
  • the BET specific surface area of TiO 2 was measured by the following method. A predetermined amount of TiO 2 was placed in a measurement test tube, and the measurement test tube was connected to a specific surface area/pore distribution measuring device (Autosorb iQ-MP, manufactured by Quantachrome). Thereafter, a nitrogen gas adsorption test was conducted under the conditions of an adsorption temperature of 77 K and an upper limit of adsorption relative pressure of 0.99 (P/P0). Analysis software ASiQWin was used to perform analysis using the BET method in the linear region of the adsorption isotherm, and the BET specific surface area was calculated. "Autosorb” is a registered trademark of Sysmex Corporation.
  • the slurry was dried on a hot plate with a set temperature of 80°C. After confirming that ethanol had been sufficiently removed from the slurry, the dried membrane was coarsely ground and subjected to vacuum drying treatment (80° C., 2 hours). The coarsely ground product after vacuum drying was placed in a mortar and manually ground for 15 minutes to obtain a raw material powder.
  • the raw material powder was molded by a uniaxial pressing method to obtain a molded body for an electrode.
  • the pressurizing conditions were 276 MPa and 1 minute.
  • the electrode molded body was pre-fired to remove the binder.
  • the conditions for pre-firing were 530° C. (ambient temperature) in the atmosphere for 2 hours.
  • the electrode molded body was subjected to main firing to obtain the electrode of Example 1.
  • the main firing conditions were 700° C. (ambient temperature) for 2 hours under a nitrogen atmosphere.
  • the dimensions of the electrode of Example 1 were 9.53 mm in diameter and 0.6471 mm in thickness. The mass was 115.0 mg.
  • Example 2 As shown in Table 1, the electrode of Example 2 was produced in the same manner as Example 1 except that LAGP (amorphous) having a median diameter of 0.300 ⁇ m was used. The dimensions of the electrode of Example 2 were 9.26 mm in diameter and 0.6363 mm in thickness. The mass was 111.5 mg.
  • LAGP amorphous
  • Comparative Example 1 As shown in Table 1, an electrode of Comparative Example 1 was produced in the same manner as in Example 1, except that titanium oxide (anatase type) having a median diameter of 0.491 ⁇ m was used. The dimensions of the electrode of Comparative Example 1 were 9.96 mm in diameter and 0.6528 mm in thickness. The mass was 114.9 mg. The titanium oxide particles used were secondary particles.
  • Comparative Example 2 As shown in Table 1, an electrode of Comparative Example 2 was produced in the same manner as in Example 1, except that titanium oxide (anatase type) having a median diameter of 1.540 ⁇ m was used. The dimensions of the electrode of Comparative Example 2 were 9.96 mm in diameter and 0.6380 mm in thickness. The mass was 114.4 mg. The titanium oxide particles used were secondary particles.
  • Example 3 As shown in Table 1, Example 1 except that titanium oxide (anatase type) with a median diameter of 1.540 ⁇ m was used and LAGP (amorphous) with a median diameter of 0.300 ⁇ m was used.
  • An electrode of Comparative Example 3 was produced in the same manner as described above. The dimensions of the electrode of Comparative Example 3 were 9.80 mm in diameter and 0.6457 mm in thickness. The mass was 112.6 mg.
  • the titanium oxide particles used were secondary particles.
  • Comparative example 4 As shown in Table 1, an electrode of Comparative Example 4 was produced in the same manner as in Example 1, except that titanium oxide (anatase type) having a median diameter of 0.675 ⁇ m was used. The dimensions of the electrode of Comparative Example 4 were 9.91 mm in diameter and 0.6410 ⁇ m in thickness. The mass was 114.6 mg. The titanium oxide particles used were secondary particles.
  • the true density of each material used for making the electrode was measured in advance.
  • the porosity of the electrode was calculated using the dimensions of the electrode, the measured true density, and the content of each material.
  • the electrode was assumed to contain only TiO 2 , LAGP and conductive aid.
  • the true density was measured by the He substitution method using a pycnometer (Ultrapyc 5000, manufactured by Anton Paar).
  • LAGP while an amorphous material is used as a starting material, it is difficult to evaluate the density after sintering. Therefore, the theoretical density was used as the true density of LAGP. The results are shown in Table 2.
  • the electrical conductivity of the electrode was measured by the following method. First, the electrode was placed in a vacuum dryer and dried at 80° C. for 1 hour. Next, the Li metal foil, the solid polymer electrolyte membrane, the electrode, the solid polymer electrolyte membrane, and the Li metal foil were laminated in this order, and these were placed in a closed bipolar cell (manufactured by Hosensha). A LiTFSI-PEO membrane was used as the solid polymer electrolyte membrane. The weight average molecular weight Mw of PEO contained in the LiTFSI-PEO film was 600,000.
  • chronoamperometry measurements were performed at measurement voltages of 0.1V, 0.25V, 0.5V, and 0.75V.
  • the current value the value 70 seconds after the voltage was applied was used.
  • the ambient temperature during the measurement was 60°C.
  • the resistance value was calculated from the relationship between voltage and current. Ionic conductivity was calculated using the electrode dimensions. The results are shown in Table 2.
  • the electrical conductivity of the electrode was measured by the following method. First, the electrode was placed in a vacuum dryer and dried at 80° C. for 1 hour. Next, a 290 nm thick Au thin film was formed on both sides of the electrode by sputtering. The electrodes were placed in a closed bipolar cell (manufactured by Hosensha). Thereafter, chronoamperometry measurements were performed at measurement voltages of 0.1V, 0.25V, 0.5V, and 0.75V. As the current value, the value 70 seconds after the voltage was applied was used. The ambient temperature during the measurement was 25°C. The resistance value was calculated from the relationship between voltage and current. Electrical conductivity was calculated using the dimensions of the electrode. The results are shown in Table 2.
  • the amount of interfacial side reaction of the electrode was measured by the following method. First, the electrode was placed in a vacuum dryer and dried at 80° C. for 1 hour. Next, a 290 nm thick Au thin film was formed on one side of the electrode by sputtering. Next, the Au thin film, electrode, solid polymer electrolyte membrane, and Li metal foil were laminated in this order, and these were placed in a closed bipolar cell (manufactured by Hosensha) to obtain a half cell. A LiTFSI-PEO membrane was used as the solid polymer electrolyte membrane.
  • a half cell charge/discharge test was conducted in constant current/constant voltage (CCCV) mode at 60° C., and a first cycle charge/discharge curve was obtained.
  • the battery was discharged at a constant current of 0.01C until the voltage reached 1.5V, and then discharged at a constant voltage of 1.5V for 5 hours.
  • the battery was charged at a constant current of 0.01C until the voltage reached 3V, and then charged at a constant voltage of 3V for 5 hours.
  • FIG. 5 is a graph showing a charge/discharge curve of a half cell using the electrode of Example 1.
  • the vertical axis represents the potential (unit: V) relative to the dissolution deposition potential of lithium metal.
  • the horizontal axis represents the ratio (%) of the capacity at each point on the graph when the discharge capacity in the first cycle is assumed to be 100.
  • TiO 2 has a plateau region at a potential lower than 2V. Therefore, the drive potential range of TiO 2 is less than 2V.
  • the capacitance value during discharge is defined as the "interfacial side reaction amount Ci.”
  • the redox capacitance observed outside the drive potential region of TiO 2 captures charging and discharging originating from a diffusion layer (reaction layer) formed when Ti contained in TiO 2 diffuses into LAGP during sintering.
  • a small amount of interfacial side reaction means that the side reaction between LAGP and TiO 2 during sintering is suppressed, and also means that the formation of a reaction layer due to the side reaction is suppressed. do. Suppression of the formation of a reaction layer due to side reactions is desirable because the resistance of the electrode is reduced.
  • the porosity of the electrodes of Examples 1 and 2 was 26.86% and 24.82%, respectively, which was significantly lower than the porosity of the electrodes of Comparative Examples 1 to 4.
  • the electrodes of Examples 1 and 2 exhibited high electrical conductivity that significantly exceeded the electrical conductivity of the electrodes of Comparative Examples 1 to 4.
  • the ionic conductivities of the electrodes of Examples 1 and 2 were higher than those of the electrodes of Comparative Examples 1 to 4. It is presumed that this result was brought about by the low porosity of the electrode of the example and the characteristic structure of the electrode of the example.
  • the influence of the characteristic structure of the electrode in the example was also noticeable in the amount of interfacial side reactions. That is, the amount of interfacial side reactions in Example 1 was about 50% of the amount of interfacial side reactions in Comparative Example 4.
  • FIG. 6 is a graph showing the particle size distribution of TiO 2 particles used in Examples and Comparative Examples.
  • the horizontal axis shows the particle diameter on a logarithmic scale.
  • the vertical axis indicates the ratio of the total volume of the particles having the particle diameter shown on the horizontal axis to the volume of the entire particle.
  • the TiO 2 particles used in Examples 1 and 2 had a bimodal particle size distribution, ie, two peaks.
  • a first peak existed in the range of 0.5 ⁇ m or more and 2.5 ⁇ m or less
  • a second peak existed in the range of 3 ⁇ m or more and 9 ⁇ m or less.
  • the second peak was larger than the first peak.
  • the TiO 2 particles used in the comparative example also exhibited a bimodal particle size distribution and contained relatively large particles.
  • the porosity of the electrode of the comparative example was low. It is presumed that the large particles contained in the TiO 2 particles of the comparative example were only weakly agglomerated primary particles, and were separated into nano-order primary particles during processes such as slurry preparation and coating film pulverization. This is supported by the absence of large particles of TiO 2 in the SEM images of FIGS. 9A, 9B and 10.
  • FIG. 7A and 7B are SEM images (3000x or 10000x) of the cross section of the electrode of Example 1.
  • FIG. 8 is a SEM image (10,000 times magnification) of the cross section of the electrode of Example 2.
  • 9A and 9B are SEM images (3000x or 10000x) of the cross section of the electrode of Comparative Example 2.
  • FIG. 10 is a SEM image (10,000 times) of the cross section of the electrode of Comparative Example 4.
  • the electrode active material 12 (TiO 2 ) maintained the state of particles with a large diameter.
  • the large diameter particles of the electrode active material 12 were secondary particles having a plurality of pores inside. Grain boundaries with lengths on the order of micrometers were formed along the outer edges of the sintered phase of the solid electrolyte 14 (LAGP) and the particles of the electrode active material 12. Due to the progress of sintering, grain boundaries between particles of the solid electrolyte 14 were not observed.
  • the conductive aid 16 was uniformly dispersed throughout the electrode.
  • the median diameter (D50) of the electrode active material 12 was calculated by the method described above. As a result, in the electrode of Example 1, the median diameter of the electrode active material 12 was 3.5 ⁇ m. Secondary particles having a plurality of pores were regarded as the electrode active material 12.
  • the electrode of Example 2 using a solid electrolyte with a median diameter of 0.300 ⁇ m also had the same structure as the electrode of Example 1 shown in FIGS. 7A and 7B.
  • the median diameter of the electrode active material 12 was calculated using a SEM image (3000x magnification) of the cross section of the electrode of Example 2. As a result, in the electrode of Example 2, the median diameter of the electrode active material 12 was 3.6 ⁇ m.
  • the particles of the electrode active material 12a were dispersed while maintaining nano-order size. While some particles of the electrode active material 12a are completely surrounded by the sintered phase of the solid electrolyte 14a, they do not have sufficient contact with the solid electrolyte 14a facing the void of the electrode. Many particles were also present.
  • the conductive aid 16a was uniformly dispersed throughout the electrode.
  • oxide (TiO 2 ) particles having a maximum Feret diameter of more than 5 ⁇ m appeared in the cross-sectional SEM images. Specifically, oxide (TiO 2 ) particles having a maximum Feret diameter of approximately 7 ⁇ m appeared in the cross-sectional SEM image. This also applies to Example 3, which will be described later. As shown in FIGS. 9A, 9B, and 10, no such large-sized oxides were observed in the cross section of the electrode of the comparative example.
  • the "maximum Feret diameter" is the maximum length of a perpendicular line formed by sandwiching a particle between two parallel lines.
  • Example 3 An electrode of Example 3 was produced in the same manner as Example 1 except that TiNb 2 O 7 (D50 ⁇ 5 ⁇ m) was used instead of titanium oxide.
  • the dimensions of the electrode of Example 3 were 9.44 mm in diameter and 0.6497 mm in thickness, and the mass was 115.1 mg.
  • the porosity of the electrode of Example 3 was 26.7%. Similar to the electrodes of Examples 1 and 2, the porosity of the electrode of Example 3 was also sufficiently low.
  • the electrode of Example 3 Similar to the electrodes of Examples 1 and 2, the electrode of Example 3 also showed good electrical and ionic conductivity.
  • the cross section of the electrode of Example 3 was observed using a scanning electron microscope using the method described above.
  • 11A and 11B are SEM images (3000x or 10000x) of the cross section of the electrode of Example 3.
  • the electrode of Example 3 also had the same structure as the electrodes of Example 1 and Example 2 (FIGS. 7A, 7B, and 8).
  • the median diameter of the electrode active material 12 was calculated. As a result, in the electrode of Example 3, the median diameter of the electrode active material 12 was 2.5 ⁇ m.
  • the electrode of the present disclosure is suitable as an electrode for a solid-state battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示の電極10は、電極活物質と、電極活物質に接する固体電解質と、を備え、電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物を含み、酸化物は、2μm超7μm未満のメジアン径を有する粒子の状態で存在する。本開示の電池100は、正極20と、負極30と、正極20と負極30との間に配置された電解質層40と、を備え、正極20又は負極30が本開示の電極10を含む。

Description

電極、それを用いた電池及び電極の製造方法
 本開示は、電極、それを用いた電池及び電極の製造方法に関する。
 次世代の電池として、固体電池の研究開発が活発になされている。固体電池の課題の1つは、電極の抵抗が高く、電池容量を引き出すことができないことにある。そのため、電極抵抗を下げることが求められている。電極の抵抗を下げるためには、固体電解質と電極活物質との良好な界面を形成することが重要である。例えば、固体電解質と電極活物質との焼結体は、固体電解質と電極活物質との良好な界面を形成しやすく、固体電池の電極に適している。
 特許文献1は、固体電解質材料の平均粒径に対する電極活物質の平均粒径の比を12倍から79倍とすることによって、固体電解質材料及び電極活物質を高密度で含む電極焼結体が得られることを開示する。
特開2013-218838号公報
 従来技術においては、電極の焼結性を改善してその抵抗を低減することが望まれている。
 本開示は、
 電極活物質と、
 前記電極活物質に接する固体電解質と、
 を備え、
 前記電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物を含み、
 前記酸化物は、2μm超7μm未満のメジアン径を有する粒子の状態で存在する、
 電極を提供する。
 本開示によれば、電極の焼結性を改善してその抵抗を低減することができる。
図1は、第1実施形態における電極の概略構成を示す断面図である。 図2は、電極の製造方法を示す工程図である。 図3は、第2実施形態における電池の概略構成を示す断面図である。 図4は、電池の製造方法を示す工程図である。 図5は、実施例1の電極を用いたハーフセルの1サイクル目の充放電カーブを示すグラフである。 図6は、TiO2の粒子の粒度分布を示すグラフである。 図7Aは、実施例1の電極の断面のSEM像(3000倍)である。 図7Bは、実施例1の電極の断面のSEM像(10000倍)である。 図8は、実施例2の電極の断面のSEM像(10000倍)である。 図9Aは、比較例2の電極の断面のSEM像(3000倍)である。 図9Bは、比較例2の電極の断面のSEM像(10000倍)である。 図10は、比較例4の電極の断面のSEM像(10000倍)である。 図11Aは、実施例3の電極の断面のSEM像(3000倍)である。 図11Bは、実施例3の電極の断面のSEM像(10000倍)である。
(本開示の基礎となった知見)
 本発明者らは、チタンを含有する酸化物を電極活物質として使用して電極を製造することを検討した。チタンを含有する酸化物は、安価に大量生産できる、充放電特性に優れる、高い安全性を有するといった利点を有するので、固体電池の電極活物質として有望視されている。
 チタンを含有する酸化物としては、顔料、化粧品、触媒などに用いられるものが知られている。これらの用途の酸化物は、通常、ナノオーダーの大きさの粒子の形状を有する。しかし、本発明者らの検討によれば、チタンを含有する酸化物のナノ粒子は、電極材料を成形する段階において、固体電解質の粒子間の隙間に存在しやすい。この場合、酸化物のナノ粒子と固体電解質の粒子との総接触面積が大きくなる。したがって、酸化物のナノ粒子は、固体電解質の粒子間の焼結性を阻害する因子となり、電極の焼結性を悪化させ、ひいては電極内のイオン伝導度を悪化させる。加えて、酸化物のナノ粒子は、導電助剤の粒子間の隙間にも存在しやすく、電子パスを阻害する因子となるため、電極内の電気伝導度を悪化させる。すなわち、酸化物のナノ粒子は、実用的な電気伝導度及び実用的なイオン伝導度を有する電極の製造に必ずしも適していない。したがって、チタンを含有する酸化物を電極活物質として使用する際、固体電解質の粒子間の焼結が阻害されること、及び、導電助剤の粒子間の電子パスの形成が阻害されることを抑制しながら、電極の焼結性を向上させるための技術が求められる。
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
(第1実施形態)
 図1は、第1実施形態における電極10の概略構成を示す断面図である。電極10は、電極活物質及び固体電解質を含む。電極10は、電極活物質の粉末及び固体電解質の粉末を含む粉末材料の成形体を焼成することによって製造される電極である。電極10は、例えば、固体電池の正極又は負極に用いられる。
 本明細書において、「焼結」は、粉末材料の成形体を加熱したときに粒子間に結合が生じ、体積収縮を伴って成形体が緻密化する現象を意味する。「焼成」は、焼結のための熱処理を意味する。
 電極活物質は、リチウムイオンなどの金属イオンを吸蔵及び放出する能力を有する材料である。本実施形態において、電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物を含む。電極10において、電極活物質としての酸化物は、2μm超7μm未満のメジアン径を有する粒子の状態で存在する。酸化物の粒子同士は、固体電解質の焼結相によって結ばれている。酸化物の粒子のメジアン径は、3μm超7μm未満であってもよく、3.4μm超6μm未満であってもよい。
 電極10は、マイクロメートルオーダーの大きさの酸化物の粒子を電極活物質として有する。このような大きさの酸化物の粒子は、粉末材料の成形時において、固体電解質の粒子間に存在しうるが、ナノメートルオーダーの大きさの酸化物の粒子を用いた場合に比べて、酸化物の粒子と固体電解質の粒子との総接触面積を減少させることができる。そのため、マイクロメートルオーダーの大きさの酸化物の粒子は、焼結阻害因子としての影響度を軽減することができ、電極10の焼結性を向上させることができる。すなわち、酸化物と固体電解質との良好な接触界面の形成が可能となる。これにより、電極10の抵抗が低減する。電極10の焼結性の良否は、例えば、電極10の空隙率によって判断できる。
 電極活物質としての酸化物の粒子のメジアン径は、電極10の断面の電子顕微鏡像から算出された値でありうる。具体的には、電極10の断面を走査電子顕微鏡で観察する。倍率は、例えば、3000倍である。画像解析ソフトウエアを用い、2つの異なる観察視野に存在する酸化物の粒子のフェレー径を測定する。「フェレー径」は、粒子を定方向の2本の平行線で挟んでできる垂線の長さである。測定対象の粒子の個数は、例えば、185個以上である。すなわち、2つの異なる観察視野に185個以上の粒子が含まれるように、観察視野の広さを調整する。なお、二次粒子が凝集することによって生成した粗大粒子が存在する場合、そのような粗大粒子が電極10の構造を正確に表しているとは言い難い。そのため、そのような粗大粒子を測定対象から除外する。粗大粒子は、例えば、16.5μm以上のフェレー径を有する粒子である。次に、測定されたフェレー径を有する球体であるとみなして各粒子の体積を算出する。横軸に粒径(=フェレー径、0.1μmきざみ)をとり、縦軸にその粒径を持つ粒子群の全体に占める体積をとり、粒度分布を作成する。この粒度分布における累積体積が50%であるときの粒径を電極10に含まれた酸化物の粒子のメジアン径とみなす。
 上記のメジアン径は、二次粒子のメジアン径であってもよい。ナノメートルオーダーの大きさの一次粒子を造粒して二次粒子を作製してもよい。また、水熱合成法によってマイクロメートルオーダーの一次粒子を製造可能である。
 チタンを含有する酸化物としては、酸化チタン(IV)、及び、チタンとチタン以外の遷移金属とを含む複合酸化物が挙げられる。これらの材料は、リチウムイオンなどの金属イオンを吸蔵及び放出する能力を有するので、本実施形態の電極10に適している。
 電極活物質としての酸化物は、固体電解質と共焼結可能であることが望ましい。具体的には、固体電解質と反応しにくく、焼結後も酸化物の結晶構造が維持されることが望ましい。例えば、酸化チタン(IV)は、代表的な酸化物固体電解質であるNASICON型の酸化物固体電解質と反応しにくいので、本実施形態の電極10に適している。
 酸化チタン(IV)としては、アナターゼ型(正方晶)の酸化チタン、ルチル型(正方晶)の酸化チタン、及び、ブルッカイト型(直方晶)の酸化チタンが挙げられる。
 酸化チタンは、アナターゼ型の酸化チタンを含んでいてもよい。酸化チタンの主成分がアナターゼ型の酸化チタンであってもよい。アナターゼ型の酸化チタンは、例えば、リチウムイオン二次電池の活物質に適している。また、アナターゼ型の酸化チタンを用いることによって、電極10の焼結性が向上する。「主成分」は、質量比で最も多く含まれた成分を意味する。酸化チタンの90質量%以上がアナターゼ型の酸化チタンであってもよい。酸化チタンが実質的にアナターゼ型の酸化チタンのみを含んでいてもよい。
 酸化チタンの構造は、X線回折測定又はラマン分光分析によって調べることができる。酸化チタンに含まれた成分の比率は、X線回折測定の結果をリートベルト法で解析することによって確認されうる。
 電極活物質に適した複合酸化物としては、チタン及びニオブを含有する複合酸化物が挙げられる。チタン及びニオブを含有する複合酸化物もリチウムイオンなどの金属イオンを吸蔵及び放出する能力を有するので、本実施形態の電極10に適している。チタン及びニオブを含有する複合酸化物は、例えば、TiNb27の組成を有する。
 電極活物質としての酸化物の粒子は、二次粒子を含んでいてもよい。二次粒子は、その内部に複数の空隙を有する。電極活物質としての酸化物の粒子がリチウムイオンなどの金属イオンを吸蔵したとき、空隙が粒子の体積変化を吸収する。その結果、電池の充放電が繰り返されても電極活物質と固体電解質との間の接触が良好に保たれる。また、焼結型の酸化物全固体電池の劣化の原因として、充放電に伴って電極にクラックが発生して活物質と固体電解質との間の接触が悪化することが挙げられる。活物質として二次粒子を使用すれば、そのような劣化を軽減することが可能である。
 固体電解質は、電極10の形成に適した電解質でありうる。そのような電解質としては、酸化物固体電解質が挙げられる。酸化物固体電解質としては、NASICON型構造を有する固体電解質、ペロブスカイト型構造を有する固体電解質、LISICON型構造を有する固体電解質、ガーネット型構造を有する固体電解質などが挙げられる。これらの中でも、NASICON型構造を有するリチウム含有リン酸化合物が電極10に適している。
 NASICON型の固体電解質は、ペロブスカイト型構造を有する固体電解質、ガーネット型構造を有する固体電解質などの他の酸化物固体電解質に比べて、低温で焼結可能な材料である。低温で焼結可能であることは、電極活物質と固体電解質との間の反応を抑制するのに有利であることを意味する。また、低温で焼結可能である場合、アナターゼ型酸化チタンからルチル型酸化チタンへの転移も回避できる。
 リチウム含有リン酸化合物は、Li1+xAlxGe2-x(PO43(0≦x≦2)の組成を有していてもよい。このような組成の化合物を固体電解質に用い、チタンを含有する酸化物を電極活物質に用いるとき、本実施形態の構成による効果がより十分に発揮される。本明細書において、上記の組成を有する化合物を「LAGP」と記載することがある。
 リチウム含有リン酸化合物の他の例としては、Li1+xAlxTi2-x(PO43(0≦x≦2)が挙げられる。この化合物は、本明細書において「LATP」と記載することがある。
 本開示の電極10には、LAGPがより適している。すなわち、LAGPはTiを含んでいないので、LATPに比べて卑側(マイナス側)に広い電位窓を有する。この場合、より低電位の負極活物質を選択することが可能である。このことは、高電圧及び高容量の電池を提供するのに有利に働く。このような効果を奏する一例がLAGPと酸化チタン(IV)との組み合わせである。また、LAGPは、LATPよりも低温で焼結可能な電解質である。低温で焼結可能であることは、電極活物質と固体電解質との間の反応を抑制するのに有利であることを意味する。
 電極10において、固体電解質は、網目状の焼結相を構成する。例えば、電極10の断面において、電極活物質の粒子と固体電解質の焼結相とが隙間なく接している部分の界面の長さがマイクロメートルオーダーであり、固体電解質の焼結相は電極活物質の粒子と良好な界面を形成している。そのような接触界面の存在は、電極10の抵抗の低減に寄与する。
 固体電解質の焼結相は、固体電解質の粒子同士が結合して粒界が喪失した相でありうる。粒界を持たない焼結相は、優れたイオン伝導性を示し、かつ、電極活物質の粒子と良好な接触界面を形成しうる。このような構造は、電極10の原料に非晶質の固体電解質を用いることによって形成されうる。例えば、走査電子顕微鏡を用いて電極10の断面を1万倍の倍率で観察することによって、焼結相の構造を確認できる。
 電極10において、固体電解質の焼結相は、結晶質相及び非晶質相を含む。固体電解質の焼結相が結晶質相を含む場合、電極10がより高いイオン伝導度を示すので望ましい。後述するように、結晶質相は、焼成温度を適切に調整することによって形成されうる。例えば、固体電解質の結晶化温度以上の温度で焼成を行えば、結晶性の固体電解質を含む電極10が得られる。ただし、非晶質相が固体電解質に含まれていてもよい。非晶質相が含まれている場合、固体電解質の柔軟性が増すため、電極活物質の膨張及び収縮による体積変化が固体電解質に吸収されやすい。
 固体電解質の結晶性はX線回折測定又は示差走査熱量分析装置(Differential Scanning Calorimeter, DSC)によって調べることができる。X線回折測定を用いる場合においては、固体電解質のX線回折パターンにおいて、ハローパターンのみが観察される場合、固体電解質が非晶質であると判断されうる。
 電極10は、導電助剤をさらに含んでいてもよい。導電助剤としては、黒鉛、カーボンブラック、カーボンファイバー、カーボンナノチューブなどの炭素材料が挙げられる。黒鉛は、天然黒鉛であってもよく、人造黒鉛であってもよい。カーボンブラックとしては、アセチレンブラック、ケッチェンブラックなどが挙げられる。炭素材料は、結晶質であってもよく、非晶質であってもよい。導電助剤は、典型的には、ナノメートルオーダー又はマイクロメートルオーダーの粒子の形状を有する。粒子の形状としては、球状、楕円球状、鱗片状、繊維状などが挙げられる。
 電極10の空隙率は、例えば、30%以下である。空隙率の下限は特に限定されず、例えば、5%である。空隙率は、電極10に含まれた各材料の真密度、各材料の含有率、電極10の質量、及び、電極10の寸法から算出されうる。
 電極10における電極活物質の含有率は、例えば、15質量%以上60質量%以下である。電極10における固体電解質の含有率は、例えば、30質量%以上80質量%以下である。電極10における導電助剤の含有率は、例えば、0.1質量%以上10質量%以下である。
 次に、電極10の製造方法を説明する。図2は、電極10の製造方法を示す工程図である。本実施形態では、電極活物質と固体電解質との混合物の成形体を焼成することによって電極10を製造する。
 ステップS1において、原料を混合してスラリーを調製する。スラリーの原料は、例えば、電極活物質、固体電解質、導電助剤、バインダ、及び、溶媒である。バインダ及び溶媒を予め混合してバインダ溶液を調製し、バインダ溶液に電極活物質、固体電解質及び導電助剤を混合することによってスラリーを調製してもよい。
 電極活物質としての酸化物の粒子は、例えば、レーザー回折式粒度分布測定装置による測定値にて、3μm超10μm未満のメジアン径を有する。このような構成によって、電極10の焼結性を高めることができる。レーザー回折式粒度分布測定装置によって測定されたメジアン径は、通常、断面のSEM像から求められたメジアン径よりも大きい。
 電極活物質、固体電解質及び導電助剤は、それぞれ、粉末材料でありうる。固体電解質の粒子のメジアン径は、望ましくは、電極活物質の粒子のメジアン径よりも小さい。電極活物質と固体電解質とがこのような関係を満たすとき、電極10の焼結性を高めることができる。その結果、電極10の抵抗を下げることができる。
 固体電解質の粒子のメジアン径に対する電極活物質の粒子のメジアン径の比は、例えば、2以上30以下である。電極活物質と固体電解質とがこのような関係を満たすとき、電極10の焼結性を高めることができる。その結果、電極10の抵抗を下げることができる。固体電解質の粒子のメジアン径に対する電極活物質の粒子のメジアン径の比は、4以上30以下であってもよく、4以上20以下であってもよい。
 電極活物質としての酸化物の粒子は、6μm超15μm未満の範囲に粒子直径(D90)を有していてもよい。このような酸化物の粒子を用いることによって、電極10の焼結性を高めることができる。その結果、電極10の抵抗を下げることができる。D90は、体積基準の粒度分布において、累積体積が90%であるときの粒子直径であり、レーザー回折式粒度分布測定装置によって測定されうる。
 電極活物質としての酸化物の粒子のBET比表面積は、1m2/g以上7m2/g以下であってもよい。酸化物の粒子のBET比表面積が適切に調整されていると、焼成時における酸化物の粒子と固体電解質の粒子との間の副反応が抑制される。その結果、電極10が高いイオン伝導度を有することができる。酸化物の粒子と固体電解質の粒子との間で副反応が起こると界面抵抗層が形成されるので、そのような副反応は抑制されるべきである。
 電極活物質としての酸化物の粒子は、一次粒子及び二次粒子を含んでいてもよい。電極活物質の粒子のメジアン径(D50)に対する一次粒子の平均粒径(Dp)の比(Dp/D50)は、例えば、0.6以下である。比(Dp/D50)は、望ましくは、0.16以下である。このような酸化物の粒子を用いることによって、電極10の焼結性を高めることができる。その結果、電極10の抵抗を下げることができる。比(Dp/D50)の下限は特に限定されず、例えば、0.05である。
 酸化物の一次粒子の平均粒径(Dp)は、以下の方法によって求めることができる。酸化物の粒子を走査型電子顕微鏡(倍率30000倍)で観察する。得られた像において輪郭が確認できる一次粒子を50個選択する。選択した一次粒子の長軸側の粒子直径を測定する。50個の一次粒子の粒子直径の平均値を算出する。算出された値を一次粒子の平均粒径(Dp)とみなす。
 図6を参照して後述するように、電極活物質としての酸化物の粒子は、二峰性の粒度分布を有していてもよい。このような酸化物の粒子を用いることによって、電極10の焼結性を高めることができる。その結果、電極10の抵抗を下げることができる。
 例えば、電極活物質としての酸化物の粒子の体積基準の粒度分布において、0.5μm以上2.5μm以下の範囲に第1ピークが存在し、3μm以上9μm以下の範囲に第2ピークが存在しうる。第2ピークが第1ピークよりも大きい。このような酸化物の粒子を用いることによって、電極10の焼結性を高めることができる。その結果、電極10の抵抗を下げることができる。
 固体電解質の粒子の体積基準の粒度分布において、0.2μm以上2μm以下の範囲にピークが存在していてもよい。このような固体電解質を用いることによって、電極10の焼結性を高めることができる。その結果、電極10の抵抗を下げることができる。
 固体電解質の粒子は、例えば、100nm以上2000nm以下のメジアン径を有する。
 原料としての固体電解質の粒子は、非晶質でありうる。非晶質の固体電解質は、ガラス転移温度以上かつ結晶化温度以下の温度領域で仮焼成を行うことにより、電極活物質の粒子と低温で良好な界面を形成しうる。ガラス転移温度以上かつ結晶化温度以下の温度領域で固体電解質が良好な柔軟性を有するためである。その後、結晶化温度以上かつ融点以下の適切な温度領域で焼成して固体電解質の結晶性を高めることによって、電極10のイオン伝導度が向上する。また、非晶質の固体電解質は、結晶質の固体電解質に比べて、低温で焼結可能である。低温で焼結可能であることは、電極活物質と固体電解質との反応を抑制する観点で有利であることを意味する。
 固体電解質が非晶質であることは、示差走査熱量分析装置(DSC)によって確かめることができる。例えば、DSCによって求められる結晶化度が30%以下である場合、固体電解質が非晶質であると言える。結晶化度は、下記式によって求められる。測定結晶化熱量は、測定対象サンプルである固体電解質の結晶化に伴う発熱量を意味する。完全非晶体結晶化熱量は、X線回折パターンにおいて、ハローパターンのみが観察されている非晶質固体電解質における結晶化に伴う発熱量を意味する。
 結晶化度(%)=100×(Qa-Qs)/Qa
 Qs:測定結晶化熱量(J/g)
 Qa:完全非晶体結晶化熱量(J/g)
 本明細書において、「メジアン径」は、体積基準の粒度分布における累積体積が50%であるときの粒子直径を意味する。体積基準の粒度分布は、原料の段階ではレーザー回折式粒度分布測定装置により測定される。電極10の段階では、断面の画像解析により測定される。
 バインダは、焼成によって分解及び除去される。バインダとして、ポリビニルブチラール、ポリフッ化ビニリデン、セルロース、アクリル、ウレタン、ポリビニルアルコールなどの熱可塑性樹脂を使用できる。溶媒は、典型的には、無水アルコール(例えば無水エタノール)、トルエン、酢酸ブチル、NMPなどの有機溶媒である。また、スラリーは可塑剤を含んでいてもよい。可塑剤の種類は特に限定されず、フタル酸ジオクチル、フタル酸ジイソノニルのようなフタル酸エステルなどを使用できる。
 導電助剤は、炭素材料でありうる。炭素材料は、アモルファスカーボンを含んでいてもよい。炭素材料の粒子は、70nm以下のメジアン径、及び、60m2/g以下のBET比表面積を有していてもよい。このような炭素材料を用いることによって、電極10の焼結性を高めることができる。炭素材料の粒子のメジアン径の下限は特に限定されず、例えば、10nmである。炭素材料の粒子のBET比表面積の下限は特に限定されず、例えば、10m2/gである。
 ステップS2において、スラリーを基材に塗布して塗布膜を形成する。基材は、樹脂基材、ガラス基材、セラミック基材又は金属基材でありうる。塗布膜を形成したのち、塗布膜から溶媒を除去する。これにより、電極用成形体が得られる。塗布膜から溶媒を除去するために、塗布膜を加熱してもよく、塗布膜を自然乾燥させてもよい。必要に応じて、塗布膜をプレス加工又は熱プレス加工してもよい。基材を使用せず、スラリーを成形及び乾燥させてもよい。
 スラリーを基材に塗布して塗布膜を形成したのち、塗布膜を粉砕し、粉砕によって得られた原料粉末をプレス加工又は熱プレス加工して電極用成形体を作製してもよい。
 ステップS3において、電極用成形体を仮焼成する。仮焼成は、例えば、大気下又は不活性雰囲気下で行われる。不活性雰囲気は、例えば、窒素ガス雰囲気又は希ガス雰囲気である。不活性雰囲気中に酸素を微量に混合させることもありうる。仮焼成の温度(周囲温度)は、例えば、250℃から600℃である。仮焼成の焼成時間は、例えば、1時間から60時間である。
 仮焼成は、バインダが十分に除去され、固体電解質がガラス転移温度を超えて軟化し、かつ、固体電解質の結晶化が進行しない温度領域で行うことが望ましい。このようにすれば、バインダの除去に伴って、電極活物質と固体電解質との間に良好な界面が形成される。
 ステップS4において、電極用成形体を本焼成する。本焼成は、例えば、大気下又は不活性雰囲気下で行われる。不活性雰囲気は、例えば、窒素ガス雰囲気又は希ガス雰囲気である。不活性雰囲気中に酸素を微量に混合させることもありうる。本焼成の温度(周囲温度)は、例えば、550℃から900℃である。本焼成の焼成時間は、例えば、1時間から15時間である。
 本焼成では、固体電解質の粒子同士が結合して粒界を持たない焼結相が形成される。本焼成は、固体電解質の結晶化が適度に進行する温度領域で行うことが望ましい。固体電解質の結晶性の向上に伴って、電極10のイオン伝導度が向上する。
 以上の各工程を経て電極10を製造することができる。
(第2実施形態)
 図3は、第2実施形態における電池100の概略構成を示す断面図である。
 電池100は、正極20、負極30及び電解質層40を備えている。電解質層40は、正極20と負極30との間に配置されている。正極20又は負極30に第1実施形態で説明した電極10が使用されている。正極20又は負極30に電極10を使用することによって、抵抗を下げる効果が正極20又は負極30において得られる。
 第1実施形態で説明した電極10は、望ましくは、負極30に使用される。この場合、チタンを含有する酸化物が負極活物質として振舞う。チタンを含有する酸化物が負極活物質に適しているので、電極10は負極30に適している。
 電極10を負極30に用いた場合、電池100の組み立て後の充放電が行われていない状態において、チタンを含有する酸化物はリチウムを含有していない。つまり、電池100は、完全放電の状態にある。
 ただし、電極10を正極に用いることも可能である。この場合、チタンを含有する酸化物よりも卑な材料、例えば、リチウム金属が負極活物質に使用される。
 正極20は、正極活物質を含む。正極活物質は、リチウムイオンなどの金属イオンを吸蔵及び放出する能力を有する材料である。正極活物質としては、リチウム含有遷移金属酸化物、リチウム含有遷移金属リン酸塩などが挙げられる。中でも、リチウム含有遷移金属リン酸塩が電極10に適している。リチウム含有遷移金属リン酸塩としては、リン酸鉄リチウム、リン酸バナジウムリチウム、リン酸コバルトリチウム、リン酸ニッケルリチウムなどが挙げられる。正極20は、正極活物質の他、固体電解質、導電助剤などを含んでいてもよい。
 電解質層40は、固体電解質を含む。固体電解質は、例えば、硫化物固体電解質、ハロゲン化物固体電解質、錯体水素化物固体電解質、電解液が含浸された多孔質酸化物固体電解質、酸化物固体電解質である。電解質層40に含まれた固体電解質の組成は、正極20に含まれた固体電解質の組成と同一であってもよく、異なっていてもよい。電解質層40に含まれた固体電解質の組成は、負極30に含まれた固体電解質の組成と同一であってもよく、異なっていてもよい。正極20、電解質層40及び負極30が同一組成の固体電解質を含んでいてもよい。
 電池100において、正極20、負極30及び電解質層40が焼結体で構成されていてもよい。この場合、同時焼成によって正極20、負極30及び電解質層40を一体的に形成できる。同時焼成によって正極20、負極30及び電解質層40を一体化させると、正極20、負極30及び電解質層40の相互の接触を確実にとることができるので、リチウムイオンなどの金属イオンの伝導性を向上させることができる。
 図4は、電池100の製造方法を示す工程図である。まず、ステップST1において、スラリーを調製する。具体的には、正極スラリー、電解質層用スラリー及び負極スラリーを調製する。これらのスラリーは、図2のステップS1で説明した方法に倣って調製することができる。なお、電解質用スラリーには、電極活物質及び導電助剤は含まれない。
 ステップST2において、グリーンシートを作製する。具体的には、正極スラリー、電解質層用スラリー及び負極スラリーを用いて、正極グリーンシート、電解質層グリーンシート及び負極グリーンシートを作製する。スラリーを基材に塗布して塗布膜を形成し、塗布膜を乾燥させることによってグリーンシートを作製することができる。グリーンシートは、適切なタイミングで基材から剥離される。
 ステップST3において、グリーンシートを積層する。具体的には、正極グリーンシート、電解質層グリーンシート及び負極グリーンシートをこの順番で積層し、加圧して圧着させる。これにより、正極グリーンシート、電解質層グリーンシート及び負極グリーンシートを含む積層体が得られる。
 ステップST4及びステップST5において、仮焼成及び本焼成の各工程を実施する。仮焼成及び本焼成は、図2のステップS3及びステップS4で説明した通りである。以上の工程を経て焼結型の電池100が得られる。
(他の実施の形態)
(付記)
 以上の実施形態の記載により、下記の技術が開示される。
 (技術1)
 電極活物質と、
 前記電極活物質に接する固体電解質と、
 を備え、
 前記電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物を含み、
 前記酸化物は、2μm超7μm未満のメジアン径を有する粒子の状態で存在する、
 電極。
 この構成によって、電極活物質と固体電解質との間に良好な接触界面が形成される。そのため、電極の焼結性が向上する。
 (技術2)
 前記酸化物が、酸化チタン及びチタンとニオブとを含有する複合酸化物からなる群より選ばれる少なくとも1つを含む、技術1に記載の電極。酸化チタンは、リチウムイオンなどの金属イオンを吸蔵及び放出する能力を有するので、本開示の電極に適している。チタンとニオブとを含有する複合酸化物も同じ能力を有するので、本開示の電極に適している。
 (技術3)
 前記固体電解質がLi1+xAlxGe2-x(PO43(0≦x≦2)の組成を有する、技術1又は2に記載の電極。このような組成の化合物を固体電解質に用い、チタンを含有する酸化物を電極活物質に用いるとき、本開示の構成による効果がより十分に発揮される。
 (技術4)
 前記固体電解質の焼結相によって前記酸化物の粒子同士が結ばれており、前記焼結相が非晶質相を含む、技術1から3のいずれか1項に記載の電極。この構成によって、電極に優れたイオン伝導性が付与される。
 (技術5)
 正極と、
 負極と、
 前記正極と前記負極との間に配置された電解質層と、
 を備え、
 前記正極又は前記負極が技術1から4のいずれか1項に記載の電極を含む、
 電池。
 本開示の電極を正極又は負極に用いることによって、電池の抵抗を下げることができる。
 (技術6)
 前記負極が前記電極を含む、技術5に記載の電池。チタンを含有する酸化物が負極活物質に適しているので、本開示の電極は負極に適している。
 (技術7)
 電極活物質と固体電解質との混合物の成形体を焼成することを含み、
 前記電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物の粒子を含み、
 前記酸化物の粒子は、3μm超10μm未満のメジアン径を有する、
 電極の製造方法。
 この構成によって、電極の焼結性を高めることができる。
 (技術8)
 前記固体電解質の粒子のメジアン径が前記酸化物の前記粒子のメジアン径よりも小さい、技術7に記載の電極の製造方法。電極活物質と固体電解質とがこのような関係を満たすとき、電極の焼結性を高めることができる。
 (技術9)
 前記酸化物の前記粒子のBET比表面積が1m2/g以上7m2/g以下である、技術7又は8に記載の電極の製造方法。酸化物の粒子のBET比表面積が適切に調整されていると、焼成時における酸化物の粒子と固体電解質の粒子との間の副反応が抑制される。その結果、電極が高いイオン伝導度を有することができる。
 (技術10)
 前記酸化物の前記粒子が一次粒子及び二次粒子を含み、前記酸化物の前記粒子のメジアン径に対する前記一次粒子の平均粒径の比が0.6以下である、技術7から9のいずれか1項に記載の電極の製造方法。このような酸化物の粒子を用いることによって、電極の焼結性を高めることができる。
 (技術11)
 正極グリーンシート、電解質層グリーンシート、及び負極グリーンシートを含む積層体を焼成することを含み、
 前記正極グリーンシート又は前記負極グリーンシートは、電極活物質と固体電解質とを含む混合物の成形体であり、
 前記電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物の粒子を含み、
 前記酸化物の粒子は、3μm超10μm未満のメジアン径を有する、
 電池の製造方法。
 この構成によって、電極活物質と固体電解質との間に良好な接触界面が形成される。そのため、正極又は負極の焼結性が向上し、焼結型の電池の抵抗を下げることができる。
(実施例1)
 20質量部のTiO2(アナターゼ型)、75質量部のLAGP(非晶質)、5質量部のアセチレンブラック(デンカ社製、Li-400)、38.75質量部のバインダ溶液、及び、116.25質量部の超脱水エタノールを混合してスラリーを調製した。これらの原料の混合は、自転公転ミキサー(シンキー社製、練太郎)を用い、2000rpm、30分間の条件で行った。バインダ溶液は、15質量部のポリビニルブチラール(積水化学社製、BM-1)と140質量部の超脱水エタノールとを混合することによって調製した。使用したTiO2の粒子は、二次粒子であった。
 スラリーの調製前において、TiO2の粒度分布、TiO2のBET比表面積、及び、LAGPの粒度分布を予め測定した。TiO2の粒度分布及びLAGPの粒度分布は、レーザー回折式粒度分布測定装置(マルバーン・パナリティカル社製、マスターサイザー3000)を用いて測定した。粒度分布からD10、D50、及びD90を算出した。結果を表1に示す。TiO2のメジアン径は4.180μmであった。LAGPのメジアン径は0.888μmであった。D10は、体積基準の粒度分布において、累積体積が10%であるときの粒子直径である。「マスターサイザー」は、マルバーン・パナリティカル社の登録商標である。
 TiO2の一次粒子の平均粒径(Dp)は、走査型電子顕微鏡を用い、先に説明した方法によって算出した。
 TiO2のBET比表面積は、以下の方法で測定した。所定量のTiO2を測定用試験管に入れ、比表面積・細孔分布測定装置(カンタクローム社製、Autosorb iQ-MP)に測定用試験管を接続した。その後、吸着温度77K、吸着相対圧上限0.99(P/P0)の条件で窒素ガス吸着試験を実施した。解析ソフトウエアASiQWinを使用し、吸着等温線の直線領域においてBET法による解析を実施し、BET比表面積を算出した。「Autosorb」は、シスメックス社の登録商標である。
 次に、設定温度80℃のホットプレート上でスラリーを乾燥させた。スラリーからエタノールが十分に除去されたことを確認したのち、乾燥膜を粗粉砕し、真空乾燥処理(80℃、2時間)を実施した。真空乾燥後の粗粉砕品を乳鉢に入れ、手動で15分間かけて粉砕し、原料粉末を得た。
 次に、Φ10.5mmの錠剤成型機を用い、一軸加圧法によって122mgの原料粉末を成形して電極用成形体を得た。加圧条件は、276MPa、及び、1分間であった。次に、電極用成形体を仮焼成してバインダを除去した。仮焼成の条件は、大気下、530℃(周囲温度)、2時間であった。最後に、電極用成形体を本焼成して実施例1の電極を得た。本焼成の条件は、窒素雰囲気下、700℃(周囲温度)、2時間であった。実施例1の電極の寸法は、直径9.53mm及び厚さ0.6471mmであった。質量は115.0mgであった。
(実施例2)
 表1に示すように、メジアン径が0.300μmのLAGP(非晶質)を用いたことを除き、実施例1と同じ方法で実施例2の電極を作製した。実施例2の電極の寸法は、直径9.26mm及び厚さ0.6363mmであった。質量は111.5mgであった。
(比較例1)
 表1に示すように、メジアン径が0.491μmの酸化チタン(アナターゼ型)を用いたことを除き、実施例1と同じ方法で比較例1の電極を作製した。比較例1の電極の寸法は、直径9.96mm及び厚さ0.6528mmであった。質量は114.9mgであった。使用した酸化チタンの粒子は、二次粒子であった。
(比較例2)
 表1に示すように、メジアン径が1.540μmの酸化チタン(アナターゼ型)を用いたことを除き、実施例1と同じ方法で比較例2の電極を作製した。比較例2の電極の寸法は、直径9.96mm及び厚さ0.6380mmであった。質量は114.4mgであった。使用した酸化チタンの粒子は、二次粒子であった。
(比較例3)
 表1に示すように、メジアン径が1.540μmの酸化チタン(アナターゼ型)を用いたこと、及び、メジアン径が0.300μmのLAGP(非晶質)を用いたことを除き、実施例1と同じ方法で比較例3の電極を作製した。比較例3の電極の寸法は、直径9.80mm及び厚さ0.6457mmであった。質量は112.6mgであった。使用した酸化チタンの粒子は、二次粒子であった。
(比較例4)
 表1に示すように、メジアン径が0.675μmの酸化チタン(アナターゼ型)を用いたことを除き、実施例1と同じ方法で比較例4の電極を作製した。比較例4の電極の寸法は、直径9.91mm及び厚さ0.6410μmであった。質量は114.6mgであった。使用した酸化チタンの粒子は、二次粒子であった。
Figure JPOXMLDOC01-appb-T000001
[密度の測定]
 電極の寸法及び質量から電極の密度を算出した。結果を表2に示す。
[空隙率の測定]
 電極の作製に使用した各材料の真密度を予め測定した。電極の寸法、真密度の測定値及び各材料の含有率を用い、電極の空隙率を算出した。電極は、TiO2、LAGP及び導電助剤のみを含むものとみなした。真密度は、ピクノメーター(Anton Paar社製、Ultrapyc 5000)を用いてHe置換法により測定した。LAGPに関しては、非晶質材料を出発原料に用いる一方、焼結後の密度評価が困難である。そのため、LAGPの真密度には理論密度を用いた。結果を表2に示す。
[イオン伝導度の測定]
 電極の電気伝導度を以下の方法で測定した。まず、電極を真空乾燥機に入れて、80℃、1時間の条件で乾燥させた。次に、Li金属箔、固体ポリマー電解質膜、電極、固体ポリマー電解質膜、及びLi金属箔をこの順に積層し、これらを密閉式2極セル(宝泉社製)内に配置した。固体ポリマー電解質膜として、LiTFSI-PEO膜を用いた。LiTFSI-PEO膜に含まれたPEOの重量平均分子量Mwは、600000であった。LiTFSI-PEO膜において、PEOとLiTFSIとの比率は、モル比にて、PEO:LiTFSI=18:1であった。その後、0.1V、0.25V、0.5V、及び0.75Vの測定電圧でクロノアンペロメトリー測定を行った。電流値として、電圧を印加した時点から70秒後の値を用いた。測定時の周囲温度は60℃であった。電圧と電流との関係から抵抗値を算出した。電極の寸法を用いてイオン伝導度を算出した。結果を表2に示す。
[電気伝導度の測定]
 電極の電気伝導度を以下の方法で測定した。まず、電極を真空乾燥機に入れて、80℃、1時間の条件で乾燥させた。次に、スパッタリングによって、電極の両面に厚さ290nmのAu薄膜を形成した。電極を密閉式2極セル(宝泉社製)内に配置した。その後、0.1V、0.25V、0.5V、及び0.75Vの測定電圧でクロノアンペロメトリー測定を行った。電流値として、電圧を印加した時点から70秒後の値を用いた。測定時の周囲温度は25℃であった。電圧と電流との関係から抵抗値を算出した。電極の寸法を用いて電気伝導度を算出した。結果を表2に示す。
[界面副反応量の測定]
 電極の界面副反応量を以下の方法で測定した。まず、電極を真空乾燥機に入れて、80℃、1時間の条件で乾燥させた。次に、スパッタリングによって、電極の片面に厚さ290nmのAu薄膜を形成した。次に、Au薄膜、電極、固体ポリマー電解質膜、及びLi金属箔をこの順に積層し、これらを密閉式2極セル(宝泉社製)内に配置してハーフセルを得た。固体ポリマー電解質膜として、LiTFSI-PEO膜を用いた。次に、60℃の条件で定電流定電圧(CCCV)モードによるハーフセルの充放電試験を行い、1サイクル目の充放電カーブを得た。0.01Cの定電流で電圧1.5Vに達するまで放電し、その後、1.5Vの定電圧で5時間放電した。0.01Cの定電流で電圧3Vに達するまで充電し、その後、3Vの定電圧で5時間充電した。
 図5は、実施例1の電極を用いたハーフセルの充放電カーブを示すグラフである。縦軸は、リチウム金属の溶解析出電位に対する電位(単位:V)を表す。横軸は、1サイクル目の放電容量を100とみなしたときのグラフ上の各点の容量の比率(%)を表す。図5に示すように、TiO2は、2Vよりも低い電位にプラトー領域を有する。したがって、TiO2の駆動電位領域は2V未満である。さらに、2V(vs. Li/Li+)以上の電位領域で観測されるレドックス容量のうち、放電時の容量値を「界面副反応量Ci」として定義する。
 TiO2の駆動電位領域外で観測されるレドックス容量は、TiO2に含まれたTiが焼結時にLAGPに拡散して形成される拡散層(反応層)に由来する充放電を捉えている。界面副反応量が小さいことは、焼結時におけるLAGPとTiO2との間の副反応が抑制されていることを意味するとともに、副反応に伴う反応層の形成が抑制されていることを意味する。副反応に伴う反応層の形成が抑制されると、電極の抵抗が下がるので望ましい。
[界面副反応量の算出]
 実施例1、比較例1、比較例2及び比較例4の各電極を用いたハーフセルの充放電カーブにおける界面副反応量Ciを調べた。下記の計算式を用い、焼結に伴うLAGPとTiO2との間の界面副反応量の割合を算出した。つまり、表1に記載の「界面副反応量の割合」は、比較例4の値に対する相対値である。
 (界面副反応量の割合)=100×A/B(%)
 A:各電極を用いたハーフセルの界面副反応量Ci(mAh)
 B:比較例4の電極を用いたハーフセルの界面副反応量Ci(mAh)
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1及び2の電極の空隙率は、それぞれ、26.86%及び24.82%であり、比較例1から4の電極の空隙率を大幅に下回っていた。
 表2に示すように、実施例1及び2の電極は、比較例1から4の電極の電気伝導度を大幅に上回る高い電気伝導度を示した。同時に、実施例1及び2の電極のイオン伝導度は、比較例1から4の電極のイオン伝導度よりも高かった。この結果は、実施例の電極の低い空隙率、及び、実施例の電極の特徴的な構造によってもたらされたと推測される。
 実施例の電極の特徴的な構造の影響は、界面副反応量にも顕著に現れた。すなわち、実施例1の界面副反応量は、比較例4の界面副反応量の約50%であった。
 このように、チタンを含有する酸化物の粒子の大きさ、固体電解質の粒子の大きさ、それらの関係を適切に調整することによって、電極の電気的特性を大幅に改善できた。
 図6は、実施例及び比較例で使用したTiO2の粒子の粒度分布を示すグラフである。横軸は粒子直径を対数スケールで示す。縦軸は、横軸に示される粒子直径の粒子の合計体積の粒子全体の体積に対する割合を示す。図6に示すように、実施例1及び2で使用したTiO2の粒子は、二峰性の粒度分布、すなわち、2つのピークを有していた。0.5μm以上2.5μm以下の範囲に第1ピークが存在し、3μm以上9μm以下の範囲に第2ピークが存在していた。第2ピークは第1ピークよりも大きかった。
 比較例で使用したTiO2の粒子も二峰性の粒度分布を示すとともに、比較的大きい粒子を含んでいた。しかし、比較例の電極の空隙率は低かった。比較例のTiO2の粒子に含まれた大きい粒子は、一次粒子が弱く凝集した粒子にすぎず、スラリー調製、塗布膜の粉砕などの工程でナノオーダーの一次粒子へと分かれたと推測される。このことは、図9A、図9B及び図10のSEM像にTiO2の大きい粒子が存在しないことによって支持される。
[断面観察]
 大気非暴露環境下でのブロードイオンビーム加工によって、実施例及び比較例の電極の断面を形成した。断面は、電極の厚さ方向に平行であった。次に、実施例及び比較例の電極の断面を走査電子顕微鏡(日本電子社製、JSM-7900F)で観察した。加速電圧は3kV、観察倍率は3000倍又は10000倍であった。
 図7A及び図7Bは、実施例1の電極の断面のSEM像(3000倍又は10000倍)である。図8は、実施例2の電極の断面のSEM像(10000倍)である。図9A及び図9Bは、比較例2の電極の断面のSEM像(3000倍又は10000倍)である。図10は、比較例4の電極の断面のSEM像(10000倍)である。
 図7A及び図7Bに示すように、実施例1の電極において、電極活物質12(TiO2)は、大きい直径の粒子の状態を維持していた。電極活物質12の大きい直径の粒子は、その内部に複数の空孔を有する二次粒子であった。固体電解質14(LAGP)の焼結相と電極活物質12の粒子の外縁に沿って、マイクロメートルオーダーの長さの粒界が形成されていた。焼結の進行により、固体電解質14の粒子同士の粒界は観察されなかった。導電助剤16は電極の全体に均一に分散していた。
 実施例1の電極の断面のSEM像(倍率3000倍)を用い、先に説明した方法によって電極活物質12のメジアン径(D50)を算出した。その結果、実施例1の電極において、電極活物質12のメジアン径は3.5μmであった。複数の空孔を有する二次粒子を電極活物質12とみなした。
 図8に示すように、メジアン径が0.300μmの固体電解質を用いた実施例2の電極も図7A及び図7Bに示す実施例1の電極と同じ構造を有していた。
 実施例2の電極の断面のSEM像(倍率3000倍)を用い、電極活物質12のメジアン径を算出した。その結果、実施例2の電極において、電極活物質12のメジアン径は3.6μmであった。
 図9A、図9B及び図10に示すように、比較例2及び比較例4の電極において、電極活物質12aの粒子は、ナノオーダーの大きさのまま分散していた。電極活物質12aの粒子の中には、固体電解質14aの焼結相に完全に包囲されているものが存在する一方、電極の空隙に面して固体電解質14aとの接触が十分にとれていない粒子も多く存在していた。導電助剤16aは電極の全体に均一に分散していた。
 比較例2及び比較例4の電極において、電極活物質12aのメジアン径は明らかにナノメートルオーダーであった。そのため、メジアン径の測定を省略した。
 図7A、図7B及び図8に示すように、実施例1及び実施例2の電極において、5μmを上回る最大フェレー径を有する酸化物(TiO2)の粒子が断面のSEM像に現れた。具体的には、約7μmの最大フェレー径を有する酸化物(TiO2)の粒子が断面のSEM像に現れた。このことは、後述する実施例3についてもあてはまる。図9A、図9B及び図10に示すように、比較例の電極の断面には、そのような大粒径の酸化物は観察されなかった。「最大フェレー径」は、粒子を2本の平行線で挟んでできる垂線の最大の長さである。
(実施例3)
 酸化チタンに代えてTiNb27(D50≦5μm)を用いたことを除き、実施例1と同じ方法で実施例3の電極を作製した。実施例3の電極の寸法は、直径9.44mm及び厚さ0.6497mmであり、質量は115.1mgであった。
 先に説明した方法によって、実施例3の電極の密度、空隙率、電気伝導度、及び、イオン伝導度を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例3の電極の空隙率は26.7%であった。実施例1及び2の電極と同じように、実施例3の電極の空隙率も十分に低かった。
 実施例1及び2の電極と同じように、実施例3の電極も良好な電気伝導度及びイオン伝導度を示した。
 先に説明した方法によって実施例3の電極の断面を走査電子顕微鏡で観察した。図11A及び図11Bは、実施例3の電極の断面のSEM像(3000倍又は10000倍)である。実施例3の電極も実施例1及び実施例2の電極(図7A、図7B及び図8)の構造と同じ構造を有していた。
 実施例3の電極の複数の観察視野におけるSEM像を用い、電極活物質12のメジアン径を算出した。その結果、実施例3の電極において、電極活物質12のメジアン径は2.5μmであった。
 本開示の電極は、固体電池の電極に適している。

Claims (11)

  1.  電極活物質と、
     前記電極活物質に接する固体電解質と、
     を備え、
     前記電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物を含み、
     前記酸化物は、2μm超7μm未満のメジアン径を有する粒子の状態で存在する、
     電極。
  2.  前記酸化物が、酸化チタン及びチタンとニオブとを含有する複合酸化物からなる群より選ばれる少なくとも1つを含む、
     請求項1に記載の電極。
  3.  前記固体電解質がLi1+xAlxGe2-x(PO43(0≦x≦2)の組成を有する、
     請求項1に記載の電極。
  4.  前記固体電解質の焼結相によって前記酸化物の粒子同士が結ばれており、
     前記焼結相が非晶質相を含む、
     請求項1に記載の電極。
  5.  正極と、
     負極と、
     前記正極と前記負極との間に配置された電解質層と、
     を備え、
     前記正極又は前記負極が請求項1に記載の電極を含む、
     電池。
  6.  前記負極が前記電極を含む、
     請求項5に記載の電池。
  7.  電極活物質と固体電解質との混合物の成形体を焼成することを含み、
     前記電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物の粒子を含み、
     前記酸化物の粒子は、3μm超10μm未満のメジアン径を有する、
     電極の製造方法。
  8.  前記固体電解質の粒子のメジアン径に対する前記酸化物の前記粒子のメジアン径の比が2以上30以下である、
     請求項7に記載の電極の製造方法。
  9.  前記酸化物の前記粒子のBET比表面積が1m2/g以上7m2/g以下である、
     請求項7に記載の電極の製造方法。
  10.  前記酸化物の前記粒子が一次粒子及び二次粒子を含み、
     前記酸化物の前記粒子のメジアン径に対する前記一次粒子の平均粒径の比が0.6以下である、
     請求項7に記載の電極の製造方法。
  11.  正極グリーンシート、電解質層グリーンシート、及び負極グリーンシートを含む積層体を焼成することを含み、
     前記正極グリーンシート又は前記負極グリーンシートは、電極活物質と固体電解質とを含む混合物の成形体であり、
     前記電極活物質は、チタンを含有し、かつ、リチウムを含有しない酸化物の粒子を含み、
     前記酸化物の粒子は、3μm超10μm未満のメジアン径を有する、
     電池の製造方法。
PCT/JP2023/026326 2022-08-31 2023-07-18 電極、それを用いた電池及び電極の製造方法 WO2024048102A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138484 2022-08-31
JP2022138484 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048102A1 true WO2024048102A1 (ja) 2024-03-07

Family

ID=90099490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026326 WO2024048102A1 (ja) 2022-08-31 2023-07-18 電極、それを用いた電池及び電極の製造方法

Country Status (1)

Country Link
WO (1) WO2024048102A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157307A (ja) * 2016-02-29 2017-09-07 Fdk株式会社 全固体電池の製造方法および固体電池
JP2017157305A (ja) * 2016-02-29 2017-09-07 Fdk株式会社 全固体電池の製造方法および全固体電池
WO2021049665A1 (ja) * 2019-09-13 2021-03-18 三井金属鉱業株式会社 電極合材並びにそれを用いた電極層及び固体電池
JP2022047864A (ja) * 2020-09-14 2022-03-25 株式会社東芝 活物質、電極、二次電池、電池パック及び車両
WO2023119876A1 (ja) * 2021-12-20 2023-06-29 太陽誘電株式会社 全固体電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017157307A (ja) * 2016-02-29 2017-09-07 Fdk株式会社 全固体電池の製造方法および固体電池
JP2017157305A (ja) * 2016-02-29 2017-09-07 Fdk株式会社 全固体電池の製造方法および全固体電池
WO2021049665A1 (ja) * 2019-09-13 2021-03-18 三井金属鉱業株式会社 電極合材並びにそれを用いた電極層及び固体電池
JP2022047864A (ja) * 2020-09-14 2022-03-25 株式会社東芝 活物質、電極、二次電池、電池パック及び車両
WO2023119876A1 (ja) * 2021-12-20 2023-06-29 太陽誘電株式会社 全固体電池

Similar Documents

Publication Publication Date Title
JP7504138B2 (ja) 電池用の固体カソライト又は電解質
KR101624805B1 (ko) 고체 전해질층을 포함하는 이차전지
JP6904422B2 (ja) 固体電解質及び全固体電池
JP5299860B2 (ja) 全固体電池
JP6904423B2 (ja) 共焼成型全固体電池
US9368828B2 (en) All-solid battery and manufacturing method therefor
WO2013137224A1 (ja) 全固体電池およびその製造方法
JP5304168B2 (ja) 全固体電池
WO2012176808A1 (ja) 全固体型リチウム二次電池及びその製造方法
US20130273437A1 (en) All solid state battery
JP5811191B2 (ja) 全固体電池およびその製造方法
JP6504515B2 (ja) 固体電解質材料、及び全固体電池
WO2022009811A1 (ja) 焼結体電極、電池用部材、並びに焼結体電極及び電池用部材の製造方法、固体電解質前駆体溶液、固体電解質前駆体、並びに固体電解質
WO2018198494A1 (ja) 全固体電池
JP2020514948A (ja) 全固体リチウムイオン蓄電池およびその製造方法
JP2015065022A (ja) 固体電解質材料、及び全固体電池
KR101537067B1 (ko) 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP7002520B2 (ja) 固体電解質、全固体電池及び、固体電解質の製造方法
JP5738150B2 (ja) 二次電池
WO2024048102A1 (ja) 電極、それを用いた電池及び電極の製造方法
CN113745649B (zh) 固体电解质及其制造方法、以及全固体电池及其制造方法
JP2019057495A (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
CN115699212A (zh) 固体电解质材料、固体电解质、它们的制造方法和全固体电池
JP2019057496A (ja) 固体電解質シート及びその製造方法、並びに全固体二次電池
US20240222699A1 (en) All-solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859872

Country of ref document: EP

Kind code of ref document: A1