WO2024046369A1 - 一种抗干扰的水质分析仪器测试方法 - Google Patents
一种抗干扰的水质分析仪器测试方法 Download PDFInfo
- Publication number
- WO2024046369A1 WO2024046369A1 PCT/CN2023/115858 CN2023115858W WO2024046369A1 WO 2024046369 A1 WO2024046369 A1 WO 2024046369A1 CN 2023115858 W CN2023115858 W CN 2023115858W WO 2024046369 A1 WO2024046369 A1 WO 2024046369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reagent
- value
- add
- measured
- adc
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 238000004458 analytical method Methods 0.000 title abstract description 22
- 238000010998 test method Methods 0.000 title abstract 3
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 130
- 238000011161 development Methods 0.000 claims abstract description 40
- 230000029087 digestion Effects 0.000 claims abstract description 36
- 238000005259 measurement Methods 0.000 claims abstract description 36
- 239000012086 standard solution Substances 0.000 claims abstract description 34
- 238000012360 testing method Methods 0.000 claims abstract description 33
- 239000012153 distilled water Substances 0.000 claims abstract description 30
- 238000012545 processing Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims description 25
- 230000002572 peristaltic effect Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 239000007800 oxidant agent Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 239000000523 sample Substances 0.000 description 39
- 238000001514 detection method Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000004737 colorimetric analysis Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000004040 coloring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4044—Concentrating samples by chemical techniques; Digestion; Chemical decomposition
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
Definitions
- the invention relates to the technical field of water quality analysis instrument testing in the field of environmental protection, and in particular to an anti-interference water quality analysis instrument testing method.
- Colorimetry is a method of determining the content of the component to be measured by comparing or measuring the color depth of a solution of colored substances.
- the visual colorimetric method is a standard series method, that is, using different amounts of standard solutions of the test substance in the same set of colorimetric tubes, first developing the color according to the analysis steps, and preparing a standard color scale with gradually changing colors. The sample solution also develops color under the same conditions. Compare it with the standard color scale. Visually find the standard with the closest color. Based on the amount of the standard solution contained in it, calculate and determine the component to be tested in the sample. content.
- the reagents have color, and the colorimetry after digestion will affect the detection results and cause interference, which will make the detection results too large.
- the invention provides an anti-interference water quality analysis instrument testing method and system. Through anti-interference factor value measurement, the actual measurement signal value after anti-interference processing is obtained when measuring actual water samples, thereby improving detection accuracy.
- the embodiment of the present invention provides an anti-interference water quality instrument testing method.
- the method includes include:
- Second measure ADC value For calibration of the first standard solution, add distilled water as the first standard solution according to the predetermined adding parameters. After adding the first reagent for digestion, add the second reagent and the third reagent, and record after color development. Second measure ADC value;
- To measure the anti-interference factor value add the actual water sample according to the predetermined adding parameters, add the first reagent for digestion and then record the fourth measured ADC value, add the same volume as the second reagent and the third reagent. Distilled water, after color development, record the fifth measured ADC value, and obtain the anti-interference factor value based on the fourth measured ADC value and the fifth measured ADC value;
- Measure the actual water sample add the actual water sample according to the predetermined adding parameters, add the first reagent for digestion and then record the sixth measured ADC value, add the second reagent and the third reagent, and develop color Then record the seventh measured ADC value to obtain the actual measured signal value after anti-interference processing.
- the first reagent is an oxidant
- the second reagent is a buffer
- the third reagent is a color developer.
- the anti-interference factor value is obtained according to the fourth measured ADC value and the fifth measured ADC value, specifically calculated by the following formula:
- ⁇ is the anti-interference factor value
- ADC 5 is the fifth measured ADC value
- ADC 4 is the fourth measured ADC value.
- the actual measured signal value obtained after anti-interference processing is specifically calculated by the following formula:
- ADC 0 is the first measured ADC value
- ADC X1 is the sixth measured ADC value
- ADC X2 is the seventh measured ADC value.
- the turbidity color of the actual water sample is less than the preset value.
- the anti-interference factor value is measured according to a preset period.
- An embodiment of the present invention also provides an anti-interference water quality instrument testing system, which system includes:
- Blank calibration module which is used to add distilled water as a water sample according to the predetermined adding parameters. After adding the first reagent for digestion, add the same volume of distilled water as the second reagent and the third reagent, and record the first measured ADC after color development. value;
- the first standard solution calibration module is used to add distilled water as the first standard solution according to predetermined adding parameters, add the first reagent for digestion, and then add the second reagent and the third reagent, After color development, record the second measured ADC value;
- the second standard solution calibration module is used to add the second standard solution according to the predetermined adding parameters, add the first reagent for digestion, add the second reagent and the third reagent, and after color development Record the third measured ADC value;
- Anti-interference factor value measurement module which is used to add actual water samples according to predetermined liquid addition parameters, add the first reagent for digestion and then record the fourth measured ADC value, add the second reagent and the third Use the same volume of distilled water as the reagent, record the fifth measured ADC value after color development, and obtain the anti-interference factor value based on the fourth measured ADC value and the fifth measured ADC value;
- Measure the actual water sample module which is used to add the actual water sample according to the predetermined adding parameters. For the water sample, add the first reagent for digestion and then record the sixth measured ADC value. Add the second reagent and the third reagent. After color development, record the seventh measured ADC value to obtain the actual ADC value after anti-interference processing. Measure the signal value.
- the system further includes: a peristaltic pump and a multi-way valve, the multi-way valve is respectively connected to a meter, a digester and a plurality of liquid storage bottles, and the peristaltic pump is connected to the meter.
- the system further includes: a controller, the controller is connected to a data transfer module, the data transfer module is connected to an MCU, the MCU is connected to an ADC converter, and the ADC converter is connected to a photoelectric conversion circuit. , the photoelectric conversion circuit is connected to the digester.
- the controller controls opening of a switching valve of the multi-way valve, and the reagent in one of the plurality of liquid storage bottles enters the multi-way valve through the switching valve and then enters the meter.
- the anti-interference water quality analysis instrument testing method and system provided by the embodiment of the present invention include blank calibration, recording the first measured ADC value after color development; calibration of the first standard solution, and recording the second measured ADC value after color development; Calibrate the standard solution, record the third measured ADC value after color development; measure the anti-interference factor value, add the actual water sample according to the predetermined liquid addition parameters, add the first reagent for digestion, record the fourth measured ADC value, and add Use the same volume of distilled water as the second reagent and the third reagent, record the fifth measured ADC value after color development, and obtain the anti-interference factor value based on the fourth measured ADC value and the fifth measured ADC value.
- Measure the actual water sample add the actual water sample according to the predetermined adding parameters, add the first reagent for digestion and then record the sixth measured ADC value, add the second reagent and the third reagent, and display Record the seventh measurement ADC value after coloring to obtain the actual measurement signal value after anti-interference processing.
- the anti-interference factor value measurement the actual measurement signal value after anti-interference processing is obtained when measuring the actual water sample, thereby improving detection accuracy.
- Figure 1 is a schematic flow chart of an anti-interference water quality analysis instrument testing method provided by one embodiment of the present invention
- Figure 2 is a schematic module diagram of an anti-interference water quality analysis instrument testing system provided by an embodiment of the present invention
- Figure 3 is a schematic module diagram of an anti-interference water quality analysis instrument testing system provided by another embodiment of the present invention.
- Figure 4 is a schematic module diagram of an anti-interference water quality analysis instrument testing system provided by another embodiment of the present invention.
- Figure 5 is an experimental data table of an anti-interference water quality analysis instrument testing method provided by one embodiment of the present invention.
- Figure 6 is an experimental data diagram of an anti-interference water quality analysis instrument testing method provided by an embodiment of the present invention.
- embodiments of the present invention provide an anti-interference water quality analysis instrument testing method and system. Through anti-interference factor value measurement, the actual measurement signal value after anti-interference processing is obtained when measuring actual water samples. Thereby improving detection accuracy.
- Embodiments of the present invention provide an anti-interference water quality instrument testing method, which method includes:
- Step S101 Blank calibration. Add distilled water as a water sample according to the predetermined adding parameters. After adding the first reagent for digestion, add the same volume of distilled water as the second reagent and the third reagent. After color development, record the first measured ADC value. ;
- Step S102 Calibrate the first standard solution, add distilled water as the first standard solution according to the predetermined adding parameters, add the first reagent for digestion, add the second reagent and the third reagent, and display Record the second measured ADC value after coloring;
- Step S103 Calibrate the second standard solution, add the second standard solution according to the predetermined adding parameters, add the first reagent for digestion, add the second reagent and the third reagent, and record after color development The third measurement ADC value;
- Step S104 Measure the anti-interference factor value, add the actual water sample according to the predetermined adding parameters, add the first reagent for digestion and then record the fourth measured ADC value, add the second reagent and the third reagent Distilled water of the same volume, after color development, record the fifth measured ADC value, and obtain the anti-interference factor value based on the fourth measured ADC value and the fifth measured ADC value;
- Step S105 Measure the actual water sample, add the actual water sample according to the predetermined adding parameters, add the first reagent for digestion and then record the sixth measured ADC value, add the second reagent and the third reagent. , record the seventh measured ADC value after color development, and obtain the actual measured signal value after anti-interference processing.
- the first reagent is an oxidant
- the second reagent is a buffer
- the third reagent is a color developer.
- the preset The value can be defined by technology in the art according to actual conditions. In this case, the ADC value and chromaticity have a linear relationship.
- the added amount of the above liquids is measured according to the infrared limiter on the meter combined with the controller. The added amount has been determined and Measurable.
- the concentration of the second standard solution is C2, the unit is mg/L.
- the anti-interference factor value is obtained based on the fourth measured ADC value and the fifth measured ADC value, specifically calculated by the following formula:
- ⁇ is the anti-interference factor value
- ADC 5 is the fifth measured ADC value
- ADC 4 is the fourth measured ADC value.
- the actual measured signal value obtained after anti-interference processing is specifically calculated by the following formula:
- ADC 0 is the first measured ADC value
- ADC X1 is the sixth measured ADC value
- ADC X2 is the seventh measured ADC value.
- the anti-interference factor value is measured according to a preset period.
- the anti-interference factor value can be measured once a week to ensure the accuracy of the anti-interference factor value.
- Those skilled in the art can determine the measurement frequency based on the change in the actual water sample. If the actual water sample changes significantly, the anti-interference factor value can be measured once a day. If the actual water sample changes slightly, the anti-interference factor value can be measured once a week. . Therefore, the anti-interference factor value is a dynamically changing process.
- Figure 5 is an anti-interference water quality analysis instrument provided by an embodiment of the present invention.
- Figure 6 is an experimental data diagram of an anti-interference water quality analysis instrument testing method provided by one embodiment of the present invention. Now referring to Figures 5 and 6, by measuring the anti-interference factor value, the actual measurement signal value after anti-interference processing is obtained when measuring the actual water sample, thereby improving the detection accuracy.
- Figure 2 is a schematic module diagram of an anti-interference water quality analysis instrument testing system provided by one embodiment of the present invention.
- Figure 3 is a module schematic diagram of an anti-interference water quality analysis instrument testing system provided by another embodiment of the present invention.
- Figure 4 is a schematic module diagram of an anti-interference water quality analysis instrument testing system provided by another embodiment of the present invention.
- embodiments of the present invention also provide an anti-interference water quality instrument testing system, which includes:
- the blank calibration module 21 is used to add distilled water as a water sample according to predetermined liquid addition parameters. After adding the first reagent for digestion, add the same volume of distilled water as the second reagent and the third reagent, and record the first measurement after color development. ADC value;
- the first standard liquid calibration module 22 is used to add distilled water as the first standard liquid according to predetermined liquid adding parameters. After adding the first reagent for digestion, add the second reagent and the third reagent. , record the second measured ADC value after color development;
- the second standard solution calibration module 23 is used to add the second standard solution according to the predetermined adding parameters, add the first reagent for digestion, add the second reagent and the third reagent, and develop color. Then record the third measured ADC value;
- the anti-interference factor value measurement module 24 is used to add the actual water sample according to the predetermined adding parameters, add the first reagent for digestion and then record the fourth measured ADC value, add the second reagent and the third Use three reagents with the same volume of distilled water, record the fifth measured ADC value after color development, and obtain the anti-interference factor value based on the fourth measured ADC value and the fifth measured ADC value;
- Measure the actual water sample module 25 which is used to add the actual water sample according to the predetermined adding parameters, add the first reagent for digestion and then record the sixth measured ADC value, add the second reagent and the third Three reagents, record the seventh measured ADC value after color development, and obtain the actual measured signal value after anti-interference processing.
- the system also includes: a peristaltic pump 1 and a multi-way valve 3.
- the multi-way valve 3 is connected to a meter 2, a digester 5 and a plurality of liquid storage bottles 4 respectively.
- the peristaltic pump 1 and The meter 2 is connected.
- the system further includes: a controller 10, the controller 10 is connected to the data transfer module 9, the data transfer module 9 is connected to the MCU 8, the MCU 8 is connected to the ADC converter 7, the ADC The converter 7 is connected to the photoelectric conversion circuit 6 , and the photoelectric conversion circuit 6 is connected to the digester 5 .
- the controller 10 controls to open the switching valve of the multi-way valve 3, and the reagent in one of the plurality of liquid storage bottles 4 enters the multi-way valve 3 through the switching valve, and then Enter meter 2.
- the peristaltic pump 1 sucks one of the plurality of liquid storage bottles 4, and pumps the reagent in one of the liquid storage bottles 4 through the multi-way valve 3 into the meter 2 for measurement.
- the controller 19 controls the switch valve on the corresponding multi-way valve 3 to open, and the reagent in one of the liquid storage bottles 4 enters the multi-way valve 3 through the switch valve. , and then enter meter 2.
- More than two infrared limiters on meter 2 detect the reagent and infrared limiter detection signals. The amount of liquid in meter 2 can be monitored through different infrared limiter detection signals.
- the peristaltic pump 1 Stop to measure the reagent amount.
- the peristaltic pump 1 reverses and presses out the meter 2.
- the on-off valve on the multi-way valve 3 opens, thereby pressing the reagent into the digester 5.
- the waste liquid discharge port in the digester 5 is connected to the waste liquid bottle in the liquid storage bottle 4.
- the controller 10 controls the switch valve at the bottom of the digester 5 to open, the waste liquid is discharged into the waste liquid bottle.
- the controller 10 controls the switch of the photoelectric transmitter and the photoelectric receiver on the digester 5.
- the photoelectric transmitter and the photoelectric receiver are turned on, the reagents digested by the digester 5 are monitored.
- the optical signal monitored by the photoelectric receiver undergoes photoelectric conversion.
- Module 6 converts the ADC value into the ADC value of ADC converter 7.
- the ADC value is processed by MCU 8 and sent to data transmission module 9. and then sent to the controller 10.
- the embodiments of the present invention provide an anti-interference water quality analysis instrument testing method and system.
- the method includes blank calibration, recording the first measured ADC value after color development; first standard solution calibration, and color development. Then record the second measured ADC value; calibrate the second standard solution, record the third measured ADC value after color development; measure the anti-interference factor value, add the actual water sample according to the predetermined adding parameters, and add the first reagent for digestion.
- record the fourth measured ADC value add the same volume of distilled water as the second reagent and the third reagent, record the fifth measured ADC value after color development, according to the fourth measured ADC value and the fifth measured ADC value, obtain the anti-interference factor value; measure the actual water sample, add the actual water sample according to the predetermined liquid addition parameters, add the first reagent for digestion and then record the sixth measured ADC value, add the third
- the second reagent and the third reagent are used to record the seventh measurement ADC value after color development to obtain the actual measurement signal value after anti-inter
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
一种抗干扰的水质分析仪器测试方法及系统,方法包括:空白校准,显色后记录第一测量ADC值 (S101);第一标准液校准,显色后记录第二测量ADC值 (S102);第二标准液校准,显色后记录第三测量ADC值(S103);抗干扰因子值测量,按照预订的加液参数来加入实际水样,加入第一试剂进行消解后记录第四测量ADC值,加入与第二试剂和第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据第四测量ADC值和第五测量ADC值,获得抗干扰因子值(S104);测量实际水样,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值 (S105)。提供的抗干扰的水质分析仪器测试方法及系统,通过抗干扰因子值测量,测量实际水样时获得经过抗干扰处理后的实际测量信号值,从而提高检测精度。
Description
本发明涉及环保领域的水质分析仪器测试技术领域,特别是涉及一种抗干扰的水质分析仪器测试方法。
比色法(Colorimetry)是通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。常用的比色法包括目视比色法,是以朗伯-比尔定律(A=εbc)为基础。目视比色法是标准系列法,即用不同量的待测物标准溶液在完全相同的一组比色管中,先按分析步骤显色,配成颜色逐渐递变的标准色阶。试样溶液也在完全相同条件下显色,和标准色阶作比较,目视找出色泽最相近的那一份标准,由其中所含标准溶液的量,计算确定试样中待测组分的含量。
然而在现有的测量方法中,试剂具有颜色,在消解后比色会影响检测结果,产生干扰,会使检测结果偏大。
因此,有必要提供一种抗干扰的水质分析仪器测试方法及系统,以有效解决上述问题。
发明内容
本发明提供一种抗干扰的水质分析仪器测试方法及系统,通过抗干扰因子值测量,测量实际水样时获得经过抗干扰处理后的实际测量信号值,从而提高检测精度。
本发明实施例提供一种抗干扰的水质仪器测试方法,所述方法包
括:
空白校准,按照预订的加液参数来加入蒸馏水作为水样,加入第一试剂进行消解后,加入与第二试剂和第三试剂同体积的蒸馏水,显色后记录第一测量ADC值;
第一标准液校准,按照预订的加液参数来加入蒸馏水作为所述第一标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第二测量ADC值;
第二标准液校准,按照预订的加液参数加入所述第二标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第三测量ADC值;
抗干扰因子值测量,按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值;
测量实际水样,按照预订的加液参数来加入所述实际水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值。
优选地,所述第一试剂为氧化剂,所述第二试剂为缓冲剂,所述第三试剂为显色剂。
优选地,所述根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值,具体通过以下公式计算:
其中,β为所述抗干扰因子值,ADC5为所述第五测量ADC值,ADC4为所述第四测量ADC值。
优选地,所述获得经过抗干扰处理后的实际测量信号值,具体通过以下公式计算:
其中,CX为所述实际水样浓度,C2为所述第二标准液浓度,β为所述抗干扰因子值,ADC1为所述第二测量ADC值,ADC2为所述第三测量ADC值,ADC0为所述第一测量ADC值,ADCX1为所述第六测量ADC值,ADCX2为所述第七测量ADC值。
优选地,所述实际水样的浊度色度小于预设值。
优选地,所述抗干扰因子值根据预设周期进行测量。
本发明实施例还提供一种抗干扰的水质仪器测试系统,所述系统包括:
空白校准模块,其用于按照预订的加液参数来加入蒸馏水作为水样,加入第一试剂进行消解后,加入与第二试剂和第三试剂同体积的蒸馏水,显色后记录第一测量ADC值;
第一标准液校准模块,其用于按照预订的加液参数来加入蒸馏水作为所述第一标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第二测量ADC值;
第二标准液校准模块,其用于按照预订的加液参数加入所述第二标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第三测量ADC值;
抗干扰因子值测量模块,其用于按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值;
测量实际水样模块,其用于按照预订的加液参数来加入所述实际
水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值。
优选地,所述系统还包括:蠕动泵和多通阀,所述多通阀分别和计量器、消解器以及多个储液瓶连接,所述蠕动泵和所述计量器连接。
优选地,所述系统还包括:控制器,所述控制器和数据传送模块连接,所述数据传送模块和MCU连接,所述MCU和ADC转换器连接,所述ADC转换器和光电转换电路连接,所述光电转换电路和所述消解器连接。
优选地,所述控制器控制打开所述多通阀的开关阀,所述多个储液瓶中的一个内的试剂经过所述开关阀进入所述多通阀,然后进入所述计量器。
本发明实施例的技术方案具有以下有益效果:
本发明实施例提供的抗干扰的水质分析仪器测试方法及系统,方法包括空白校准,显色后记录第一测量ADC值;第一标准液校准,显色后记录第二测量ADC值;第二标准液校准,显色后记录第三测量ADC值;抗干扰因子值测量,按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值;测量实际水样,按照预订的加液参数来加入所述实际水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值,通过抗干扰因子值测量,测量实际水样时获得经过抗干扰处理后的实际测量信号值,从而提高检测精度。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,而不是全部实施例。对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一个实施例提供的一种抗干扰的水质分析仪器测试方法的流程示意图;
图2为本发明的一个实施例提供的一种抗干扰的水质分析仪器测试系统的模块示意图;
图3为本发明的又一个实施例提供的一种抗干扰的水质分析仪器测试系统的模块示意图;
图4为本发明的另一个实施例提供的一种抗干扰的水质分析仪器测试系统的模块示意图;
图5为本发明的一个实施例提供的一种抗干扰的水质分析仪器测试方法的实验数据表;
图6为本发明的一个实施例提供的一种抗干扰的水质分析仪器测试方法的实验数据图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面以具体的实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能
在某些实施例不再赘述。
基于现有技术存在的问题,本发明实施例提供一种抗干扰的水质分析仪器测试方法及系统,通过抗干扰因子值测量,测量实际水样时获得经过抗干扰处理后的实际测量信号值,从而提高检测精度。
本发明实施例提供一种抗干扰的水质仪器测试方法,所述方法包括:
步骤S101:空白校准,按照预订的加液参数来加入蒸馏水作为水样,加入第一试剂进行消解后,加入与第二试剂和第三试剂同体积的蒸馏水,显色后记录第一测量ADC值;
步骤S102:第一标准液校准,按照预订的加液参数来加入蒸馏水作为所述第一标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第二测量ADC值;
步骤S103:第二标准液校准,按照预订的加液参数加入所述第二标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第三测量ADC值;
步骤S104:抗干扰因子值测量,按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值;
步骤S105:测量实际水样,按照预订的加液参数来加入所述实际水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值。
所述第一试剂为氧化剂,所述第二试剂为缓冲剂,所述第三试剂为显色剂。
假设光源恒定不变,所述实际水样的浊度色度小于预设值,预设
值可以由本领域技术根据实际情况作出限定,在此情况下,ADC数值和色度为线性关系。
准备蒸馏水、第一标准液、第二标准液、第一试剂、第二试剂、第三试剂,上述液体的加入量根据计量器上的红外限位器结合控制器进行计量,加入量已经确定且可计量。蒸馏水浓度为C1=0mg/L,第一标准液的浓度为C1=0mg/L的蒸馏水,第二标准液的浓度为C2,单位为mg/L。
在具体实施中,所述根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值,具体通过以下公式计算:
其中,β为所述抗干扰因子值,ADC5为所述第五测量ADC值,ADC4为所述第四测量ADC值。
在具体实施中,所述获得经过抗干扰处理后的实际测量信号值,具体通过以下公式计算:
其中,CX为所述实际水样浓度,C2为所述第二标准液浓度,β为所述抗干扰因子值,ADC1为所述第二测量ADC值,ADC2为所述第三测量ADC值,ADC0为所述第一测量ADC值,ADCX1为所述第六测量ADC值,ADCX2为所述第七测量ADC值。
在具体实施中,所述抗干扰因子值根据预设周期进行测量,例如可以间隔一周测量一次抗干扰因子值,以确保抗干扰因子值的准确性。本领域技术人员可以根据实际水样的变化大小来决定测量频率,实际水样变化较大,可以每天测量一次抗干扰因子值,若实际水样变化较小,可以每周测量一次抗干扰因子值。因此抗干扰因子值是一个动态变化的过程。
图5为本发明的一个实施例提供的一种抗干扰的水质分析仪器
测试方法的实验数据表,图6为本发明的一个实施例提供的一种抗干扰的水质分析仪器测试方法的实验数据图。现在参看图5和图6,通过抗干扰因子值测量,测量实际水样时获得经过抗干扰处理后的实际测量信号值,从而提高检测精度。从图5和图6明显可以看出,通过对实际水样1、实际水样2、实际水样3、实际水样4、实际水样5分别进行未抗干扰检测、抗干扰处理检测、实验室检测以及第三方检测,比对获取的检测值,抗干扰处理后的水样检测值的精度要远远高于未干扰处理的水样检测值,抗干扰处理后的水样检测值更接近于实验室测试值以及第三方检测值。
图2为本发明的一个实施例提供的一种抗干扰的水质分析仪器测试系统的模块示意图,图3为本发明的又一个实施例提供的一种抗干扰的水质分析仪器测试系统的模块示意图,图4为本发明的另一个实施例提供的一种抗干扰的水质分析仪器测试系统的模块示意图。现在参看图2-图4,本发明实施例还提供一种抗干扰的水质仪器测试系统,所述系统包括:
空白校准模块21,其用于按照预订的加液参数来加入蒸馏水作为水样,加入第一试剂进行消解后,加入与第二试剂和第三试剂同体积的蒸馏水,显色后记录第一测量ADC值;
第一标准液校准模块22,其用于按照预订的加液参数来加入蒸馏水作为所述第一标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第二测量ADC值;
第二标准液校准模块23,其用于按照预订的加液参数加入所述第二标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第三测量ADC值;
抗干扰因子值测量模块24,其用于按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值;
测量实际水样模块25,其用于按照预订的加液参数来加入所述实际水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值。
在具体实施中,所述系统还包括:蠕动泵1和多通阀3,所述多通阀3分别和计量器2、消解器5以及多个储液瓶4连接,所述蠕动泵1和所述计量器2连接。
在具体实施中,所述系统还包括:控制器10,所述控制器10和数据传送模块9连接,所述数据传送模块9和MCU8连接,所述MCU8和ADC转换器7连接,所述ADC转换器7和光电转换电路6连接,所述光电转换电路6和所述消解器5连接。
在具体实施中,所述控制器10控制打开所述多通阀3的开关阀,所述多个储液瓶4中的一个内的试剂经过所述开关阀进入所述多通阀3,然后进入所述计量器2。
蠕动泵1抽吸多个储液瓶4中的一个,将储液瓶4中的一个内的试剂经过多通阀3,抽入计量器2中进行计量。例如,蠕动泵1抽吸储液瓶4中的一个,控制器19控制对应的多通阀3上的开关阀打开,储液瓶4中的一个内的试剂经过该开关阀进入多通阀3,然后进入计量器2,计量2上的两个以上的红外限位器检测到试剂,红外限位器检测信号,通过不同红外限位器检测信号可监测到计量器2内液体量,蠕动泵1停止,即可计量试剂量。之后,蠕动泵1反转,压出计量器2,同时,多通阀3上开关阀开启,从而将试剂压入消解器5中。消解器5内的废液排放口连接到储液瓶4中的废液瓶,当控制器10控制消解器5下部的开关阀打开时,废液排入废液瓶。
控制器10控制消解器5上的光电发射器和光电接收器开关,当光电发射器和光电接收器开启,对消解器5消解后的试剂进行监测,光电接收器监测到的光信号经过光电转换模块6转换为ADC转换器7的ADC数值,ADC数值经过MCU8处理送给数据传送模块9,之
后发送给控制器10。
综上所述,本发明实施例的本发明实施例提供的抗干扰的水质分析仪器测试方法及系统,方法包括空白校准,显色后记录第一测量ADC值;第一标准液校准,显色后记录第二测量ADC值;第二标准液校准,显色后记录第三测量ADC值;抗干扰因子值测量,按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值;测量实际水样,按照预订的加液参数来加入所述实际水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值,通过抗干扰因子值测量,测量实际水样时获得经过抗干扰处理后的实际测量信号值,从而提高检测精度。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (7)
- 一种抗干扰的水质仪器测试方法,其特征在于,所述方法包括:空白校准,按照预订的加液参数来加入蒸馏水作为水样,加入第一试剂进行消解后,加入与第二试剂和第三试剂同体积的蒸馏水,显色后记录第一测量ADC值,所述第一试剂为氧化剂,所述第二试剂为缓冲剂,所述第三试剂为显色剂;第一标准液校准,按照预订的加液参数来加入蒸馏水作为所述第一标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第二测量ADC值;第二标准液校准,按照预订的加液参数加入所述第二标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第三测量ADC值;抗干扰因子值测量,按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值,具体通过以下公式计算:
其中,β为所述抗干扰因子值,ADC5为所述第五测量ADC值,ADC4为所述第四测量ADC值;测量实际水样,按照预订的加液参数来加入所述实际水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值,具体通过以下公式计算:
其中,CX为所述实际水样浓度,C2为所述第二标准液浓度,β为所述抗干扰因子值,ADC1为所述第二测量ADC值,ADC2为所述第三测量ADC值,ADC0为所述第一测量ADC值,ADCX1为所述第六测量ADC值,ADCX2为所述第七测量ADC值。 - 根据权利要求1所述的抗干扰的水质仪器测试方法,其特征在于,所述实际水样的浊度色度小于预设值。
- 根据权利要求1所述的抗干扰的水质仪器测试方法,其特征在于,所述抗干扰因子值根据预设周期进行测量。
- 一种抗干扰的水质仪器测试系统,其特征在于,所述系统包括:空白校准模块,其用于按照预订的加液参数来加入蒸馏水作为水样,加入第一试剂进行消解后,加入与第二试剂和第三试剂同体积的蒸馏水,显色后记录第一测量ADC值,所述第一试剂为氧化剂,所述第二试剂为缓冲剂,所述第三试剂为显色剂;第一标准液校准模块,其用于按照预订的加液参数来加入蒸馏水作为所述第一标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第二测量ADC值;第二标准液校准模块,其用于按照预订的加液参数加入所述第二标准液,加入所述第一试剂进行消解后,加入所述第二试剂和所述第三试剂,显色后记录第三测量ADC值;抗干扰因子值测量模块,其用于按照预订的加液参数来加入实际水样,加入所述第一试剂进行消解后记录第四测量ADC值,加入与所述第二试剂和所述第三试剂同体积的蒸馏水,显色后记录第五测量ADC值,根据所述第四测量ADC值和所述第五测量ADC值,获得所述抗干扰因子值,具体通过以下公式计算:
其中,β为所述抗干扰因子值,ADC5为所述第五测量ADC值,ADC4为所述第四测量ADC值;测量实际水样模块,其用于按照预订的加液参数来加入所述实际水样,加入所述第一试剂进行消解后记录第六测量ADC值,加入所述第二试剂和所述第三试剂,显色后记录第七测量ADC值,获得经过抗干扰处理后的实际测量信号值,具体通过以下公式计算:
其中,CX为所述实际水样浓度,C2为所述第二标准液浓度,β为所述抗干扰因子值,ADC1为所述第二测量ADC值,ADC2为所述第三测量ADC值,ADC0为所述第一测量ADC值,ADCX1为所述第六测量ADC值,ADCX2为所述第七测量ADC值。 - 根据权利要求4所述的抗干扰的水质仪器测试系统,其特征在于,所述系统还包括:蠕动泵和多通阀,所述多通阀分别和计量器、消解器以及多个储液瓶连接,所述蠕动泵和所述计量器连接。
- 根据权利要求5所述的抗干扰的水质仪器测试系统,其特征在于,所述系统还包括:控制器,所述控制器和数据传送模块连接,所述数据传送模块和MCU连接,所述MCU和ADC转换器连接,所述ADC转换器和光电转换电路连接,所述光电转换电路和所述消解器连接。
- 根据权利要求6所述的抗干扰的水质仪器测试系统,其特征在于,所述控制器控制打开所述多通阀的开关阀,所述多个储液瓶中的一个内的试剂经过所述开关阀进入所述多通阀,然后进入所述计量器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211054170.9A CN115436354B (zh) | 2022-08-31 | 2022-08-31 | 一种抗干扰的水质分析仪器测试方法 |
CN202211054170.9 | 2022-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024046369A1 true WO2024046369A1 (zh) | 2024-03-07 |
Family
ID=84244585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/115858 WO2024046369A1 (zh) | 2022-08-31 | 2023-08-30 | 一种抗干扰的水质分析仪器测试方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115436354B (zh) |
WO (1) | WO2024046369A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115436354B (zh) * | 2022-08-31 | 2023-06-09 | 上海博取仪器有限公司 | 一种抗干扰的水质分析仪器测试方法 |
CN116840219B (zh) * | 2023-07-31 | 2024-03-19 | 上海博取仪器有限公司 | 一种水质总氮浓度的检测方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060078506A (ko) * | 2004-12-31 | 2006-07-05 | 한국과학기술연구원 | 물의 경도 측정 키트 및 이를 사용하는 측정 방법 |
CN108254318A (zh) * | 2017-12-29 | 2018-07-06 | 江苏汇环环保科技有限公司 | 一种抗干扰nh3-n在线自动监测仪 |
CN208140564U (zh) * | 2018-05-24 | 2018-11-23 | 赛默飞世尔(上海)仪器有限公司 | 水质在线监测仪与测量单元 |
JP2019100804A (ja) * | 2017-11-30 | 2019-06-24 | Jfeアドバンテック株式会社 | 濃度測定方法、濃度管理方法、濃度測定装置、及び濃度管理装置 |
CN110346355A (zh) * | 2019-06-28 | 2019-10-18 | 安徽皖仪科技股份有限公司 | 一种抗多种金属离子干扰的在线自动检测总锌的方法 |
CN111879766A (zh) * | 2020-07-22 | 2020-11-03 | 深圳市朗石科学仪器有限公司 | 一种含铅水样的测定方法 |
CN112798585A (zh) * | 2021-02-08 | 2021-05-14 | 中国地质调查局水文地质环境地质调查中心 | 一种现场测定水中亚铁浓度的显色管及检测方法 |
CN113884450A (zh) * | 2021-09-15 | 2022-01-04 | 五邑大学 | 一种用于水质自动监测仪的浊度色度校正方法 |
CN115436354A (zh) * | 2022-08-31 | 2022-12-06 | 上海博取仪器有限公司 | 一种抗干扰的水质分析仪器测试方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5230863A (en) * | 1987-07-21 | 1993-07-27 | Si Industrial Instruments, Inc. | Method of calibrating an automatic chemical analyzer |
JP2005265728A (ja) * | 2004-03-19 | 2005-09-29 | Horiba Advanced Techno Co Ltd | 比色法による定量分析方法 |
CN102809544B (zh) * | 2012-07-24 | 2016-01-20 | 广州市怡文环境科技股份有限公司 | 总铅在线自动监测仪 |
CN204495711U (zh) * | 2015-04-03 | 2015-07-22 | 中兴仪器(深圳)有限公司 | 一种物质浓度测量装置 |
CN106769938A (zh) * | 2016-12-30 | 2017-05-31 | 中兴仪器(深圳)有限公司 | 一种总氮在线分析仪和其检测方法 |
CN206696173U (zh) * | 2017-03-28 | 2017-12-01 | 江西洪图环保有限公司 | 一种在线水质分析仪 |
CN110646383A (zh) * | 2018-06-26 | 2020-01-03 | 山东思睿环境设备科技有限公司 | 一种水质总钴在线监测装置及监测方法 |
CN109187388A (zh) * | 2018-09-05 | 2019-01-11 | 安徽润安信科检测科技有限公司 | 一种白酒工业废水氨氮的色度浊度补偿测定方法 |
CN111474168A (zh) * | 2020-03-05 | 2020-07-31 | 力合科技(湖南)股份有限公司 | 余氯分析方法 |
-
2022
- 2022-08-31 CN CN202211054170.9A patent/CN115436354B/zh active Active
-
2023
- 2023-08-30 WO PCT/CN2023/115858 patent/WO2024046369A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060078506A (ko) * | 2004-12-31 | 2006-07-05 | 한국과학기술연구원 | 물의 경도 측정 키트 및 이를 사용하는 측정 방법 |
JP2019100804A (ja) * | 2017-11-30 | 2019-06-24 | Jfeアドバンテック株式会社 | 濃度測定方法、濃度管理方法、濃度測定装置、及び濃度管理装置 |
CN108254318A (zh) * | 2017-12-29 | 2018-07-06 | 江苏汇环环保科技有限公司 | 一种抗干扰nh3-n在线自动监测仪 |
CN208140564U (zh) * | 2018-05-24 | 2018-11-23 | 赛默飞世尔(上海)仪器有限公司 | 水质在线监测仪与测量单元 |
CN110346355A (zh) * | 2019-06-28 | 2019-10-18 | 安徽皖仪科技股份有限公司 | 一种抗多种金属离子干扰的在线自动检测总锌的方法 |
CN111879766A (zh) * | 2020-07-22 | 2020-11-03 | 深圳市朗石科学仪器有限公司 | 一种含铅水样的测定方法 |
CN112798585A (zh) * | 2021-02-08 | 2021-05-14 | 中国地质调查局水文地质环境地质调查中心 | 一种现场测定水中亚铁浓度的显色管及检测方法 |
CN113884450A (zh) * | 2021-09-15 | 2022-01-04 | 五邑大学 | 一种用于水质自动监测仪的浊度色度校正方法 |
CN115436354A (zh) * | 2022-08-31 | 2022-12-06 | 上海博取仪器有限公司 | 一种抗干扰的水质分析仪器测试方法 |
Non-Patent Citations (2)
Title |
---|
GOLOVANOV V. I.: "Main Factors Affecting the Photographic Determination of the Turbidity and Chromaticity of Water", JOURNAL OF ANALYTICAL CHEMISTRY., CONSULTANTS BUREAU. NEW YORK., US, vol. 75, no. 3, 1 March 2020 (2020-03-01), US , pages 320 - 329, XP037080996, ISSN: 1061-9348, DOI: 10.1134/S1061934820030053 * |
YI YANG: "Calibration Method of Multi Parameter Water Quality Analyzer by Colorimetric Method", CHEMICAL ENGINEERING DESIGN COMMUNICATIONS, HUNAN CHEMICAL AND PHARMACEUTICAL DESIGN INSTITUTE, CN, 30 April 2016 (2016-04-30), CN , XP093143856, ISSN: 1003-6490 * |
Also Published As
Publication number | Publication date |
---|---|
CN115436354A (zh) | 2022-12-06 |
CN115436354B (zh) | 2023-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024046369A1 (zh) | 一种抗干扰的水质分析仪器测试方法 | |
WO2024046372A1 (zh) | 一种高低浓度实时切换的分析仪比色系统及其使用方法 | |
CN107703202B (zh) | 一种高锰酸盐指数在线监测自动滴定判定方法及其装置 | |
CN201069389Y (zh) | 光电颜色识别测试仪 | |
CN111103338B (zh) | 基于网络的多模式自动pH测量仪及其测量方法 | |
US20200271590A1 (en) | Rapid joint detection device and detection method for deterioration degree of fried oil | |
US20120275958A1 (en) | Determination method and instruments of hexavalent chromium | |
CN112595711A (zh) | 一种滴定终点判定装置 | |
CN109506706A (zh) | 一种基于多传感器的药理学实验用滴定系统及方法 | |
CN104132939A (zh) | 一种蜂蜜中淀粉酶值的快速检测方法 | |
CN109406425A (zh) | 用于检测水中二氧化氯的检测剂及其制备方法和检测方法 | |
CN112505239A (zh) | 用于粮食脂肪酸值测定分析仪器的滴定终点自动判定方法 | |
CN104390918A (zh) | 一种糖尿病及其并发症的无创检测系统和方法 | |
CN113514601A (zh) | 一种高锰酸盐指数在线检测方法及系统 | |
CN110441509B (zh) | 用于免疫反应物检测的定标方法、装置及终端设备 | |
CN104820078B (zh) | 一种多量程检测系统 | |
US3635564A (en) | System for measuring organic content of water | |
CN111735906A (zh) | 测定水样碱度的方法及分析系统 | |
CN110449197A (zh) | 一种移液器容量的校准方法 | |
Goodall et al. | Automatic determination of penicillin in fermentation broth: an improved iodimetric assay | |
CN212228721U (zh) | 一种铝含量在线式检测系统 | |
CN106442349A (zh) | 一种比色测量装置及其使用方法 | |
CN109297959B (zh) | 一种水体中Mn(Ⅱ)含量的半定量在线检测装置及其检测方法 | |
CN211043111U (zh) | 食糖中亚硝酸盐检测装置 | |
CN110398272A (zh) | 一种用于自动确定被测液体的测量变量的分析仪表 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23859398 Country of ref document: EP Kind code of ref document: A1 |