WO2024046372A1 - 一种高低浓度实时切换的分析仪比色系统及其使用方法 - Google Patents

一种高低浓度实时切换的分析仪比色系统及其使用方法 Download PDF

Info

Publication number
WO2024046372A1
WO2024046372A1 PCT/CN2023/115865 CN2023115865W WO2024046372A1 WO 2024046372 A1 WO2024046372 A1 WO 2024046372A1 CN 2023115865 W CN2023115865 W CN 2023115865W WO 2024046372 A1 WO2024046372 A1 WO 2024046372A1
Authority
WO
WIPO (PCT)
Prior art keywords
cuvette
water sample
tested
light emitter
formula
Prior art date
Application number
PCT/CN2023/115865
Other languages
English (en)
French (fr)
Inventor
燕海鹏
程奇峰
张超敏
Original Assignee
上海博取仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海博取仪器有限公司 filed Critical 上海博取仪器有限公司
Publication of WO2024046372A1 publication Critical patent/WO2024046372A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4044Concentrating samples by chemical techniques; Digestion; Chemical decomposition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the invention relates to the technical field of water quality monitoring equipment in the field of environmental protection, and in particular to an analyzer colorimetric system with real-time switching of high and low concentrations and a method of using the same.
  • colorimetry is a method for determining the content of a component to be measured by comparing or measuring the color depth of a colored substance solution.
  • colorimetric methods There are two commonly used colorimetric methods: visual colorimetric method and photoelectric colorimetric method. Both methods are based on Lambert-Beer's law.
  • the commonly used visual colorimetric method is the standard series method, which uses different amounts of standard solutions of the test substance in the same set of colorimetric tubes, first develops the color according to the analysis steps, and prepares a standard color scale with gradually changing colors. . The sample solution also develops color under the same conditions. Compare it with the standard color scale. Visually find the standard with the closest color. Based on the amount of the standard solution contained in it, calculate and determine the component to be tested in the sample.
  • photoelectric colorimetry eliminates subjective errors, improves measurement accuracy, and can eliminate interference by selecting filters, thereby improving selectivity.
  • the photoelectric colorimeter uses a tungsten light source and filter, which is only suitable for the visible spectrum region and can only obtain composite light in a certain wavelength range, not a monochromatic light beam.
  • the invention provides an analyzer colorimetric system with real-time switching of high and low concentrations and a method of using the same. By judging whether to use a low range or a high range, the detection accuracy of the high range of water samples to be detected is improved.
  • Embodiments of the present invention provide an analyzer colorimetric system with real-time switching of high and low concentrations.
  • the system includes:
  • a peristaltic pump and a multi-way valve is connected to a meter, a digestion tank, a colorimeter and a plurality of reagent bottles respectively, and the peristaltic pump is connected to the meter;
  • the controller is connected to the data transmission circuit, the data transmission circuit is connected to the MCU, the MCU is connected to the ADC converter, the ADC converter is connected to the photoelectric conversion circuit, the photoelectric conversion circuit is connected to the Colorimeter connection;
  • the colorimeter includes a cuvette, a light emitter and a light receiver, the cuvette is connected to the light emitter and the light receiver respectively, and the cuvette has a first position and a second position.
  • the cuvette is perpendicular to the light emitter and the light receiver.
  • the cuvette is in the second position.
  • the cuvette is parallel to the light emitter and the light receiver.
  • the controller controls opening of a switching valve of the multi-way valve, and the reagent in one of the plurality of reagent bottles enters the multi-way valve through the switching valve and then enters the meter.
  • the meter is provided with a plurality of infrared limiters.
  • the peristaltic pump stops, and the meter controls the reagent. Measure the above reagents.
  • the system further includes a rotating motor, the controller is connected to the rotating motor, the cuvette is fixed on the rotating disk, and the rotating disk is fixed on the working rod of the rotating motor;
  • the controller controls the rotating motor to rotate, it drives the rotating disk to rotate, and then drives the cuvette to rotate to the first position or the second position.
  • the colorimeter further includes a colorimetric bracket, and the colorimetric bracket is used to fix the light emitter, the light receiver and the rotation motor.
  • the system further includes a touch screen, the touch screen is connected to the controller, and the touch screen is used to display the position of the rotation motor.
  • the cuvette is a rectangular parallelepiped, and the length and width of the cuvette are different.
  • Embodiments of the present invention also provide a method of using an analyzer colorimetric system suitable for real-time switching of high and low concentrations as described above.
  • the method of use includes:
  • the water sample to be measured is measured, and the water sample to be measured enters the cuvette after digestion;
  • the concentration value of the water sample to be tested is calculated through the first formula
  • the concentration value of the water sample to be tested is calculated by using the second formula.
  • the first formula is as follows:
  • C The value after sample ADC conversion.
  • the second formula is as follows:
  • C The value after ADC conversion of the water sample.
  • the embodiment of the present invention provides an analyzer colorimetric system for real-time switching of high and low concentrations and a method of using the same.
  • the cuvettes are respectively connected to the light emitter and the light receiver.
  • the cuvettes have a first position and a In the second position, when the cuvette is in the first position, the cuvette is perpendicular to the light emitter and the light receiver.
  • the cuvette is in the second position, , the cuvette is parallel to the light emitter and the light receiver, so that the water sample to be measured can be conveniently measured horizontally and vertically;
  • the water sample to be measured enters the cuvette after digestion; let the cuvette be in the first position and the second position respectively, and use the first formula and the second position respectively.
  • the second formula is used to calculate the concentration value of the water sample to be tested; when the concentration value of the water sample to be tested is less than or equal to the first standard value, the concentration value of the water sample to be tested is calculated through the first formula; when When the concentration value of the water sample to be tested is greater than the first standard value and less than or equal to the second standard value, the concentration value of the water sample to be tested is calculated through the second formula, so that the concentration value of the water sample to be tested can be determined. High or low, to determine whether to use low range or high range, thereby improving the detection accuracy of high range of water samples to be detected.
  • Figure 1 is a schematic structural diagram of an analyzer colorimetric system for real-time switching of high and low concentrations provided by one embodiment of the present invention
  • Figure 2 is a schematic diagram of the control relationship of the analyzer colorimetric system for real-time switching of high and low concentrations provided by another embodiment of the present invention
  • Figure 3 is a schematic structural diagram of a colorimeter of an analyzer colorimetric system for real-time switching of high and low concentrations provided by one embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method of using an analyzer colorimetric system for real-time switching of high and low concentrations provided by one embodiment of the present invention.
  • embodiments of the present invention provide an analyzer colorimetric system with real-time switching of high and low concentrations and a method of using it. By judging whether to use a low range or a high range, the detection accuracy of the high range of the water sample to be detected is improved.
  • Figure 1 is a schematic structural diagram of an analyzer colorimetric system for real-time switching between high and low concentrations provided by one embodiment of the present invention.
  • Figure 2 is a control relationship of an analyzer colorimetric system for real-time switching between high and low concentrations provided by another embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a colorimeter of an analyzer colorimetric system for real-time switching of high and low concentrations provided by one embodiment of the present invention.
  • an embodiment of the present invention provides a real-time switching of high and low concentrations.
  • Analyzer colorimetric system the system includes: peristaltic pump 1 and multi-way valve 3, the The multi-way valve 3 is connected to the meter 2, the digestion tank 4, the colorimeter 5 and multiple reagent bottles 6 respectively, the peristaltic pump 1 is connected to the meter 2; the controller 19, the controller 19 and data
  • the transmission circuit 10 is connected, the data transmission circuit 10 is connected to the MCU9, the MCU9 is connected to the ADC converter 8, the ADC converter 8 is connected to the photoelectric conversion circuit 7, the photoelectric conversion circuit 7 is connected to the color comparator 5 connection; wherein, the colorimeter 5 includes a cuvette 16, a light emitter 12 and a light receiver 13.
  • the cuvette 16 is connected to the light emitter 12 and the light receiver 13 respectively.
  • the cuvette 16 has a first position and a second position. When the cuvette 16 is in the first position, the cuvette 16 is vertical to the light emitter 12 and the light receiver 13, When the cuvette 16 is in the second position, the cuvette 16 is parallel to the light emitter 12 and the light receiver 13 .
  • the first position is the vertical position and the second position is the horizontal position.
  • the controller 19 controls to open the switching valve of the multi-way valve 2, and the reagent in one of the plurality of reagent bottles 6 enters the multi-way valve 2 through the switching valve, and then enters the multi-way valve 2.
  • the meter 2 is provided with multiple infrared limiters. When at least two of the multiple infrared limiters detect the reagent, the peristaltic pump 1 stops. The meter 2 measures the reagent.
  • the system further includes a rotating motor 14.
  • the controller 19 is connected to the rotating motor 14.
  • the cuvette 16 is fixed on the rotating disk 15.
  • the rotating disk 15 is fixed on the rotating disk.
  • the controller 19 controls the rotation of the rotating motor 14, it drives the rotating disk 15 to rotate, and then drives the cuvette 16 to rotate to the first position or the second position. .
  • the colorimeter 5 further includes a colorimetric bracket 11 , which is used to fix the light emitter 12 , the light receiver 13 and the rotating motor 14 .
  • the system further includes a touch screen 20 connected to the controller 19 , and the touch screen 20 is used to display the position of the rotation motor 14 .
  • the cuvette 16 is a rectangular parallelepiped, and the length of the cuvette 16 is and width are different.
  • the peristaltic pump 1 sucks one of the plurality of reagent bottles 6, and the reagent in one of the reagent bottles 6 passes through the multi-way valve 3 and is pumped into the meter 2 for measurement.
  • the controller 19 controls the switch valve on the corresponding multi-way valve 3 to open, and the reagent in one of the reagent bottles 6 passes through the switch valve and enters the multi-way valve 3, and then Enter the meter 2, and more than two infrared limiters on the meter 2 detect the reagent.
  • the signals are detected and measured through different infrared limiters.
  • the peristaltic pump 1 stops, and the reagent amount can be measured.
  • the peristaltic pump 1 reverses and presses out the meter 2.
  • the controller 19 controls the opening and closing valve of the multi-way valve 3 to press the reagent into the digestion tank 4.
  • oxidant reagent A is added to the digestion tank 4 for digestion, and the heating device of the digestion tank 4 digests the water sample.
  • buffer reagent B is added in sequence, and chromogen reagent C is added to perform a color reaction.
  • the peristaltic pump 1 presses the digested water sample in the digestion tank 4 into the cuvette 16 of the colorimeter 5 .
  • the light emitter 12 and light receiver 13 of the color comparator 5 perform color comparison on the water sample in the color vessel 16, and pass the colorimetric signal through the photoelectric conversion circuit 7, ADC converter 8, MCU 9, and data transmission circuit 10 in sequence, and finally The ADC numerical signal is sent to the controller 19 and displayed on the touch screen 20 .
  • Embodiments of the present invention also provide a method of using an analyzer colorimetric system suitable for real-time switching of high and low concentrations as described above.
  • the method of use includes:
  • Step 401 Measure the water sample to be tested, and enter the cuvette after digestion;
  • Step 402 Let the cuvettes be in the first position and the second position respectively, and calculate the concentration value of the water sample to be measured through the first formula and the second formula respectively;
  • Step 403 When the concentration value of the water sample to be tested is less than or equal to the first standard value, calculate the concentration value of the water sample to be tested through the first formula
  • Step 404 When the concentration value of the water sample to be tested is greater than the first standard value and less than or equal to the second standard value, calculate the concentration value of the water sample to be tested through the second formula.
  • the first standard value is the concentration value of standard solution 1
  • the second standard value is the concentration value of standard solution 2. value.
  • standard solution 1 is a low-concentration water sample with a known concentration value
  • standard solution 2 is a high-concentration water sample with a known concentration value
  • Standard solution 3 is 0 mol ⁇ L -1 .
  • the first formula is as follows:
  • C The value after sample ADC conversion.
  • the second formula is as follows:
  • C The value after ADC conversion of the water sample.
  • the standard liquid 1 and the standard liquid 3 are combined, and the cuvette 16 is parallel to the light emitter 12 and the light receiver 13 respectively, that is, the cuvette 16 is the first position, that is, the lateral position, and the first formula can be obtained by calibration. .
  • the standard liquid 2 and the standard liquid 3 are combined, and the cuvette 16 is perpendicular to the light emitter 12 and the light receiver 13 respectively, that is, the cuvette 16 is in the second position, that is, the vertical position, and the second formula can be obtained by calibration.
  • the water sample to be measured is measured.
  • the water sample to be measured enters the cuvette 16 after digestion.
  • the cuvette 16 is placed in the second position, that is, the vertical position, and the first position, that is, the horizontal position. , respectively substituted into the first formula and the second formula to calculate the concentration value of the water sample to be tested, when the concentration value of the water sample to be tested is between the concentration value of standard solution 3 and the concentration value of standard solution 1, that is, the concentration value 0 and the standard
  • the concentration values of liquid 1 that is to say, when the water sample to be tested is of low concentration, substitute the first formula to calculate the concentration value of the water sample to be tested.
  • the sample concentration value is between the concentration value of standard solution 1 and the concentration value of standard solution 2. That is to say, when the water sample to be tested is of high concentration, substitute the second formula to calculate the concentration value of the water sample to be tested, and complete the concentration of the water sample to be tested. value measurement.
  • embodiments of the present invention provide an analyzer colorimetric system for real-time switching of high and low concentrations and a method of using the same.
  • the cuvettes are respectively connected to the light emitter and the light receiver.
  • the cuvette has a first position and a second position. When the cuvette is in the first position, the cuvette is vertical to the light emitter and the light receiver. When the cuvette is in the first position, the cuvette is vertical to the light emitter and the light receiver. When the cuvette is in the second position, the cuvette is parallel to the light emitter and the light receiver, so that the water sample to be measured can be measured conveniently horizontally and vertically;
  • the water sample to be measured enters the cuvette after digestion; let the cuvette be in the first position and the second position respectively, and use the first formula and the second position respectively.
  • the second formula is used to calculate the concentration value of the water sample to be tested; when the concentration value of the water sample to be tested is less than or equal to the first standard value, the concentration value of the water sample to be tested is calculated through the first formula; when When the concentration value of the water sample to be tested is greater than the first standard value and less than or equal to the second standard value, the concentration value of the water sample to be tested is calculated through the second formula, so that the concentration value of the water sample to be tested can be determined. High or low, to determine whether to use low range or high range, thereby improving the detection accuracy of high range of water samples to be detected.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种高低浓度实时切换的分析仪比色系统及其使用方法,系统包括:蠕动泵和多通阀,多通阀分别和计量器、消解池、比色器以及多个试剂瓶连接,蠕动泵和计量器连接;控制器,控制器和数据传输电路连接,数据传输电路和MCU连接,MCU和ADC转换器连接,ADC转换器和光电转换电路连接,光电转换电路和比色器连接;其中,比色器包括比色皿、光发射器和光接收器,比色皿分别连接光发射器、光接收器,当比色皿处于第一位置时,比色皿和光发射器、光接收器垂直,当比色皿处于第二位置时,比色皿和光发射器、光接收器平行。本发明提供的高低浓度实时切换的分析仪比色系统及其使用方法,通过判断使用低量程还是高量程,提高待检测水样高量程的检测精度。

Description

一种高低浓度实时切换的分析仪比色系统及其使用方法 技术领域
本发明涉及环保领域的水质监测设备技术领域,特别是涉及一种高低浓度实时切换的分析仪比色系统及其使用方法。
背景技术
现有技术中,比色法(Colorimetry)是通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。常用的比色法有两种:目视比色法和光电比色法,两种方法都是以朗伯-比尔定律为基础。常用的目视比色法是标准系列法,即用不同量的待测物标准溶液在完全相同的一组比色管中,先按分析步骤显色,配成颜色逐渐递变的标准色阶。试样溶液也在完全相同条件下显色,和标准色阶作比较,目视找出色泽最相近的那一份标准,由其中所含标准溶液的量,计算确定试样中待测组分的含量。与目视比色法相比,光电比色法消除了主观误差,提高了测量准确度,而且可以通过选择滤光片来消除干扰,从而提高了选择性。但光电比色计采用钨灯光源和滤光片,只适用于可见光谱区和只能得到一定波长范围的复合光,而不是单色光束。
水质监测中,采用光电比色法测量氨氮、总磷、总氮等物质含量。但是使用光电比色法测大量程时,量程的20%以下无法准确测量,必须要进行量程切换,而目前的量程切换存在很多弊端:1、需要盲测一次判断水样处于高量程还是低量程范围,因此浪费试剂,增加测量时间;2、往往切换量程所需的测试时间都大于1个小时,导致仪器1小时内不能完成测试,从而满足不了最新的环保行业要求。比色法高量程测试不能满足示值误差(±3%)的要求。高量程需要对水样进 行稀释,同时稀释的次数越多,测试产生误差越大。高量程的测量浓度越大,透光率接近0%,吸光度趋于无穷大,将无法进行有效定量。
因此,有必要提供一种高低浓度实时切换的分析仪比色系统及其使用方法,以有效解决上述问题。
发明内容
本发明提供一种高低浓度实时切换的分析仪比色系统及其使用方法,通过判断使用低量程还是高量程,提高待检测水样高量程的检测精度。
本发明实施例提供一种高低浓度实时切换的分析仪比色系统,所述系统包括:
蠕动泵和多通阀,所述多通阀分别和计量器、消解池、比色器以及多个试剂瓶连接,所述蠕动泵和所述计量器连接;
控制器,所述控制器和数据传输电路连接,所述数据传输电路和MCU连接,所述MCU和ADC转换器连接,所述ADC转换器和光电转换电路连接,所述光电转换电路和所述比色器连接;
其中,所述比色器包括比色皿、光发射器和光接收器,所述比色皿分别连接所述光发射器、所述光接收器,所述比色皿具有第一位置和第二位置,当所述比色皿处于所述第一位置时,所述比色皿和所述光发射器、所述光接收器垂直,当所述比色皿处于所述第二位置时,所述比色皿和所述光发射器、所述光接收器平行。
优选地,所述控制器控制打开所述多通阀的开关阀,所述多个试剂瓶中的一个内的试剂经过所述开关阀进入所述多通阀,然后进入所述计量器。
优选地,所述计量器上设置有多个红外限位器,当所述多个红外限位器中的至少两个检测到所述试剂时,所述蠕动泵停止,所述计量器对所述试剂进行计量。
优选地,所述系统还包括转动电机,所述控制器和所述转动电机连接,所述比色皿固定在转动盘上,所述转动盘固定在所述转动电机的工作杆上;所述控制器控制所述转动电机转动时,带动所述转动盘转动,进而带动所述比色皿转动到所述第一位置或所述第二位置。
优选地,所述比色器还包括比色支架,所述比色支架用于固定所述光发射器、所述光接收器和所述转动电机。
优选地,所述系统还包括触摸屏,所述触摸屏和所述控制器连接,所述触摸屏用于显示所述转动电机的位置。
优选地,所述比色皿为长方体,所述比色皿的长度和宽度不同。
本发明实施例还提供适用于如上述高低浓度实时切换的分析仪比色系统的使用方法,所述使用方法包括:
对待测水样进行测量,待测水样经过消解后进入所述比色皿;
让所述比色皿分别处于所述第一位置和所述第二位置,分别通过第一公式和第二公式进行计算所述待测水样的浓度值;
当所述待测水样的浓度值小于等于第一标准值时,通过第一公式计算得到所述待测水样的浓度值;
当所述待测水样的浓度值大于第一标准值且小于等于第二标准值时,通过第二公式计算得到所述待测水样的浓度值。
优选地,所述第一公式具体如下:
其中,Cx为所述待测水样的浓度值,ADC01为零点校准时横向ADC转换后的数值,ADC1为低浓度校准时横向ADC转换后的数值,ADCx为所述待测水样ADC转换后的数值。
优选地,所述第二公式具体如下:
其中,Cx为所述待测水样的浓度值,ADC02为零点校准时纵向ADC转换后的数值,ADC2为高浓度校准时纵向ADC转换后的数值,ADCx为为所述待测水样ADC转换后的数值。
本发明实施例的技术方案具有以下有益效果:
本发明实施例提供的高低浓度实时切换的分析仪比色系统及其使用方法,所述比色皿分别连接所述光发射器、所述光接收器,所述比色皿具有第一位置和第二位置,当所述比色皿处于所述第一位置时,所述比色皿和所述光发射器、所述光接收器垂直,当所述比色皿处于所述第二位置时,所述比色皿和所述光发射器、所述光接收器平行,从而可以方便地对待测水样进行横向和纵向测量;
进一步地,对待测水样进行测量,待测水样经过消解后进入所述比色皿;让所述比色皿分别处于所述第一位置和所述第二位置,分别通过第一公式和第二公式进行计算所述待测水样的浓度值;当所述待测水样的浓度值小于等于第一标准值时,通过第一公式计算得到所述待测水样的浓度值;当所述待测水样的浓度值大于第一标准值且小于等于第二标准值时,通过第二公式计算得到所述待测水样的浓度值,从而可以通过判断待测水样的浓度值高低,来确定使用低量程还是高量程,从而提高待检测水样高量程的检测精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,而不是全部实施例。对于本领域普通技术人员来讲,在不付出创造性劳动性的前提 下,还可以根据这些附图获得其他的附图。
图1为本发明的一个实施例提供的高低浓度实时切换的分析仪比色系统的结构示意图;
图2为本发明的另一个实施例提供的高低浓度实时切换的分析仪比色系统的控制关系示意图;
图3为本发明的一个实施例提供的高低浓度实时切换的分析仪比色系统的比色器的结构示意图;
图4为本发明的一个实施例提供的高低浓度实时切换的分析仪比色系统的使用方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面以具体的实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
基于现有技术存在的问题,本发明实施例提供一种高低浓度实时切换的分析仪比色系统及其使用方法,通过判断使用低量程还是高量程,提高待检测水样高量程的检测精度。
图1为本发明的一个实施例提供的高低浓度实时切换的分析仪比色系统的结构示意图,图2为本发明的另一个实施例提供的高低浓度实时切换的分析仪比色系统的控制关系示意图,图3为本发明的一个实施例提供的高低浓度实时切换的分析仪比色系统的比色器的结构示意图,现在参看图1-图3,本发明实施例提供一种高低浓度实时切换的分析仪比色系统,所述系统包括:蠕动泵1和多通阀3,所述 多通阀3分别和计量器2、消解池4、比色器5以及多个试剂瓶6连接,所述蠕动泵1和所述计量器2连接;控制器19,所述控制器19和数据传输电路10连接,所述数据传输电路10和MCU9连接,所述MCU9和ADC转换器8连接,所述ADC转换器8和光电转换电路7连接,所述光电转换电路7和所述比色器5连接;其中,所述比色器5包括比色皿16、光发射器12和光接收器13,所述比色皿16分别连接所述光发射器12、所述光接收器13,所述比色皿16具有第一位置和第二位置,当所述比色皿16处于所述第一位置时,所述比色皿16和所述光发射器12、所述光接收器13垂直,当所述比色皿16处于所述第二位置时,所述比色皿16和所述光发射器12、所述光接收器13平行。第一位置为竖向位置,第二位置为横向位置。
在具体实施中,所述控制器19控制打开所述多通阀2的开关阀,所述多个试剂瓶6中的一个内的试剂经过所述开关阀进入所述多通阀2,然后进入所述计量器2。
在具体实施中,所述计量器2上设置有多个红外限位器,当所述多个红外限位器中的至少两个检测到所述试剂时,所述蠕动泵1停止,所述计量器2对所述试剂进行计量。
在具体实施中,所述系统还包括转动电机14,所述控制器19和所述转动电机14连接,所述比色皿16固定在转动盘15上,所述转动盘15固定在所述转动电机14的工作杆上;所述控制器19控制所述转动电机14转动时,带动所述转动盘15转动,进而带动所述比色皿16转动到所述第一位置或所述第二位置。
在具体实施中,所述比色器5还包括比色支架11,所述比色支架11用于固定所述光发射器12、所述光接收器13和所述转动电机14。
在具体实施中,所述系统还包括触摸屏20,所述触摸屏20和所述控制器19连接,所述触摸屏20用于显示所述转动电机14的位置。
在具体实施中,所述比色皿16为长方体,所述比色皿16的长度 和宽度不同。
在具体使用时,蠕动泵1抽吸多个试剂瓶6中的一个,将试剂瓶6中的一个内的试剂经过多通阀3,抽入计量器2中进行计量。例如,蠕动泵1抽吸试剂瓶6中的一个,控制器19控制对应的多通阀3上的开关阀打开,试剂瓶6中的一个内的试剂经过该开关阀进入多通阀3,然后进入计量器2,计量器2上的两个以上的红外限位器检测到试剂,通过不同红外限位器检测信号并计量,蠕动泵1停止,即可计量试剂量。之后,蠕动泵1反转,压出计量器2,同时,控制器19控制多通阀3上开关阀,从而将试剂压入消解池4中。先将氧化剂试剂A加入消解池4消解,消解池4的加热装置对水样进行消解,消解完成后依次加入缓冲剂试剂B,显色剂试剂C进行显色反应。之后,蠕动泵1将消解池4内的消解后的水样压入比色器5的比色皿16中。
比色器5的光发射器12和光接收器13对比色皿16内的水样进行比色,并将比色信号依次经过光电转换电路7、ADC转换器8、MCU9、数据传输电路10,最终将ADC数值信号送给控制器19,并通过触摸屏20显示。
本发明实施例还提供适用于如上述高低浓度实时切换的分析仪比色系统的使用方法,所述使用方法包括:
步骤401:对待测水样进行测量,待测水样经过消解后进入所述比色皿;
步骤402:让所述比色皿分别处于所述第一位置和所述第二位置,分别通过第一公式和第二公式进行计算所述待测水样的浓度值;
步骤403:当所述待测水样的浓度值小于等于第一标准值时,通过第一公式计算得到所述待测水样的浓度值;
步骤404:当所述待测水样的浓度值大于第一标准值且小于等于第二标准值时,通过第二公式计算得到所述待测水样的浓度值。
第一标准值为标准液1的浓度值,第二标准值为标准液2的浓度 值。使用时,采用三种标准液1、标准液2、标准液3对系统进行校准,标准液1为已知浓度值的低浓度水样,标准液2为已知浓度值的高浓度水样,标准液3为0mol·L-1
在具体实施中,所述第一公式具体如下:
其中,Cx为所述待测水样的浓度值,ADC01为零点校准时横向ADC转换后的数值,ADC1为低浓度校准时横向ADC转换后的数值,ADCx为所述待测水样ADC转换后的数值。
在具体实施中,所述第二公式具体如下:
其中,Cx为所述待测水样的浓度值,ADC02为零点校准时纵向ADC转换后的数值,ADC2为高浓度校准时纵向ADC转换后的数值,ADCx为为所述待测水样ADC转换后的数值。
使用时,标准液1和标准液3结合,将比色皿16分别同光发射器12和光接收器13相互平行,即比色皿16为第一位置,即横向位置,校准可得到第一公式。
标准液2和标准液3结合,将比色皿16分别同光发射器12和光接收器13相互垂直,即比色皿16为第二位置,即竖向位置,校准可得到第二公式。
校准完成后,对待测水样进行测量,待测水样进过消解后进入比色皿16,分别将比色皿16置于第二位置,即竖向位置,以及第一位置,即横向位置,分别代入第一公式和第二公式进行计算所述待测水样的浓度值,当待测水样浓度值在标准液3浓度值和标准液1浓度值之间,即浓度值0和标准液1浓度值之间,也就是说待测水样为低浓度时,代入第一公式计算为待测水样浓度值,当待测水 样浓度值在标准液1浓度值到标准液2浓度值之间,也就是说待测水样为高浓度时,代入第二公式进行计算为待测水样浓度值,完成待测水样浓度值测量。
综上所述,本发明实施例的本发明实施例提供的高低浓度实时切换的分析仪比色系统及其使用方法,所述比色皿分别连接所述光发射器、所述光接收器,所述比色皿具有第一位置和第二位置,当所述比色皿处于所述第一位置时,所述比色皿和所述光发射器、所述光接收器垂直,当所述比色皿处于所述第二位置时,所述比色皿和所述光发射器、所述光接收器平行,从而可以方便地对待测水样进行横向和纵向测量;
进一步地,对待测水样进行测量,待测水样经过消解后进入所述比色皿;让所述比色皿分别处于所述第一位置和所述第二位置,分别通过第一公式和第二公式进行计算所述待测水样的浓度值;当所述待测水样的浓度值小于等于第一标准值时,通过第一公式计算得到所述待测水样的浓度值;当所述待测水样的浓度值大于第一标准值且小于等于第二标准值时,通过第二公式计算得到所述待测水样的浓度值,从而可以通过判断待测水样的浓度值高低,来确定使用低量程还是高量程,从而提高待检测水样高量程的检测精度。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

  1. 一种适用于高低浓度实时切换的分析仪比色系统的使用方法,其特征在于,
    所述系统包括:
    蠕动泵和多通阀,所述多通阀分别和计量器、消解池、比色器以及多个试剂瓶连接,所述蠕动泵和所述计量器连接;
    控制器,所述控制器和数据传输电路连接,所述数据传输电路和MCU连接,所述MCU和ADC转换器连接,所述ADC转换器和光电转换电路连接,所述光电转换电路和所述比色器连接;
    其中,所述比色器包括比色皿、光发射器和光接收器,所述比色皿分别连接所述光发射器、所述光接收器,所述比色皿具有第一位置和第二位置,当所述比色皿处于所述第一位置时,所述比色皿和所述光发射器、所述光接收器垂直,当所述比色皿处于所述第二位置时,所述比色皿和所述光发射器、所述光接收器平行;
    所述使用方法包括:
    对待测水样进行测量,待测水样经过消解后进入所述比色皿;
    让所述比色皿分别处于所述第一位置和所述第二位置,分别通过第一公式和第二公式进行计算所述待测水样的浓度值;
    当所述待测水样的浓度值小于等于第一标准值时,通过第一公式计算得到所述待测水样的浓度值;所述第一公式具体如下:
    其中,Cx为所述待测水样的浓度值,ADC01为零点校准时横向ADC转换后的数值,ADC1为低浓度校准时横向ADC转换后的数值,ADCx为所述待测水样ADC转换后的数值;
    当所述待测水样的浓度值大于第一标准值且小于等于第二标准值时,通过第二公式计算得到所述待测水样的浓度值;所述第二公式具体如下:
    其中,Cx为所述待测水样的浓度值,ADC02为零点校准时纵向ADC转换后的数值,ADC2为高浓度校准时纵向ADC转换后的数值,ADCx为所述待测水样ADC转换后的数值。
  2. 根据权利要求1所述的使用方法,其特征在于,所述控制器控制打开所述多通阀的开关阀,所述多个试剂瓶中的一个内的试剂经过所述开关阀进入所述多通阀,然后进入所述计量器。
  3. 根据权利要求2所述的使用方法,其特征在于,所述计量器上设置有多个红外限位器,当所述多个红外限位器中的至少两个检测到所述试剂时,所述蠕动泵停止,所述计量器对所述试剂进行计量。
  4. 根据权利要求1所述的使用方法,其特征在于,所述系统还包括转动电机,所述控制器和所述转动电机连接,所述比色皿固定在转动盘上,所述转动盘固定在所述转动电机的工作杆上;所述控制器控制所述转动电机转动时,带动所述转动盘转动,进而带动所述比色皿转动到所述第一位置或所述第二位置。
  5. 根据权利要求4所述的使用方法,其特征在于,所述比色器还包括比色支架,所述比色支架用于固定所述光发射器、所述光接收器和所述转动电机。
  6. 根据权利要求4所述的使用方法,其特征在于,所述系统还包括触摸屏,所述触摸屏和所述控制器连接,所述触摸屏用于显示所述转动电机的位置。
  7. 根据权利要求1所述的使用方法,其特征在于,所述比色皿为长方体,所述比色皿的长度和宽度不同。
PCT/CN2023/115865 2022-08-31 2023-08-30 一种高低浓度实时切换的分析仪比色系统及其使用方法 WO2024046372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211053604.3 2022-08-31
CN202211053604.3A CN115436353B (zh) 2022-08-31 2022-08-31 一种高低浓度实时切换的分析仪比色系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2024046372A1 true WO2024046372A1 (zh) 2024-03-07

Family

ID=84244358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115865 WO2024046372A1 (zh) 2022-08-31 2023-08-30 一种高低浓度实时切换的分析仪比色系统及其使用方法

Country Status (2)

Country Link
CN (1) CN115436353B (zh)
WO (1) WO2024046372A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436353B (zh) * 2022-08-31 2023-06-30 上海博取仪器有限公司 一种高低浓度实时切换的分析仪比色系统及其使用方法
CN115931451B (zh) * 2023-03-10 2023-09-01 中绿环保科技股份有限公司 一种适用于地表水监测的采样分析单元
CN116609279B (zh) * 2023-05-29 2023-12-22 上海博取仪器有限公司 一种水质检测设备光源的校准装置
CN116840219B (zh) * 2023-07-31 2024-03-19 上海博取仪器有限公司 一种水质总氮浓度的检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080293091A1 (en) * 2007-05-25 2008-11-27 Ravi Kanipayor Apparatus and methods for automated diffusion filtration, culturing and photometric detection and enumeration of microbiological parameters in fluid samples
CN201993318U (zh) * 2011-04-02 2011-09-28 南通汇环环保科技有限公司 氨氮在线自动监测仪
CN106442349A (zh) * 2016-09-14 2017-02-22 南京南瑞集团公司 一种比色测量装置及其使用方法
US20190128907A1 (en) * 2017-10-31 2019-05-02 Canon Medical Systems Corporation Calibration curve generating method and automatic analyzing apparatus
CN110646383A (zh) * 2018-06-26 2020-01-03 山东思睿环境设备科技有限公司 一种水质总钴在线监测装置及监测方法
CN115436353A (zh) * 2022-08-31 2022-12-06 上海博取仪器有限公司 一种高低浓度实时切换的分析仪比色系统及其使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307718B2 (en) * 2004-02-23 2007-12-11 Ortho-Clinical Diagnostics, Inc. Determining an analyte by multiple measurements through a cuvette
CN203011829U (zh) * 2012-11-20 2013-06-19 北京雪迪龙科技股份有限公司 一种比色皿、水质浓度检测装置及水质监测系统
CN204495711U (zh) * 2015-04-03 2015-07-22 中兴仪器(深圳)有限公司 一种物质浓度测量装置
CN204758475U (zh) * 2015-07-07 2015-11-11 烟台东润仪表有限公司 一种双光程分析方法的在线氨氮分析仪
CN207636479U (zh) * 2017-11-24 2018-07-20 南瑞集团有限公司 一种带有平端光学测量窗口的消解比色池
CN215640837U (zh) * 2021-09-14 2022-01-25 深圳市清时捷科技有限公司 一种微量多光程流动比色装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080293091A1 (en) * 2007-05-25 2008-11-27 Ravi Kanipayor Apparatus and methods for automated diffusion filtration, culturing and photometric detection and enumeration of microbiological parameters in fluid samples
CN201993318U (zh) * 2011-04-02 2011-09-28 南通汇环环保科技有限公司 氨氮在线自动监测仪
CN106442349A (zh) * 2016-09-14 2017-02-22 南京南瑞集团公司 一种比色测量装置及其使用方法
US20190128907A1 (en) * 2017-10-31 2019-05-02 Canon Medical Systems Corporation Calibration curve generating method and automatic analyzing apparatus
CN110646383A (zh) * 2018-06-26 2020-01-03 山东思睿环境设备科技有限公司 一种水质总钴在线监测装置及监测方法
CN115436353A (zh) * 2022-08-31 2022-12-06 上海博取仪器有限公司 一种高低浓度实时切换的分析仪比色系统及其使用方法

Also Published As

Publication number Publication date
CN115436353A (zh) 2022-12-06
CN115436353B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2024046372A1 (zh) 一种高低浓度实时切换的分析仪比色系统及其使用方法
US11486798B2 (en) Water quality analyzer and method for analyzing water quality
WO2017012168A1 (zh) 一种优化的适合医学检验的生化检测方法
WO2024046369A1 (zh) 一种抗干扰的水质分析仪器测试方法
US9638640B2 (en) Automatic analyzer
JPH0134337B2 (zh)
BR112020020717B1 (pt) Sistema de titulação automatizado, e, método para quantificar uma concentração de analito alvo em uma corrente de amostra
CN109506706A (zh) 一种基于多传感器的药理学实验用滴定系统及方法
CN112595711A (zh) 一种滴定终点判定装置
JPH0690208B2 (ja) 自動分析装置
JPH0627743B2 (ja) 自動分析装置
WO2021258552A1 (zh) 应用于水质检测仪的计时检测系统
KR100421105B1 (ko) 단일 또는 혼합염료로 조액된 단일 또는 혼합염액의 보정방법
CN110208260A (zh) 一种面粉中溴酸钾快速检测试剂、试剂盒以及检测方法
CN110987845A (zh) 一种单、双组分染液中染料浓度的实时检测方法
JP2007187445A (ja) 自動分析装置
JP3206999B2 (ja) サンプル希釈誤差の検出方法およびそれを用いるサンプル希釈誤差の検出装置
CN112098598B (zh) 一种混合器混合效果的检测方法及其检测装置
CN112257017A (zh) 标准化残差检验法一元线性逐点分析方法及系统和装置
CN1104771A (zh) 水中溶解氧含量自动测量装置
CN108535498A (zh) 水中铝自动分析装置及分析方法
CN116735152B (zh) 一种比色法光源同一性检测装置
Liedtke et al. Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium.
CN213689652U (zh) 一种检测水中总磷的仪器设备
CN108152467A (zh) 一种工业污水检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859401

Country of ref document: EP

Kind code of ref document: A1