WO2021258552A1 - 应用于水质检测仪的计时检测系统 - Google Patents

应用于水质检测仪的计时检测系统 Download PDF

Info

Publication number
WO2021258552A1
WO2021258552A1 PCT/CN2020/114603 CN2020114603W WO2021258552A1 WO 2021258552 A1 WO2021258552 A1 WO 2021258552A1 CN 2020114603 W CN2020114603 W CN 2020114603W WO 2021258552 A1 WO2021258552 A1 WO 2021258552A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
timing
detection
water quality
time
Prior art date
Application number
PCT/CN2020/114603
Other languages
English (en)
French (fr)
Inventor
苏涛
周晨
刘伟佳
缪爱纯
李关侠
陈煜辉
蔡振山
Original Assignee
深圳市长隆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市长隆科技有限公司 filed Critical 深圳市长隆科技有限公司
Publication of WO2021258552A1 publication Critical patent/WO2021258552A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to the technical field of water quality detection equipment, and in particular to a timing detection system applied to a water quality detection instrument.
  • Water quality detector a professional instrument used to analyze the content of water quality components, mainly refers to the instrument for measuring COD, ammonia nitrogen, total phosphorus and other items in the water. In order to protect the water environment, it is necessary to strengthen the monitoring of sewage discharge. The water quality detector is used in environmental protection and Played an important role in water resources protection.
  • the first step is to put the tested water sample into the water quality detector; the second step is to wait for a fixed time, then operate the water quality detector to obtain the parameters of the tested sample; but in the process of waiting for a fixed time, the test Personnel need to use the alarm clock to remind them, which is inconvenient; at the same time, it is easy to fail to operate the water quality detector in time because of other things, which leads to the inability to obtain the detection data in time; this affects the accuracy and consistency of the detection results.
  • the present invention provides a timing detection system applied to a water quality detector, which is used to control the water quality detector to automatically obtain sample data after a predetermined time, which eliminates the need for external alarm clock reminders. It is troublesome and overcomes the defect that manual acquisition of inspection data easily delays the inspection time.
  • the present invention provides a timing detection system applied to a water quality detector, including
  • the timing module receives the time setting, and generates a control signal when the set time is reached;
  • the detection module is used to detect the water sample, and the water sample is detected when the timing module starts timing;
  • the obtaining module in response to the control signal sent by the timing module, obtains the detection result of the detection module at that moment.
  • the timing module first obtains the standard curve type of the water sample when receiving the time setting, and generates different time settings according to different types of standard curves.
  • the timing module manually sets the time value when receiving the time setting.
  • the detection module when the detection module detects the water sample, it first detects the blank sample container, and then detects the sample container after adding the water sample, and the timing module starts timing when the sample container is detected.
  • the above-mentioned water samples need to undergo pretreatment.
  • the pretreatment here includes digestion and color development.
  • the color development is mainly achieved by adding a color developer.
  • the above blank sample can be pure water, air, or pure water that has undergone the same pretreatment as the water sample.
  • the detection module includes a processing module, and the processing module is used to initialize the detection result of the empty container by the detection module.
  • the detection result is manually or automatically stored.
  • automatic storage of detection results is temporary storage or automatic storage.
  • the detection module detects the water sample by spectrophotometry to obtain the transmittance and absorbance values of the sample, and the acquisition module obtains the parameter values of the water sample by the standard curve method.
  • the standard curve method means that a straight line equation is determined by more than three sets of standard water sample concentration and absorbance values. This straight line is the standard curve; the absorbance of the unknown water sample can be obtained by the instrument, and the water sample can be obtained by substituting it into the straight line equation The concentration value.
  • the system further includes a warning module, which acquires the water quality discharge standard before the detection module detects the water sample; after the acquisition module acquires the detection result of the detection module, the warning module responds to the comparison result of the detection result and the water quality discharge standard.
  • the instrument will sound an alarm and vibrate, and the color result will flash to remind the user.
  • the present invention provides a timing detection system applied to a water quality detector, including a timing module, a detection module, and an acquisition module; the timing module is used to detect the time of the detection module Perform timing, and send a signal to the acquisition module when the estimated time is reached, and the acquisition module will obtain the detection result at that moment; it not only eliminates the need to use an external alarm clock to remind the traditional detection process, but also overcomes the manual acquisition of detection data and easy delay detection The flaw of time.
  • Figure 1 is a block diagram of the structural relationship of the present invention
  • Figure 2 is a flow chart of the timing module of the present invention automatically generating a set time to detect a water sample
  • Fig. 3 is a flow chart of water sample detection by resetting the time of the timing module of the present invention.
  • the present invention provides a timing detection system applied to a water quality detector; please refer to Fig. 1, the system includes:
  • the timing module receives the time setting, and generates a control signal when the set time is reached;
  • the detection module is used to detect the water sample, and the water sample is detected when the timing module starts timing;
  • the obtaining module in response to the control signal sent by the timing module, obtains the detection result of the detection module at that moment.
  • the timing module in the present invention is used to time the detection time of the detection module, and send a signal to the acquisition module when the estimated time is reached, and the acquisition module acquires the detection result of the detection module at that moment;
  • the trouble of using an external alarm clock for timing reminders is overcome, and the defect that manual acquisition of inspection data easily delays the inspection time is overcome.
  • the detection module detects the water sample
  • the water sample is detected by spectrophotometry
  • the basic principle of the detection method is: the substance interacts with light and has the characteristic of selective absorption; the color of the colored substance is the interaction of the substance with light Produced; that is, the color presented by the colored solution is caused by the selective absorption of light by the substances in the solution; because different substances have different molecular structures and different wavelengths of light absorption capacity, it has a structure with a characteristic structure Group, there is the maximum actual wavelength that selects the absorption characteristics to form the maximum absorption peak, which produces a unique absorption spectrum; even the same substance has a different degree of light absorption due to its different content; use the unique absorption spectrum of the substance to
  • the method of identifying the existence of a substance (qualitative analysis), or using the degree of absorption of a certain wavelength of light by a substance to determine the content of a substance (quantitative analysis) is called spectrophotometry.
  • the detection module obtains the light transmittance and absorbance values, and the acquisition module obtains the specific parameter values of the water sample according to the light wavelength, transmittance, and absorbance;
  • the parameters of the water sample include COD, ammonia nitrogen, total phosphorus, Items such as total nitrogen; the water quality detector can detect any one or more of the above parameters.
  • the detection module starts detection, and the acquisition module acquires the detection result of the detection module when the timing module reaches the set time.
  • the timing module When the timing module receives the time setting, the timing module automatically generates the time setting; the specific automatic generation time setting method is: first obtain the standard curve type of the water sample, and generate the corresponding time setting according to the different types of standard curves; and the standard curve
  • the type is determined by the type of parameters to be tested and the type of container; the types of parameters to be tested include parameters including COD, ammonia nitrogen, total phosphorus, total nitrogen, etc., and the container types include colorimetric tubes and cuvettes, but are not limited to this.
  • Example 1 The parameter to be measured of the water sample is COD, the container is a colorimetric tube, the standard curve at this time is the COD-colorimetric tube curve, and the time generated by the timing module is set to 3min.
  • Example 2 The parameter to be measured of the water sample is COD, the container is a cuvette, the standard curve at this time is the COD-cuvette curve, and the time generated by the timing module is set to 3min.
  • Example 3 The parameter to be measured of the water sample is ammonia salicylate, the container is a colorimetric tube, the standard curve at this time is the Nessler ammonia-colorimetric tube curve, and the time generated by the timing module is set to 15min.
  • Example 4 The parameter to be measured of the water sample is Nessler's ammonia nitrogen, and the time generated by the timing module is set to 10 minutes.
  • Example 5 The parameter to be measured of the water sample is hexavalent chromium, and the time generated by the timing module is set to 5 minutes.
  • the acquisition module acquires the absorbance value at that moment, and obtains the concentration value of the parameter to be measured through the corresponding standard curve; among them, the absorbance value and the color rendering Time-related, the color development time is: add the reagent to the water sample to be tested until the absorbance of the water sample to be tested is basically stable; the time setting generated by the timing module is the same as the color development time, and the most accurate time can be obtained in time
  • the absorbance value can also get the most accurate detection parameter value; for different test parameters, the timing module automatically generates different time settings; the traditional detection process uses an external alarm clock to time the absorbance and manually click to obtain the absorbance, which is easy to miss the color development time , There is a situation where the absorbance is acquired too early or too late, causing errors in the final detection value.
  • the time value received by the timing module can also be manually set; after the timing module automatically generates the time setting value according to the standard curve, the time value can be manually set and adjusted; For example: the sample to be tested, the color development is completed before the instrument is put into the instrument, and the instrument is directly measured. At this time, the set value needs to be adjusted to 0 or directly click the "measurement" button to measure immediately; another example , That is, the user feels that the default setting time is too short and the sample is not stable. He wants to extend the color development time. For example, when the water sample is tested for the content of Nessler's ammonia nitrogen, the setting time of the timing module can be adjusted to 20 minutes.
  • the detection time of the detection module will directly affect the detection result; the timing module automatically generates the corresponding detection time according to the standard curve, eliminating the trouble of manually setting the time for each detection; the operation is more convenient, At the same time, when special testing items are needed, the time value received by the timing module can be changed by manual setting; expanding the scope of application.
  • the detection module when the detection module detects a water sample, it first detects the container with a blank sample, and then detects the sample container after adding the water sample.
  • the timing module starts timing when it detects the container after adding the water sample. ; Because the water quality detector uses spectrophotometry to detect water samples, it is necessary to eliminate the influence of the container itself on the detection results, and then add the water sample to the container for detection; in order to accurately control the actual detection of the water sample by the detection module Time, the timing module starts timing when the water sample is added for detection.
  • the detection module includes a processing module, and the processing module is used to initialize the influence of the empty container on the detection result.
  • the acquisition module obtains the detection result of the detection module at that moment, and automatically stores the detection result; waits for the detection personnel to process the result; the detection personnel can delete the result or continue to save The result; among them, the automatic storage of the test result is temporary storage or automatically saved in the database; if it is temporarily saved, the data is not stored in the database after the tester deletes the data; after the tester continues to save the result, the data is saved In the database; if it is automatically saved in the database, the inspector needs to go to the database to delete the data.
  • a warning module is also included.
  • the detection module obtains the water quality discharge standard before detecting the water sample; after the acquisition module obtains the detection result of the detection module, the warning module responds to the comparison value between the detection result and the water quality discharge standard.
  • Water quality discharge standards include GB8978-1996 Comprehensive Wastewater Discharge Standard, GB4287-2012 Textile Dyeing and Finishing Industry Pollutant Discharge Standard, GB3544-2008 Pulp and Paper Industry Water Pollutant Discharge Standard, etc.; for example, GB3544-2008 stipulates the ammonia nitrogen content in wastewater No higher than 15mg/L. When the ammonia nitrogen content of the current water sample is higher than this standard, the warning module will send out a warning of exceeding the standard.
  • the container is a colorimetric tube
  • Step 1 Select manual measurement
  • Step 2 Select COD-colorimetric tube standard curve
  • Step 3 Put in an empty test tube; and click the blank button, the detection module obtains the detection parameters of the empty colorimetric tube, and the processing module eliminates the influence of the empty colorimetric tube on the detection result;
  • Step 4 Select the detection standard, and after adding the water sample to the empty colorimetric tube, click the measurement button; the timing module automatically generates the set time;
  • Step 5 When the detection module clicks the measurement button, it starts to detect the water sample and the timing module starts timing; the acquisition module acquires the absorbance value detected by the detection module and the wavelength value of the light after the timing module reaches the set time; The above-mentioned value and the standard curve obtain the COD content; if the COD content is higher than the standard value, the warning module sends out a warning of exceeding the standard.
  • the timing module in the present invention is used to time the detection time of the detection module, and send a signal to the acquisition module when the estimated time is reached, and the acquisition module obtains the detection result at that moment; it eliminates the need to use external components in the traditional detection process.
  • the trouble of the alarm clock reminds, and overcomes the defect that manual acquisition of inspection data easily delays the inspection time.
  • the timing module When the timing module receives the time setting, the timing module automatically generates the time setting according to the standard curve type of the water sample; the time setting generated by the timing module is the same as the color rendering time, and the most accurate absorbance value can be obtained in time. The most accurate detection parameter value can be obtained; for different parameters to be tested at the same time, the timing module automatically generates the corresponding time setting.
  • the detection module detects the water sample, it first detects the empty container, and then detects the container after adding the water sample. In order to accurately control the actual detection time of the water sample by the detection module, the timing module performs the detection after adding the water sample Hour start timing.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种应用于水质检测仪的计时检测系统,属于水质检测设备领域,其包括计时模块(3)、检测模块(1)和获取模块(2);计时模块(3)用于对检测模块(1)的检测时间进行计时,并在达到预计时间后发送信号至获取模块(2),获取模块(2)获取该时刻的检测结果;该检测系统既免去传统检测过程中需要利用外部闹钟计时提醒的麻烦,又克服了人工获取检测数据容易延误检测时间的缺陷。

Description

应用于水质检测仪的计时检测系统 技术领域
 本发明涉及水质检测设备技术领域,尤其涉及一种应用于水质检测仪的计时检测系统。
背景技术
    水质检测仪,用于分析水质成分含量的专业仪表,主要指测量水中:COD、氨氮、总磷等项目的仪器,为了保护水环境,必须加强对污水排放的监测,水质检测仪在环境保护和水资源保护中起到了重要的作用。
    对于水质检测仪,一般要求具有直观、灵敏度高、轻巧便携等特性;因此如何提高检测精度是本领域的主要研发方向,而对于如何提高水质检测仪的操作便捷性,业内几乎未提供适合解决方案。
    在水质检测实操过程中,第一步是将检测水样放入水质检测仪;第二步是等待固定时间后,操作水质检测仪获取检测样品的参数;但在等待固定时间过程中,检测人员需要借助闹钟计时提醒,多有不便;同时也容易因为忙于其他事情而未能及时操作水质检测仪,导致不能及时获取检测数据;而影响到检测结果的精准度和一致性。
技术问题
针对上述技术中存在的不足之处,本发明提供一种应用于水质检测仪的计时检测系统,用于控制水质检测仪在预定的时间后自动获取样品的数据,既免去外部闹钟计时提醒的麻烦,又克服了人工获取检测数据容易延误检测时间的缺陷。
技术解决方案
为实现上述目的,本发明提供一种应用于水质检测仪的计时检测系统,包括
计时模块,接收时间设定,在达到设定时间后生成控制信号;
检测模块,用于检测水样,并在计时模块开始计时对水样进行检测;
获取模块,响应于计时模块发送的控制信号,获取该时刻检测模块的检测结果。
优选的方案,计时模块在接收时间设定时,先获取水样标准曲线类型,根据不同类型标准曲线生成不同的时间设定。
具体的方案,选择标准曲线类型时,根据待测的参数类型和容器类型选择标准曲线类型。
另一种方案,计时模块在接收时间设定时,人为设定时间值。
优选的方案,检测模块检测水样时,先对装有空白样品容器进行检测,再对加入水样后的样品容器进行检测,计时模块在对样品容器进行检测时开始计时。
上述的水样是需要经过预处理的,这里的预处理包括消解和显色,显色主要是通过添加显色剂实现。
上述的空白样品可以是纯水,也可以是空气,也可以是与水样经过相同预处理的纯水。
具体的方案,检测模块包括处理模块,处理模块用于初始化检测模块对空容器检测结果。
优选的方案,获取模块获取该时刻的检测模块的检测结果后,手动或者自动存储该检测结果。
具体的方案,自动存储检测结果为临时存储或者自动保存。
具体的方案,检测模块通过分光光度法检测水样,得到样品透过率和吸光度值,获取模块通过标准曲线法得到水样参数数值。
标准曲线法是指,通过三组以上的标准水样浓度和吸光度值确定一个直线方程,这条直线就是标准曲线;通过仪器可以获得未知水样的吸光度,将其代入直线方程就可以获得水样的浓度值。
优选的方案,该系统还包括警示模块,检测模块检测水样前,获取水质排放标准;获取模块获取检测模块的检测结果后,警示模块响应于检测结果与水质排放标准的比对结果。
如果检测结果超过排放标准,仪器将发出报警声音和震动,并且显色结果闪烁,以提醒使用者。
有益效果
本发明的有益效果是:与现有技术相比,本发明提供了一种应用于水质检测仪的计时检测系统,包括计时模块、检测模块和获取模块;计时模块用于对检测模块的检测时间进行计时,并在达到预计时间后发送信号至获取模块,获取模块获取该时刻的检测结果;既免去传统检测过程中需要利用外部闹钟计时提醒的麻烦,又克服了人工获取检测数据容易延误检测时间的缺陷。
附图说明
图1为本发明的构造关系方框图;
图2为本发明的计时模块自动生成设定时间检测水样流程图;
图3为本发明的重新设定计时模块时间检测水样流程图。
主要元件符号说明如下:
1、检测模块;2、获取模块;3、计时模块。
本发明的实施方式
为了更清楚地表述本发明,下面结合附图对本发明作进一步地描述。
如背景技术所述,按传统方式操作水质检测仪时,检测人员需要利用外部设备对水质检测仪的检测时间进行计时,以保证得到可信的水样检测值;但是利用外部设备计时存在弊端,一是需要借助外部设备,麻烦,二是检测人员如果忙于其他事容易错过获取检测数据的时间段,导致最终的到的检测数据值不准确,不客观。
基于上述问题,本发明提供了一种应用于水质检测仪的计时检测系统;请参阅图1,该系统包括:
计时模块,接收时间设定,在达到设定时间后生成控制信号;
检测模块,用于检测水样,并在计时模块开始计时对水样进行检测;
获取模块,响应于计时模块发送的控制信号,获取该时刻检测模块的检测结果。
与现有技术相比,本发明中的计时模块用于对检测模块的检测时间进行计时,并在达到预计时间后发送信号至获取模块,获取模块获取该时刻检测模块的检测结果;既免去传统检测过程中需要利用外部闹钟计时提醒的麻烦,又克服了人工获取检测数据容易延误检测时间的缺陷。
在本实施例中,检测模块检测水样时,利用分光光度法检测水样;该检测方法的基本原理为:物质与光作用,具有选择吸收的特性;有色物质的颜色是该物质与光作用产生的;即有色溶液所呈现的颜色是由于溶液中的物质对光的选择性吸收所致;由于不同的物质其分子结构不同,对不同波长光的吸收能力也不同,因此具有特征结构的结构集团,存在选择吸收特性的最大实收波长,形成最大吸收峰,而产生特有的吸收光谱;即使是相同的物质由于其含量不同,对光的吸收程度也不同;利用物质所特有的吸收光谱来鉴别物质的存在(定性分析),或利用物质对一定波长光的吸收程度来测定物质含量(定量分析)的方法,称为分光光度法。
在本实施例中,检测模块得到光线透过率和吸光度值,获取模块根据光线波长、透过率、吸光度值得到水样具体参数值;其中,水样的参数包括COD、氨氮、总磷、总氮等项目;水质检测仪可以对上述参数中的任意一项或多项进行检测。
在具体操作过程中,计时模块先接收时间设定后,检测模块开始检测,获取模块在计时模块达到设定时间时,获取检测模块的检测结果。
计时模块在接收时间设定时,计时模块自动生成时间设定;具体的自动生成时间设定方式为:先获取水样标准曲线类型,根据不同类型标准曲线生成相应的时间设定;而标准曲线类型,由待测的参数类型和容器类型决定;待检测参数类型包括参数包括COD、氨氮、总磷、总氮等,容器类型包括比色管和比色皿等,但不限于此。
实例1:水样的待测的参数为COD,容器为比色管,此时的标准曲线为COD-比色管曲线,计时模块生成的时间设定为3min。
实例2:水样的待测的参数为COD,容器为比色皿,此时的标准曲线为COD-比色皿曲线,计时模块生成的时间设定为3min。
实例3:水样的待测的参数为水杨酸氨单,容器为比色管,此时的标准曲线为纳氏氨氮-比色管曲线,计时模块生成的时间设定为15min。
实例4:水样的待测的参数为纳氏氨氮,计时模块生成的时间设定为10分钟。
实例5:水样的待测的参数为六价铬,计时模块生成的时间设定为5分钟。
在上述实例中,当检测模块的检测时间达到计时模块的设定值时,获取模块获取该时刻的吸光度值,并通过相应的标准曲线得到待测参数的浓度值;其中,吸光度值与显色时间相关联,显色时间为:将试剂加入待测水样,直至待测水样的吸光度基本稳定的反应时间;计时模块生成的时间设定与该显色时间相同,可以及时获取最精确的吸光度值,也就能得到最精确的检测参数值;测试的参数不同,计时模块自动生成不同的时间设定;传统的检测过程,通过外部闹钟计时并通过人为点击获取吸光度,容易错过显色时间,出现过早或者过晚获取吸光度的情况,使得最终检测值出现误差。
计时模块在接收时间设定时,计时模块接收的时间值还可以通过人为设定;计时模块根据标准曲线,自动生成时间设定值后,可以人为设定调整该时间值;    例如:待测样品,在放入仪器之前,已经显色完成,放进仪器就直接测,此时,设定值就需要调为0或直接点击“测量”按钮,即可立即测量;又例如,就是使用者感觉默认设定值时间太短,样品还不稳定,他想延长显色时间,比如水样测试纳氏氨氮的含量时,可以把计时模块的设定时间调为20分钟。
在本实施例中,检测模块的检测时间将直接影响到检测结果;计时模块根据标准曲线自动生成与之相应的检测时间,免去每次检测都需要人为设定时间的麻烦;操作更便捷,同时在需要特殊检测项目时,又可以通过人为设定改变计时模块接收的时间值;拓展应用范围。
在本实施例中,检测模块检测水样时,先对装有空白样品容器进行检测,再对加入水样后的样品容器进行检测,计时模块在对加入水样后的容器进行检测时开始计时;由于水质检测仪采用分光光度法对水样进行检测,故需要先消除容器本身对检测结果的影响后,再在容器内加入水样进行检测;为了精准的控制检测模块对水样的实际检测时间,计时模块在加入水样后进行检测时开始计时。
在本实施例中,检测模块包括处理模块,处理模块用于初始化空容器对检测结果的影响。
在本实施例中,计时模块达到设定值后,获取模块获取该时刻检测模块的检测结果,并自动存储该检测结果;等待检测人员对该结果进行处理;检测人员可以删除该结果或者继续保存该结果;其中,自动存储检测结果为临时存储或者自动保存在数据库中;若为临时保存,则检测人员删除该数据后,该数据不存入数据库;检测人员继续保存该结果后,该数据存入数据库中;若自动保存在数据库中,则检测人员需要到数据库中才删除该数据。
在本实施例中,还包括警示模块,检测模块检测水样前,获取水质排放标准;获取模块获取检测模块的检测结果后,警示模块响应于检测结果与水质排放标准的对比值。
水质排放标准包括GB8978-1996污水综合排放标准、GB4287-2012纺织染整工业污染物排放标准、GB3544-2008制浆造纸工业水污染物排放标准等等;例如GB3544-2008标准中规定废水中氨氮含量不得高于15mg/L,当前水样的氨氮含量高于该标准时,则警示模块发出超标提醒。
下面以实操为例,更全面展示本申请的方案;请参阅图2和图3。
检测水样的中COD含量,容器为比色管;
步骤1:选择手动测量;
步骤2:选择COD-比色管标准曲线;
步骤3:放入空试管;并点击空白按键,检测模块获取空比色管的检测参数,处理模块消除空比色管对检测结果的影响;
步骤4:选择检测标准,并在向空比色管加入水样后,点击测量按键;计时模块自动生成设定时间;
步骤5:检测模块在点击测量按键时,对水样开始进行检测,同时计时模块开始计时;获取模块在计时模块达到设定时间后,获取检测模块检测的吸光度值,以及光线波长值;并根据上述数值和标准曲线得出COD含量;若COD含量高于标准值,则警示模块发出超标提醒。
在步骤4中的点击测量按键之前,可以点击重新调整计时模块的设定时间;点击测量按键后,以重新设定时间开始计时。
工业实用性
1、本发明中的计时模块用于对检测模块的检测时间进行计时,并在达到预计时间后发送信号至获取模块,获取模块获取该时刻的检测结果;既免去传统检测过程中需要利用外部闹钟计时提醒的麻烦,又克服了人工获取检测数据容易延误检测时间的缺陷。
2、计时模块在接收时间设定时,计时模块根据水样标准曲线类型自动生成时间设定;计时模块生成的时间设定与该显色时间相同,可以及时获取最精确的吸光度值,也就能得到最精确的检测参数值;同时测试的参数不同,计时模块自动生成相应的时间设定。
3、检测模块检测水样时,先对空容器进行检测,再对加入水样后的容器进行检测,为了精准的控制检测模块对水样的实际检测时间,计时模块在加入水样后进行检测时开始计时。
序列表自由内容
    以上公开的仅为本发明的几个具体实施例,但是本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (10)

  1. 一种应用于水质检测仪的计时检测系统,其特征在于,包括
    计时模块,接收时间设定,在达到设定时间后生成控制信号;
    检测模块,用于检测水样,并在计时模块开始计时对水样进行检测;
    获取模块,响应于计时模块发送的控制信号,获取该时刻检测模块的检测结果。
  2. 根据权利要求1所述的应用于水质检测仪的计时检测系统,其特征在于,计时模块在接收时间设定时,先获取水样标准曲线类型,根据不同类型标准曲线生成不同的时间设定。
  3. 根据权利要求2所述的应用于水质检测仪的计时检测系统,其特征在于,选择标准曲线类型时,根据待测的参数类型和容器类型选择标准曲线类型。
  4. 根据权利要求1所述的应用于水质检测仪的计时检测系统,其特征在于,计时模块在接收时间设定时,人为设定时间值。
  5. 根据权利要求1所述的应用于水质检测仪的计时检测系统,其特征在于,检测模块检测水样时,先对装有空白样品容器进行检测,再对加入水样后的样品容器进行检测,计时模块在对样品容器进行检测时开始计时。
  6. 根据权利要求5所述的应用于水质检测仪的计时检测系统,其特征在于,检测模块包括处理模块,处理模块用于初始化检测模块对空容器检测结果。
  7. 根据权利要求1所述的应用于水质检测仪的计时检测系统,其特征在于,获取模块获取该时刻的检测模块的检测结果后,自动或手动存储该检测结果。
  8. 根据权利要求7所述的应用于水质检测仪的计时检测系统,其特征在于,自动存储检测结果为临时存储或者自动保存。
  9. 根据权利要求1所述的应用于水质检测仪的计时检测系统,其特征在于,检测模块通过分光光度法检测水样,得到样品光线透过率和吸光度值,获取模块通过标准曲线法得到水样参数数值。
  10. 根据权利要求1所述的应用于水质检测仪的计时检测系统,其特征在于,还包括警示模块,检测模块检测水样前,获取水质排放标准;获取模块获取检测模块的检测结果后,警示模块响应于检测结果与水质排放标准的比对结果。
PCT/CN2020/114603 2020-06-22 2020-09-10 应用于水质检测仪的计时检测系统 WO2021258552A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010574826.4A CN111551496A (zh) 2020-06-22 2020-06-22 应用于水质检测仪的计时检测系统
CN202010574826.4 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021258552A1 true WO2021258552A1 (zh) 2021-12-30

Family

ID=72003510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114603 WO2021258552A1 (zh) 2020-06-22 2020-09-10 应用于水质检测仪的计时检测系统

Country Status (2)

Country Link
CN (1) CN111551496A (zh)
WO (1) WO2021258552A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544500A (zh) * 2022-02-24 2022-05-27 安徽欣思创科技有限公司 一种走航式地表水总磷测量方法及系统
CN114965310A (zh) * 2022-04-26 2022-08-30 上海亚新城市建设有限公司 水质在线监测系统量程自切换控制方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551496A (zh) * 2020-06-22 2020-08-18 深圳市长隆科技有限公司 应用于水质检测仪的计时检测系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177945A (ja) * 2000-12-15 2002-06-25 Meidensha Corp 水質計測システム
CN1932478A (zh) * 2005-09-12 2007-03-21 长春吉大·小天鹅仪器有限公司 多参数水质快速分析装置
CN202676591U (zh) * 2012-07-17 2013-01-16 西安洛克仪器设备有限公司 水质自动检测仪
CN103230912A (zh) * 2013-04-15 2013-08-07 江苏大学 用于自动检测cod和清洗比色皿的集成装置及方法
CN105784042A (zh) * 2014-12-24 2016-07-20 西安北斗星数码信息股份有限公司 一种非接触式水质检测水表
CN105891160A (zh) * 2016-04-22 2016-08-24 华中科技大学 一种便携式的水质检测装置及水质检测方法
JP2018185257A (ja) * 2017-04-27 2018-11-22 三浦工業株式会社 水質測定装置
CN109682808A (zh) * 2019-03-07 2019-04-26 济南大学 一种改进的弱酸性水体中亚硝态氮含量测定方法
CN111551496A (zh) * 2020-06-22 2020-08-18 深圳市长隆科技有限公司 应用于水质检测仪的计时检测系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201425581Y (zh) * 2009-06-05 2010-03-17 马三剑 根据现场情况确定消解时间的cod监测装置
CN201707299U (zh) * 2009-10-16 2011-01-12 北京智云达科技有限公司 一种便携式多通道农药残留快速检测仪
CN202330254U (zh) * 2011-11-08 2012-07-11 镇江市环境监测中心站 比色管架
CN103310383A (zh) * 2013-06-25 2013-09-18 莘县农业局 农产品质量安全全程监控与追溯系统及方法
CN204203085U (zh) * 2014-10-20 2015-03-11 迁安市津唐球墨铸管有限公司 一种新型比色计
CN104535521B (zh) * 2015-02-02 2017-10-10 四川清和科技有限公司 总锰在线分析仪
CN106769967A (zh) * 2016-12-26 2017-05-31 安徽省碧水电子技术有限公司 一种带有语音播报模块的水质检测系统
CN107764753A (zh) * 2017-08-21 2018-03-06 高萌迪 一种新型农业水质检测仪
CN110531096B (zh) * 2019-09-29 2024-01-26 青岛中特环保仪器有限公司 全自动水质cod机器人分析仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177945A (ja) * 2000-12-15 2002-06-25 Meidensha Corp 水質計測システム
CN1932478A (zh) * 2005-09-12 2007-03-21 长春吉大·小天鹅仪器有限公司 多参数水质快速分析装置
CN202676591U (zh) * 2012-07-17 2013-01-16 西安洛克仪器设备有限公司 水质自动检测仪
CN103230912A (zh) * 2013-04-15 2013-08-07 江苏大学 用于自动检测cod和清洗比色皿的集成装置及方法
CN105784042A (zh) * 2014-12-24 2016-07-20 西安北斗星数码信息股份有限公司 一种非接触式水质检测水表
CN105891160A (zh) * 2016-04-22 2016-08-24 华中科技大学 一种便携式的水质检测装置及水质检测方法
JP2018185257A (ja) * 2017-04-27 2018-11-22 三浦工業株式会社 水質測定装置
CN109682808A (zh) * 2019-03-07 2019-04-26 济南大学 一种改进的弱酸性水体中亚硝态氮含量测定方法
CN111551496A (zh) * 2020-06-22 2020-08-18 深圳市长隆科技有限公司 应用于水质检测仪的计时检测系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544500A (zh) * 2022-02-24 2022-05-27 安徽欣思创科技有限公司 一种走航式地表水总磷测量方法及系统
CN114965310A (zh) * 2022-04-26 2022-08-30 上海亚新城市建设有限公司 水质在线监测系统量程自切换控制方法及系统

Also Published As

Publication number Publication date
CN111551496A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2021258552A1 (zh) 应用于水质检测仪的计时检测系统
RU2009145112A (ru) Способ и устройство для измерения ph слабощелочных растворов
WO2024046372A1 (zh) 一种高低浓度实时切换的分析仪比色系统及其使用方法
CN103472028A (zh) 一种混纺纤维中组分含量的测定方法
US20200271590A1 (en) Rapid joint detection device and detection method for deterioration degree of fried oil
JPH08327545A (ja) 赤外線ガス分析計
CN109506706A (zh) 一种基于多传感器的药理学实验用滴定系统及方法
CN103940793B (zh) 荧光检测系统及检测方法
CN101021473A (zh) 一种检测服装面料成分及含量的检测仪
CN110567900B (zh) 试样反应中抗原过量的判断方法、装置及光学检测系统
JP3263729B2 (ja) 液中粒子計測装置およびその方法
WO2021105570A1 (en) Method, measuring device, computer program, computer program-product, and test-device series for measuring a sample, and a data structure and data structure record and method for calibrating a test-device batch
CN111735906A (zh) 测定水样碱度的方法及分析系统
CN106872375A (zh) 甲醛测试仪、测试方法及校准方法
WO2020124735A1 (zh) 一种荧光免疫分析仪的功能检测方法
CN111795998A (zh) 一种基于电磁波的水质检测装置
CN110849826B (zh) 反应膜的制作方法及基于反应膜的氨氮检测装置、方法
US4240752A (en) Process and apparatus for recognizing cloud disturbances in a sample solution which is being subjected to absorption photometry
CN113447455A (zh) 一种基于太赫兹技术的纤维材料检测系统
Oulman et al. A colorimetric method for determining dissolved oxygen
JPS6298262A (ja) 臨床検査システムにおける再検査処理方式
CN217425171U (zh) 一种多用途自补偿光路设备
CN103335965B (zh) 分光光度计高吸光度测量方法
WO2024046267A1 (zh) 基于反应曲线的曲率检测待检测样本的前带现象的方法和装置
CN217954254U (zh) 一种组合式水质检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942305

Country of ref document: EP

Kind code of ref document: A1