WO2024045913A1 - 一种编织网 - Google Patents

一种编织网 Download PDF

Info

Publication number
WO2024045913A1
WO2024045913A1 PCT/CN2023/107135 CN2023107135W WO2024045913A1 WO 2024045913 A1 WO2024045913 A1 WO 2024045913A1 CN 2023107135 W CN2023107135 W CN 2023107135W WO 2024045913 A1 WO2024045913 A1 WO 2024045913A1
Authority
WO
WIPO (PCT)
Prior art keywords
warp
lining
looped
fiber
denier
Prior art date
Application number
PCT/CN2023/107135
Other languages
English (en)
French (fr)
Inventor
徐晓辉
Original Assignee
常州市鑫辉网具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州市鑫辉网具有限公司 filed Critical 常州市鑫辉网具有限公司
Publication of WO2024045913A1 publication Critical patent/WO2024045913A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F13/00Hand-operated baling apparatus
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/10Open-work fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes

Definitions

  • the present invention relates to the technical field of woven mesh structures, and more specifically, to a woven mesh.
  • Bale net is a kind of knotless net, which is woven and formed by warp knitting machine. It is generally formed by looping fibers and connected by weft threads. The structural characteristics of the bale net are that the mesh is larger and has a certain load-bearing strength.
  • bale nets For bale nets, it is generally required to be light enough to achieve corresponding low material consumption and lower material costs. On the other hand, it needs to have a certain radial bearing capacity and be able to be rolled into bales when baling.
  • In order to increase the load-bearing capacity of each warp chain there are two methods. One is to increase the strength of each bundle of looped fibers, and the other is to increase the toughness of the looped fibers and reduce the weakening of the looped fiber strength caused by warp knitting bending into loops. In the existing technology, there are certain technical bottlenecks in improving fiber strength, and the weakening of fiber strength by warp knitting cannot be avoided. If the toughness of the looped fiber is directly increased, its denier weight will be increased.
  • the weaving methods are generally similar. If the weight per unit area can be reduced while ensuring strength, it will greatly benefit the cost control of the woven mesh. But this is also a common problem faced by the industry.
  • the applicant in this case has disclosed a plan: a warp-knitted chain structure lined with warp knitted nets and a bale net using the same (application number: 202020057839.X).
  • the warp-knitted chains are made of warp knitted chains.
  • the chain and the lining warp that are directly inserted into the warp knitted chain are composed of two parts.
  • the warp knitted chain is formed by connecting coil links made of looped fiber warp knitting.
  • the denier of the warp knitted chain is the looped fiber denier. 3 times the number A.
  • US patent US20200385902A1 discloses a solution.
  • the net includes a plurality of warp threads extending parallel to each other in the longitudinal direction, wherein a plurality of weft threads pass back and forth between two adjacent warp threads and link the adjacent warp threads to each other, and includes A first support line extending along the meridian and penetrating the line at multiple points. .
  • the purpose of the present invention is to overcome the difficulty in achieving greater strength of the bale net in the prior art at a lower unit weight.
  • a bale net is provided, which improves the overall tensile strength of the bale net by controlling the selection and selection of loop fibers and lining warps.
  • a braided net of the present invention includes a plurality of radially arranged warp knits, and two adjacent warp knits are connected by connecting lines; the warp knits are formed by chain links woven from looped fibers. , at least part of the warp knitting also includes a lining warp, the lining warp is in a substantially straight state and is inserted into the chain links in the radial direction;
  • the stretch rate of the looped fibers used is greater than the stretch rate of the lining warp, and the stretch ratio of the loop fibers and the lining warp ranges from 0.85 to 1.25a relative to the calibrated stretch ratio a.
  • the range of the calibrated stretching ratio a is 1.45 to 1.58.
  • the value of the calibrated stretching ratio a is 1.5.
  • the stretching ratio of the looped fibers and the lining warp is 1.4 to 1.7.
  • the ratio of the denier A of the looped fiber to the denier C of the lining warp is b, and relative to the calibrated stretch ratio a, the b is 0.13-0.55a.
  • the total denier of the warp knitting is 900-1300 denier.
  • the denier of the connecting thread is not greater than the denier of the looped fiber.
  • the lining warp is alternately inserted into each link in the warp knitting.
  • the stitching point where the lining warp passes through the chain link is an annular opening of the chain link, or a node of the chain link.
  • the connecting lines are connected between two adjacent warp knits in a zigzag shape.
  • the lining warp is a single fiber filament or a combination of two or more fiber filaments; the looped fiber is a single fiber filament.
  • the lining is formed by folding or winding a single flat fiber filament.
  • a braided net of the present invention includes a connecting line between warp knitting and warp knitting.
  • the warp knitting is formed by chain links woven into looped fibers, and the chain links include three strands of silk threads surrounded by looped fibers. ;
  • the warp knitting also includes a lining warp, the lining warp is in a substantially straight state and is inserted into the chain links along the radial direction;
  • the stretch rate of the looped fiber used is greater than the stretch rate of the lining warp, and the stretching ratio of the looped fiber and the lining warp is 1.35 to 1.70.
  • the ratio of the denier A of the looped fiber to the denier C of the lining fiber is b, and the b value ranges from 0.2 to 0.7.
  • the looped fibers and warp lining are both formed by extrusion and cutting.
  • the bale net of the present invention restricts the stretch rate of the looped fibers and lining warps used, thereby selecting the looped fibers and lining warps that meet the needs so that they meet the stretch ratio, and the weaving
  • the final warp knitting lining warp and chain links have similar stretch rates, which can exert the maximum tensile force at the same time and improve the overall strength of the bale net.
  • the bale net of the present invention limits the ratio of the denier of the looped fibers to the denier of the lining, which enables the chain links and lining to be distributed to a larger area when the unit weight of the bale net is low.
  • the bale net can exert greater economic value.
  • FIG. 1 is a schematic diagram of the partial structure of the bale net
  • Figure 2 is a schematic structural diagram of warp knitting
  • Figure 3 is a schematic diagram of the insertion method of lining warp and chain link
  • FIG. 4 is a schematic diagram of the overall structure of the bale net.
  • Figure 1 shows the partial structure of a woven mesh.
  • the woven mesh shown in Figure 1 includes a plurality of radially arranged warp knits 1, and two adjacent warp knits 1 are connected by connecting lines 2.
  • the warp knitting 1 is formed by connecting annular chain links one by one, and the chain links are formed by knitting the looped fibers 101 in circles. Each chain The knots are wound with fibers 101 connected in series to form a loop, forming three strands of silk thread.
  • Each link has three strands of wires in the horizontal direction, and these three strands of wires are formed by surrounding the same looped fiber.
  • At least part of the warp knitting 1 of the braided mesh also includes lining warps 102, which are in a substantially straight state and are inserted into the chain links in the radial direction.
  • each warp knitting 1 can adopt a structure with a warp lining 102 .
  • the warp lining and the warp knitting in a substantially flat state jointly bear the bearing load in the warp direction.
  • the "straightness" of the lining warp is relative to the bending and braiding structure of the looped fibers.
  • the lining structure of the lining warp in the direction perpendicular to the surface of the braided mesh allows the lining warp to alternate up and down in the vertical direction.
  • the appropriate bends formed by the ground being inserted into the coil links also belong to the meaning of "straight" or "roughly straight”. In other words, the flat state does not require it to be absolutely straight when unfolded. A certain degree of bending is allowed, but it must be able to bear the meridional load when in use.
  • the stretch rate of the looped fiber 101 used in this embodiment is greater than the stretch rate of the lining warp 102, and the stretching ratio of the looping fiber 101 and the lining warp 102 is relative to the calibrated stretching ratio.
  • the range of a is 0.85-1.25a.
  • the stretch ratio in this solution refers to the ratio between the elongation at break of the looped fiber 101 and the elongation at break of the lining warp 102.
  • the elongation at break here refers to the percentage of the length produced by stretching to the original length when the filament breaks under the action of external force.
  • the calibrated stretch ratio refers to a certain calibration value.
  • the calibrated stretch ratio can be used as a reference to select the appropriate yarn.
  • the value of the calibrated stretch ratio a is generally determined between 1.40 and 1.70, which can be used as the selection interval in this embodiment.
  • the main considerations are the weight and strength, as well as the strength loss of the looping fibers when looping, but the change in the wire stretch rate is ignored, resulting in overall strength The ideal value cannot be achieved.
  • the strength of the looped fibers is selected to be N, after weaving in loops, there will be 30%-40% breakage. Taking 40% as an example, the actual strength of the link is 3 ⁇ 0.6N.
  • the above calculation method is currently the main method for calculating the total strength using this braiding method.
  • the actual warp knitting strength cannot reach this theoretical value. This difference is not due to measurement error, but to an error in the setting principle of the calculation method.
  • a prerequisite is that the elongation rates of the two are the same, that is, both can reach the maximum strength value at the same time after being stretched to a certain length, otherwise it will cause both unable to cooperate effectively.
  • Most current methods ignore the effect of elongation.
  • the stretch rate of the wire can be changed through softening, cross-sectional shape transformation, etc.
  • the stretch rate mentioned in the present invention also mainly refers to the stretch rate of the formed yarn.
  • the looped fibers and the lining warp in warp knitting should be controlled to have similar stretch rates.
  • stress concentration will occur at the nodes of the links, and there will also be folds. Damage, the elongation of warp knitting is quite different from the theoretical value.
  • the warp knitting is heated or softened in other ways after the web is formed, and the chain links and lining warps are adjusted to have similar stretch rates, thereby ensuring that the comprehensive strength of the chain links and lining warps is exerted.
  • this treatment method can obtain similar elongation, it has many problems. On the one hand, after heating, the strength of the looped fibers and warp lining itself is affected, and how to control the heating method is more complicated; on the other hand, heating after weaving into a mesh requires additional heating equipment. For the existing site space, The packaging method needs to be adjusted, which is costly and goes against the purpose of low-cost production.
  • the calibrated stretching ratio a is used as a reference, and the stretching ratio of the looped fiber 101 and the lining warp 102 is selected based on the calibrated stretching ratio.
  • rate you can choose another yarn with a corresponding stretch rate.
  • the silk threads can be adjusted before weaving into a mesh to obtain silk threads with a corresponding stretch rate and then weaved, so the cost is controllable.
  • the range of the calibrated stretching ratio a is 1.45 to 1.58, such as 1.48, 1.50, 1.52, etc. Taking a as 1.50 as an example, the stretching ratio of the looped fiber 101 and the lining warp 102 is 1.28-1.80.
  • the stretch ratio of the looped fibers 101 and the lining warp 102 can also be limited to the range of 0.90-1.15a relative to the calibrated stretch ratio a.
  • the range of the calibrated stretch ratio a is It is 1.50 ⁇ 1.56. Within this range, it is preferred that the stretching ratio of the looped fibers 101 and the lining warp 102 is in the range of 1.35 to 1.79, and the stretching ratio of the looped fibers is 22%-40% higher than that of the lining warp.
  • the stretch rate of the braided series links is similar to the lining warp stretch rate and can be controlled within 8%.
  • the ratio of the denier A of the looped fiber 101 and the lining denier C is set to b, relative to the calibrated stretching ratio. Degree a, then b is 0.13-0.55a. When a ranges from 1.50 to 1.56, b ranges from approximately 0.20 to 0.86. It can be seen from this that when the calibrated draw ratio is 1.50-1.56, the range of b is approximately 0.20-0.86, and the draw ratio of the looped fiber 101 and the lining warp 102 is 1.35-1.79. At this time, the processing cost is lower, and it can ensure that the links of the looped fibers and the lining have close elongation rates, thereby improving the overall strength.
  • the total denier of the warp knitting 1 formed by the looped fibers 101 and the lining warp 102 is 900-1300 denier.
  • the denier of the connecting wire 2 may also be limited to be no greater than the denier of the looped fiber 101 .
  • the main function of the connecting wire 2 is to connect multiple warp knits and does not bear the warp load, so its denier can be controlled within a relatively small range.
  • the lining warps 102 are alternately threaded in each chain link in the warp knitting 1 .
  • the links formed by weaving the loop fibers 101 are connected one by one, and the length area between the two dotted lines is the length of one link P.
  • the lining warp 102 can pass through the annular opening of each chain link to form an alternate interpenetrating pattern.
  • the lining 102 can also be inserted once every two chain links, for example, once every two or three chain links.
  • the stitching point where the lining warp 102 passes through the chain link is a node of the chain link.
  • the lining warp 102 passes through the annular opening; when the radial dimensions of the two are equal, they can pass through the annular opening or pass through the nodes. .
  • the connecting line 2 used is connected between two adjacent warp knits 1 in a zigzag shape, and the connection points on both sides of the same warp knit are staggered from each other.
  • some of the warp knitting in the middle area of the bale net may be provided with warp lining, while the warp knitting near both sides may be without warp lining.
  • Warp knitting with warp lining and warp knitting without warp lining can also be arranged at intervals.
  • the lining warp 102 may be a single fiber filament, or may be a combination of two or three fiber filaments; the looped fiber 4 used is a single fiber filament.
  • the fiber filaments used here are all fiber filaments formed after extrusion and cutting.
  • the lining warp 102 can also be cut into single flat fiber filaments, and then folded or rolled to form the lining warp 102 . In this way, the cost will increase as the number of processes increases.
  • the braided mesh includes a connecting line 2 between the warp knit 1 and the warp knit 1.
  • the warp knit 1 is made up of chain links woven into looped fibers 101, and the links are surrounded by looped fibers 101. Three strands of silk thread formed.
  • the warp knitting 1 also includes a lining warp 102, which is in a substantially straight state and is inserted into the chain links in the radial direction.
  • the stretch rate of the looped fiber 101 used is greater than the stretch rate of the lining warp 102, and the stretching ratio of the looped fiber 101 and the lining warp 102 is 1.4 to 2.2. Preferably, it can be controlled between 1.4 and 1.75, such as 1.48, 1.52, and 1.64.
  • the ratio of the denier A of the looped fiber 101 to the denier C of the lining warp is b, and the b value ranges from 0.2 to 0.8.
  • This embodiment simultaneously controls the denier and the drawing ratio, thereby providing a basis for the selection of loop fibers and lining warps.
  • the woven bale net has higher overall strength.
  • the looped fibers 101 and the warp lining 102 may be formed by extrusion and cutting, or may be formed into single filaments by other methods.
  • a heating module can be provided on the film cutting and filament splitting device, and the heating module can be used to directly adjust the stretch rate of the looped fibers or linings to obtain the bale net described in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)

Abstract

本发明公开了一种编织网,属于编织网结构领域。本发明的编织网包括多条径向排列的经编,相邻两条经编之间通过连接线相连接;所述经编是由成圈纤维编织成的链节串接而成,至少部分所述经编还包括衬经,所述衬经呈大致平直状态,沿径向方向穿插在链节中;所采用的成圈纤维的拉伸率大于衬经的拉伸率,成圈纤维与衬经的拉伸配比度相对于标定拉伸配比度a的范围为0.85-1.25a。从而选择符合需求的成圈纤维与衬经,使其满足拉伸配比度,编织后的经编中衬经与链节具有相近似的拉伸率,能够同时发挥最大拉力,提高捆草网的综合强度。

Description

一种编织网 技术领域
本发明涉及编织网结构技术领域,更具体地说,涉及一种编织网。
背景技术
目前农作物秸秆在收割后,大多是通过捆草网将秸秆捆装打包,然后再进行运输。捆草网是一种无结节网,其采用经编机编织成形,一般采用成圈纤维绕圈形成,并用纬线连接。捆草网的结构特点是网眼较大,具有一定的承载强度。
对于捆草网,一般是要求其具有足够轻的重量,以便能够获得相应的低材料消耗、较低的材料成本。另一方面,需要其具有一定的径向承载力,捆草时能够打卷成包。为了提高每根经向链的承载能力,可以有两种方法。一是提升每束成圈纤维的强度,二是提升成圈纤维的韧性,减小经编弯曲成圈对成圈纤维强度的削弱。现有技术中,纤维强度的提升有一定的技术瓶颈,且经编成圈对纤维强度的削弱也无法避免。如果直接提高成圈纤维的韧性,将会增加其旦尼尔克重。
对于目前的编织网行业,编织方法大体类似,如果能够在保证强度的情况下降低单位面积的克重,将极大的有利于编织网成本的控制。但目前这也是行业内普遍面临的问题。
本案申请人已经公开的方案:一种编织网用衬经经向链编链结构及应用其的捆草网(申请号:202020057839.X),该方案中,经向链编链由经编编链和平直衬入经编编链中的衬经两部分复合构成,经编编链由成圈纤维经编而成的线圈链节串接形成,经编编链的旦数为成圈纤维旦数A的3倍。
美国专利US20200385902A1公开了一种方案,该网包括在纵向方向上彼此平行延伸的多个经线,其中多个纬线在两个相邻的经线之间来回穿行并且将相邻的经线彼此链接,并且包括第一支撑线,该第一支撑线沿着经线延伸并在多个点穿透该线。。
上述两种方案为了在低质量的情况下提高整体强度,在编链中加入了衬经,通过衬经来提高整体强度。但在使用时发现,这种依靠成圈纤维与中间的衬经结合的方式,虽然能够提高一定的强度,但是使用过程中,一旦成圈纤维或衬经发生断裂,整个编链将断裂,编织网的综合强度往往无法达到理论分析强度,而且相差较大。
因此,对于如何在较低的单位克重情况下提高整体的强度,还需要进一步分析研究。
发明内容
1.发明要解决的技术问题
本发明的目的在于克服现有技术中捆草网在较低的单位克重情况下难以达到较大的强度 的不足,提供了一种捆草网,通过对成圈纤维与衬经的选用控制,提升了捆草网整体的抗拉强度。
2.技术方案
为达到上述目的,本发明提供的技术方案为:
本发明的一种编织网,包括多条径向排列的经编,相邻两条经编之间通过连接线相连接;所述经编是由成圈纤维编织成的链节串接而成,至少部分所述经编还包括衬经,所述衬经呈大致平直状态,沿径向方向穿插在链节中;
所采用的成圈纤维的拉伸率大于衬经的拉伸率,成圈纤维与衬经的拉伸配比度相对于标定拉伸配比度a的范围为0.85-1.25a。
作为本发明更进一步的改进,所述标定拉伸配比度a的范围为1.45~1.58。
作为本发明更进一步的改进,所述标定拉伸配比度a的值为1.5。
作为本发明更进一步的改进,所述的成圈纤维与衬经的拉伸配比度为1.4~1.7。
作为本发明更进一步的改进,所述成圈纤维的旦数A与衬经旦数C之比为b,相对于标定拉伸配比度a,所述b为0.13-0.55a。
作为本发明更进一步的改进,所述经编的总旦数为900-1300旦。
作为本发明更进一步的改进,所述连接线的旦数不大于成圈纤维的旦数。
作为本发明更进一步的改进,所述衬经在经编中交替穿设于每个链节中。
作为本发明更进一步的改进,所述衬经穿过链节的针脚点为链节的环状开口,或链节的节点。
作为本发明更进一步的改进,所述连接线成锯齿状连接于相邻两条经编之间。
作为本发明更进一步的改进,所述衬经为单根纤维丝或两根及以上的纤维丝组合而成;所述的成圈纤维为单根纤维丝。
作为本发明更进一步的改进,所述衬经为单根扁平纤维丝折叠或卷绕形成。
本发明的一种编织网,包括经编和经编之间的连接线,所述经编是由成圈纤维编织成的链节串接而成,链节包括成圈纤维环绕形成的三股丝线;所述经编还包括衬经,所述衬经呈大致平直状态,沿径向方向穿插在链节中;
所采用的成圈纤维的拉伸率大于衬经的拉伸率,所述的成圈纤维与衬经的拉伸配比度为1.35~1.70。
作为本发明更进一步的改进,所述成圈纤维的旦数A与衬经旦数C之比为b,b值的范围为0.2-0.7。
作为本发明更进一步的改进,所述成圈纤维与衬经,均是采用挤膜切丝形成。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
(1)本发明的捆草网,通过对所采用的成圈纤维与衬经的拉伸率的限制,从而选择符合需求的成圈纤维与衬经,使其满足拉伸配比度,编织后的经编中衬经与链节具有相近似的拉伸率,能够同时发挥最大拉力,提高捆草网的综合强度。
(2)本发明的捆草网一方面限定了成圈纤维的旦数与衬经旦数之比,能够使捆草网单位克重较低的情况下,链节和衬经分配到较大的强度,减少节损,控制成本;另一方面限制了限定了成圈纤维与衬经的拉伸配比度,能够使链节和衬经的最大力强度值得到较好的发挥。通过对旦数与拉伸配比度两方面因素的控制,捆草网能够发挥较大经济价值。
附图说明
图1为捆草网局部结构示意图;
图2为经编的结构示意图;
图3为衬经与链节的穿插方式示意图;
图4为捆草网的整体结构示意图。
示意图中的标号说明:
1、经编;
101、成圈纤维;
102、衬经;
2、连接线。
具体实施方式
为进一步了解本发明的内容,结合附图和实施例对本发明作详细描述。
本说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
图1示出了一种编织网的局部结构,图1中纸面的上下方向为经向方向,左右方向为纬向方向。图1示出的编织网包括多条径向排列的经编1,相邻两条经编1之间通过连接线2相连接。经编1是由环状链节逐个串接形成,链节是由成圈纤维101绕圈编织形成,每个链 节由串接成圈纤维101绕线,形成三股丝线。
具体的可以参照图2,每个链节在水平方向上具有三股丝线,这三股丝线是由同一根成圈纤维环绕形成。
编织网至少部分经编1还包括衬经102,衬经102呈大致平直状态,沿径向方向穿插在链节中。本实施例作为一种实施方式,每条经编1均可以采用带有衬经102的结构。
在实施例中,大致平直状态的衬经与经编共同承担经向的承载载荷。应当理解,衬经的“平直”是相对于成圈纤维的折弯编链结构而言的,衬经在与编织网网面垂直方向的衬入结构,使衬经在垂直方向上上下交替地穿设于线圈链节中形成的适当弯曲也属于“平直”或“大致平直”的含义范畴。也就是说,平直状态并不要求其在展开时成绝对的直线状态,允许有一定的弯曲,但在使用时一定要能够共同承担经向载荷。
值得说明的是,本实施例所采用的成圈纤维101的拉伸率大于衬经102的拉伸率,成圈纤维101与衬经102的拉伸配比度相对于标定拉伸配比度a的范围为0.85-1.25a。
拉伸配比度在本方案中是指成圈纤维101的断裂拉伸率与衬经102的断裂拉伸率之间的比值。这里的断裂拉伸率是指该丝线在外力作用下断裂时,拉伸产生的长度占原长度的百分比。
标定拉伸配比度是指某个标定值,在选取拉伸配比度时,可以将该标定拉伸配比度作为参考,从而选取合适的丝线。该标定拉伸配比度a的值一般在1.40-1.70之间确定,可以作为本实施例的选择区间。
根据分析,目前在衬经和成圈纤维的选择时,主要考虑的是克重和强度,以及成圈纤维成圈时的强度折损,但是忽略了丝线拉伸率的变化,因而导致整体强度不能达到理想值。
例如,选择成圈纤维的强度是N,绕圈编织后,会存在30%-40%的折损,以40%为例,则实际链节的强度为3×0.6N。衬经的强度为M,由于衬经成平直状态,可以认为其不存在强度折损。则成圈纤维与衬经所组成的经编的强度Q的理论值应该是Q=3×0.6N+M。
上述计算方法是目前采用该编织方式计算总强度的主要方法。但实际上的经编强度无法达到该理论值,该差异并不是由于测量误差造成,而是计算方式的设置原理存再错误。在将链节的强度与衬经强度相加时,一个前提条件是两者的伸长率相同,也就是两者能够在伸长到一定长度后,同时达到最大强度值,否则将会导致两者无法有效配合。而目前的方法大多忽略了伸长率的影响。
对于材料本身而言,其伸长率应该属于其固有的属性。但是对于本实施例所采用的丝线而言,通过软化、截面形状变换等方式,是可以改变丝线的拉伸率的。本发明所提到的拉伸率也主要指成型的丝线的拉伸率。
值得说明的是,对于如何控制伸长率也存在较大的难度。
作为理想值,应该控制经编中的成圈纤维与衬经具有相近似的拉伸率,但是成圈纤维编织成链节后,在链节的节点处受到应力集中的作用,也会存在折损,经编的伸长率与理论值相差较大。
在其他的一些做法中,在成网后对经编进行加热或其他方式的软化处理,调整链节与衬经具有相近似的拉伸率,从而能够保证发挥链节与衬经的综合强度。该处理方式虽然能够得到相近似的拉伸率,但是存在多方面问题。一方面是经过加热后,成圈纤维和衬经本身的强度受到影响,如何控制加热方式较为复杂;另一方面,编织成网后再进行加热需要额外的加热设备,对于现有的场地空间、包装方式都需要做出调整,成本较高,与低成本生产的目的相违背。
在本实施例中,采用标定拉伸配比度a作为参考,根据该标定拉伸配比度选取成圈纤维101与衬经102的拉伸配比度,只要知晓其中一种丝线的拉伸率,就可以选择具有对应拉伸率的另一种丝线。当然,也可以根据强度需要,在编织成网之前先对丝线进行调整,得到对应拉伸率的丝线再进行编织,成本可控。
作为另一实施方式,标定拉伸配比度a的范围为1.45~1.58,例如为1.48、1.50、1.52等。以a为1.50为例,则成圈纤维101与衬经102的拉伸配比度为1.28-1.80。
作为另一实施方式,还可以把成圈纤维101与衬经102的拉伸配比度相对于标定拉伸配比度a的范围限定为0.90-1.15a,标定拉伸配比度a的范围为1.50~1.56。在该范围值内,优选的是成圈纤维101与衬经102的拉伸配比度为1.35~1.79范围内,成圈纤维的拉伸率比衬经的拉伸率高22%-40%左右,编织后的串联的链接的拉伸率与衬经拉伸率相近似,可控制在8%以内
进一步地,成圈纤维101与衬经102的选取需要综合考虑强度与拉伸率,设定成圈纤维101的旦数A与衬经旦数C之比为b,相对于标定拉伸配比度a,则b为0.13-0.55a。当a的范围为1.50~1.56时,b的范围大致为0.20-0.86。由此可知,当标定拉伸配比度为1.50~1.56时,b的范围大致为0.20-0.86,成圈纤维101与衬经102的拉伸配比度为1.35~1.79。此时加工成本较低,而且能够保证成圈纤维的链节与衬经具有相接近的拉伸率,提高了整体强度。
作为一种实施方式,成圈纤维101与衬经102所形成的经编1的总旦数为900-1300旦。
在其他实施方式中,也可以限定连接线2的旦数不大于成圈纤维101的旦数。连接线2的主要作用是把多个经编相连接,并不承担经向负载,因此其旦数可以控制在相对较小范围内。
对于衬经的具体设置方式,有多种实施结构。在一种实施方式中,衬经102在经编1中交替穿设于每个链节中。如图3所示,成圈纤维101编织所形成的链节逐个相连,两个虚线之间为一个链节P的长度区域。在编织时,衬经102可从从每个链节的环状开口穿过,形成交替穿插的形式。此外,衬经102也可以每间隔过个链节穿插一次,例如间隔两个或三个链节穿插一次。
作为其他的实施方式,衬经102穿过链节的针脚点为链节的节点。一般当衬经102直径显著大于成圈纤维101时,衬经102从环状开口中穿过;当两者径向尺寸相当时,可以从环状开口中穿过,也可以从节点处穿过。
结合以上各实施方式,如图1和图4所示,所采用的连接线2成锯齿状连接于相邻两条经编1之间,同一经编两侧的连接点相互错开。在一些实施例中,还可以捆草网中部区域的部分经编带有衬经,靠近两侧的经编不带衬经。还可以带有衬经的经编与不带衬经的经编间隔设置。
在一些实施例中,衬经102可以为单根纤维丝,也可以是由两根或三根纤维丝组合而成;所采用的成圈纤维4为单根纤维丝。这里所采用的纤维丝均为挤膜切割后形成的纤维丝。
在其他实施方式中,还可以把衬经102切成为单根扁平纤维丝,然后进行折叠或卷绕形成衬经102。这种方式工序增加,成本会有所提高。
作为编织网的其他实施方式,包括经编1和经编1之间的连接线2,经编1是由成圈纤维101编织成的链节串接而成,链节包括成圈纤维101环绕形成的三股丝线。经编1还包括衬经102,衬经102呈大致平直状态,沿径向方向穿插在链节中。
所采用的成圈纤维101的拉伸率大于衬经102的拉伸率,成圈纤维101与衬经102的拉伸配比度为1.4~2.2。优选地可以控制在1.4~1.75,例如1.48、1.52、1.64。本实施例中成圈纤维101的旦数A与衬经旦数C之比为b,b值的范围为0.2~0.8。本实施例同时对旦数和拉伸配比率进行控制,从而为成圈纤维和衬经的选取提供了依据,所编织的捆草网具有更高的综合强度。
在不同的实施例中,成圈纤维101与衬经102可以是采用挤膜切丝形成,也可以采用其他方式形成单丝。
在捆草网加工时,可以在切膜分丝装置上设置加热模块,利用该加热模块直接调整成圈纤维或衬经的拉伸率,获得以上实施例所说明的捆草网。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也 只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (16)

  1. 一种编织网,包括多条径向排列的经编(1),相邻两条经编(1)之间通过连接线(2)相连接;所述经编(1)是由成圈纤维(101)编织成的链节串接而成,其特征在于:
    至少部分所述经编(1)还包括衬经(102),所述衬经(102)呈大致平直状态,沿径向方向穿插在链节中;
    所采用的成圈纤维(101)的拉伸率大于衬经(102)的拉伸率,成圈纤维(101)与衬经(102)的拉伸配比度相对于标定拉伸配比度a的范围为0.85-1.25a。
  2. 根据权利要求1所述的编织网,其特征在于:所述标定拉伸配比度a的范围为1.45~1.58。
  3. 根据权利要求2所述的编织网,其特征在于:所述标定拉伸配比度a的值为1.5。
  4. 根据权利要求1所述的编织网,其特征在于:所述的成圈纤维(101)与衬经(102)的拉伸配比度为1.4~1.7。
  5. 根据权利要求1-3任一项所述的编织网,其特征在于:所述成圈纤维(101)的旦数A与衬经旦数C之比为b,相对于标定拉伸配比度a,所述b为0.13-0.55a。
  6. 根据权利要求5所述的编织网,其特征在于:所述经编(1)的总旦数为900-1300旦。
  7. 根据权利要求5所述的编织网,其特征在于:所述连接线(2)的旦数不大于成圈纤维(101)的旦数。
  8. 根据权利要求1所述的编织网,其特征在于:所述衬经(102)在经编(1)中交替穿设于每个链节中。
  9. 根据权利要求8所述的编织网,其特征在于:所述衬经(102)穿过链节的针脚点为链节的环状开口,或链节的节点。
  10. 根据权利要求8所述的编织网,其特征在于:所述连接线(2)成锯齿状连接于相邻两条经编(1)之间。
  11. 根据权利要求1所述的编织网,其特征在于:所述衬经(102)为单根纤维丝或两根及以上的纤维丝组合而成;所述的成圈纤维(4)为单根纤维丝。
  12. 根据权利要求1所述的编织网,其特征在于:所述衬经(102)为单根扁平纤维丝折叠或卷绕形成。
  13. 一种编织网,包括经编(1)和经编(1)之间的连接线(2),所述经编(1)是由成圈纤维(101)编织成的链节串接而成,链节包括成圈纤维(101)环绕形成的三股丝线;其特征在于:
    所述经编(1)还包括衬经(102),所述衬经(102)呈大致平直状态,沿径向方向穿插在链节中;
    所采用的成圈纤维(101)的拉伸率大于衬经(102)的拉伸率,所述的成圈纤维(101) 与衬经(102)的拉伸配比度为1.35~1.70。
  14. 根据权利要求13所述的编织网,其特征在于:所述成圈纤维(101)的旦数A与衬经旦数C之比为b,b值的范围为0.2-0.7。
  15. 根据权利要求13所述的编织网,其特征在于:所述成圈纤维(101)与衬经(102),均是采用挤膜切丝形成。
  16. 一种编织网,包括经编(1)和经编(1)之间的连接线(2),所述经编(1)是由成圈纤维(101)编织成的链节串接而成,链节包括成圈纤维(101)环绕形成的三股丝线;其特征在于:
    所述经编(1)还包括衬经(102),所述衬经(102)呈大致平直状态,沿径向方向穿插在链节中;
    所采用的成圈纤维(101)的拉伸率大于衬经(102)的拉伸率,使得编织后的链节的拉伸率与衬经(102)的拉伸率相近似。
PCT/CN2023/107135 2022-08-30 2023-07-13 一种编织网 WO2024045913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211046218.1A CN115474482B (zh) 2022-08-30 2022-08-30 一种编织网
CN202211046218.1 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045913A1 true WO2024045913A1 (zh) 2024-03-07

Family

ID=84422811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107135 WO2024045913A1 (zh) 2022-08-30 2023-07-13 一种编织网

Country Status (2)

Country Link
CN (1) CN115474482B (zh)
WO (1) WO2024045913A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115474482B (zh) * 2022-08-30 2023-08-01 常州市鑫辉网具有限公司 一种编织网

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298645A (en) * 1978-04-08 1981-11-03 Hiraoka & Co., Ltd. Tarpaulins having great tearing strength
JPH06101143A (ja) * 1992-09-11 1994-04-12 Toyobo Co Ltd 土木・建築用メツシユシ−ト
JP2005154982A (ja) * 2003-11-28 2005-06-16 Ichikawa Gyomo Seizo Kk 陸上ネット
JP2015151635A (ja) * 2014-02-13 2015-08-24 松山毛織株式会社 ラップネット
CN111101283A (zh) * 2020-01-13 2020-05-05 常州市鑫辉网具有限公司 一种编织网用衬经经向链编链结构及应用其的捆草网
CN115474482A (zh) * 2022-08-30 2022-12-16 常州市鑫辉网具有限公司 一种编织网

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089767B2 (ja) * 1999-07-05 2008-05-28 横浜ゴム株式会社 コンベヤベルト
EP1553220A4 (en) * 2002-08-07 2010-04-28 Kawashimaorimono Co Ltd ELASTIC FABRIC AND ELASTIC LAYER
CN202705656U (zh) * 2012-04-09 2013-01-30 江南大学 一种非成圈式连接上下表层的经编间隔织物
TWI542748B (zh) * 2013-01-14 2016-07-21 Kai-Xi Zeng Composite woven fabric and its preparation method
CN204132989U (zh) * 2014-09-30 2015-02-04 常州市鑫辉网具有限公司 多功能休闲垫
US9816211B2 (en) * 2014-10-29 2017-11-14 Honeywell International Inc. Optimized braid construction
EP3399083B1 (en) * 2017-05-02 2021-10-20 Sofradim Production A method of making two-sided gripping knit
CN108943903B (zh) * 2018-06-25 2020-10-16 海宁市金涛丝绸布艺有限公司 一种织锦唐卡及其加工工艺
CN112100879A (zh) * 2020-08-19 2020-12-18 南京航空航天大学 一种考虑纤维编织损伤的复合材料结构强度分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298645A (en) * 1978-04-08 1981-11-03 Hiraoka & Co., Ltd. Tarpaulins having great tearing strength
JPH06101143A (ja) * 1992-09-11 1994-04-12 Toyobo Co Ltd 土木・建築用メツシユシ−ト
JP2005154982A (ja) * 2003-11-28 2005-06-16 Ichikawa Gyomo Seizo Kk 陸上ネット
JP2015151635A (ja) * 2014-02-13 2015-08-24 松山毛織株式会社 ラップネット
CN111101283A (zh) * 2020-01-13 2020-05-05 常州市鑫辉网具有限公司 一种编织网用衬经经向链编链结构及应用其的捆草网
CN115474482A (zh) * 2022-08-30 2022-12-16 常州市鑫辉网具有限公司 一种编织网

Also Published As

Publication number Publication date
CN115474482B (zh) 2023-08-01
CN115474482A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
ES2908419T3 (es) Hilos elásticos compuestos y tejidos fabricados con ellos, y métodos y equipos para fabricarlos
CA3010473C (en) Method for manufacturing fishing net
WO2024045913A1 (zh) 一种编织网
CN105209368B (zh) 多部件合成环眼和环眼吊索
KR101154902B1 (ko) 포장 결속용 망원단
WO2021143002A1 (zh) 一种编织网用衬经经向链编链结构及应用其的捆草网
CN101858076A (zh) 高强经编土工格栅
CN211645570U (zh) 一种编织网用衬经经向链编链结构及应用其的捆草网
CN218711275U (zh) 一种编网经编结构及捆草网
JP7224677B2 (ja) ラッピングネット
CN201358453Y (zh) 一种高强经编土工格栅
KR102104236B1 (ko) 이종 원사 공급이 가능한 직조 장치
CN211256218U (zh) 一种服装用弹性织带
JP6359215B1 (ja) 漁網の製造方法
CN217319621U (zh) 一种可伸缩的编织带
CN218026603U (zh) 一种捆草网
JP7079540B1 (ja) 網地及び網地の製造方法
CN203890628U (zh) 一种防连锁断裂网
JPS6260490B2 (zh)
JPH04327247A (ja) 土木・建築用メッシュシート
JPS62282053A (ja) 毛布等の経編立毛生地およびその製造方法
JP3400751B2 (ja) 複合弾性糸からなる紐状糸及び該紐状糸を用いた布
CN114541028A (zh) 一种特种捕捞网编织成型工艺及特种捕捞网
CN118223318A (zh) 一种圆环吊带旋转束式的生产方法及圆环吊带

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858950

Country of ref document: EP

Kind code of ref document: A1