WO2024041569A1 - 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用 - Google Patents

适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用 Download PDF

Info

Publication number
WO2024041569A1
WO2024041569A1 PCT/CN2023/114443 CN2023114443W WO2024041569A1 WO 2024041569 A1 WO2024041569 A1 WO 2024041569A1 CN 2023114443 W CN2023114443 W CN 2023114443W WO 2024041569 A1 WO2024041569 A1 WO 2024041569A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
cycloalkyl
thio
alkoxy
Prior art date
Application number
PCT/CN2023/114443
Other languages
English (en)
French (fr)
Inventor
庞玉莲
邹应全
袁斌斌
孙逊
Original Assignee
湖北固润科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北固润科技股份有限公司 filed Critical 湖北固润科技股份有限公司
Publication of WO2024041569A1 publication Critical patent/WO2024041569A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • C07F9/5337Phosphine oxides or thioxides containing the structure -C(=X)-P(=X) or NC-P(=X) (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids [R2P(=O)(OH)]; Thiophosphinic acids ; [R2P(=X1)(X2H) (X1, X2 are each independently O, S or Se)]
    • C07F9/32Esters thereof
    • C07F9/3205Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/3247Esters of acids containing the structure -C(=X)-P(=X)(R)(XH) or NC-P(=X)(R)(XH), (X = O, S, Se)
    • C07F9/3252Esters of acids containing the structure -C(=X)-P(=X)(R)(XH) or NC-P(=X)(R)(XH), (X = O, S, Se) containing the structure -C(=X)-P(=X)(R)(XR), (X = O, S, Se)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light

Definitions

  • the invention belongs to the field of photocuring technology and relates to acylphosphine oxime ester compounds. Such compounds can be used as photoinitiators and are especially suitable for deep curing of UV-VIS LED light sources.
  • the present invention also relates to the preparation and application of acylphosphinoxime ester compounds.
  • photocuring technology has been widely used in traditional fields such as coatings, inks, microelectronics, and printing. It is also used in new fields such as the preparation of laser videos and three-dimensional components.
  • photoinitiator also known as photosensitizer
  • photosensitizer although its content is low in the photocuring system, is a key component and plays a decisive role in the speed of photocuring. It must also meet the requirements of different photocuring systems. conditions and application needs. It is related to whether the formula system can quickly cross-link and solidify when irradiated with light, thus changing from liquid to solid.
  • LED point light sources, linear light sources, and surface light sources have begun to be used in the light curing industry.
  • LED light sources have absolute advantages, such as long service life, no thermal radiation, environmental protection and pollution-free, super illumination, and energy consumption. Low and so on.
  • visible light (VIS) has a deeper curing depth and lower temperature. It can also be cured through a substrate that blocks UV light, and translucent colored materials can be selected. Since the output is visible light, UV-related shading and protection can be minimized. Improved safety is another important advantage of VIS curing equipment.
  • UV-VIS LED light source curing technology in order to meet the wide application needs of UV-VIS LED light source curing technology, it is necessary to develop photoinitiators suitable for UV-VIS LED light sources.
  • UV-VIS LED light sources especially the demand for long-wavelength UV-VIS LED light sources (such as radiation wavelengths 365nm, 385nm, 395nm, 400nm, 415nm, 425nm, 450nm) is not applicable.
  • CN10277552A discloses a diphenyl sulfide ketone oxime ester photoinitiator and its preparation method
  • CN102492059A discloses a substituted diphenyl sulfide ketone oxime ester photoinitiator. Initiators, etc.
  • the UV absorption wavelength of most initiators also stays at 250-350nm, which is still unable to match the increasingly developing long-wavelength LED light sources, which greatly limits the application of oxime ester photoinitiators.
  • oxime ester photoinitiators that are suitable for the rapidly developing UV-VIS LED light sources and have good thermal stability, storage stability and solubility has become the current research direction of oxime ester photoinitiators.
  • UV-VIS LED light source curing technology In order to promote the development of long-wavelength UV-VIS LED light source curing technology, the inventor has been committed to the promotion and application research of UV-VIS LED light source curing technology, especially the continuous research and development of more long-wavelength UV-VIS LED Photoinitiator under light source. Especially in view of the problems existing in the prior art, the inventor has conducted extensive and in-depth research on photoinitiators suitable for curing with UV-VIS LED light sources (radiation wavelength is 300-550nm, especially 365-450nm), in order to Find a photoinitiator that can replace OXE01 and OXE02 and is more suitable for UV-VIS LED light source curing and has excellent photosensitive properties, good thermal stability, storage stability and solubility.
  • the inventors of the present invention surprisingly found that introducing a specific acylphosphine oxide moiety into a specific oxime ester compound formed a new acylphosphine oxide oxime ester compound with a composite structure, which can be used in the range of 300-550nm, especially in the range of 365-450nm. It has good photosensitivity and absorption. After absorbing light energy, it can quickly cleave to generate active free radicals and continuously initiate polymerization. It has obvious advantages in photosensitivity and has good thermal stability and solubility, making it suitable for use as UV-VIS. LED light source deep curing, especially long wavelength UV-VIS LED light source deep curing photoinitiator.
  • the object of the present invention is achieved based on the foregoing findings.
  • one object of the present invention is to provide an acylphosphinoxime ester compound whose absorption wavelength is not only suitable for UV-VIS LED light source radiation curing, but also has good thermal stability and solubility.
  • Another object of the present invention is to provide a method for preparing the acylphosphinoxime ester compounds of the present invention.
  • Another object of the present invention is to provide the use of the acylphosphinoxime ester compounds of the present invention as photoinitiators or photosensitizers.
  • n 0 or 1 independently
  • n1 independently represents integers from 0 to 4.
  • n2 independently represents integers from 0 to 4.
  • R 1 each independently represents a C 1 -C 20 alkyl group, a C 6 -C 18 aryl group or a C 2 -C 20 alkenyl group, wherein the aforementioned C 1 -C 20 alkyl group, C 6 -C 18 aryl group or C 2 -C 20 alkenyl is optionally substituted with one or more groups independently selected from the group consisting of halogen, nitro, amino, cyano, C 1 -C 6 alkyl and C 1 -C 6 alkoxy ( sulfur) group;
  • R 2 each independently represents C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl -C 1 -C 8 alkyl, C 1 -C 8 alkyl -C 3 -C 10 cycloalkyl, C 6 -C 18 aryl or C 6 -C 18 aryl -C 1 -C 8 alkyl, wherein the aforementioned C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl-C 1 -C 8 alkyl, C 1 -C 8 alkyl -C 3 -C 10 cycloalkyl, C 6 -C 18 aryl or C 6 -C 18 aryl- C 1 -C 8 alkyl is optionally substituted with one or more groups independently selected from the group consisting of halogen, nitro, amino, cyano, C 1 -C 6 alkyl and C
  • R 3 independently represents halogen, nitro, amino, cyano, C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl -C 1 -C 8 alkyl, C 1 -C 8 alkyl-C 3 -C 10 cycloalkyl, C 1 -C 20 alkoxy (thio) group, C 3 -C 10 cycloalkoxy (thio) group, C 3 -C 10 cycloalkyl -C 1 -C 8 alkoxy (thio) group, C 1 -C 8 alkyl -C 3 -C 10 cycloalkoxy (thio) group, C 6 -C 18 aryl or C 6 -C 18 aryloxy ( thio) group, wherein the aforementioned C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl -C 1 -C 8
  • R 4 and R 5 are the same as or different from each other and independently represent C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl-C 1 -C 8 alkyl, C 1 -C 8 alkyl-C 3 -C 10 cycloalkyl, C 1 -C 20 alkoxy (thio) group, C 3 -C 10 cycloalkoxy (thio) group, C 3 -C 10 cycloalkyl -C 1 -C 8 alkoxy (thio) group, C 1 -C 8 alkyl-C 3 -C 10 cycloalkoxy (thio) group, C 6 -C 18 aryl or C 6 -C 18 aryloxy (sulfur) group, wherein the aforementioned C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl -C 1 -C 8 alky
  • R 1 each independently represents a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group or a C 2 -C 6 alkenyl group, wherein the aforementioned C 1 -C 6 alkyl group, C 6 -C 10 aryl group or C 2 -C 6 alkenyl is optionally substituted with one or more groups independently selected from the group consisting of halogen, nitro, amino, cyano, C 1 -C 6 alkyl and C 1 -C 6 alkoxy ( thio) group,
  • R 1 each independently represents a C 1 -C 4 alkyl group, phenyl group or C 2 -C 4 alkenyl group, wherein the aforementioned C 1 -C 4 alkyl group, phenyl group or C 2 -C 4 alkenyl group is optionally replaced by Substituted with one or more groups independently selected from the group consisting of fluorine, chlorine, bromine, nitro, amino, cyano, C 1 -C 4 alkyl and C 1 -C 4 alkoxy (thio) groups; and /or
  • R 2 independently represents C 1 -C 8 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 8 alkyl, C 1 -C 8 alkyl -C 3 -C 8 cycloalkyl, C 6 -C 10 aryl or C 6 -C 10 aryl -C 1 -C 8 alkyl, where The aforementioned C 1 -C 8 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 8 alkyl, C 1 -C 8 alkyl -C 3 -C 8 cycloalkyl radical, C 6 -C 10 aryl or C 6 -C 10 aryl-C 1 -C 8 alkyl optionally substituted by one or more groups independently selected from the group consisting of: halogen, nitro, amino , cyano group, C 1 -C 6 alkyl group and
  • R 2 independently represents C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl-C 1 -C 4 alkyl, C 1 -C 4 alkyl -C 5 -C 6 cycloalkyl, phenyl or phenyl-C 1 -C 4 alkyl, wherein the aforementioned C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl- C 1 -C 4 alkyl, C 1 -C 4 alkyl-C 5 -C 6 cycloalkyl, phenyl or phenyl -C 1 -C 4 alkyl is optionally one or more independently selected from Substitution with groups from the following group: fluorine, chlorine, bromine, nitro, amino, cyano, C 1 -C 4 alkyl and C 1 -C 4 alkoxy (thio) groups; and
  • R 3 independently represents halogen, nitro, amino, cyano, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 6 alkyl, C 1 -C 6 alkyl-C 3 -C 8 cycloalkyl, C 1 -C 6 alkoxy (thio) group, C 3 -C 8 cycloalkoxy (thio) group, C 3 -C 8 cycloalkyl -C 1 -C 6 alkoxy (thio) group, C 1 -C 6 alkyl -C 3 -C 8 cycloalkoxy (thio) group, C 6 -C 10 aryl or C 6 -C 10 aryloxy ( thio) group, wherein the aforementioned C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 6 alky
  • R 3 independently represents fluorine, chlorine, bromine, nitro, amino, cyano, C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl-C 1 - C 4 alkyl, C 1 -C 4 alkyl-C 5 -C 6 cycloalkyl, C 1 -C 4 alkoxy (thio) group, C 5 -C 6 cycloalkoxy (thio) group, C 5 - C 6 cycloalkyl-C 1 -C 4 alkoxy (thio) group, C 1 -C 4 alkyl-C 5 -C 6 cycloalkoxy (thio) group, phenyl or phenoxy (thio) group, wherein The aforementioned C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl-C 1 -C 4 alkyl, C 1 -C
  • R 4 and R 5 are the same or different from each other and independently represent C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 6 alkyl, C 1 -C 6 alkyl - C 3 -C 8 cycloalkyl, C 1 -C 6 alkoxy (thio) group, C 3 -C 8 cycloalkoxy (thio) group, C 3 -C 8 cycloalkyl -C 1 -C 6 alkoxy (thio) group, C 1 -C 6 alkyl -C 3 -C 8 cycloalkoxy (thio) group , C 6 -C 10 aryl or C 6 -C 10 aryloxy (thio) group, wherein the aforementioned C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl -C 1 -C 6 al
  • R 4 and R 5 are the same as or different from each other and each independently represents C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl-C 1 -C 4 alkyl, C 1 -C 4 alkyl-C 5 -C 6 cycloalkyl, C 1 -C 4 alkoxy (thio) group, C 5 -C 6 cycloalkoxy (thio) group, C 5 -C 6 cycloalkyl- C 1 -C 4 alkoxy (thio) group, C 1 -C 4 alkyl -C 5 -C 6 cycloalkoxy (thio) group, phenyl or phenoxy (thio) group, wherein the aforementioned C 1 -C 4 Alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl - C 1 -C 4 alkyl, C 1 -C 4 alkyl,
  • n 0 or 1 independently
  • n1 independently represents integers from 0 to 4.
  • n2 independently represents integers from 0 to 4.
  • R 1 each independently represents a C 1 -C 4 alkyl group, a phenyl group or a C 2 -C 4 alkenyl group;
  • R 2 independently represents C 1 -C 7 alkyl, C 5 -C 6 cycloalkyl or C 5 -C 6 cycloalkyl- C 1 -C 4 alkyl;
  • R 3 independently represents nitro, C 1 -C 4 alkyl, C 1 -C 4 alkoxy (thio) group or phenyl;
  • R 4 and R 5 each independently represent a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy (thio) group or a phenyl group.
  • n 0 or 1 independently
  • n1 independently represents integers from 0 to 4.
  • n2 independently represents integers from 0 to 4.
  • R 1 each independently represents a C 1 -C 4 alkyl group, a phenyl group or a C 2 -C 4 alkenyl group;
  • R 2 independently represents C 1 -C 7 alkyl, C 5 -C 6 cycloalkyl or C 5 -C 6 cycloalkyl- C 1 -C 4 alkyl;
  • R 3 each independently represents a nitro group, a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy (thio) group or a phenyl group.
  • acylphosphinoxime ester compound according to any one of items 1 to 4, wherein the acylphosphinoxime ester compound is selected from the group consisting of:
  • n 1
  • the compound of Formula 1-2 or Formula 2-2 is subjected to an oximation reaction with a compound selected from nitrous acid, nitrite and/or alkyl nitrite to obtain Formula 1-3b or Formula 2- 3b compound:
  • step (1) The Friedel's acylation reaction of step (1) is carried out using an acylating reagent selected from the compounds of the following formulas Ia, Ib and Ic:
  • X is halogen, especially chlorine, and R is as defined in any one of items 1 to 5.
  • step (1) is carried out in the presence of one or more catalysts selected from the following group: Lewis acid catalyst, preferably AlCl 3 , AlBr 3 , FeCl 3. TiCl 4 , ZnCl 2 , SnCl 4 , BF 3 ; solid acid catalysts, preferably zeolite molecular sieves and SO 4 2- /M x O y type solid super acids such as SO 4 2- /ZrO 2 and SO 4 2- /TiO 2.
  • Lewis acid catalyst preferably AlCl 3 , AlBr 3 , FeCl 3.
  • TiCl 4 , ZnCl 2 , SnCl 4 , BF 3 preferably zeolite molecular sieves and SO 4 2- /M x O y type solid super acids such as SO 4 2- /ZrO 2 and SO 4 2- /TiO 2.
  • ionic liquid catalyst preferably chloroaluminic acid type ionic liquid, such as AlCl 3 and organic alkyl imidazole salt, alkylpyridine Chloroaluminic acid type ionic liquids of halide combinations of salts or alkylammonium salts; or supported catalysts, preferably polystyrene supported AlCl3 catalysts.
  • the oximation reaction of step (2) is carried out in the presence of sodium acetate, pyridine, piperidine, triethylamine and/or tetramethylammonium hydroxide as a catalyst; and/or, the compound of formula 1-2 is mixed with a compound selected from the group consisting of hydroxylamine and/or Or the molar ratio of the compound of hydroxylamine hydrochloride is 1:1.5-1.5:1, preferably 1:1.2-1.2:1; the molar ratio of the compound of formula 2-2 to the compound selected from hydroxylamine and/or hydroxylamine hydrochloride is 1:3 -3:1, preferably 1:2-2:1; or when n is 1,
  • the oximation reaction of step (2) is carried out in the presence of concentrated hydrochloric acid; and/or the molar ratio of the compound of formula 1-2 to the compound selected from nitrous acid, nitrite and/or alkyl nitrite is 1:3 -3:1, preferably 1:1.5-1.5:1; the molar ratio of the compound of formula 2-2 to the compound selected from nitrous acid, nitrite and/or alkyl nitrite is 1:5-5:1, preferably 1:3- 3:1,
  • the alkyl nitrite is a C 1 -C 6 alkyl nitrite, such as methyl nitrite, ethyl nitrite, isopropyl nitrite, butyl nitrite or isoamyl nitrite.
  • step (3) is carried out using an esterification reagent selected from compounds of the following formulas IIa, IIb and IIc:
  • X is halogen, especially chlorine, and R1 is as defined in any one of items 1 to 5.
  • step (3) is carried out in the presence of one or more catalysts selected from the group consisting of: sulfuric acid, perchloric acid, zinc chloride, Ferric chloride, pyridine, p-toluenesulfonic acid, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium tert-butoxide, sodium ethoxide, sodium hydride, potassium hydride, calcium hydride and tertiary amines, e.g. Trialkylamines such as trimethylamine and triethylamine.
  • catalysts selected from the group consisting of: sulfuric acid, perchloric acid, zinc chloride, Ferric chloride, pyridine, p-toluenesulfonic acid, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium tert-butoxide, sodium ethoxide, sodium hydride, potassium hydride, calcium hydride and tertiary amines, e.g.
  • acylphosphinoxime ester compound as described in any one of items 1 to 5 as a photoinitiator, especially in UV-VIS LED light source curing systems, especially in radiation It is used as a photoinitiator in the light source curing system with a wavelength of 300-550nm, especially 365-450nm.
  • a photocurable composition comprising at least one acylphosphinoxime ester compound according to any one of items 1 to 5.
  • a method for preparing a photocurable material which includes irradiating the photocurable composition of item 15 with a light source having a radiation wavelength of 300-550 nm, especially 365-450 nm, such as a UV-VIS LED light source.
  • Figure 1 shows the kinetic curve of the double bond conversion rate as a function of time when the polymerizable monomer TPGDA is polymerized by a photoinitiator.
  • Figure 2 is the UV-visible light absorption spectra of Example 1, Example 8 and commercially available (2,4,6-trimethylbenzoyl)diphenylphosphine oxide (TPO).
  • an acylphosphinoxime ester compound of Formula 1 and Formula 2 is provided:
  • n 0 or 1 independently
  • n1 independently represents integers from 0 to 4.
  • n2 independently represents integers from 0 to 4.
  • R 1 each independently represents a C 1 -C 20 alkyl group, a C 6 -C 18 aryl group or a C 2 -C 20 alkenyl group, wherein the aforementioned C 1 -C 20 alkyl group, C 6 -C 18 aryl group or C 2 -C 20 alkenyl is optionally substituted with one or more groups independently selected from the group consisting of halogen, nitro, amino, cyano, C 1 -C 6 alkyl and C 1 -C 6 alkoxy ( sulfur) group;
  • R 2 each independently represents C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl -C 1 -C 8 alkyl, C 1 -C 8 alkyl -C 3 -C 10 cycloalkyl, C 6 -C 18 aryl or C 6 -C 18 aryl -C 1 -C 8 alkyl, wherein the aforementioned C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl-C 1 -C 8 alkyl, C 1 -C 8 alkyl -C 3 -C 10 cycloalkyl, C 6 -C 18 aryl or C 6 -C 18 aryl- C 1 -C 8 alkyl is optionally substituted with one or more groups independently selected from the group consisting of halogen, nitro, amino, cyano, C 1 -C 6 alkyl and C
  • R 3 independently represents halogen, nitro, amino, cyano, C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl -C 1 -C 8 alkyl, C 1 -C 8 alkyl-C 3 -C 10 cycloalkyl, C 1 -C 20 alkoxy (Thio) group, C 3 -C 10 cycloalkoxy (thio) group, C 3 -C 10 cycloalkyl -C 1 -C 8 alkoxy (thio) group, C 1 -C 8 alkyl -C 3 - C 10 cycloalkoxy (thio) group, C 6 -C 18 aryl group or C 6 -C 18 aryloxy (thio) group, wherein the aforementioned C 1 -C 20 alkyl group, C 3 -C 10 cycloalkyl group, C 3 -C 10 cycloalkyl-C 1 -
  • R 4 and R 5 are the same as or different from each other and independently represent C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl-C 1 -C 8 alkyl, C 1 -C 8 alkyl-C 3 -C 10 cycloalkyl, C 1 -C 20 alkoxy (thio) group, C 3 -C 10 cycloalkoxy (thio) group, C 3 -C 10 cycloalkyl -C 1 -C 8 alkoxy (thio) group, C 1 -C 8 alkyl-C 3 -C 10 cycloalkoxy (thio) group, C 6 -C 18 aryl or C 6 -C 18 aryloxy (sulfur) group, wherein the aforementioned C 1 -C 20 alkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 cycloalkyl -C 1 -C 8 alky
  • the acylphosphinoxime ester compounds of Formula 1 and Formula 2 of the present invention have good photosensitivity absorption in the range of 300-550nm, especially 365-450nm. After absorbing light energy, they can rapidly cleave to generate active free radicals and continuously initiate polymerization. It has obvious advantages in photosensitivity and has good thermal stability and solubility, making it suitable for use as a photoinitiator for UV-VIS LED light source curing.
  • the prefix "C n -C m " indicates in each case that the number of carbon atoms contained in the group is nm.
  • Halogen refers to fluorine, chlorine, bromine and iodine. In the present invention, it is preferred that the halogen includes F, Cl or a combination thereof.
  • Cn - Cm alkyl refers to having nm, for example, 1-20, preferably 1-12, more preferably 1-8, particularly preferably 1-6, especially preferably 1-4 Branched or unbranched saturated hydrocarbon groups with carbon atoms, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1 -Dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-bis Methylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethyl Butyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3
  • C 6 -C m aryl refers to a monocyclic, bicyclic or multicyclic aromatic hydrocarbon group containing 6-m carbon atoms, such as 6-18, preferably 6-10 carbon atoms, such as benzene base, tolyl, ethylphenyl, propylphenyl, butylphenyl, xylyl, methylethylphenyl, diethylphenyl, methylpropylphenyl, naphthyl and its isomers, etc.
  • C 2 -C m alkenyl means having 2-m, such as 2-20, preferably 2-6, more preferably 2-4 carbon atoms and having one double bond at any position.
  • Branched or unbranched unsaturated hydrocarbon groups such as vinyl, 1-propenyl, 2-propenyl, 1-methylvinyl, 1-butenyl, 2-butenyl, 3-butenyl, 1 -Methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl and their isomers, etc.
  • C 3 -C m cycloalkyl refers to a saturated alicyclic monocyclic group having 3-m, such as 3-10, preferably 3-8, more preferably 5-6 ring carbon atoms. Groups, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and their isomers, etc.
  • C 3 -C m cycloalkyl-C n -C m alkyl means C n -C m alkyl substituted by C 3 -C m cycloalkyl, where the two m can be the same or different, where C n -C m alkyl and C 3 -C m cycloalkyl are as defined herein.
  • C3 - Cmcycloalkyl - Cn -Cmalkyl may be C3 - C10cycloalkyl - C1 - C8alkyl , preferably C3 - C6cycloalkyl - C1 -C 6 alkyl, more preferably C 3 -C 6 cycloalkyl - C 1 -C 4 alkyl, such as cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclopropylbutyl, cyclopropylbutyl Butylmethyl, cyclobutylethyl, cyclobutylpropyl, cyclobutylbutyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclopentylbutyl, cyclohexylmethyl, Cyclohexylethyl, cyclohexylpropyl, cyclo
  • C n -C m alkyl-C 3 -C m cycloalkyl means a C 3 -C m cycloalkyl substituted by C n -C m alkyl, in which case the two m can be the same or different, where C n -C m alkyl and C 3 -C m cycloalkyl are as defined herein.
  • Cn - Cmalkyl - C3 - Cmcycloalkyl may be C1 - C8alkyl - C3 -C10cycloalkyl, preferably C1 - C6alkyl - C3 - C6 Cycloalkyl, more preferably C 1 -C 4 alkyl-C 3 -C 6 cycloalkyl, for example Methylcyclopropyl, ethylcyclopropyl, propylcyclopropyl, butylcyclopropyl, methylcyclobutyl, ethylcyclobutyl, propylcyclobutyl, butylcyclobutyl, methylcyclopentyl, Ethylcyclopentyl, propylcyclopentyl, butylcyclopentyl, methylcyclohexyl, ethylcyclohexyl, propylcyclohexyl, butylcyclohexyl and their is
  • C n -C m alkoxy (thio) group as used herein includes “C n -C m alkoxy group” and “C n -C m alkylthio group” and refers to the corresponding C n -C m alkyl group.
  • Any carbon atom of an open-chain C n -C m alkane is bonded with an oxygen atom or a sulfur atom as a C n -C m alkyl group as a connecting group, such as a C 1 -C 20 alkoxy (sulfide) group, C 1 -C 12 alkoxy (thio) group is preferred, C 1 -C 8 alkoxy (thio) group is more preferred, C 1 -C 6 alkoxy (thio) group is particularly preferred, C 1 -C 4 alkoxy is particularly preferred (thio) group.
  • a connecting group such as a C 1 -C 20 alkoxy (sulfide) group, C 1 -C 12 alkoxy (thio) group is preferred, C 1 -C 8 alkoxy (thio) group is more preferred, C 1 -C 6 alkoxy (thio) group is particularly preferred, C 1 -C 4 alkoxy is particularly preferred (thio) group.
  • C 1 -C 8 alkoxy can be methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, 2-butoxy, tert-butoxy, pentyloxy, isopentyloxy base, hexyloxy, heptyloxy, octyloxy, isooctyloxy and their isomers.
  • C 1 -C 8 alkylthio group can be methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, 2-butylthio, tert-butylthio, pentylthio, isopentylthio group, hexylthio group, heptylthio group, octylthio group, isooctylthio group and its isomers, etc.
  • C 3 -C m cycloalkoxy (thio) group includes “C 3 -C m cycloalkoxy (thio) group” and “C 3 -C m cycloalkoxy (thio) group” and refers to the group at C 3 -C m
  • the C 3 -C m cycloalkyl group corresponding to the cycloalkyl group has an oxygen atom or a sulfur atom bonded to any ring carbon atom in the cycloalkane as a connecting group, such as a C 3 -C 20 ring Alkoxy (thio) group, preferably C 3 -C 8 cycloalkoxy (thio) group, more preferably C 5 -C 6 cycloalkoxy (thio) group, such as cyclopropyloxy, cyclobutyloxy, cycloalkyloxy (thio) group, Pentyloxy, cyclohexyloxy, cyclohept
  • C3 - Cmcycloalkyl - Cn - Cmalkoxy(thio)yl includes “ C3 - Cmcycloalkyl- Cn - Cmalkoxy” and " C3 - Cm "Cycloalkyl-C n -C m alkylthio” refers to a C n -C m alkoxy (thio) group substituted by a C 3 -C m cycloalkyl group. In this case, the two m can be the same or different, where C 3 -C m cycloalkyl and C n -C m alkoxy (thio) groups are as defined herein.
  • C 3 -C m cycloalkyl-C n -C m alkoxy (thio) group may be C 3 -C 10 cycloalkyl - C 1 -C 8 alkoxy (thio) group, preferably C 3 -C 6 cycloalkyl Alkyl-C 1 -C 6 alkoxy (thio) group, more preferably C 3 -C 6 cycloalkyl-C 1 -C 4 alkoxy (thio) group, such as cyclopropylmethoxy, cyclopropylethyl Oxygen, cyclopropylpropoxy, cyclopropylbutoxy, cyclobutylmethoxy, cyclobutylethoxy, cyclobutylpropoxy base, cyclobutylbutoxy, cyclopentylmethoxy, cyclopentylethoxy, cyclopentylpropoxy, cyclopentylbutoxy, cyclohexylmethoxy,
  • C n -C m alkyl-C 3 -C m cycloalkoxy (thio) group means a C 3 -C m cycloalkoxy (thio) group substituted by a C n -C m alkyl group, in which case both Each m may be the same or different, wherein C n -C m alkyl and C 3 -C m cycloalkoxy (thio) group are as defined herein.
  • C n -C m alkyl-C 3 -C m cycloalkoxy (thio) group may be C 1 -C 8 alkyl -C 3 -C 10 cycloalkoxy (thio) group, preferably C 1 -C 6 Alkyl-C 3 -C 6 cycloalkoxy (thio) group, more preferably C 1 -C 4 alkyl-C 3 -C 6 cycloalkoxy (thio) group, such as methylcyclopropyloxy, ethyl Cyclopropoxy, propylcyclopropoxy, butylcyclopropoxy, methylcyclobutoxy, ethylcyclobutoxy, propylcyclobutoxy, butylcyclobutoxy, methylcyclopentyloxy, Ethylcyclopentyloxy, propylcyclopentyloxy, butylcyclopentyloxy, methylcyclohexyloxy, ethylcyclohexyloxy
  • C 6 -C m aryloxy (thio) group includes “C 6 -C m aryloxy group” and “C 6 -C m arylthio group” and refers to the corresponding C 6 -C m aryl group.
  • Any aromatic carbon atom in the C 6 -C m aromatic hydrocarbon is bonded with an oxygen atom or a sulfur atom as a connecting group C 6 -C m aryl group, such as phenylthio, phenoxy, tolyloxy , tolylthio, naphthylthio, naphthyloxy and its isomers, etc.
  • n is 0 or 1.
  • the compound of Formula 1 or 2 is called an acylphosphinoxime ester compound; when n is 1, the compound of Formula 1 or 2 is called an acylphosphinoxime ester compound.
  • acylphosphinoxime ester compounds are collectively referred to as acylphosphinoxime ester compounds.
  • R 1 each independently represents a C 1 -C 6 alkyl group, a C 6 -C 10 aryl group or a C 2 -C 6 alkenyl group, wherein the aforementioned C 1 -C 6 alkyl group, C 6 -C 10 aryl or C 2 -C 6 alkenyl is optionally substituted with one or more groups independently selected from the group consisting of: halogen, nitro, ammonia group, cyano group, C 1 -C 6 alkyl group and C 1 -C 6 alkoxy (thio) group;
  • R 1 each independently represents a C 1 -C 4 alkyl group, phenyl group or C 2 -C 4 alkenyl group, wherein the aforementioned C 1 -C 4 alkyl group, phenyl group or C 2 -C 4 alkenyl group is any Optionally substituted with one or more groups independently selected from the group consisting of fluorine, chlorine, bromine, nitro, amino, cyano, C 1 -C 4 alkyl and C 1 -C 4 alkoxy (sulfur) base.
  • R 2 respectively independently represents C 1 -C 8 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl- C 1 -C 8 alkyl, C 1 -C 8 alkyl-C 3 -C 8 cycloalkyl, C 6 -C 10 aryl or C 6 -C 10 aryl - C 1 -C 8 alkyl, wherein the aforementioned C 1 -C 8 alkyl , C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl -C 1 -C 8 alkyl, C 1 -C 8 alkyl -C 3 -C 8 cycloalkyl, C 6 -C 10 aromatic or C 6 -C 10 aryl - C 1 -C 8 alkyl optionally substituted by one or more groups independently selected from the group consisting of: halogen, nitro, amino, cyano, C 1 -C 8 alkyl, optionally
  • R 2 independently represents C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl-C 1 -C 4 alkyl, C 1 -C 4 alkyl -C 5 -C 6 cycloalkyl, phenyl or phenyl -C 1 -C 4 alkyl, wherein the aforementioned C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 ring Alkyl-C 1 -C 4 alkyl, C 1 -C 4 alkyl-C 5 -C 6 cycloalkyl, phenyl or phenyl-C 1 -C 4 alkyl is optionally substituted by one or more independently Substituted with a group selected from the group consisting of fluorine, chlorine, bromine, nitro, amino, cyano, C 1 -C 4 alkyl and C 1 -C 4 alkoxy
  • R 3 independently represents halogen, nitro, amino, cyano, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl Base -C 1 -C 6 alkyl, C 1 -C 6 alkyl -C 3 -C 8 cycloalkyl, C 1 -C 6 alkoxy (thio) group, C 3 -C 8 cycloalkoxy (sulfur) base, C 3 -C 8 cycloalkyl-C 1 -C 6 alkoxy (thio) group, C 1 -C 6 alkyl -C 3 -C 8 cycloalkoxy (thio) group, C 6 -C 10 aromatic group or C 6 -C 10 aryloxy (thio) group, wherein the aforementioned C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl, C 3 -C 8
  • R 3 independently represents fluorine, chlorine, bromine, nitro, cyano, C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl-C 1 -C 4 alkyl, C 1 -C 4 alkyl -C 5 -C 6 cycloalkyl, C 1 -C 4 alkoxy (thio) group, C 5 -C 6 cycloalkoxy (thio) group, C 5 -C 6 cycloalkyl -C 1 -C 4 alkoxy (thio) group, C 1 -C 4 alkyl -C 5 -C 6 cycloalkoxy (thio) group, phenyl or phenoxy (thio) group, wherein the aforementioned C 1 -C 4 alkane Base, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl - C 1 -C 4 alkyl, C 1
  • R 4 and R 5 are the same as or different from each other and each independently represents C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl- C 1 -C 6 alkyl, C 1 -C 6 alkyl -C 3 -C 8 cycloalkyl, C 1 -C 6 alkoxy (thio) group, C 3 -C 8 cycloalkoxy (thio) group, C 3 -C 8 cycloalkyl-C 1 -C 6 alkoxy (thio) group, C 1 -C 6 alkyl -C 3 -C 8 cycloalkoxy (thio) group, C 6 -C 10 aryl or C 6 -C 10 aryloxy (thio) group, wherein the aforementioned C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycl
  • R 4 and R 5 are the same as or different from each other and each independently represents C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl- C 1 -C 4 alkyl base, C 1 -C 4 alkyl-C 5 -C 6 cycloalkyl, C 1 -C 4 alkoxy (thio) group, C 5 -C 6 cycloalkoxy (thio) group, C 5 -C 6 ring Alkyl-C 1 -C 4 alkoxy (thio) group, C 1 -C 4 alkyl-C 5 -C 6 cycloalkoxy (thio) group, phenyl or phenoxy (thio) group, wherein the aforementioned C 1 -C 4 alkyl, C 5 -C 6 cycloalkyl, C 5 -C 6 cycloalkyl -C 1 -C 4 alkyl, C 1 -C 4 alkyl, C
  • n 0 or 1 independently
  • n1 independently represents integers from 0 to 4.
  • n2 independently represents integers from 0 to 4.
  • R 1 each independently represents a C 1 -C 4 alkyl group, a phenyl group or a C 2 -C 4 alkenyl group;
  • R 2 independently represents C 1 -C 7 alkyl, C 5 -C 6 cycloalkyl or C 5 -C 6 cycloalkyl- C 1 -C 4 alkyl;
  • R 3 independently represents nitro, C 1 -C 4 alkyl, C 1 -C 4 alkoxy (thio) group or phenyl;
  • R 4 and R 5 each independently represent a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy (thio) group or a phenyl group.
  • acylphosphinoxime ester compounds of formula 1 and formula 2 of the present invention are selected from the compounds of formula 3, 4 or 5:
  • n 0 or 1 independently
  • n1 independently represents integers from 0 to 4.
  • n2 independently represents integers from 0 to 4.
  • R 1 each independently represents a C 1 -C 4 alkyl group, a phenyl group or a C 2 -C 4 alkenyl group;
  • R 2 independently represents C 1 -C 7 alkyl, C 5 -C 6 cycloalkyl or C 5 -C 6 cycloalkyl- C 1 -C 4 alkyl;
  • R 3 each independently represents a nitro group, a C 1 -C 4 alkyl group, a C 1 -C 4 alkoxy (thio) group or a phenyl group.
  • the acylphosphinoxime ester compounds of Formula 1 and Formula 2 of the present invention are selected from compounds 1-83 shown above. Compounds 1-83 were prepared in Examples 1-83, respectively.
  • n 1
  • the compound of Formula 1-2 or Formula 2-2 is subjected to an oximation reaction with a compound selected from nitrous acid, nitrite and/or alkyl nitrite to obtain Formula 1-3b or Formula 2- 3b compound:
  • acylphosphine oxime ester compounds of Formula 1 and Formula 2 of the present invention it is necessary to start with a specific acylphosphine oxide compound, first carry out Friedel's acylation reaction, and then carry out an oximation reaction to introduce an oxime group, and then add the oxime group to The hydroxyl group is converted into the corresponding ester group through an esterification reaction, thereby obtaining the acylphosphineoxime ester compound of the present invention.
  • the compound of formula 1-1 or 2-1 undergoes Friedel's acylation reaction with the acylation reagent under the action of a catalyst to generate the compound of formula 1-2 or 2-2:
  • X is halogen, especially chlorine, and R is as defined for formula 1 or 2.
  • Lewis acid catalysts can be used, preferably AlCl 3 , AlBr 3 , FeCl 3 , TiCl 4 , ZnCl 2 , SnCl 4 , BF 3 ; solid acid catalysts, preferably Zeolite molecular sieves and SO 4 2- /M x O y solid super acids such as SO 4 2- /ZrO 2 , SO 4 2- /TiO 2 , SO 4 2- /Fe 2 O 3 ; ionic liquid catalysts, preferably chlorine Aluminate ionic liquids, such as AlCl 3 and organic alkyl imidazole salt, alkylpyridine Chloroaluminic acid type ionic liquids of halide combinations of salts or alkylammonium salts; or supported catalysts, preferably polystyrene supported Al
  • the above-mentioned Friedrich's acylation reaction is usually carried out in a solvent, preferably in an organic solvent.
  • solvent type There are no special restrictions on the choice of solvent type, as long as it can dissolve the compound of formula 1-1 or 2-1 and the acylation reagent and is chemically inert to the acyl reaction, that is, it does not participate in the acylation reaction. It is preferably carried out in a halogenated alkane solvent, and as examples of solvents dichloromethane or dichloroethane are usually used.
  • the relative amounts of the compound of formula 1-1 or 2-1 and the acylating reagent selected from the group consisting of Ia, Ib and Ic compounds there is no particular restriction on the relative amounts of the compound of formula 1-1 or 2-1 and the acylating reagent selected from the group consisting of Ia, Ib and Ic compounds.
  • the molar ratio of the compound of Formula 1-1 to the acylating reagent selected from Ia, Ib and Ic compounds is 1:0.8-1:5, preferably 1:1-1:3; the molar ratio of the compound of Formula 1-1 to the acylating reagent selected from the group consisting of
  • the molar ratio of acylating reagents of compounds Ia, Ib and Ic is 1:2-1:10, preferably 1:2-1:6.
  • the temperature range of Friedel's acylation reaction is usually -10°C to 50°C, preferably 0-40°C.
  • the reaction time is not particularly limited, but is usually carried out for 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • This oximation reaction usually uses hydroxylamine hydrochloride (NH 2 OH ⁇ HCl), hydroxylamine (NH 2 OH) or a mixture thereof as the oximation reagent.
  • the oximation reaction is usually carried out in an organic solvent, preferably in a polar organic solvent. Solvents that can be used are, for example, ethanol or aqueous ethanol.
  • Solvents that can be used are, for example, ethanol or aqueous ethanol.
  • catalysts such as sodium acetate, pyridine, piperidine, triethylamine, tetramethylammonium hydroxide or their mixtures. Among them, pyridine, piperidine, and triethylamine can also be used as bases and/or solvents or co-solvents.
  • the relative amounts of the compound of formula 1-2 and the compound selected from hydroxylamine and/or hydroxylamine hydrochloride are used in approximately equimolar amounts.
  • the molar ratio of the two is 1:1.5-1.5:1. , preferably 1:1.2-1.2:1.
  • the molar ratio of the compound of formula 2-2 to the compound selected from hydroxylamine and/or hydroxylamine hydrochloride is 1:3-3:1, preferably 1:2-2:1.
  • the temperature range of the above-mentioned oximation reaction is usually 30-120°C, preferably 40-100°C. There is no particular limit to the oximation reaction time, but it is usually carried out for 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • n 1
  • the compound of Formula 1-2 or Formula 2-2 is subjected to an oximation reaction with a compound selected from nitrous acid, nitrite and/or alkyl nitrite to obtain Formula 1-3b or Formula 2- 3b compound:
  • This oximation reaction usually uses nitrous acid, nitrite, alkyl nitrite or a mixture thereof as the oximation reagent.
  • This reagent nitrosates the "active" (methylene)methyl group ( ⁇ -(methylene)methyl group, i.e. the (methylene)methyl group next to the carbonyl group).
  • nitrite sodium nitrite is usually used.
  • alkyl nitrites usually C 1 -C 6 alkyl nitrites are used, such as methyl nitrite, ethyl nitrite, isopropyl nitrite, butyl nitrite or isoamyl nitrite.
  • the oximation reaction is usually carried out in an organic solvent, preferably in an organic polar solvent.
  • Solvents that can be used are, for example, tetrahydrofuran, ethanol or aqueous ethanol.
  • concentrated hydrochloric acid or pass in hydrogen chloride gas the concentration of which is usually 20-40%.
  • Concentrated hydrochloric acid can also be used as acid and/or solvent or co-solvent.
  • the relative amounts of the compound of formula 1-2 and the compound selected from nitrous acid, nitrite and/or alkyl nitrite are used in approximately equimolar amounts, such as the molar ratio of the two. It is 1:3-3:1, preferably 1:1.5-1.5:1.
  • the molar ratio of the compound of formula 2-2 to the compound selected from nitrous acid, nitrite and/or alkyl nitrite is 1:5-5:1, preferably 1:3-3:1.
  • the temperature of the above-mentioned oximation reaction is low temperature, and the temperature range is usually -30°C to 20°C, preferably 5-20°C. There is no particular limit to the oximation reaction time, but it is usually carried out for 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • the esterification of compounds of formula 1-3a or 2-3a or formula 1-3b or 2-3b is routine for those skilled in the art.
  • the hydroxyl group in the oxime group is converted into an ester group, thereby obtaining formula 1 or Compound of formula 2.
  • the esterification reagent is not particularly limited as long as it can convert the hydroxyl group in the oxime group of the compound of Formula 1-3a or 2-3a or Formula 1-3b or 2-3b into an ester group.
  • the corresponding acid halide such as acid chloride, the corresponding carboxylic acid, and the corresponding acid anhydride can also be used.
  • These compounds can be represented as compounds of formula IIa, IIb and IIc respectively:
  • X is halogen, especially chlorine, and R1 is as defined in formula 1 or 2.
  • the above-mentioned esterification reaction is usually carried out in the presence of a catalyst suitable for the esterification reaction.
  • a catalyst suitable for the esterification reaction.
  • an acidic catalyst or a basic catalyst can be used.
  • sulfuric acid, perchloric acid, zinc chloride, ferric chloride, pyridine, p-toluenesulfonic acid, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium tert-butoxide, sodium ethoxide can be used , sodium hydride, potassium hydride, calcium hydride, tetramethylammonium hydroxide, tertiary amines (such as trialkylamines, such as trimethylamine and triethylamine) or any combination thereof.
  • the amount of catalyst used is routine and can be determined by common sense in the art, or by several routine preliminary experiments.
  • the above-mentioned esterification reaction is usually carried out in a solvent, preferably an organic solvent.
  • solvent preferably an organic solvent.
  • solvent type there are no special restrictions on the choice of solvent type, as long as it can dissolve the compound of formula 1-3a or 2-3a or formula 1-3b or 2-3b and the esterification reagent and is chemically inert to the esterification reaction, that is, not Just participate in the esterification reaction.
  • solvents there may be mentioned tetrahydrofuran, benzene, toluene, N,N-dimethylformamide, dichloromethane and acetone.
  • the solvent can be a single solvent or Use a mixture of two or more solvents.
  • the relative amounts of the compounds of formulas 1-3a, 2-3a and the esterification reagent selected from compounds IIa, IIb and IIc are used in approximately equimolar amounts.
  • the molar ratio of the two is 1. :1.5-1.5:1, preferably 1:1.2-1.2:1.
  • the molar ratio of the compound of formula 1-3b or 2-3b to the esterification reagent selected from the group consisting of IIa, IIb and IIc compounds is 1:3-3:1, preferably 1:2-2:1.
  • Esterification reactions can take place over a very wide temperature range. According to the present invention, it is advantageous that the esterification reaction is carried out at a temperature of -10°C to 150°C, preferably 0°C to 100°C, preferably at normal temperature.
  • the esterification reaction time is also not particularly limited, and is usually carried out for 1 to 24 hours, preferably 1 to 12 hours.
  • the reaction mixture obtained by the esterification reaction is first filtered, and the filtrate portion is taken out. The filtrate is then washed to remove catalyst and unreacted raw materials.
  • the washing liquid is not particularly limited as long as it can remove the catalyst and unreacted raw materials.
  • dilute hydrochloric acid aqueous solution
  • saturated aqueous sodium bicarbonate solution and water can be mentioned.
  • the concentration of dilute hydrochloric acid is not particularly limited. Generally speaking, dilute hydrochloric acid with a concentration of 5-12% is used.
  • washing with lotion can be done once or multiple times; in the case of multiple times, a single lotion can be used, or different lotions can be used in sequence.
  • the filtrate obtained by filtering the reaction mixture obtained by the esterification reaction is washed sequentially with dilute hydrochloric acid, saturated aqueous sodium bicarbonate solution and water.
  • dilute hydrochloric acid saturated aqueous sodium bicarbonate solution and water.
  • drying is required to remove residual water.
  • anhydrous sodium sulfate is usually used for drying.
  • the remaining organic solvent is removed.
  • the means for removing the organic solvent here is not particularly limited, and the organic solvent can usually be removed by distillation under reduced pressure.
  • a crude product of the compound of formula 1 or formula 2 is obtained. If you want to further improve the purity of the compound of Formula 1 or Formula 2, the compound can be further purified, for example, by recrystallization.
  • recrystallization solvent is routine and not particularly limited. According to the present invention, it is advantageous to recrystallize the crude product of the compound of formula 1 or formula 2 using petroleum ether, methanol, ethanol or mixtures thereof.
  • each oxime ester group may exist in two configurations, (Z) type or (E) type.
  • the isomers can be separated by conventional methods, but it is also possible to use mixtures of isomers as photoinitiators.
  • the present invention therefore also relates to mixtures of respective configurational isomers of the compounds of formula 1 or formula 2.
  • acylphosphinoxime ester compounds of Formula 1 and Formula 2 of the present invention have strong absorption in the wavelength range of 300-550nm, especially in the wavelength range of 365-450nm, so they can be used as photoinitiators in UV-VIS LED light curing technology. , especially suitable for deep curing with long wavelength UV-VIS LED light source.
  • the use of the acylphosphinoxime ester compounds of Formula 1 and Formula 2 of the present invention as a photoinitiator can be used as photoinitiators in UV-VIS LED light curing technology, and can effectively initiate curing reactions, especially for deep curing of long-wavelength UV-VIS LED light sources.
  • Particularly preferred is the use of the acylphosphinoxime ester compounds of Formula 1 and Formula 2 of the present invention as photoinitiators in a photocuring system with a radiation wavelength of 300-550 nm, especially 365-450 nm.
  • the acylphosphinoxime ester compounds of formula 1 and formula 2 of the present invention can also be used as photoinitiators or photosensitizers in the fields of coatings, inks, microelectronics, printing and other fields.
  • the acylphosphinoxime ester compounds of Formula 1 and Formula 2 of the present invention are used as photoinitiators, their dosage is routine or can be determined through routine preliminary tests. Therefore, the present invention also relates to a photocurable composition comprising an acylphosphinoxime ester compound of the invention, and to a cured material obtainable from the photocurable composition.
  • the present invention also relates to a method for preparing a photocurable material, which includes irradiating the photocurable composition with a light source with a radiation wavelength of 300-550 nm, especially 365-450 nm, such as a UV-VIS LED light source.
  • the compound disclosed in the present invention has a simple production process and high yield, and is very suitable for industrial production.
  • Such compounds have good matching with UV-VIS LED light sources with radiation wavelengths of 365nm, 385nm, 395nm, 405nm, 415nm, 425nm, and 450nm. They can be used as photoinitiators and are widely used in fields involved in UV-VIS LED light curing, such as coatings. , ink, microelectronics, printing, 3D printing, dental materials and other fields. Therefore, the acylphosphinoxime ester photoinitiator represented by Formula 1 or Formula 2 of the present invention has good market prospects.
  • the acylphosphinoxime ester photoinitiator represented by Formula 1 or Formula 2 of the present invention can contribute to the widespread application of green and environmentally friendly UV-VIS LED light sources in the UV curing industry.
  • Example 36 Repeat the method of Example 36, appropriately change the reaction raw materials, and obtain the compounds 37-49 and their nuclear magnetic data shown in Table 4 below.
  • Example 50 Repeat the method of Example 50, appropriately change the reaction raw materials, and obtain the compounds 51-57 and their nuclear magnetic data shown in Table 5 below.
  • Example 58 Repeat the method of Example 58, appropriately change the reaction raw materials, and obtain the compounds 59-66 and their nuclear magnetic data shown in Table 6 below.
  • Example 67 Repeat the method of Example 67, appropriately change the reaction raw materials, and obtain the compounds 68-82 and their nuclear magnetic data shown in Table 7 below.
  • Example 84 Deep curing initiating effect of the acylphosphinoxime ester photoinitiator of the present invention under 400nm, 415nm and 425nm LED light sources
  • TPGDA tripropylene glycol diacrylate
  • the acylphosphine oxime ester photoinitiator of the present invention has better photosensitivity at wavelengths of 400nm, 415nm, and 425nm, and is better than the currently commercially available OXE-02 oxime ester photoinitiator. .
  • RT-FTIR Real-time Fourier exchange infrared spectroscopy
  • TPGDA Dissolve the above initiator in TPGDA, apply it on a clean KBr salt tablet, and cover the sample with another clean KBr salt tablet to avoid oxygen inhibition. Place the KBr double salt sheet containing the sample in the infrared detector and irradiate the sample.
  • the light intensity of the Omnicure LX505 UV LED light source is 100mW/cm 2 .
  • the changes in the double bonds of TPGDA were collected in real time with a Nicolet 5700 near-infrared spectrometer. The parameters were set as follows: the data collection interval was 0.5s, each spectrum was scanned once, and the resolution was 4cm -1 .
  • a o and A t are the areas of the TPGDA double bond characteristic peak at 1600 cm -1 before curing and at time t after illumination, respectively.
  • acetonitrile as the solvent to prepare 500 ppm acetonitrile solutions of Example 1, Example 8, and TPO, and test them on a Shimadzu UV3600 ultraviolet and near-infrared spectrophotometer.
  • the test range is 200-700nm, the scanning speed is medium speed, and the interval is 0.5nm.
  • the stability of photoinitiators in polymerizable monomers is a key indicator affecting their practicality.
  • the thermal stability of Example 1 and Example 8 in the polymerizable monomer TPGDA was studied using differential thermal analysis testing method (DSC) on a Mettler differential scanning calorimeter.
  • Examples 1, 8, and 83 were respectively dissolved in TPGDA, HDDA, TMPTA, and PMA, commonly used acrylate polymerizable monomers in photocurable materials, to prepare supersaturated solutions. Measure approximately 10mg-100mg of the above saturated solution into a 10ml brown volumetric flask, add 10ml acetonitrile to dilute and measure the absorbance of the UV absorption spectrum on a Shimadzu UV-3600 UV spectrum analyzer. According to Lambert-Beer's law and the above photoinitiation Calculate their solubility (unit: g/(100g solvent)) based on the maximum molar extinction coefficient of the agent in acetonitrile between 300nm and 400nm. Experimental results show that the solubility of the three photoinitiators in the above-mentioned monomers and solvents is greater than 6% by weight, see Table 11.
  • Table 11 Solubility of photoinitiators of Examples 1, 8 and 83 in TPGDA, HDDA, TMPTA and PMA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种式1和式2的酰基氧膦肟酯类化合物,其中各变量如说明书中所定义。该类化合物能够在300-550nm,尤其是365-450nm范围内具有较好的感光吸收,吸收光能后能够迅速发生裂解生成活性自由基,持续引发聚合,在感光性方面具有明显优势并且具有良好的热稳定性和溶解性,从而适合用作UV-VIS LED光源深层固化的光引发剂。还涉及式1和式2的酰基氧膦肟酯类化合物的制备方法及其用途,该类化合物可作为光引发剂,尤其适用于长波长UV-VIS LED光源深层固化。

Description

适用于UV-VIS LED光源深层固化的酰基氧膦肟酯类化合物及其制备和应用 技术领域
本发明属于光固化技术领域,涉及酰基氧膦肟酯类化合物,该类化合物可用作光引发剂,尤其适用于UV-VIS LED光源深层固化。本发明还涉及酰基氧膦肟酯类化合物的制备及其应用。
背景技术
目前,光固化技术已广泛应用在涂料、油墨、微电子、印刷等传统领域,另外还用于制备激光录像及三维元件等新型领域。作为光固化体系的重要组分的光引发剂(又称光敏剂),虽然在光固化体系中含量低,却是其中的关键组分,对光固化速度起决定作用,还必须满足不同光固化条件和应用的需要。它关系到配方体系在光辐照时能否迅速交联固化,从而由液态转变为固态。
基于环保等客观需要,具有宽谱辐射范围的传统UV固化设备如汞灯将会被淘汰。LED点光源、线光源、面光源已开始应用于光固化行业,相对于传统UV固化设备,LED光源有着绝对的优势,例如使用寿命长,无热辐射,环保无污染,超强照度,能耗低等等。可见光(VIS)相对于UV固化,其固化深度更深,温度更低,还可以穿过阻挡紫外光的基材来进行固化并且可以选择半透明的有颜色的材料。由于输出的是可见光,紫外光相关的遮挡和保护都可以最小化。安全性的提高是VIS固化设备的另一个重要优势。同时,随着UV-VIS LED光源固化技术的不断研发,为了满足UV-VIS LED光源固化技术的广泛应用需求,需要开发适用于UV-VIS LED光源的光引发剂。
肟酯类光引发剂作为自由基光引发剂,因其具有优异的感光性能成为近年来逐渐受到重视的一类光引发剂。目前常见的商业化产品有肟酯OXE01和OXE02(均来自BASF),这两个产品具有优异的光引发活性,但是它们的紫外吸收范围相对偏短(250-350nm),不能满足目前日益发展 的UV-VIS LED光源的需求,尤其是并不适用于长波长UV-VIS LED光源(例如辐射波长365nm、385nm、395nm、400nm、415nm、425nm、450nm)的需求。此外,也有一些关于肟酯类光引发剂的专利,例如CN10277552A披露了一种二苯硫醚酮肟酯类光引发剂及其制备方法,CN102492059A公开了取代的二苯硫醚酮肟酯类光引发剂等等。但是大多数引发剂的紫外吸收波长也停留在250-350nm,仍旧无法与日益发展的长波长LED光源匹配,这就大大限制了肟酯类光引发剂的应用。另外目前报道的用于UV-VIS LED光源深层固化体系的肟酯光引发剂不多,且肟酯的黄变现象仍然没有得到解决,这就大大限制了肟酯类光引发剂的应用。
有鉴于此,开发适用于目前迅速发展的UV-VIS LED光源且热稳定性和储存稳定性及溶解性良好的肟酯类光引发剂成为目前肟酯类光引发剂的研究方向。
发明内容
为了推动长波长UV-VIS LED光源固化技术的发展,本发明人一直致力于UV-VIS LED光源固化技术的推广及应用研究工作,尤其是不断研究开发更多的适用于长波长UV-VIS LED光源下的光引发剂。尤其鉴于现有技术存在的问题,本发明人在适用于UV-VIS LED光源(辐射波长为300-550nm,尤其是365-450nm)固化的光引发剂方面进行了广泛而又深入的研究,以期找到一种能够替代OXE01和OXE02以更适合UV-VIS LED光源固化且感光性能优异,具有良好热稳定性和储存稳定性及溶解性的光引发剂。
本发明人惊讶地发现,将特定酰基氧膦结构部分引入特定肟酯类化合物中形成了一种具有复合结构的新型酰基氧膦肟酯化合物,其能够在300-550nm,尤其是365-450nm范围内具有较好的感光吸收,吸收光能后能够迅速发生裂解生成活性自由基,持续引发聚合,在感光性方面具有明显优势并且具有良好的热稳定性和溶解性,从而适合用作UV-VIS LED光源深层固化,尤其是长波长UV-VIS LED光源深层固化的光引发剂。
本发明目的正是基于前述发现得以实现。
因此,本发明的一个目的是提供一种酰基氧膦肟酯类化合物,该类化合物的吸收波长不仅适合UV-VIS LED光源辐射固化,而且还具有很好的热稳定性及溶解性。
本发明的另一目的是提供制备本发明酰基氧膦肟酯类化合物的方法。
本发明的再一目的是提供本发明酰基氧膦肟酯类化合物作为光引发剂或光敏剂的用途。
实现本发明上述目的的技术方案可以概括如下:
1.式1和式2的酰基氧膦肟酯化合物:
其中:
n分别独立地表示0或1;
m1分别独立地表示0-4的整数;
m2分别独立地表示0-4的整数;
R1分别独立地表示C1-C20烷基、C6-C18芳基或C2-C20烯基,其中前述C1-C20烷基、C6-C18芳基或C2-C20烯基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
R2分别独立地表示C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C6-C18芳基或C6-C18芳基-C1-C8烷基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C6-C18芳基或C6-C18芳基-C1-C8烷基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
R3分别独立地表示卤素、硝基、氨基、氰基、C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
R4和R5彼此相同或不同且分别独立地表示C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基。
2.根据第1项的酰基氧膦肟酯化合物,其中:
R1分别独立地表示C1-C6烷基、C6-C10芳基或C2-C6烯基,其中前述C1-C6烷基、C6-C10芳基或C2-C6烯基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
优选R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基,其中前述C1-C4烷基、苯基或C2-C4烯基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基;和/或
R2分别独立地表示C1-C8烷基、C3-C8环烷基、C3-C8环烷基-C1-C8烷基、C1-C8烷基-C3-C8环烷基、C6-C10芳基或C6-C10芳基-C1-C8烷基,其中 前述C1-C8烷基、C3-C8环烷基、C3-C8环烷基-C1-C8烷基、C1-C8烷基-C3-C8环烷基、C6-C10芳基或C6-C10芳基-C1-C8烷基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
优选R2分别独立地表示C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、苯基或苯基-C1-C4烷基,其中前述C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、苯基或苯基-C1-C4烷基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基;和/或
R3分别独立地表示卤素、硝基、氨基、氰基、C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基,其中前述C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
优选R3分别独立地表示氟、氯、溴、硝基、氨基、氰基、C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基,其中前述C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基;和/或
R4和R5彼此相同或不同且分别独立地表示C1-C6烷基、C3-C8环烷基、 C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基,其中前述C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
优选R4和R5彼此相同或不同且分别独立地表示C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基,其中前述C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基。
3.根据第1或2项的酰基氧膦肟酯化合物,其中:
n分别独立地表示0或1;
m1分别独立地表示0-4的整数;
m2分别独立地表示0-4的整数;
R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基;
R2分别独立地表示C1-C7烷基、C5-C6环烷基或C5-C6环烷基-C1-C4烷基;
R3分别独立地表示硝基、C1-C4烷基、C1-C4烷氧(硫)基或苯基;
R4和R5分别独立地表示C1-C4烷基、C1-C4烷氧(硫)基或苯基。
4.根据第1-3项中任一项的酰基氧膦肟酯化合物,具有式3、4或5:
其中:
n分别独立地表示0或1;
m1分别独立地表示0-4的整数;
m2分别独立地表示0-4的整数;
R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基;
R2分别独立地表示C1-C7烷基、C5-C6环烷基或C5-C6环烷基-C1-C4烷基;
R3分别独立地表示硝基、C1-C4烷基、C1-C4烷氧(硫)基或苯基。
5.根据第1-4项中任一项的酰基氧膦肟酯化合物,其中所述酰基氧膦肟酯化合物选自下组:



6.一种制备如第1-5项中任一项的酰基氧膦肟酯化合物的方法,包括以下步骤:
(1)酰基化反应:使式1-1或式2-1化合物发生傅氏酰基化反应,得到式1-2或式2-2化合物:
(2)肟化反应:当n为0时,使式1-2或式2-2化合物与选自羟胺和/或盐酸羟胺的化合物进行肟化反应,得到式1-3a或式2-3a化合物:
当n为1时,使式1-2或式2-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物进行肟化反应,得到式1-3b或式2-3b化合物:
以及
(3)酯化反应:将式1-3a或2-3a或者式1-3b或2-3b化合物酯化,得到式 1或式2化合物,
其中上述各式中的参数如第1-5项中任一项所定义。
7.根据第6项的方法,其中:
步骤(1)的傅氏酰基化反应采用选自下式Ia、Ib和Ic化合物的酰基化试剂进行:
其中X为卤素,尤其是氯,R2如第1-5中任一项所定义。
8.根据第6或7项的方法,其中步骤(1)的傅氏酰基化反应在选自下组的一种或多种催化剂存在下进行:Lewis酸催化剂,优选AlCl3、AlBr3、FeCl3、TiCl4、ZnCl2、SnCl4、BF3;固体酸催化剂,优选沸石分子筛及SO4 2-/MxOy型固体超强酸如SO4 2-/ZrO2、SO4 2-/TiO2、SO4 2-/Fe2O3;离子液体型催化剂,优选氯铝酸型离子液体,例如由AlCl3与有机烷基咪唑盐、烷基吡啶盐或烷基铵盐的卤化物组合的氯铝酸型离子液体;或负载型催化剂,优选聚苯乙烯负载的AlCl3催化剂。
9.根据第6-8项中任一项的方法,其中在步骤(1)的傅氏酰基化反应中,式1-1化合物与选自Ia、Ib和Ic化合物的酰基化试剂的摩尔比为1:0.8-1:5,优选为1:1-1:3;式2-1化合物与选自Ia、Ib和Ic化合物的酰基化试剂的摩尔比为1:2-1:10,优选1:2-1:6。
10.根据第6-9项中任一项的方法,其中:
当n为0时:
步骤(2)的肟化反应在乙酸钠、吡啶、哌啶、三乙胺和/或四甲基氢氧化铵作为催化剂存在下进行;和/或,式1-2化合物与选自羟胺和/或盐酸羟胺的化合物的摩尔比为1:1.5-1.5:1,优选为1:1.2-1.2:1;式2-2化合物与选自羟胺和/或盐酸羟胺的化合物的摩尔比为1:3-3:1,优选为1:2-2:1;或当n为1时,
步骤(2)的肟化反应在浓盐酸存在下进行;和/或,式1-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物的摩尔比为1:3-3:1,优选为 1:1.5-1.5:1;式2-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物的摩尔比为1:5-5:1,优选为1:3-3:1,
其中亚硝酸烷基酯为亚硝酸C1-C6烷基酯,例如亚硝酸甲酯、亚硝酸乙酯、亚硝酸异丙酯、亚硝酸丁酯或亚硝酸异戊酯。
11.根据第6-10项中任一项的方法,其中:
步骤(3)的酯化采用选自下式IIa、IIb和IIc化合物的酯化试剂进行:
其中X为卤素,尤其是氯,R1如第1-5项中任一项所定义。
12.根据第6-11项中任一项的方法,其中步骤(3)的酯化反应在选自下组的一种或多种催化剂存在下进行:硫酸、高氯酸、氯化锌、三氯化铁、吡啶、对甲基苯磺酸、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、叔丁醇钠、乙醇钠、氢化钠、氢化钾、氢化钙和叔胺,例如三烷基胺,如三甲胺和三乙胺。
13.根据第6-12项中任一项的方法,其中在步骤(3)的酯化反应中,式1-3a或2-3a化合物与选自IIa、IIb和IIc化合物的酯化试剂的摩尔比为1:1.5-1.5:1,优选为1:1.2-1.2:1;式1-3b或2-3b化合物与选自IIa、IIb和IIc化合物的酯化试剂的摩尔比为1:3-3:1,优选为1:2-2:1。
14.如第1-5项中任一项所述的酰基氧膦肟酯化合物作为光引发剂的用途,尤其是在UV-VIS LED光源固化体系中作为光引发剂的用途,特别是在辐射波长为300-550nm,尤其是365-450nm的光源固化体系中作为光引发剂的用途。
15.一种包含至少一种如第1-5项中任一项所述的酰基氧膦肟酯化合物的可光固化组合物。
16.可由第15项的可光固化组合物得到的固化材料。
17.一种制备光固化材料的方法,其包括用辐射波长为300-550nm,尤其是365-450nm的光源,例如UV-VIS LED光源对第15项的可光固化组合物进行辐照。
附图说明:
图1为可聚合单体TPGDA被光引发剂引发聚合反应时双键转化率随时间变化的动力学曲线。
图2为实施例1、实施例8和市售(2,4,6-三甲基苯甲酰)二苯基氧化膦(TPO)的紫外可见光吸收光谱图。
具体实施方式
根据本发明的第一个方面,提供了一种式1和式2的酰基氧膦肟酯化合物:
其中:
n分别独立地表示0或1;
m1分别独立地表示0-4的整数;
m2分别独立地表示0-4的整数;
R1分别独立地表示C1-C20烷基、C6-C18芳基或C2-C20烯基,其中前述C1-C20烷基、C6-C18芳基或C2-C20烯基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
R2分别独立地表示C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C6-C18芳基或C6-C18芳基-C1-C8烷基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C6-C18芳基或C6-C18芳基-C1-C8烷基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
R3分别独立地表示卤素、硝基、氨基、氰基、C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧 (硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
R4和R5彼此相同或不同且分别独立地表示C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基。
本发明式1和式2的酰基氧膦肟酯化合物在300-550nm,尤其是365-450nm范围内具有较好的感光吸收,吸收光能后能够迅速发生裂解生成活性自由基,持续引发聚合,在感光性方面具有明显优势并且具有良好的热稳定性和溶解性,从而适合用作UV-VIS LED光源固化的光引发剂。
在本发明中,前缀“Cn-Cm”在每种情况下表示该基团中包含的碳原子数为n-m个。
“卤素”是指氟、氯、溴和碘。在本发明中,优选的是,卤素包括F、Cl或其组合。
本文所用的术语“Cn-Cm烷基”是指具有n-m个,例如1-20个,优选1-12个,更优选1-8个,特别优选1-6个,尤其优选1-4个碳原子的支化或未支化饱和烃基,例如甲基、乙基、丙基、1-甲基乙基、丁基、1-甲基丙基、2-甲基丙基、1,1-二甲基乙基、戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、2,2-二甲基丙基、1-乙基丙基、己基、1,1-二甲基丙基、1,2-二 甲基丙基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1,1-二甲基丁基、1,2-二甲基丁基、1,3-二甲基丁基、2,2-二甲基丁基、2,3-二甲基丁基、3,3-二甲基丁基、1-乙基丁基、2-乙基丁基、1,1,2-三甲基丙基、1,2,2-三甲基丙基、1-乙基-1-甲基丙基、1-乙基-2-甲基丙基、庚基、辛基、2-乙基己基、壬基、癸基、十一烷基、十二烷基及其异构体等。
本文所用术语“C6-Cm芳基”是指含有6-m个碳原子,例如6-18个,优选6-10个碳原子的单环、双环或更多环芳族烃基,例如苯基、甲苯基、乙苯基、丙苯基、丁苯基、二甲苯基、甲基乙基苯基、二乙基苯基、甲基丙基苯基、萘基及其异构体等。
本文所用术语“C2-Cm烯基”是指具有2-m个,例如2-20个,优选2-6个,更优选2-4个碳原子并且具有一个位于任何位置的双键的支化或未支化不饱和烃基,如乙烯基、1-丙烯基、2-丙烯基、1-甲基乙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-甲基-1-丙烯基、2-甲基-1-丙烯基、1-甲基-2-丙烯基、2-甲基-2-丙烯基及其异构体等。
本文所用术语“C3-Cm环烷基”是指具有3-m个,例如3-10个,优选3-8个,更优选5-6个环碳原子的饱和脂环族单环基团,例如环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环癸基及其异构体等。
术语“C3-Cm环烷基-Cn-Cm烷基”表示被C3-Cm环烷基取代的Cn-Cm烷基,此时两个m可相同或不同,其中Cn-Cm烷基和C3-Cm环烷基适用本文所定义。C3-Cm环烷基-Cn-Cm烷基可以是C3-C10环烷基-C1-C8烷基,优选是C3-C6环烷基-C1-C6烷基,更优选是C3-C6环烷基-C1-C4烷基,例如环丙基甲基、环丙基乙基、环丙基丙基、环丙基丁基、环丁基甲基、环丁基乙基、环丁基丙基、环丁基丁基、环戊基甲基、环戊基乙基、环戊基丙基、环戊基丁基、环己基甲基、环己基乙基、环己基丙基、环己基丁基及其异构体等。
术语“Cn-Cm烷基-C3-Cm环烷基”表示被Cn-Cm烷基取代的C3-Cm环烷基,此时两个m可相同或不同,其中Cn-Cm烷基和C3-Cm环烷基适用本文所定义。Cn-Cm烷基-C3-Cm环烷基可以是C1-C8烷基-C3-C10环烷基,优选是C1-C6烷基-C3-C6环烷基,更优选是C1-C4烷基-C3-C6环烷基,例如 甲基环丙基、乙基环丙基、丙基环丙基、丁基环丙基、甲基环丁基、乙基环丁基、丙基环丁基、丁基环丁基、甲基环戊基、乙基环戊基、丙基环戊基、丁基环戊基、甲基环己基、乙基环己基、丙基环己基、丁基环己基及其异构体等。
本文所用术语“Cn-Cm烷氧(硫)基”包括“Cn-Cm烷氧基”和“Cn-Cm烷硫基”,是指在Cn-Cm烷基对应的开链Cn-Cm烷烃的任何碳原子上键合有一个氧原子或一个硫原子作为连接基团的Cn-Cm烷基,例如C1-C20烷氧(硫)基,优选C1-C12烷氧(硫)基,更优选C1-C8烷氧(硫)基,特别优选C1-C6烷氧(硫)基,尤其优选C1-C4烷氧(硫)基。C1-C8烷氧基可以是甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、2-丁氧基、叔丁氧基、戊氧基、异戊氧基、己氧基、庚氧基、辛氧基、异辛氧基及其异构体。C1-C8烷硫基可以是甲硫基、乙硫基、丙硫基、异丙硫基、正丁硫基、2-丁硫基、叔丁硫基、戊硫基、异戊硫基、己硫基、庚硫基、辛硫基、异辛硫基及其异构体等。
本文所用术语“C3-Cm环烷氧(硫)基”包括“C3-Cm环烷氧基”和“C3-Cm环烷硫基”,是指在C3-Cm环烷基对应的C3-Cm环烷烃中的任何环碳原子上键合有一个氧原子或一个硫原子作为连接基团的C3-Cm环烷基,例如C3-C20环烷氧(硫)基,优选C3-C8环烷氧(硫)基,更优选C5-C6环烷氧(硫)基,例如环丙基氧基、环丁基氧基、环戊基氧基、环己基氧基、环庚基氧基、环辛基氧基、环癸基氧基及其异构体、环丙基硫基、环丁基硫基、环戊基硫基、环己基硫基、环庚基硫基、环辛基硫基、环癸基硫基及其异构体等。
术语“C3-Cm环烷基-Cn-Cm烷氧(硫)基”包括“C3-Cm环烷基-Cn-Cm烷氧基”和“C3-Cm环烷基-Cn-Cm烷硫基”,是指被C3-Cm环烷基取代的Cn-Cm烷氧(硫)基,此时两个m可相同或不同,其中C3-Cm环烷基和Cn-Cm烷氧(硫)基适用本文所定义。C3-Cm环烷基-Cn-Cm烷氧(硫)基可以是C3-C10环烷基-C1-C8烷氧(硫)基,优选C3-C6环烷基-C1-C6烷氧(硫)基,更优选C3-C6环烷基-C1-C4烷氧(硫)基,例如环丙基甲氧基、环丙基乙氧基、环丙基丙氧基、环丙基丁氧基、环丁基甲氧基、环丁基乙氧基、环丁基丙氧 基、环丁基丁氧基、环戊基甲氧基、环戊基乙氧基、环戊基丙氧基、环戊基丁氧基、环己基甲氧基、环己基乙氧基、环己基丙氧基、环己基丁氧基、环丙基甲硫基、环丙基乙硫基、环丙基丙硫基、环丙基丁硫基、环丁基甲硫基、环丁基乙硫基、环丁基丙硫基、环丁基丁硫基、环戊基甲硫基、环戊基乙硫基、环戊基丙硫基、环戊基丁硫基、环己基甲硫基、环己基乙硫基、环己基丙硫基、环己基丁硫基及其异构体等。
术语“Cn-Cm烷基-C3-Cm环烷氧(硫)基”表示被Cn-Cm烷基取代的C3-Cm环烷氧(硫)基,此时两个m可相同或不同,其中Cn-Cm烷基和C3-Cm环烷氧(硫)基适用本文所定义。Cn-Cm烷基-C3-Cm环烷氧(硫)基可以是C1-C8烷基-C3-C10环烷氧(硫)基,优选是C1-C6烷基-C3-C6环烷氧(硫)基,更优选是C1-C4烷基-C3-C6环烷氧(硫)基,例如甲基环丙氧基、乙基环丙氧基、丙基环丙氧基、丁基环丙氧基、甲基环丁氧基、乙基环丁氧基、丙基环丁氧基、丁基环丁氧基、甲基环戊氧基、乙基环戊氧基、丙基环戊氧基、丁基环戊氧基、甲基环己氧基、乙基环己氧基、丙基环己氧基、丁基环己氧基、甲基环丙硫基、乙基环丙硫基、丙基环丙硫基、丁基环丙硫基、甲基环丁硫基、乙基环丁硫基、丙基环丁硫基、丁基环丁硫基、甲基环戊硫基、乙基环戊硫基、丙基环戊硫基、丁基环戊硫基、甲基环己硫基、乙基环己硫基、丙基环己硫基、丁基环己硫基及其异构体等。
本文所用术语“C6-Cm芳氧(硫)基”包括“C6-Cm芳氧基”和“C6-Cm芳硫基”,是指在C6-Cm芳基对应的C6-Cm芳烃中的任何芳族碳原子上键合有一个氧原子或一个硫原子作为连接基团的C6-Cm芳基,例如苯硫基、苯氧基、甲苯氧基、甲苯硫基、萘硫基、萘氧基及其异构体等。
在本发明中,n为0或1。n为0时,式1或2化合物称作酰基氧膦肟酯化合物;当n为1时,式1或2化合物称作酰基氧膦酮肟酯化合物。这两种化合物统称为酰基氧膦肟酯化合物。
在本发明的一个优选实施方案中,R1分别独立地表示C1-C6烷基、C6-C10芳基或C2-C6烯基,其中前述C1-C6烷基、C6-C10芳基或C2-C6烯基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨 基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
优选的是,R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基,其中前述C1-C4烷基、苯基或C2-C4烯基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基。
在本发明的一个优选实施方案中,R2分别独立地表示C1-C8烷基、C3-C8环烷基、C3-C8环烷基-C1-C8烷基、C1-C8烷基-C3-C8环烷基、C6-C10芳基或C6-C10芳基-C1-C8烷基,其中前述C1-C8烷基、C3-C8环烷基、C3-C8环烷基-C1-C8烷基、C1-C8烷基-C3-C8环烷基、C6-C10芳基或C6-C10芳基-C1-C8烷基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
优选的是,R2分别独立地表示C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、苯基或苯基-C1-C4烷基,其中前述C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、苯基或苯基-C1-C4烷基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基。
在本发明的一个优选实施方案中,R3分别独立地表示卤素、硝基、氨基、氰基、C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基,其中前述C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
优选的是,R3分别独立地表示氟、氯、溴、硝基、氰基、C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基,其中前述C1-C4烷 基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基。
在本发明的一个优选实施方案中,R4和R5彼此相同或不同且分别独立地表示C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基,其中前述C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
优选的是,R4和R5彼此相同或不同且分别独立地表示C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基,其中前述C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基。
在本发明的一个更优选的实施方案中,其中
n分别独立地表示0或1;
m1分别独立地表示0-4的整数;
m2分别独立地表示0-4的整数;
R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基;
R2分别独立地表示C1-C7烷基、C5-C6环烷基或C5-C6环烷基-C1-C4烷基;
R3分别独立地表示硝基、C1-C4烷基、C1-C4烷氧(硫)基或苯基;
R4和R5分别独立地表示C1-C4烷基、C1-C4烷氧(硫)基或苯基。
在本发明的一个特别优选的实施方案中,本发明式1和式2的酰基氧膦肟酯化合物选自式3、4或5的化合物:
其中:
n分别独立地表示0或1;
m1分别独立地表示0-4的整数;
m2分别独立地表示0-4的整数;
R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基;
R2分别独立地表示C1-C7烷基、C5-C6环烷基或C5-C6环烷基-C1-C4烷基;
R3分别独立地表示硝基、C1-C4烷基、C1-C4烷氧(硫)基或苯基。
在本发明的一些特别优选的实施方案中,本发明式1和式2的酰基氧膦肟酯化合物选自前文所示化合物1-83。化合物1-83分别在实施例1-83中制备。
根据本发明的第二个方面,提供了一种制备本发明式1或式2化合物的方法,包括以下步骤:
(1)酰基化反应:使式1-1或式2-1化合物发生傅氏酰基化反应,得到式1-2或式2-2化合物:
(2)肟化反应:当n为0时,使式1-2或式2-2化合物与选自羟胺和/或盐酸羟胺的化合物进行肟化反应,得到式1-3a或式2-3a化合物:
当n为1时,使式1-2或式2-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物进行肟化反应,得到式1-3b或式2-3b化合物:
以及
(3)酯化反应:将式1-3a或2-3a或者式1-3b或2-3b化合物酯化,得到式1或式2化合物,
其中上述各式中的参数如对式1和式2所定义。
为了制备本发明的式1和式2酰基氧膦肟酯化合物,需要从特定酰基氧膦化合物开始,先进行傅氏酰基化反应,随后进行肟化反应,以引入肟基,然后将肟基中的羟基经酯化反应转变成相应的酯基,从而获得本发明的酰基氧膦肟酯化合物。
傅氏酰基化反应
式1-1或2-1化合物在催化剂作用下与酰基化试剂发生傅氏酰基化反应生成式1-2或2-2化合物:
其中上述各式中的参数如对式1和式2所定义。
傅氏酰基化反应对本领域技术人员而言是常规的。作为酰基化试剂,没有特别的限制,只要能将式1-1或2-1化合物进行傅氏酰基化即可。例如可以使用相应的酰卤如酰氯,也可使用相应的羧酸,还可使用相应的酸酐。这些化合物可分别表示为式Ia、Ib和Ic化合物:
其中X为卤素,尤其是氯,R2如对式1或2所定义。
为了加速傅氏酰基化反应,上述反应通常在适于傅氏酰基化反应的催化剂存在下进行。作为催化剂,可以使用Lewis酸催化剂,优选AlCl3、AlBr3、FeCl3、TiCl4、ZnCl2、SnCl4、BF3;固体酸催化剂,优选 沸石分子筛及SO4 2-/MxOy型固体超强酸如SO4 2-/ZrO2、SO4 2-/TiO2、SO4 2-/Fe2O3;离子液体型催化剂,优选氯铝酸型离子液体,例如由AlCl3与有机烷基咪唑盐、烷基吡啶盐或烷基铵盐的卤化物组合的氯铝酸型离子液体;或负载型催化剂,优选聚苯乙烯负载的AlCl3催化剂。催化剂的用量是常规的,可以通过本领域的常识确定,或者通过几个例行的预备实验来确定。
上述傅氏酰基化反应通常在溶剂中,优选在有机溶剂中进行。对于溶剂类型的选择,没有特别的限制,只要能够将式1-1或2-1化合物和酰基化试剂溶解并且对酰基反应呈化学惰性即可,即不参与该酰基化反应即可。优选在卤代烷烃溶剂中进行,作为溶剂的实例,通常采用二氯甲烷或二氯乙烷。
对式1-1或2-1化合物与选自Ia、Ib和Ic化合物的酰基化试剂的相对用量没有特别的限制。通常,式1-1化合物与选自Ia、Ib和Ic化合物的酰基化试剂的摩尔比为1:0.8-1:5,优选为1:1-1:3;式2-1化合物与选自Ia、Ib和Ic化合物的酰基化试剂的摩尔比为1:2-1:10,优选1:2-1:6。
傅氏酰基化反应的温度范围通常为-10℃至50℃,优选0-40℃。对反应时间没有特别的限制,通常进行0.1-20小时,优选0.5-10小时。
肟化反应
当n为0时,使式1-2或式2-2化合物与选自羟胺和/或盐酸羟胺的化合物进行肟化反应,得到式1-3a或式2-3a化合物:
其中上述各式中的参数如对式1和式2所定义。
该肟化反应通常使用盐酸羟胺(NH2OH·HCl)、羟胺(NH2OH)或其混合物作为肟化试剂。该肟化反应通常在有机溶剂中进行,优选在极性有机溶剂中进行。可采用的溶剂例如有乙醇或含水的乙醇。为了促进肟化 反应进行完全,一般需加入乙酸钠、吡啶、哌啶、三乙胺、四甲基氢氧化铵之类的催化剂或其混合物。这当中,吡啶、哌啶、三乙胺也可用作碱和/或溶剂或助溶剂。
对式1-2化合物与选自羟胺和/或盐酸羟胺的化合物的相对用量没有特别的限制,通常而言它们以大致等摩尔量使用,例如二者的摩尔比为1:1.5-1.5:1,优选为1:1.2-1.2:1。式2-2化合物与选自羟胺和/或盐酸羟胺的化合物的摩尔比为1:3-3:1,优选为1:2-2:1。
上述肟化反应的温度范围通常为30-120℃,优选40-100℃。对肟化反应时间也没有特别的限制,通常进行0.1-20小时,优选0.5-10小时。
当n为1时,使式1-2或式2-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物进行肟化反应,得到式1-3b或式2-3b化合物:
其中上述各式中的参数如对式1和式2所定义。
此肟化反应通常使用亚硝酸、亚硝酸盐、亚硝酸烷基酯或其混合物作为肟化试剂。该试剂将“活性”(亚)甲基(α-(亚)甲基,即紧挨着羰基的(亚)甲基)进行亚硝化。作为亚硝酸盐,通常使用亚硝酸钠。作为亚硝酸烷基酯,通常使用亚硝酸C1-C6烷基酯,例如亚硝酸甲酯、亚硝酸乙酯、亚硝酸异丙酯、亚硝酸丁酯或亚硝酸异戊酯。该肟化反应通常在有机溶剂中进行,优选在有机极性溶剂中进行。可采用的溶剂例如有四氢呋喃、乙醇或含水的乙醇。为了促进肟化反应进行完全,一般需加入浓盐酸或通入氯化氢气体,其浓度通常为20-40%。浓盐酸也可用作酸和/或溶剂或助溶剂。
对式1-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物的相对用量没有特别的限制,通常而言它们以大致等摩尔量使用,例如二者的摩尔比为1:3-3:1,优选为1:1.5-1.5:1。式2-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物的摩尔比为1:5-5:1,优选为 1:3-3:1。
上述肟化反应的温度为低温,温度范围通常为-30℃至20℃,优选5-20℃。对肟化反应时间也没有特别的限制,通常进行0.1-20小时,优选0.5-10小时。
酯化反应
式1-3a或2-3a或者式1-3b或2-3b化合物的酯化对本领域技术人员而言是常规的,通过该反应,肟基中的羟基转变为酯基,从而获得式1或式2化合物。作为酯化试剂,没有特别的限制,只要能将式1-3a或2-3a或者式1-3b或2-3b化合物肟基中的羟基转变为酯基即可。例如可以使用相应的酰卤,如酰氯,也可使用相应的羧酸,还可使用相应的酸酐。这些化合物可分别表示为式IIa、IIb和IIc化合物:
其中X为卤素,尤其是氯,和R1如式1或2所定义。
为了加速酯化反应,上述酯化反应通常在适于酯化反应的催化剂存在下进行。作为催化剂,既可以使用酸性催化剂,也可以使用碱性催化剂。例如,可以使用硫酸、高氯酸、氯化锌、三氯化铁、吡啶、对甲基苯磺酸、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、叔丁醇钠、乙醇钠、氢化钠、氢化钾、氢化钙、四甲基氢氧化铵、叔胺(例如三烷基胺,如三甲胺和三乙胺)或其任意组合。催化剂的用量是常规的,可以通过本领域的常识确定,或者通过几个例行的预备实验来确定。
为了提高本发明式1或式2的酰基氧膦肟酯化合物的产率,有利的是,在酯化反应过程中移除酯化反应产生的水。这例如可以通过蒸馏/冷凝来进行。
上述酯化反应通常在溶剂中,优选在有机溶剂中进行。对于溶剂类型的选择,没有特别的限制,只要能够将式1-3a或2-3a或者式1-3b或2-3b化合物和酯化试剂溶解并且对酯化反应呈化学惰性即可,即不参与该酯化反应即可。作为溶剂的实例,可以提及四氢呋喃、苯、甲苯、N,N-二甲基甲酰胺、二氯甲烷和丙酮。溶剂可以使用单一溶剂,也可以 使用两种或更多种溶剂的混合物。
对式1-3a、2-3a化合物与选自IIa、IIb和IIc化合物的酯化试剂的相对用量没有特别的限制,通常而言它们以大致等摩尔量使用,例如二者的摩尔比为1:1.5-1.5:1,优选为1:1.2-1.2:1。式1-3b或2-3b化合物与选自选自IIa、IIb和IIc化合物的酯化试剂的摩尔比为1:3-3:1,优选为1:2-2:1。
酯化反应可以在非常宽的温度范围内进行。根据本发明有利的是,酯化反应在-10℃至150℃,优选0℃至100℃的温度下进行,优选常温下进行。对酯化反应时间也没有特别的限制,通常进行1-24小时,优选1-12小时。
在酯化反应完成之后,获得包含式1或式2化合物的反应混合物。因此,需要对该反应混合物进行后处理,以得到提纯的式1或式2化合物。通常而言,首先过滤酯化反应得到的反应混合物,取出滤液部分。然后,将滤液进行洗涤,以除去催化剂和未反应的原料。作为洗液,没有特别的限制,只要能除去催化剂和未反应的原料即可。作为洗液的实例,可以提及稀盐酸(水溶液)、饱和碳酸氢钠水溶液和水。稀盐酸的浓度没有特别的限制,通常而言使用浓度为5-12%的稀盐酸。用洗液洗涤可以进行一次,也可进行多次;在进行多次的情况下,可使用单一种洗液,也可依次使用不同的洗液。根据本发明有利的是,将对酯化反应得到的反应混合物过滤得到的滤液依次用稀盐酸、饱和碳酸氢钠水溶液和水进行洗涤。当然,每一次用洗液洗涤后,都需要倒掉水相之后再用下一种洗液对有机相进行洗涤。洗涤之后,需要干燥以除去残留的水。为此,通常可使用无水硫酸钠进行干燥。干燥之后,再除去残留的有机溶剂。作为这里除去有机溶剂的手段,没有特别的限制,通常可通过减压蒸馏来除去有机溶剂。除去残留有机溶剂之后,得到了式1或式2化合物的粗产物。如果想要进一步提高式1或式2化合物的纯度,还可对该化合物进行进一步提纯,这例如可通过重结晶的方式来进行。重结晶溶剂的选择是常规的,没有特别的限制。根据本发明,有利的是,采用石油醚、甲醇、乙醇或者其混合物对式1或式2化合物的粗产物进行重结晶。
在式1或式2化合物中,每个肟酯基可能存在两种构型,(Z)型或(E)型。可通过常规方法分离异构体,但也可使用异构体混合物作为光引发物质。因此,本发明还涉及式1或式2化合物各自的构型异构体的混合物。
本发明式1和式2的酰基氧膦肟酯化合物在300-550nm,尤其是在365-450nm的波长范围内有很强吸收,故可作为光引发剂应用于UV-VIS LED光固化技术中,尤其是适用于长波长UV-VIS LED光源深层固化。
因此,根据本发明的第三个方面,提供了本发明式1和式2的酰基氧膦肟酯化合物作为光引发剂的用途。本发明式1和式2的酰基氧膦肟酯化合物可作为光引发剂应用于UV-VIS LED光固化技术中,可以有效地引发固化反应,尤其是适用于长波长UV-VIS LED光源深层固化。特别优选的是,本发明式1和式2的酰基氧膦肟酯化合物在辐射波长为300-550nm,尤其是在365-450nm的光固化体系中作为光引发剂的用途。本发明式1和式2的酰基氧膦肟酯化合物也可在涂料、油墨、微电子、印刷等领域用作光引发剂或光敏剂。当将本发明式1和式2的酰基氧膦肟酯化合物用作光引发剂时,其用量是常规的,或者通过例行的预备试验即可确定。因此,本发明还涉及一种包含本发明酰基氧膦肟酯化合物的可光固化组合物,以及可由该可光固化组合物得到的固化材料。此外,本发明还涉及一种制备光固化材料的方法,其包括用辐射波长为300-550nm,尤其是365-450nm的光源,例如UV-VIS LED光源对该可光固化组合物进行辐照。
另外,本发明公开的化合物生产工艺简单,产率高,非常适合于工业生产。此类化合物与辐射波长为365nm、385nm、395nm、405nm、415nm、425nm、450nm的UV-VIS LED光源匹配性良好,可作为光引发剂广泛应用于UV-VIS LED光固化所涉及的领域例如涂料、油墨、微电子、印刷、3D打印、牙科材料等领域。因此,本发明式1或式2所示的酰基氧膦肟酯类光引发剂具有很好的市场前景。
此外,鉴于目前可应用于UV-VIS LED光源,尤其是长波长UV-VIS LED光源深层固化的光引发剂品种较少,从一定程度上限制了UV-VIS  LED光源在光固化领域的推广应用。故而,本发明式1或式2所示的酰基氧膦肟酯类光引发剂可为推动绿色环保的UV-VIS LED光源在UV光固化行业的广泛应用做出贡献。
实施例
下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体技术或条件的,按照本领域内文献所描述的技术或条件或产品说明书进行。
实施例1:化合物1的制备
化合物1的合成路线如下:
中间化合物1a的合成
将(2,4,6-三甲基苯甲酰)二苯基氧化膦(TPO,0.1mol,34.8g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.2mol,26.6g)搅拌均匀。然后加入丙酰氯(0.2mol,18.4g),室温下搅拌反应1小时。待反应完全后,物料经水解、碱洗、水洗、干燥后浓缩,然后用乙醇重结晶,理论产量40.4g,得32.3g产品,产率80%,经鉴定为化合物1a。1H-NMR(400MHz,CDCl3)δ1.22(t,3H),2.22(s,3H),2.33(s,3H),2.48(s,3H),3.54(q,2H),7.24(s,1H),7.51(m,6H),7.77(d,4H)。
中间化合物1b的合成
磁力搅拌下将1a(20.2g,0.05mol)加入到100ml四氢呋喃中,通入干 燥的新制氯化氢气体,10℃下滴加入亚硝酸异戊酯(11.7g,0.01mol),搅拌反应直至产物大量析出后停止反应。随后进行过滤得到粗品,并将粗品用甲醇重结晶后得白色粉末17.8g,理论产量21.7g,产率82.1%,经鉴定为中间产物1b。1H-NMR(400MHz,CDCl3)δ2.33(s,3H),2.48(s,6H),3.11(s,3H),7.35(s,1H),7.51(m,6H),7.77(d,4H),11.01(s,1H)。
目标产物1的合成
将上述中间化合物1b(13.0g,0.03mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入乙酰氯(5.8g,0.075mol)和三乙胺(10.1g,0.01mol),冰水浴搅拌反应1小时。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体11.8g,理论产量14.3g,产率82.6%,经鉴定为化合物1。1H-NMR(400MHz,CDCl3)δ2.20(s,3H),2.33(s,3H),2.48(s,6H),3.11(s,3H),7.35(s,1H),7.51(m,6H),7.77(d,4H)。
实施例2-14:化合物2-14的制备
重复实施例1的方法,适当改变反应原料,分别获得下表1所示的化合物2-14及其核磁数据。
表1

实施例15:化合物15的制备
化合物15的合成路线如下:
中间化合物15a的合成
将乙氧基(2,4,6-三甲基苯甲酰)苯基氧化膦(0.1mol,31.6g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.2mol,26.6g)搅拌均匀。然后加入丙酰氯(0.2mol,18.4g),室温下搅拌反应1小时。待反应完全后,物料经水解、碱洗、水洗、干燥后浓缩,然后用乙醇重结晶,理论产量37.2g。得29.8g产品,产率80%,经鉴定为化合物15a。1H-NMR(400MHz,CDCCl3)δ1.20(t,3H),2.33(s,3H),2.48(s,6H),3.11(s,3H),3.54(q,2H),4.51(q,2H),7.24(d,2H),7.26-7.31(3H),7.35(s,1H)。
中间化合物15b的合成
磁力搅拌下将15a(18.6g,0.05mol)加入到100ml四氢呋喃中,通入干燥的新制氯化氢气体,5℃下滴加入亚硝酸正丁酯(14.6g,0.125mol),搅拌反应直至产物大量析出后停止反应。随后进行过滤得到粗品,并将粗品用甲醇重结晶后得白色粉末16.5g,理论产量20.1g,产率82.1%,经鉴定为中间产物15b。1H-NMR(400MHz,CDCl3)δ1.20(t,3H),2.33(s,3H),2.48(s,6H),3.11(s,3H),4.51(q,2H),7.24(d,2H),7.26-7.31(3H),7.35(s,1H)11.01(s,1H)。
目标产物15的合成
将上述中间化合物15b(12.0g,0.03mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入乙酰氯(5.8g,0.075mol)和三乙胺(10.1g,0.01mol),冰水浴搅拌反应1小时。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体11.0g(理论产量13.3g),产率82.6%,经鉴定为化合物15。1H-NMR(400MHz,CDCl3)δ1.20(t,3H),2.20(s,3H)2.33(s,3H),2.48(s,6H),3.11(s,3H),4.51(q,2H),7.24(d,2H),7.26-7.31(3H),7.35(s,1H)。
实施例16-28:化合物16-28的制备
重复实施例15的方法,适当改变反应原料,分别获得下表2所示的化合物16-28及其核磁数据。
表2

实施例29:化合物29的制备
化合物29的合成路线如下:
中间化合物29a的合成
将二(2,4,6-三甲基苯甲酰)苯基氧化膦(0.1mol,41.8g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.5mol,66.7g)搅拌均匀。然后加入丁酰氯(0.5mol,21.2g),室温下搅拌反应1小时。待反应完全后,物料经水解、碱洗、水洗、干燥后浓缩,然后用乙醇重结晶,得44.7g产品,理论产量55.8g,产率80%,经鉴定为化合物29a。1H-NMR(400MHz,CDCl3)δ0.98(t,6H),1.51(m,4H),2.22(s,6H),2.33(s,6H),2.48(s,6H),2.96(t,4H),7.24-7.31(m,7H)。
中间化合物29b的合成
磁力搅拌下将29a(27.9g,0.05mol)加入到100ml四氢呋喃中,通入干燥的新制氯化氢气体,0℃下滴加入亚硝酸丁酯(20.62g,0.2mol),搅拌反应直至产物大量析出后停止反应。随后进行过滤得到粗品,并将粗品用 甲醇重结晶后得白色粉末25.3g(理论产量30.8g),产率82.1%,经鉴定为中间产物29b。1H-NMR(400MHz,CDCl3)δ1.01(t,6H),2.17(q,4H),2.33(s,6H),2.48(s,12H),7.24-7.35(m,7H),11.01(s,2H)。
目标产物29的合成
将上述中间化合物29b(18.5g,0.03mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入乙酰氯(5.8g,0.075mol)和三乙胺(10.1g,0.01mol),冰水浴搅拌反应1小时。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体17.4g(理论产量21.0g),产率82.6%,经鉴定为化合物29。1H-NMR(400MHz,CDCl3)δ1.01(t,6H),2.17(q,4H),2.20(s,6H),2.33(s,6H),2.48(s,12H),7.24-7.35(m,7H)。
实施例30-35:化合物30-35的制备
重复实施例29的方法,适当改变反应原料,分别获得下表3所示的化合物30-35及其核磁数据。
表3
实施例36:化合物36的制备
化合物36的合成路线如下:
中间化合物36a的合成
将苯甲酰二苯基氧化膦(0.1mol,30.6g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.2mol,26.6g)搅拌均匀。然后加入辛酰氯(0.2mol,32.4g),室温下搅拌反应1小时。待反应完全后,物料经水解、碱洗、水洗、干燥后浓缩,然后用乙醇重结晶,得34.6g产品(理论产量43.2g),产率80%,经鉴定为化合物36a。1H-NMR(400MHz,CDCl3)δ0.88(m,3H),1.26-1.33(m,8H),1.53(m,2H),2.94(t,2H),7.51(m,6H),7.77(d,4H),7.93(m,2H),8.12(m,2H)。
中间化合物36b的合成
磁力搅拌下将36a(21.6g,0.05mol)加入到100ml四氢呋喃中,通入干燥的新制氯化氢气体,0℃下滴加入亚硝酸丁酯(15.47g,0.15mol),搅拌反应直至产物大量析出后停止反应。随后进行过滤得到粗品,并将粗品用甲醇重结晶后得白色粉末18.9g(理论产量23.1g),产率82.1%,经鉴 定为中间产物36b。1H-NMR(300MHz,CDCl3)δ0.88(m,3H),1.31-1.33(s,6H),1.47(m,2H),2.11(t,2H),7.51(m,6H),7.77(d,4H),8.04(d,4H),11.01(s,2H)。
目标产物36的合成
将上述中间化合物36b(13.8g,0.03mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入苯甲酰氯(10.5g,0.075mol)和三乙胺(10.1g,0.01mol),冰水浴搅拌反应1小时。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体14.0g(理论产量17.0g),产率82.6%,经鉴定为化合物36。1H-NMR(400MHz,CDCl3)δ0.88(m,3H),1.31-1.33(s,6H),1.47(m,2H),2.11(t,2H),7.49-7.51(m,8H),7.77(d,4H),7.81(m,1H),8.04(d,4H),8.14(d,2H)
实施例37-49:化合物37-49的制备
重复实施例36的方法,适当改变反应原料,分别获得下表4所示的化合物37-49及其核磁数据。
表4

实施例50:化合物50的制备
化合物50的合成路线如下:
中间化合物50a的合成
将(2,4,6-三甲基苯甲酰)二苯基氧化膦(0.1mol,34.8g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.2mol,26.6g)搅拌均匀。然后加入乙酰氯(0.25mol,19.5g),室温下搅拌反应1小时。待反应完全后,物料经水解、碱洗、水洗、干燥后浓缩,然后用乙醇重结晶,得31.2g产品(理论产量39.0g),产率80%,经鉴定为化合物50a。1H-NMR(400MHz,CDCl3)δ2.22(s,3H),2.33(s,3H),2.45(s,3H),2.48(s,3H),7.27(s,1H),7.51(m,6H),7.77(d,4H)。
中间化合物50b的合成
将中间化合物50a(15.6g,0.04mol)和50ml乙醇和水的混合溶液(V :V=2:1)倒入100ml三口圆底烧瓶中,再加入盐酸羟胺(2.78g,0.04mol)和醋酸钠(3.28g,0.04mol)。70℃下搅拌反应0.5小时后,过滤反应液,然后将滤液真空旋蒸后得淡黄色固体,乙醇重结晶,得14.9g产品(理论产量16.2g),产率为92%,经鉴定为化合物50b。1H- NMR(400MHz,CDCl3)δ2.33(s,3H),2.48(s,6H),3.21(s,3H),7.19(s,1H),7.51(m,6H),7.77(d,4H),11.01(s,2H)。
目标产物50的合成
将上述中间化合物58b(12.2g,0.03mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入乙酰氯(5.8g,0.075mol)和三乙胺(10.1g,0.01mol),冰水浴搅拌反应1小时。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体11.1g(理论产量13.4g),产率82.6%,经鉴定为化合物50。1H-NMR(400MHz,CDCl3)δ2.20(s,3H),2.33(s,3H),2.48(s,6H),3.21(s,3H),7.19(s,1H),7.51(m,6H),7.77(d,4H)。
实施例51-57:化合物51-57的制备
重复实施例50的方法,适当改变反应原料,分别获得下表5所示的化合物51-57及其核磁数据。
表5
实施例58:化合物58的制备
化合物58的合成路线如下:
中间化合物58a的合成
将二(2,4,6-三甲基苯甲酰)苯基氧化膦(0.1mol,41.8g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.2mol,26.6g)搅拌均匀。然后加入乙酰氯(0.3mol,23.4g),室温下搅拌反应1小时。待反应完全后,物料经水解、碱洗、水洗、干燥后浓缩,然后用乙醇重结晶,得40.2g产品,理论产量50.2g,产率80%,经鉴定为化合物58a。1H-NMR(400MHz,CDCl3)δ2.22(s,6H),2.33(s,6H),2.45(s,6H),2.48(s,6H),7.24-7.31(m,7H)。
中间化合物58b的合成
将中间化合物58a(30.1g,0.06mol)和50ml乙醇和水的混合溶液(V :V=2:1)倒入100ml三口圆底烧瓶中,再加入盐酸羟胺(10.42g,0.15mol)和醋酸钠(12.30g,0.15mol)。70℃下搅拌反应0.5小时后,过滤 反应液,然后将滤液真空旋蒸后得淡黄色固体,乙醇重结晶,得29.4g产品(理论产量31.9g),产率为92%,经鉴定为化合物58b。1H-NMR(400MHz,CDCl3)δ2.33(s,6H),2.48(s,12H),3.21(s,6H),7.19(s,2H),7.24-7.31(m,5H),11.01(s,2H)。
目标产物58的合成
将上述中间化合物58b(21.3g,0.04mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入乙酰氯(6.3g,0.08mol)和三乙胺(10.1g,0.1mol),冰水浴搅拌反应1小时。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体20.4g(理论产量24.6g),产率82.6%,经鉴定为化合物58。1H-NMR(400MHz,CDCl3)δ2.20(s,6H),2.33(s,6H),2.48(s,12H),3.21(s,6H),7.19-7.31(m,7H)。
实施例59-66:化合物59-66的制备
重复实施例58的方法,适当改变反应原料,分别获得下表6所示的化合物59-66及其核磁数据。
表6
实施例67:化合物67的制备
中间化合物67a的合成
将苯甲酰二苯基氧化膦(0.1mol,30.6g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.2mol,26.6g)搅拌均匀。然后加入辛酰氯(0.1mol,16.3g),室温下搅拌反应1小时。待反应完全后,物料经水解、碱洗、水洗、干燥后浓缩,然后用乙醇重结晶,得34.6g产品,理论产量43.2g,产率80%,经鉴定为化合物67a。1H-NMR(400MHz,CDCl3)δ0.90(t,3H),1.26-1.45(m,10H),2.94(t,2H),7.51(m,6H),7.77(d,4H),7.93(d,2H),8.12(d,2H)。
中间化合物67b的合成
将中间化合物67a(25.9g,0.06mol)和50ml乙醇和水的混合溶液(V :V=2:1)倒入100ml三口圆底烧瓶中,再加入盐酸羟胺(6.9g,0.1mol)和醋酸钠(8.2g,0.1mol)。70℃下搅拌反应0.5小时后,过滤反应液,然后将滤液真空旋蒸后得淡黄色固体,乙醇重结晶,得24.6g产品(理论产量26.8g),产率为92%,经鉴定为化合物67b。1H-NMR(400MHz,CDCl3)δ0.90(t,3H),1.26-1.45(m,10H),2.70(t,2H),7.51(m,6H),7.77(d,4H),8.02(d,2H),8.01(d,2H),11.01(s,11.01)
目标产物67的合成
将上述中间化合物67b(17.9g,0.04mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入苯甲酰氯(7.0g,0.05mol)和三乙胺(6.1g,0.06mol),冰水浴搅拌反应1小时。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体18.2g(理论产量22.1g),产率82.6%,经鉴定为化合物67。1H-NMR(400MHz,CDCl3)δ0.88(t,3H),1.26-1.47(m,10H),2.70(t,2H),7.49-7.51(m,8H),7.77(d,4H),7.81(m,1H),8.00-8.14(d,6H)
实施例68-82:化合物68-82的制备
重复实施例67的方法,适当改变反应原料,分别获得下表7所示的化合物68-82及其核磁数据。
表7


实施例83:化合物83的制备
化合物83的合成路线如下:
中间化合物83a的合成
将(2,4,6-三甲基苯甲酰)二苯基氧化膦(TPO,0.1mol,34.8g)加入盛有200ml二氯甲烷的500ml三口圆底烧瓶中,搅拌溶解后,加入三氯化铝(0.2mol,26.7g)搅拌均匀。然后加入丙酰氯(0.2mol,18.4g),室温下搅拌反应1h。待反应完全后,物料经水解、碱洗、水洗干燥后浓缩,然后用乙醇重结晶,得32.3g产品,产率80%,经鉴定为化合物83a。1H-NMR(400MHz,CDCl3)δ1.22(t,3H),2.22(s,3H),2.33(s,3H),2.48(s,3H),3.54(q,2H),7.24(s,1H),7.51(m,6H),7.77(d,4H)。
中间化合物83b的合成
磁力搅拌下将83a(20.2g 0.05mol)加入到100ml四氢呋喃中,通入干燥的新制氯化氢气体,室温下滴加入亚硝酸异戊酯(11.7g 0.1mol),搅拌反应直至产物大量析出后停止反应,过滤反应得到粗品,并将粗品用甲醇重结晶后得白色粉17.8g,产率82.1%,经鉴定为中间产物83b。1H-NMR(400MHz,CDCl3)δ2.33(s,3H),2.48(s,6H),3.11(s,3H),7.35(s,1H),7.51(m,6H),7.77(d,4H),11.01(s,1H)。
目标产物83的合成
将上述中间化合物83b(21.7g,0.05mol)和100ml二氯甲烷加入到500ml三口圆底烧瓶中,然后加入甲基丙烯酰氯(7.8g,0.075mol)和三乙胺 (10.1g,0.1mol),冰水浴搅拌反应1h。终止反应,将反应液过滤后,滤液倒入水中,用乙酸乙酯萃取,收集有机相后依次用稀盐酸溶液、饱和碳酸钠水溶液和蒸馏水洗涤,然后收集有机相,并用MgSO4干燥过夜。过滤后减压蒸馏蒸掉有机相后,得浅黄色粉末状固体20.7g,产率82.6%,经鉴定为化合物83。1H-NMR(400MHz,CDCl3)δ2.01(s,3H),2.33(s,3H),2.48(s,6H),3.11(s,3H),6.18(d,1H),6.43(d,1H),7.35(s,1H),7.51(m,6H),7.77(d,4H)。
实施例84:本发明酰基氧膦肟酯光引发剂在400nm、415nm和425nm LED光源下的深层固化引发效果
将1g实施例1的化合物1溶于50g三丙二醇二丙烯酸酯(TPGDA)中,配成0.05重量%的样品溶液。然后将配制的样品溶液分别加至内径为0.8cm,长度为10cm的平底石英玻璃管中,用锡纸包裹住英管竖直面,分别用400nm Omnicure LX505LED光源和415nm、425nm上海复坦希UV-VIS LED光源从底部辐照装有样品的石英管,持续辐照30s,光源光强均为100mW/cm2。辐照结束后,将固化样品从石英管中取出,即可观察TPGDA的深层固化效果。
重复上述方法,分别对实施例2-83的化合物2-83作了同样测试。同时,在同等条件下,选用BASF的市售肟酯作对比。具体结果如下表8所示。
表8

综上所述,本发明的酰基氧膦肟酯类光引发剂在400nm、415nm、425nm波长处具有较好的感光性能,且优于现阶段可商购的OXE-02肟酯类光引发剂。
实施例85:利用光聚合动力学实验研究光引发性能:
采用实时傅里叶交换红外光谱分析(RT-FTIR)测试方法,比较了实施例1和8与常用市售膦酰氧系引发剂(2,4,6-三甲基苯甲酰)二苯基氧化膦(TPO)在相同物质的量浓度下(2.1×10-6mol·g-1)引发TPGDA发生光聚合反应的聚合效果。所用光源为Omnicure LX505 UV LED光源(400nm)。
将上述引发剂溶于TPGDA,涂于干净的KBr盐片上,并用另一干净的KBr盐片覆盖样品以避免氧阻聚现象。将载有样品的KBr双盐片置于红外检测器中并辐照样品,Omnicure LX505 UV LED光源光强为100mW/cm2。TPGDA的双键变化情况用Nicolet 5700近红外光谱仪实时采集,参数设置为:数据采集间隔0.5s,每个光谱扫描1次,分辨率为4cm-1。随着光聚合反应的进行,TPGDA在近红外谱图中C=C双键1630cm-1处的特征吸收峰逐渐变弱,可以用来反映聚合反应的进度。双键转化率(DC)由OMNIC7.1红外软件和Igor Pro数据处理软件结公式(1)计算得到。
式中Ao和At分别为样品在固化前和光照后t时刻在1600cm-1处TPGDA双键特征峰的面积。
结果显示在相同物质的量浓度下即光引发剂分子个数相同的情况下,实施例1和8比TPO引发单体聚合的双键转化率高(见图1),说明实施例1和8的光引发效果比TPO好。
实施例86:紫外可见光谱分析
用乙腈做溶剂,配制500ppm的实施例1、实施例8、TPO的乙腈溶液,在岛津UV3600紫外近红外分光光度计上进行测试。测试范围200-700nm,扫描速度为中速,间隔为0.5nm,测试上述光引发剂的紫外吸收光谱及吸光度(A),然后根据Lambert-Beer定律(A=ε·C·b,其中C为光引发剂在无水乙腈中的物质的量浓度,单位mol·L-1,b为待测样品溶液 的深度,在本测试中为1cm),可以计算出光引发剂在波长吸收范围内的摩尔消光系数ε,单位L·mol-1·cm-1)。实验结果如表9和图2所示。此类光引发剂具有较宽的波长吸收范围,可从300nm延长到450nm,最大摩尔消光系数在500-600L·mol-1·cm-1
表9:实施例1和8的光引发剂和TPO在特定波长处的摩尔消光系数
实施例87:热稳定性测试
光引发剂在可聚合单体中的稳定性是影响其实用性的关键指标。利用差热分析测试方法(DSC)在梅特勒差示扫描量热仪上研究了实施例1和实施例8在可聚合单体TPGDA中的热稳定性。
将上述光引发剂分别单独溶解在TPGDA中配成2重量%的溶液,然后取5-10mg样品置于DSC测试专用带盖铝制坩埚中进行测试。测试条件:温度范围25℃-250℃,升温速度10K/min,氮气保护。实验结果见表10。它们在单体中的热稳定性都在100℃以上,在常温存储和运输中是可以接受的。
表10:实施例1和8引发TPGDA热聚合初始温度(Ti)
实施例88:溶解性测试
光引发剂的溶解性是衡量其在实际应用配方中兼容性的重要指标,良好的兼容性是实现广泛应用的前提。由此研究了实施例1、8、83在常用(甲基)丙烯酸酯单体TPGDA、己二醇二丙烯酸酯(HDDA)、三羟甲基丙烷三丙烯酸酯(TMPTA)及常用溶剂丙二醇甲醚醋酸酯(PMA)中的溶解 度。
将实施例1、8、83分别溶解在光固化材料中常用的丙烯酸酯类可聚合单体TPGDA、HDDA、TMPTA及PMA中配成过饱和溶液。分别量取约10mg-100mg上述饱和溶液置于10ml棕色容量瓶中,加入10ml乙腈稀释后在岛津UV-3600紫外光谱分析仪上测定紫外吸收光谱的吸光度,根据Lambert-Beer定律及上述光引发剂在乙腈中300nm-400nm间的最大摩尔消光系数计算它们的溶解度(单位:g/(100g溶剂))。实验结果表明,三种光引发剂在上述单体与溶剂中的溶解度均大于6重量%,见表11。
表11:实施例1、8和83的光引发剂在TPGDA、HDDA、TMPTA和PMA中的溶解度

Claims (17)

  1. 式1和式2的酰基氧膦肟酯化合物:
    其中:
    n分别独立地表示0或1;
    m1分别独立地表示0-4的整数;
    m2分别独立地表示0-4的整数;
    R1分别独立地表示C1-C20烷基、C6-C18芳基或C2-C20烯基,其中前述C1-C20烷基、C6-C18芳基或C2-C20烯基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
    R2分别独立地表示C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C6-C18芳基或C6-C18芳基-C1-C8烷基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C6-C18芳基或C6-C18芳基-C1-C8烷基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
    R3分别独立地表示卤素、硝基、氨基、氰基、C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基- C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基;
    R4和R5彼此相同或不同且分别独立地表示C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基,其中前述C1-C20烷基、C3-C10环烷基、C3-C10环烷基-C1-C8烷基、C1-C8烷基-C3-C10环烷基、C1-C20烷氧(硫)基、C3-C10环烷氧(硫)基、C3-C10环烷基-C1-C8烷氧(硫)基、C1-C8烷基-C3-C10环烷氧(硫)基、C6-C18芳基或C6-C18芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基。
  2. 根据权利要求1的酰基氧膦肟酯化合物,其中:
    R1分别独立地表示C1-C6烷基、C6-C10芳基或C2-C6烯基,其中前述C1-C6烷基、C6-C10芳基或C2-C6烯基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
    优选R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基,其中前述C1-C4烷基、苯基或C2-C4烯基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基;和/或
    R2分别独立地表示C1-C8烷基、C3-C8环烷基、C3-C8环烷基-C1-C8烷基、C1-C8烷基-C3-C8环烷基、C6-C10芳基或C6-C10芳基-C1-C8烷基,其中前述C1-C8烷基、C3-C8环烷基、C3-C8环烷基-C1-C8烷基、C1-C8烷基-C3-C8环烷基、C6-C10芳基或C6-C10芳基-C1-C8烷基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
    优选R2分别独立地表示C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、苯基或苯基-C1-C4烷基,其中前述C1- C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、苯基或苯基-C1-C4烷基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基;和/或
    R3分别独立地表示卤素、硝基、氨基、氰基、C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基,其中前述C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
    优选R3分别独立地表示氟、氯、溴、硝基、氰基、C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基,其中前述C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基;和/或
    R4和R5彼此相同或不同且分别独立地表示C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫)基,其中前述C1-C6烷基、C3-C8环烷基、C3-C8环烷基-C1-C6烷基、C1-C6烷基-C3-C8环烷基、C1-C6烷氧(硫)基、C3-C8环烷氧(硫)基、C3-C8环烷基-C1-C6烷氧(硫)基、C1-C6烷基-C3-C8环烷氧(硫)基、C6-C10芳基或C6-C10芳氧(硫) 基任选地被一个或多个独立地选自下组的基团取代:卤素、硝基、氨基、氰基、C1-C6烷基和C1-C6烷氧(硫)基,
    优选R4和R5彼此相同或不同且分别独立地表示C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基,其中前述C1-C4烷基、C5-C6环烷基、C5-C6环烷基-C1-C4烷基、C1-C4烷基-C5-C6环烷基、C1-C4烷氧(硫)基、C5-C6环烷氧(硫)基、C5-C6环烷基-C1-C4烷氧(硫)基、C1-C4烷基-C5-C6环烷氧(硫)基、苯基或苯氧(硫)基任选地被一个或多个独立地选自下组的基团取代:氟、氯、溴、硝基、氨基、氰基、C1-C4烷基和C1-C4烷氧(硫)基。
  3. 根据权利要求1或2的酰基氧膦肟酯化合物,其中:
    n分别独立地表示0或1;
    m1分别独立地表示0-4的整数;
    m2分别独立地表示0-4的整数;
    R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基;
    R2分别独立地表示C1-C7烷基、C5-C6环烷基或C5-C6环烷基-C1-C4烷基;
    R3分别独立地表示硝基、C1-C4烷基、C1-C4烷氧(硫)基或苯基;
    R4和R5分别独立地表示C1-C4烷基、C1-C4烷氧(硫)基或苯基。
  4. 根据权利要求1-3中任一项的酰基氧膦肟酯化合物,具有式3、4或5:

    其中:
    n分别独立地表示0或1;
    m1分别独立地表示0-4的整数;
    m2分别独立地表示0-4的整数;
    R1分别独立地表示C1-C4烷基、苯基或C2-C4烯基;
    R2分别独立地表示C1-C7烷基、C5-C6环烷基或C5-C6环烷基-C1-C4烷基;
    R3分别独立地表示硝基、C1-C4烷基、C1-C4烷氧(硫)基或苯基。
  5. 根据权利要求1-4中任一项的酰基氧膦肟酯化合物,其中所述酰基氧膦肟酯化合物选自下组:



  6. 一种制备如权利要求1-5中任一项所述的酰基氧膦肟酯化合物的方法,包括以下步骤:
    (1)酰基化反应:使式1-1或式2-1化合物发生傅氏酰基化反应,得到式1-2或式2-2化合物:
    (2)肟化反应:当n为0时,使式1-2或式2-2化合物与选自羟胺和/或盐酸羟胺的化合物进行肟化反应,得到式1-3a或式2-3a化合物:
    当n为1时,使式1-2或式2-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物进行肟化反应,得到式1-3b或式2-3b化合物:
    以及
    (3)酯化反应:将式1-3a或2-3a或者式1-3b或2-3b化合物酯化,得到式1或式2化合物,
    其中上述各式中的参数如权利要求1-5中任一项所定义。
  7. 根据权利要求6的方法,其中:
    步骤(1)的傅氏酰基化反应采用选自下式Ia、Ib和Ic化合物的酰基化试剂进行:
    其中X为卤素,尤其是氯,R2如权利要求1-5中任一项所定义。
  8. 根据权利要求6或7的方法,其中步骤(1)的傅氏酰基化反应在选自下组的一种或多种催化剂存在下进行:Lewis酸催化剂,优选AlCl3、AlBr3、FeCl3、TiCl4、ZnCl2、SnCl4、BF3;固体酸催化剂,优选沸石分子筛及SO4 2-/MxOy型固体超强酸如SO4 2-/ZrO2、SO4 2-/TiO2、SO4 2-/Fe2O3;离子液体型催化剂,优选氯铝酸型离子液体,例如由AlCl3与有机烷基咪唑盐、烷基吡啶盐或烷基铵盐的卤化物组合的氯铝酸型离子液体;或负载型催化剂,优选聚苯乙烯负载的AlCl3催化剂。
  9. 根据权利要求6-8中任一项的方法,其中在步骤(1)的傅氏酰基化反应中,式1-1化合物与选自Ia、Ib和Ic化合物的酰基化试剂的摩尔比为1:0.8-1:5,优选为1:1-1:3;式2-1化合物与选自Ia、Ib和Ic化合物的酰基化试剂的摩尔比为1:2-1:10,优选1:2-1:6。
  10. 根据权利要求6-9中任一项的方法,其中:
    当n为0时:
    步骤(2)的肟化反应在乙酸钠、吡啶、哌啶、三乙胺和/或四甲基氢氧化铵作为催化剂存在下进行;和/或,式1-2化合物与选自羟胺和/或盐酸羟胺的化合物的摩尔比为1:1.5-1.5:1,优选为1:1.2-1.2:1;式2-2化合物与选自羟胺和/或盐酸羟胺的化合物的摩尔比为1:3-3:1,优选为1:2-2:1;或
    当n为1时,
    步骤(2)的肟化反应在浓盐酸存在下进行;和/或,式1-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的化合物的摩尔比为1:3-3:1,优选为1:1.5-1.5:1;式2-2化合物与选自亚硝酸、亚硝酸盐和/或亚硝酸烷基酯的 化合物的摩尔比为1:5-5:1,优选为1:3-3:1其中亚硝酸烷基酯为亚硝酸C1-C6烷基酯,例如亚硝酸甲酯、亚硝酸乙酯、亚硝酸异丙酯、亚硝酸丁酯或亚硝酸异戊酯。
  11. 根据权利要求6-10中任一项的方法,其中:
    步骤(3)的酯化采用选自下式IIa、IIb和IIc化合物的酯化试剂进行:
    其中X为卤素,尤其是氯,R1如权利要求1-5中任一项所定义。
  12. 根据权利要求6-11中任一项的方法,其中步骤(3)的酯化反应在选自下组的一种或多种催化剂存在下进行:硫酸、高氯酸、氯化锌、三氯化铁、吡啶、对甲基苯磺酸、氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠、叔丁醇钠、乙醇钠、氢化钠、氢化钾、氢化钙和叔胺,例如三烷基胺,如三甲胺和三乙胺。
  13. 根据权利要求6-12中任一项的方法,其中在步骤(3)的酯化反应中,式1-3a或2-3a化合物与选自IIa、IIb和IIc化合物的酯化试剂的摩尔比为1:1.5-1.5:1,优选为1:1.2-1.2:1;式1-3b或2-3b化合物与选自IIa、IIb和IIc化合物的酯化试剂的摩尔比为1:3-3:1,优选为1:2-2:1。
  14. 如权利要求1-5中任一项所述的酰基氧膦肟酯化合物作为光引发剂的用途,尤其是在UV-VIS LED光源固化体系中作为光引发剂的用途,特别是在辐射波长为300-550nm,尤其是365-450nm的光源固化体系中作为光引发剂的用途。
  15. 一种包含至少一种如权利要求1-5中任一项所述的酰基氧膦肟酯化合物的可光固化组合物。
  16. 可由权利要求15的可光固化组合物得到的固化材料。
  17. 一种制备光固化材料的方法,其包括用辐射波长为300-550nm,尤其是365-450nm的光源,例如UV-VIS LED光源对权利要求15的可光固化组合物进行辐照。
PCT/CN2023/114443 2022-08-24 2023-08-23 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用 WO2024041569A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211019995.7A CN115505004A (zh) 2022-08-24 2022-08-24 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用
CN202211019995.7 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024041569A1 true WO2024041569A1 (zh) 2024-02-29

Family

ID=84501073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114443 WO2024041569A1 (zh) 2022-08-24 2023-08-23 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用

Country Status (2)

Country Link
CN (1) CN115505004A (zh)
WO (1) WO2024041569A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505004A (zh) * 2022-08-24 2022-12-23 湖北固润科技股份有限公司 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019295A1 (en) * 2001-08-21 2003-03-06 Ciba Specialty Chemicals Holding Inc. Bathochromic mono- and bis-acylphosphine oxides and sulfides and their use as photoinitiators
CN101565472A (zh) * 2009-05-19 2009-10-28 常州强力电子新材料有限公司 酮肟酯类光引发剂
CN104487462A (zh) * 2012-07-24 2015-04-01 拉姆博松有限公司 光聚合方法及用于该光聚合方法的新颖的化合物
WO2015181332A1 (en) * 2014-05-30 2015-12-03 Igm Resins Italia S.R.L. Multifunctional acylphosphine oxide photoinitiators
CN106278967A (zh) * 2015-06-03 2017-01-04 江苏和成新材料有限公司 用于uv固化材料的酰基肟酯类化合物及其合成方法及应用
CN112673012A (zh) * 2018-09-07 2021-04-16 意大利艾坚蒙树脂有限公司 多官能双酰基氧化膦光引发剂
CN114230609A (zh) * 2021-12-29 2022-03-25 上海墨之炫科技有限公司 改性酰基氧化膦类光引发剂的制备方法及其在光固化材料中的应用
CN115505004A (zh) * 2022-08-24 2022-12-23 湖北固润科技股份有限公司 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019295A1 (en) * 2001-08-21 2003-03-06 Ciba Specialty Chemicals Holding Inc. Bathochromic mono- and bis-acylphosphine oxides and sulfides and their use as photoinitiators
CN101565472A (zh) * 2009-05-19 2009-10-28 常州强力电子新材料有限公司 酮肟酯类光引发剂
CN104487462A (zh) * 2012-07-24 2015-04-01 拉姆博松有限公司 光聚合方法及用于该光聚合方法的新颖的化合物
WO2015181332A1 (en) * 2014-05-30 2015-12-03 Igm Resins Italia S.R.L. Multifunctional acylphosphine oxide photoinitiators
CN106278967A (zh) * 2015-06-03 2017-01-04 江苏和成新材料有限公司 用于uv固化材料的酰基肟酯类化合物及其合成方法及应用
CN112673012A (zh) * 2018-09-07 2021-04-16 意大利艾坚蒙树脂有限公司 多官能双酰基氧化膦光引发剂
CN114230609A (zh) * 2021-12-29 2022-03-25 上海墨之炫科技有限公司 改性酰基氧化膦类光引发剂的制备方法及其在光固化材料中的应用
CN115505004A (zh) * 2022-08-24 2022-12-23 湖北固润科技股份有限公司 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用

Also Published As

Publication number Publication date
CN115505004A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
JP5430746B2 (ja) ケトオキシムエステル系光開始剤
KR101222203B1 (ko) 카르바졸 옥심 에스테르계 광개시제
JP4977353B2 (ja) シクロブタンテトラカルボキシレート化合物及びその製造方法
WO2024041569A1 (zh) 适用于uv-vis led光源深层固化的酰基氧膦肟酯类化合物及其制备和应用
JP6483289B2 (ja) Uv−led光硬化用の増感剤及びその製造方法ならびに使用
CN105037587A (zh) 一种适用于uv-led光固化体系的增感剂
JP6082821B2 (ja) カルバゾールケトオキシムエステル系高い感光度の光開始剤
CN109776419B (zh) 含有吡唑啉基团的硫鎓盐及其制备方法和应用
CN109970696B (zh) 一种香豆素肟酯类光引发剂
CN111302926B (zh) β-二酮铈(IV)类化合物及其制备和应用
Nishikubo et al. Successful synthesis of polymers containing pendant norbornadiene moieties and norbornadiene photochemical valence isomerization
CN110330501B (zh) 长波长香豆素肟酯类化合物及其制备和应用
WO2022068871A1 (zh) 双官能团香豆素肟酯类化合物及其制备和应用
CN104829771A (zh) 一种侧链含有环状偶氮苯-联萘结构的聚合物及其制备方法和用途
CN114716315A (zh) 一种芳乙烯基α-羰基酸酯类化合物在LED光聚合中作为光引发剂的用途及其制备方法
WO2016192611A1 (zh) 肟酯类化合物及其合成方法及应用
CN114181110A (zh) 一种双酚芴肟酯光引发剂及其制备方法和应用
TWI745897B (zh) 一種含有醯基哢唑衍生物和哢唑基肟酯的光引發劑組合物及其在光固化組合物中的應用
WO2024067718A1 (zh) 醚官能化香豆素肟酯类化合物及其制备和应用
CN105111147A (zh) 一种多官能度光引发剂及其应用
CN114656439B (zh) 一种单组份黄酮醇磺酸酯类可见光引发剂及其制备方法和应用
CN112824432B (zh) 可聚合的芴类光引发剂、包含其的光固化组合物及其应用
CN112409295B (zh) 芴类引发剂、包含其的光固化组合物及其应用
CN109096324B (zh) 一种二烷基酰基氯化锗合成方法与应用
CN117326975A (zh) 邻烯丙基肟酯类光引发剂型化合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856657

Country of ref document: EP

Kind code of ref document: A1