WO2024021483A1 - 液冷板及电池包 - Google Patents

液冷板及电池包 Download PDF

Info

Publication number
WO2024021483A1
WO2024021483A1 PCT/CN2022/141651 CN2022141651W WO2024021483A1 WO 2024021483 A1 WO2024021483 A1 WO 2024021483A1 CN 2022141651 W CN2022141651 W CN 2022141651W WO 2024021483 A1 WO2024021483 A1 WO 2024021483A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
sub
channel
liquid cooling
cooling plate
Prior art date
Application number
PCT/CN2022/141651
Other languages
English (en)
French (fr)
Inventor
黄伟鹏
吴长风
景皛皛
Original Assignee
厦门海辰储能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门海辰储能科技股份有限公司 filed Critical 厦门海辰储能科技股份有限公司
Priority to EP22940939.6A priority Critical patent/EP4343927A4/en
Priority to US18/386,678 priority patent/US20240063466A1/en
Publication of WO2024021483A1 publication Critical patent/WO2024021483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0358Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by bent plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/04Reinforcing means for conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery cooling technology, and specifically to a liquid cooling plate and a battery pack.
  • An independent battery module usually contains multiple cells. During the charging and discharging process of the battery module, the chemical reaction of the multiple cells inside will generate a large amount of heat.
  • liquid cooling plates are often used to cool the battery module. Perform heat exchange.
  • current battery packs are usually composed of multiple battery modules to form a high-power battery.
  • the liquid cooling plate is bent, the flow channel at the bend is easily deformed, causing the flow channel at the bend to crack.
  • This application provides a liquid cooling plate and a battery pack, which are at least used to solve the problem that the flow channel at the bend of the liquid cooling plate is prone to cracking.
  • the liquid cooling plate provided by the embodiment of the present application includes a first cold plate, a second cold plate and at least one reinforcement.
  • the first cold plate includes a first bent portion.
  • the second cold plate is stacked and sealedly connected to the first cold plate.
  • a cooling flow channel is formed between the second cold plate and the first cold plate.
  • the second cold plate includes a second bend.
  • the second bending part corresponds to the first bending part.
  • the at least one reinforcement member is disposed in the cooling flow channel between the first bending part and the second bending part.
  • a channel is formed in the reinforcement member, and the channel penetrates the reinforcement member along the extension direction of the cooling flow channel and is connected with the cooling flow channel.
  • the setting of the channel ensures that the smoothness of the cooling flow channel after the reinforcement is increased.
  • the reinforcement further includes a plurality of spacers, the plurality of spacers are provided in the channel along the extending direction of the channel, and divide the channel into a plurality of sub-channels. , multiple of the sub-channels are connected with the cooling flow channel.
  • the spacer can be a metal reinforcing rib, thereby effectively preventing the heat exchange medium from impacting the spacer for a long time and causing the spacer to break.
  • the plurality of sub-channels can also allow the heat exchange medium between the first bending part and the second bending part to be diverted.
  • the reinforcement includes a first sub-part, a second sub-part and at least one third sub-part.
  • the first sub-part and the second sub-part are arranged oppositely, and at least one of the third sub-parts is arranged opposite to the second sub-part.
  • Both ends of the third branch are connected to the first branch and the second branch respectively, and at least one third branch divides the channel into at least two sub-channels.
  • the reinforcement can also be in an "I" shape, and the third subsection divides the channel into a plurality of sub-channels, so that the heat exchange medium is diverted in the sub-channels between the first bending part and the second bending part.
  • the reinforcing member may be metal foam.
  • the reinforcement made of foam metal can slow down the flow rate of the heat exchange medium flowing through the reinforcement, thereby reducing the lateral impact force generated when flowing through the reinforcement and avoiding the first bending part of the first cold plate. Breakage occurs.
  • the reinforcement member is formed with a plurality of air holes, and the air holes are connected with the cooling flow channel to allow the heat exchange medium in the cooling flow channel to pass.
  • the heat exchange medium when the heat exchange medium flows through the foam metal, it can flow through the pores connected to the cooling channels, ensuring the circulation of the heat exchange medium between the first bending part and the second bending part.
  • the first cold plate and the second cold plate form a receiving space
  • the first cold plate includes a first body and a first flow channel provided on the first body
  • the first flow channel extends along the length direction of the first body and is recessed from the first body in a direction away from the receiving space.
  • the second cold plate includes a second body and a second flow channel provided in the second body.
  • the second body is stacked on a side of the first body facing the receiving space.
  • Two flow channels extend along the length direction of the second body and are recessed from the second body toward the receiving space.
  • the second flow channel corresponds to the first flow channel.
  • the first body Sealingly connected to the second body, the second flow channel cooperates with the first flow channel to form the cooling flow channel surrounding the receiving space.
  • the cooling flow channel formed by the cooperation of the second flow channel and the first flow channel can make the volume of the cooling flow channel larger, and more heat exchange medium can be input into the cooling flow channel at one time, effectively improving the efficiency of the heat exchange medium and Heat exchange efficiency between battery modules.
  • the first flow channel includes a first sub-flow channel and a second sub-flow channel distributed in the first body, and the first sub-flow channel and the second sub-flow channel Connected to each other.
  • the second flow channel includes a third sub-flow channel and a fourth sub-flow channel distributed in the second body, the third sub-flow channel and the fourth sub-flow channel are connected with each other, and the first sub-flow channel The flow channel corresponds to the third sub-flow channel.
  • dividing the first flow channel into a first sub-flow channel and a second sub-flow channel arranged side by side and increasing the branch path of the heat exchange medium in the first flow channel can effectively improve the heat exchange efficiency; dividing the second flow channel into side-by-side
  • the third sub-flow channel and the fourth sub-flow channel are provided and connected to increase the branching path of the heat exchange medium in the second flow channel, which can effectively improve the heat exchange efficiency.
  • the liquid cooling plate includes a plurality of reinforcement members, and the plurality of reinforcement members are disposed on the first bending portion between the first bending portion and the second bending portion. sub-flow channel and the third sub-flow channel. The plurality of reinforcement members are disposed in the second sub-flow channel and the fourth sub-flow channel between the first bending part and the second bending part.
  • the second sub-flow channel between the first bending part and the second bending part A plurality of reinforcing members are placed in the cooling channel and the fourth sub-channel, and the side walls of each sub-channel are reinforced to prevent the cooling channel between the first bending part and the second bending part from breaking.
  • the battery pack provided by the embodiment of the present application includes at least one battery module and the liquid cooling plate described in any embodiment of the present application.
  • the liquid cooling plate is used for heat exchange of the at least one battery module.
  • At least one reinforcement member is provided in the cooling flow channel between the first bending part of the first cold plate and the second bending part of the second cold plate, and the at least one reinforcement member can Provide support for the side wall of the cooling flow channel between the first bending part and the second bending part, prevent the cooling flow channel from deforming and breaking, and ensure the consistency of the cooling flow channel.
  • Figure 1 is a schematic three-dimensional structural diagram of a liquid cooling plate provided by an embodiment of the present application.
  • Figure 2 is a schematic three-dimensional exploded structural view of the liquid cooling plate shown in Figure 2 provided by the embodiment of the present application;
  • Figure 3 is a schematic three-dimensional structural diagram of the reinforcement in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 4 is another three-dimensional structural schematic diagram of the reinforcement in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 5 is another three-dimensional structural schematic diagram of the reinforcement in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 6 is another three-dimensional structural schematic diagram of the reinforcement in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 7 is another three-dimensional structural schematic diagram of the reinforcement in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 8 is another three-dimensional structural schematic diagram of the reinforcement in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 9 is a schematic three-dimensional structural diagram of the first cold plate in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 10 is a schematic three-dimensional structural diagram of the second cold plate in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 11 is another three-dimensional structural schematic diagram of the second cold plate in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 12 is a schematic three-dimensional cross-sectional view of the liquid cooling plate shown in Figure 1 along line XII-XII provided by the embodiment of the present application;
  • Figure 13 is an enlarged schematic view of XIII of the liquid cooling plate shown in Figure 12 provided by the embodiment of the present application;
  • Figure 14 is a schematic three-dimensional exploded structural diagram of a liquid cooling plate provided by an embodiment of the present application.
  • Figure 15 is a schematic three-dimensional exploded structure diagram of another liquid cooling plate provided by an embodiment of the present application.
  • Figure 16 is a schematic three-dimensional exploded structure diagram of yet another liquid cooling plate provided by an embodiment of the present application.
  • Figure 17 is a schematic three-dimensional structural diagram of a battery pack provided by an embodiment of the present application.
  • Cooling channel 50
  • Reinforcement member 70 channel 71, air hole 72, sub-channel 711, spacer 73, first division 75, second division 76, third division 77;
  • connection and “connection” mentioned in this application include direct and indirect connections (connections) unless otherwise specified.
  • an embodiment of the present application provides a liquid cooling plate 100 .
  • the liquid cooling plate 100 includes a first cold plate 10 , a second cold plate 30 and at least one reinforcement 70 .
  • the first cold plate 10 includes a first bent portion 117 .
  • the second cold plate 30 is stacked and sealedly connected to the first cold plate 10.
  • a cooling flow channel 50 is formed between the second cold plate 30 and the first cold plate 10.
  • the second cold plate 30 includes a second bending portion 317.
  • the second bending part 317 corresponds to the first bending part 117 .
  • At least one reinforcement member 70 is disposed in the cooling flow channel 50 between the first bending portion 117 and the second bending portion 317 .
  • An independent battery module usually contains multiple cells. During the charging and discharging process of the battery module, the chemical reactions of the multiple cells inside will generate a large amount of heat.
  • liquid cooling plates are often used to cool the battery modules. Perform heat exchange.
  • current battery packs are usually composed of multiple battery modules to form a high-power battery.
  • the liquid cooling plate is bent, the flow channel at the bend is easily deformed, causing the flow channel at the bend to crack.
  • At least one reinforcement 70 is provided between the first bending portion 117 of the first cold plate 10 and the second bending portion 317 of the second cold plate 30.
  • the at least one reinforcement 70 can Provide supporting force for the side wall of the cooling channel 50 between the first bending part 117 and the second bending part 317 to prevent the cooling channel 50 at the bend from deforming and breaking, and ensuring the consistency of the cooling channel 50 .
  • the first cold plate 10 and the second cold plate 30 are a pair of components, and the number of the first cold plate 10 is consistent with the number of the second cold plate 30 .
  • the first cold plate 10 and the second cold plate 30 together form a receiving space 90 , the receiving space 90 is used to place the battery module 300 , and the cooling flow channel 50 surrounds the receiving space 90 .
  • the second cold plate 30 is stacked on the side of the first cold plate 10 close to the receiving space 90 .
  • the number of the first cold plate 10 and the number of the second cold plate 30 may be one or more to exchange heat for a larger number of battery modules 300 .
  • the first cold plate 10 and the second cold plate 30 are made of the same material, which can be a metal material or a non-metallic material with good thermal conductivity.
  • the specific material is not limited.
  • the first cold plate 10 and the second cold plate 30 can be made of aluminum, which can reduce the weight of the liquid cooling plate 100 and thereby reduce the overall weight of the battery pack 1000 .
  • a channel 71 is formed in the reinforcement 70 .
  • the channel 71 penetrates the reinforcement 70 along the extension direction of the cooling channel 50 and is connected with the cooling channel 50 .
  • the reinforcing member 70 may be made of metal, thereby increasing the strength of the reinforcing member 70 .
  • the reinforcement 70 can be fixedly installed on the side wall of the first bending portion 117 through welding, and then the second cold plate 30 can be sealingly connected to the first cold plate 10 through welding; or the reinforcement 70 can be connected through welding.
  • the connection method is fixedly installed on the side wall of the second bending portion 317, and then the second cold plate 30 is sealingly connected to the first cold plate 10 through a welded connection method.
  • the reinforcing member 70 has an arc-shaped structure as a whole, and the curvature of the reinforcing member 70 is the same as the arc of the first bending part 117 and the curvature of the second bending part 317, so that the reinforcing member 70 is disposed at the first bend.
  • the side surfaces of the reinforcement 70 can fit the side walls on both sides of the cooling flow channel 50, thereby forming a gap between the first bending part 117 and the second bending part 317.
  • the cooling flow channel 50 between the bending parts 317 provides supporting force to prevent the side walls of the cooling flow channel 50 between the first bending part 117 and the second bending part 317 from deforming and breaking, ensuring the cooling flow channel 50 Consistency ensures the safety of the liquid cooling plate 100.
  • the arrangement of the channel 71 ensures the smoothness of the cooling flow channel 50 after the reinforcement 70 is increased.
  • the heat exchange medium in the cooling flow channel 50 flows through the reinforcement 70 between the first bending part 117 and the second bending part 317 At this time, the heat exchange medium can flow into the remaining cooling channels 50 through the channels 71 of the reinforcement 70 .
  • the number of channels 71 is one, as shown in Figure 3.
  • the height of the channel 71 (the height refers to the distance extending in the Y direction shown in Figure 3) is within the preset range of the height of the reinforcement 70.
  • the height of the channel 71 is 80% to 90% of the height of the reinforcement 70.
  • the height of the channel 71 can be 80%H, 81%H, 82%, 83%H, 85%H, 86%H, 87%H, 88%H, 89 %H, or 90%, thereby keeping the volume of the heat exchange medium flowing through the reinforcement 70 as consistent as possible to avoid the large lateral impact force of the heat exchange medium at the bend due to the large change in flow rate, thereby preventing The first bending portion 117 of the first cold plate 10 is broken.
  • the cooling or preheating efficiency of the battery module 300 by the liquid cooling plate 100 can also be improved.
  • the number of channels 71 may be multiple.
  • the multiple channels 71 are arranged side by side in the Y direction, and the cross-sectional projection of the reinforcement 70 is arcuate.
  • Two of the channels 71 are arranged side by side in the Y direction.
  • the side walls of the channel 71 are respectively attached to the first bending portion 117 of the first cold plate 10, and the side walls of the channel 71 located in the middle position are attached to the second bending portion 317 of the second cold plate 30. In this way, Increase the thickness of the first cold plate 10 at the first bending portion 117 (the distance extending in the The first bending portion 117 of a cold plate 10 is broken.
  • the reinforcement 70 further includes a plurality of spacers 73.
  • the plurality of spacers 73 are disposed in the channel 71 along the extending direction of the channel 71 and divide the channel 71 into a plurality of sub-channels 711.
  • the plurality of sub-channels 711 are all connected with the cooling flow channel 50 (shown in FIG. 2 ).
  • the spacer 73 may be a metal reinforcing rib, thereby effectively preventing the heat exchange medium from impacting the spacer 73 for a long time and causing the spacer 73 to break.
  • a plurality of spacers 73 can be arranged side by side and parallel in the height direction of the reinforcement 70 (the Y direction shown in Figure 5), and the intervals between two adjacent spacers 73 are the same.
  • the channel 71 is divided into a plurality of sub-channels 711 in the height direction. In this way, the entire side wall of the channel 71 can fit with the side wall of the first bending portion 117.
  • the reinforcement 70 in this embodiment can make the first cold plate 10 as a whole thickened at the first bending portion 117, and the lateral impact force generated by the heat exchange medium when flowing through the plurality of sub-channels 711 can be completely to the first surface of the reinforcement 70 to prevent the heat exchange medium from directly impacting the first cold plate 10, thereby preventing the first cold plate 10 from breaking at the first bending portion 117, and effectively increasing the service life of the first cold plate 10. .
  • a plurality of spacers 73 are arranged side by side in the channel 71 in the height direction of the channel 71 .
  • the plurality of spacers 73 are divided into multiple groups. Each group includes two spacers 73 . Each group has two spacers 73 .
  • the two spacers 73 are arranged in a V shape in the channel 71 , and different groups of spacers 73 are not connected to each other.
  • a plurality of partitions 73 are arranged side by side in the channel 71 in the height direction of the channel 71 .
  • the remaining spacers 73 are connected to each other, so that the four adjacent spacers 73 form an M shape.
  • the reinforcement 70 includes a first sub-section 75, a second sub-section 76 and at least one third sub-section 77.
  • the first sub-section 75 and the second sub-section 76 are arranged oppositely, Both ends of at least one third branch 77 are connected to the first branch 75 and the second branch 76 respectively.
  • the at least one third branch 77 divides the channel 71 into at least two sub-channels 711 .
  • the number of the third sub-section 77 may be one or more. When the number of the third sub-section 77 is one, the structure of the reinforcement 70 is as shown in Figure 8.
  • the plurality of third sub-parts 77 are arranged in parallel between the first sub-part 75 and the second sub-part 76 to divide the channel 71 into a plurality of sub-channels 711,
  • the reinforcing member 70 may be foam metal.
  • a plurality of pores 72 are formed in the foam metal, and the plurality of pores 72 are connected with the cooling flow channel 50 to allow the heat exchange medium in the cooling flow channel 50 to pass through.
  • the heat exchange medium can enter the cooling flow channel 50 through the plurality of air holes 72 .
  • the foam metal is arranged between the first bending part 117 and the second bending part 317, which can slow down the flow rate of the heat exchange medium flowing through the reinforcing member 70, thereby reducing the lateral impact force generated when flowing through the reinforcing member 70. This prevents the first bending portion 117 of the first cold plate 10 from breaking.
  • the heat exchange medium includes liquid (such as water, water-alcohol mixture) medium.
  • the heat exchange medium may be water.
  • the heat exchange medium can cool or preheat the battery module 300 .
  • the heat exchange medium is input into the cooling channel 50. Since the battery module 300 is attached to the liquid cooling plate 100, the heat exchange medium in the cooling channel 50 can pass through the liquid cooling The plate 100 performs heat exchange. Among them, the battery module 300 can be cooled or preheated by adjusting the temperature of the input heat exchange medium.
  • the battery module 300 in a low-temperature environment, has reduced charging and discharging performance due to the reduced activity of the positive and negative electrode materials and the conductivity of the electrolyte.
  • the temperature needs to be input.
  • the higher heat exchange medium is introduced into the cooling channel 50 so that the battery module 300 reaches a suitable temperature.
  • the liquid cooling plate 100 can be attached to multiple battery modules 300, allowing the liquid cooling plate 100 to exchange heat with the multiple battery modules 300, effectively improving the preheating efficiency of the liquid cooling plate 100 for the battery pack 1000.
  • the charging efficiency of the cells in the battery module 300 will be low and the battery capacity will be reduced, and the battery module 300 will dissipate heat during operation, resulting in the battery module 300
  • the temperature is too high, so the battery module 300 needs to be dissipated through the liquid cooling plate 100 .
  • the liquid cooling plate 100 is attached to multiple battery modules 300 , so that the liquid cooling plate 100 can exchange heat for multiple battery modules 300 at the same time, effectively improving the cooling efficiency of the battery pack 1000 by the liquid cooling plate 100 .
  • the multi-row battery modules 300 are placed in the accommodation space 90 so that the liquid cooling plate 100 and the multi-row battery modules 300 are attached, thereby improving the cooling efficiency of the liquid cooling plate 100 for the battery modules 300 .
  • the first cold plate 10 includes a first body 11 and a first flow channel 13 provided on the first body 11.
  • the first flow channel 13 extends along the length direction of the first body 11. , and is recessed from the first body 11 in the direction away from the receiving space 90 , the second cold plate 30 is sealingly connected to the first body 11 , and the first flow channel 13 cooperates with the second cold plate 30 to form a cooling flow channel surrounding the receiving space 90 50.
  • the first flow channel 13 includes a first sub-flow channel 131 and a second sub-flow channel 133 distributed in the first body 11 .
  • the first sub-flow channel 131 and the second sub-flow channel 133 are connected with each other.
  • the first sub-flow channels are connected with each other.
  • 131 and the second sub-flow channel 133 together form an annular first flow channel 13.
  • the first sub-flow channel 131 and the second sub-flow channel 133 are connected at the end 112 of the first body 11 , and the first sub-flow channel 131 and the second sub-flow channel 133 in other parts are connected in the height direction Y of the first body 11
  • the upper parts are arranged at parallel intervals, that is, the separated parts are not provided with flow channels.
  • the first flow channel 13 is not provided on the peripheral edge portion of the first body 11 , and the portion of the first body 11 that is not provided with the first flow channel 13 is used to contact the second cold plate 30 .
  • the surface of the second cold plate 30 is flat.
  • the cooling flow channel 50 of the liquid cooling plate 100 is the first flow channel 13 .
  • the peripheral edge portion of the first body 11 that is not provided with the first flow channel 13 is in contact with the second cold plate 30 , and the space between the first sub-flow channel 131 and the second sub-flow channel 133 is in contact with the second cold plate 30
  • the first body 11 and the second cold plate 30 are fixedly connected by welding, and the first flow channel 13 on the first body 11 is sealed, which can effectively prevent the cooling medium in the first flow channel 13 from leaking. .
  • the second cold plate 30 includes a second body 31 and a second flow channel 33 provided in the second body 31 .
  • the second body 31 is stacked on the side of the first body 11 facing the receiving space 90 .
  • the second flow channel 33 extends along the length direction of the second body 31 and is recessed from the second body 31 toward the receiving space 90 .
  • the second flow channel 33 corresponds to the first flow channel 13, and the width of the second flow channel 33 is equal to the width of the first flow channel 13.
  • the first body 11 and the second body 31 are sealingly connected, the second flow channel 33 and the second flow channel 33 are sealed.
  • the first flow channels 13 cooperate to form a cooling flow channel 50 surrounding the receiving space 90 .
  • the first flow channel 13 includes a first sub-flow channel 131 and a second sub-flow channel 133 distributed in the first body 11.
  • the first sub-flow channel 131 and the second sub-flow channel 133 are connected with each other, and the first sub-flow channel 133 is connected with each other.
  • the sub-flow channel 131 and the second sub-flow channel 133 together form an annular first flow channel 13 .
  • the first sub-flow channel 131 and the second sub-flow channel 133 are connected at the end 112 of the first body 11 , and the other parts of the first sub-flow channel 131 and the second sub-flow channel 133 are connected at the end 112 of the first body 11 . They are arranged at parallel intervals in the height direction Y, that is, the spaced parts are not provided with flow channels.
  • the second flow channel 33 includes a third sub-flow channel 331 and a fourth sub-flow channel 333 distributed in the second body 31.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are connected with each other, and the third sub-flow channel 333 is connected with each other.
  • the channel 331 and the fourth sub-channel 333 together form an annular second channel 33.
  • the cooling channel 50 formed by the first channel 13 and the second channel 33 jointly forms an annular shape as a whole.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are connected at the end 312 of the second body 31
  • the other parts of the third sub-flow channel 331 and the fourth sub-flow channel 333 are connected at the end 312 of the second body 31 .
  • are arranged at parallel intervals in the height direction Y. Therefore, one of the sub-flow channels (for example, the first sub-flow channel 131 or the third sub-flow channel 331) can be used to communicate with the liquid inlet pipe 60 to input the heat exchange medium into the flow channel.
  • another sub-flow channel (such as the second sub-flow channel 133 or the fourth sub-flow channel 333 ) can be used to connect the heat-exchanged heat exchange medium to the liquid outlet pipe 80 and discharge it out of the cooling flow channel 50 .
  • the interval part there is no flow channel in the interval part, and the interval part between the third sub-flow channel 331 and the fourth sub-flow channel 333, and the interval part between the first sub-flow channel 131 and the second sub-flow channel 133 offset each other. catch.
  • the cooperation of the first flow channel 13 and the second flow channel 33 to form the cooling flow channel 50 means that when the first body 11 and the second body 31 are welded to each other to form the liquid cooling plate 100, when the first body 11 is not provided with a third
  • the portion of the first flow channel 13 and the portion of the second body 31 that is not provided with the second flow channel 33 are in contact with each other.
  • the first flow channel 13 and the second flow channel 33 are opposite in the thickness direction of the liquid cooling plate 100.
  • the first flow channel 13 and the second flow channel 33 are in contact with each other.
  • the second flow channels 33 together form a cooling flow channel 50 .
  • the first flow channel 13 is not provided on the peripheral edge of the first body 11
  • the second flow channel 33 is not provided on the peripheral edge of the second body 31 .
  • the surrounding edges of the first body 11 and the surrounding edges of the second body 31 can be welded to sealingly connect the first body 11 and the second body 31, thereby connecting the first body 11 and the second body 31.
  • the first flow channel 13 and the second flow channel 33 are sealed, which can effectively prevent the heat exchange medium in the first flow channel 13 from leaking.
  • the space between the third sub-flow channel 331 and the fourth sub-flow channel 333 and the first sub-flow channel 131 can also be welded.
  • the spaced portions between the first cold plate 10 and the second sub-flow channel 133 are abutted with each other and then welded to strengthen the stability of the welding between the first cold plate 10 and the second cold plate 30 .
  • the cooling flow channel 50 formed by the cooperation of the second flow channel 33 and the first flow channel 13 is compared with the cooling flow channel 50 formed by the first flow channel 13.
  • the increase of the second flow channel 33 can make the cooling flow channel 50 have a larger volume. Larger, more heat exchange medium can be input into the cooling flow channel 50 at one time, effectively improving the heat exchange efficiency between the heat exchange medium and the battery module 300 .
  • This application uses the first cold plate 10 formed with the first flow channel 13 and the second cold plate 30 formed with the second flow channel 33 as an example to describe the structure of the liquid cooling plate 100 in detail.
  • the width of the second flow channel 33 is equal to the width of the first flow channel 13.
  • the side walls of the first flow channel 13 can be aligned with the second flow channel 13.
  • the side walls of the flow channel 33 are in contact with each other to seal the first flow channel 13 and the second flow channel 33 .
  • the first cold plate 10 further includes a first spoiler 15 along the extending direction of the first flow channel 13 and provided on the first flow channel 13 .
  • the first spoiler 15 is formed to protrude from the side wall of the first flow channel 13 toward the direction of the receiving space 90 .
  • the number of first spoilers 15 includes multiple ones.
  • the plurality of first spoilers 15 may be evenly distributed on the side walls of the first flow channel 13 , or the plurality of first spoilers 15 may be non-uniformly distributed on the first flow channel 13 .
  • Side wall of lane 13 The provision of the first spoiler 15 can divert the heat exchange medium flowing into the first flow channel 13, increase the flow path of the heat exchange medium in the first flow channel 13, and improve the heat exchange between the heat exchange medium and the battery module 300. The duration is effectively extended, thereby achieving higher heat exchange efficiency.
  • the first spoiler 15 has a hemispherical structure.
  • the heat exchange medium in the first flow channel 13 passes through the surface of the first spoiler 15, the heat exchange medium can flow around the first spoiler 15, so that the heat exchange medium in the first flow channel 13 passes through the first spoiler 15.
  • a reverse flow is formed around the spoiler 15 to prolong the heat exchange time between the heat exchange medium and the battery module 300, thereby improving the heat exchange efficiency.
  • the second cold plate 30 further includes a second spoiler 35 along the extending direction of the second flow channel 33 and provided on the second flow channel 33 .
  • the second spoiler 35 is formed to protrude from the side wall of the second flow channel 33 in a direction away from the receiving space 90 .
  • the structure of the second spoiler 35 is the same as that of the first spoiler 15 , and the number of the second spoiler 35 is the same as the number of the first spoiler 15 , which will not be described again here.
  • the first spoiler 15 and the second spoiler 35 may be staggered, and the first spoiler 15 and the second spoiler 35 may be staggered.
  • the parts 35 are all used to divert the heat exchange medium in the cooling channel 50 and increase the fluidity of the heat exchange medium in the cooling channel 50 to improve the heat exchange efficiency between the heat exchange medium and the battery module 300 .
  • the first spoiler 15 and the second spoiler 35 abut each other.
  • the recessed depth of the first flow channel 13 is equal to the protruding height of the first spoiler 15
  • the recessed depth of the second flow channel 33 is equal to the protruding height of the second spoiler 35 . Therefore, when the peripheral edge surface of the first body 11 and the peripheral edge surface of the second body 31 are welded, neither the first spoiler 15 nor the second spoiler 35 will affect the first body 11 and the second body 31
  • the sealing performance of the connection ensures the sealing performance of the connection between the first body 11 and the second body 31 .
  • the first body 11 includes a first segment 111 , two first bending parts 117 , a second segment 113 and a third segment 115 .
  • Two ends of one first bent portion 117 are connected to the first segment 111 and the second segment 113 respectively, and two ends of the other first bent portion 117 are connected to the third segment 115 and the second segment 113 respectively.
  • the second section 113 is located between the first section 111 and the third section 115 .
  • the first segment 111, the two first bending parts 117, the second segment 113 and the third segment 115 are an integrated structure, and a profiling mold is used for stamping and bending to obtain the first segment.
  • the body 11 , the first segment 111 , the two first bending parts 117 , the second segment 113 and the third segment 115 are connected without a connecting structure such as a quick-connect connector, and there is no connection between the three segments through a quick-connect connector. interface, there is no leakage failure of the heat exchange medium in the first flow channel 13, so that the safety performance of the liquid cooling plate 100 is high.
  • the first segment 111, the two first bending parts 117, the second segment 113 and the third segment 115 do not need connecting structures such as quick-plug connectors for connection, which can effectively reduce costs.
  • the first segment 111 , the two first bending parts 117 , the second segment 113 and the third segment 115 are connected in sequence to form a U-shaped structure.
  • the first section 111 and the third section 115 are opposite.
  • the length of the first section 111 and the length of the third section 115 can be set according to the length of the battery module 300 .
  • the length of the first section 111 and the length of the third section 115 can be set according to the length of the battery module 300 .
  • the lengths of the three sections 115 are slightly larger than the length of one row of battery modules 300 .
  • the second segment 113 corresponds to the width of the two rows of battery modules 300 , and the length of the second segment 113 is slightly larger than the width of the battery module 300 , ensuring that the two rows of battery modules 300 can be placed in the receiving space 90 .
  • the second body 31 includes a fourth section 311 , two second bending portions 317 , a fifth section 313 and a sixth section 315 .
  • the fourth segment 311 corresponds to and is connected with the first segment 111. Both ends of a first bending part 117 are respectively connected to the fifth segment 313 and the fourth segment 311, and the fifth segment 313 is connected to the second segment. 113 corresponds and cooperates with the connection. The two ends of the other first bending portion 117 are respectively connected to the sixth segment 315 and the fifth segment 313.
  • the sixth segment 315 corresponds to and is cooperatively connected with the third segment 115.
  • the fifth segment 313 is located at the fourth segment. between segment 311 and sixth segment 315.
  • the fourth segment 311, the two second bending parts 317, the fifth segment 313 and the sixth segment 315 are an integrated structure, and a profiling mold is used to perform stamping and bending processing to obtain the second
  • the main body 31 , the fourth section 311 , the two second bending parts 317 , the fifth section 313 and the sixth section 315 do not need to be connected by a connection structure such as a quick-connect connector, and there is no connection between the three through a quick-connect connector. interface, there is no leakage failure of the heat exchange medium in the first flow channel 13, so that the safety performance of the liquid cooling plate 100 is high.
  • the fourth segment 311, the two second bending parts 317, the fifth segment 313, and the sixth segment 315 do not need connecting structures such as quick-plug connectors for connection, which can effectively reduce costs.
  • the fourth segment 311 , the two second bending parts 317 , the fifth segment 313 and the sixth segment 315 are connected in sequence to form a U-shaped structure.
  • the fourth section 311 and the sixth section 315 are opposite.
  • the length of the fourth section 311 and the length of the sixth section 315 can be set according to the length of a row of battery modules 300 and can be equal to the length of the first section 111 respectively. and the length of the third segment 115 .
  • the length of the fourth segment 311 and the length of the sixth segment 315 are both slightly larger than the length of the battery module 300 .
  • the fifth segment 313 corresponds to the width of the two rows of battery modules 300 , and the length of the fifth segment 313 is greater than the width of the two rows of battery modules 300 to ensure that the two rows of battery modules 300 can be placed in the receiving space 90 .
  • first segment 111, the two first bending parts 117, the second segment 113, and the third segment 115 may be separate structures.
  • the first part 117, the second section 113, and the third section 115 are connected by welding.
  • the fourth segment 311, the two second bending parts 317, the fifth segment 313, and the sixth segment 315 may be of split structure.
  • the fourth segment 311, the two second bending parts 317, The fifth segment 313 and the sixth segment 315 are connected by welding. Specifically, when the first body 11 and the second body 31 are welded into the liquid cooling plate 100, the first segment 111 and the fourth segment 311 are bonded, and the first bending part 117 and the second bending part 317 are bonded.
  • the second segment 113 is connected to the fifth segment 313, and the third segment 115 is connected to the sixth segment 315.
  • the first segment 111 and the fourth segment 311 are respectively located between the third-row battery module 300 and the fourth-row battery module 300.
  • the section 111 and the fourth section 311 are used to exchange heat between the third row of battery modules 300 and the fourth row of battery modules 300 .
  • the third section 115 and the sixth section 315 are located between the first row of battery modules 300 and the second row of battery modules 300.
  • the third section 115 and the sixth section 315 are used to connect the first row of battery modules. 300 and the second row of battery modules 300 perform heat exchange.
  • the heat exchange medium in channel 50 is used for heat exchange.
  • the number of the first spoilers 15 on the first segment 111 and the third segment 115 is greater than the number of the first spoilers 15 on the second segment 113.
  • the fourth segment 311 and the number of second spoilers 35 on the sixth segment 315 is greater than the number of the second spoilers 35 on the fifth segment 313, ensuring a cooling flow channel for heat exchange between the liquid cooling plate 100 and the battery module 300.
  • the heat exchange medium in 50 has a longer heat exchange time with the battery module 300, thereby improving the heat exchange efficiency.
  • the first sub-flow channel 131 and the second sub-flow channel 133 extend through the first section 111 , the second section 113 and the third section 115 .
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 extend through the fourth section 311 , the fifth section 313 and the sixth section 315 .
  • the first sub-runner 131 corresponds to the third sub-runner 331
  • the width of the first sub-runner 131 is equal to the width of the third sub-runner 331
  • the second sub-runner 133 corresponds to the fourth sub-runner 333
  • the second sub-runner 131 corresponds to the third sub-runner 331.
  • the width of the sub-flow channel 133 is equal to the width of the fourth sub-flow channel 333 .
  • the number of reinforcing members 70 includes multiple.
  • the multiple reinforcing members 70 are disposed in the first sub-flow channel between the first bending part 117 and the second bending part 317 .
  • 131 and the third sub-flow channel 331 and a plurality of reinforcements 70 are provided in the second sub-flow channel 133 and the fourth sub-flow channel 333 between the first bending part 117 and the second bending part 317 .
  • the width of the first sub-channel 131 at the first section 111 and the width of the first sub-channel 131 at the third section 115 are both greater than or equal to the width of the first sub-channel 131 at the second section 113 .
  • the width of the second sub-flow channel 133 of the first segment 111 and the width of the second sub-flow channel 133 of the third segment 115 are both greater than or equal to the width of the second sub-flow channel 133 of the second segment 113 .
  • the width of the first sub-channel 131 at the first segment 111 and the width of the first sub-channel 131 at the third segment 115 are both greater than or equal to the width of the first sub-channel 131 at the first bending portion 117 width.
  • the width of the second sub-flow channel 133 at the first segment 111 and the width of the second sub-channel 133 at the third segment 115 are both greater than or equal to the width of the second sub-channel 133 at the first bending portion 117 width.
  • the first sub-flow channel 131 and the second sub-flow channel 133 with a larger width are provided in the part where the first cold plate 10 and the battery module 300 (shown in Figure 17) have a larger contact area, which can effectively improve the exchange rate. Thermal efficiency.
  • the width of the third sub-flow channel 331 of the fourth segment 311 and the width of the third sub-flow channel 331 of the sixth segment 315 are both greater than or equal to the width of the third sub-flow channel 331 of the fifth segment 313 .
  • the width of the fourth sub-channel 333 of the fourth section 311 and the width of the fourth sub-channel 333 of the sixth section 315 are both greater than or equal to the width of the fourth sub-channel 333 of the fifth section 313 .
  • the width of the third sub-flow channel 331 of the fourth segment 311 and the width of the third sub-flow channel 331 of the sixth segment 315 are both greater than or equal to the width of the third sub-flow channel 331 of the second bending part 317 .
  • the width of the fourth sub-flow channel 333 of the fourth segment 311 and the width of the fourth sub-flow channel 333 of the sixth segment 315 are both greater than or equal to the width of the fourth sub-flow channel 333 of the second bending portion 317 .
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 with a larger width are provided in the part where the second cold plate 30 has a larger contact area with the battery module 300, which can effectively improve the heat exchange efficiency.
  • each sub-flow channel mentioned above refers to the length of the sub-flow channel extending in the Y direction shown in FIG. 2 .
  • the second section 113 is provided with a first through hole 20 connected with the first sub-channel 131, and the second section 113 is provided with a third through-hole 20 connected with the second sub-channel 133.
  • Two through holes 40 the first through hole 20 is used to connect one of the liquid inlet pipe 60 and the liquid outlet pipe 80 , and the second through hole 40 is used to connect the other of the liquid inlet pipe 60 and the liquid outlet pipe 80 .
  • the first through hole 20 is used to connect the liquid inlet pipe 60
  • the second through hole 40 is used to connect the liquid outlet pipe 80 .
  • the heat exchange medium flows into the sub-flow channel formed by the first sub-flow channel 131 and the third sub-flow channel 331 through the first through hole 20, and then flows into the second sub-flow channel.
  • the sub-flow channel formed by the sub-flow channel 133 and the fourth sub-flow channel 333 is finally discharged from the liquid outlet pipe 80 connected to the second through hole 40 .
  • the center of the first through hole 20 and the center of the second through hole 40 are located on a straight line; or, in the Y direction, the center of the first through hole 20 and the second through hole 40 are located on a straight line. The centers are located on different straight lines.
  • the fifth section 313 is provided with a first through hole 20 connected with the third sub-channel 331, and the fifth section 313 is provided with a first through hole 20 connected with the fourth sub-channel 333.
  • the second through hole 40 , the first through hole 20 is used to connect one of the liquid inlet pipe 60 and the liquid outlet pipe 80
  • the second through hole 40 is used to connect the other of the liquid inlet pipe 60 and the liquid outlet pipe 80 .
  • the first through hole 20 and the second through hole 40 are provided on the fifth section 313 of the second body 31.
  • the liquid inlet pipe 60 and the liquid outlet pipe 80 extends from the bottom of the liquid cooling plate 100 into the receiving space 90 and is connected with the first through hole 20 and the second through hole 40 .
  • the first cold plate 10 further includes a first connection part 12 and a second connection part 14 disposed on the second section 113 .
  • the first connection part 12 and the second connection part 14 Interval settings.
  • the first connecting part 12 is provided with a first opening 121 .
  • the second connecting part 14 is provided with a third flow channel 141 connected with the first sub-flow channel 131 .
  • the third flow channel 141 is recessed from the second connecting part 14 in a direction away from the receiving space 90 .
  • the second connecting part 14 is provided with The second opening 143 is connected with the third flow channel 141 .
  • the second cold plate 30 further includes a third connection portion 32 and a fourth connection portion 34 provided on the fifth section 313 .
  • the third connecting part 32 is spaced apart from the fourth connecting part 34 , the third connecting part 32 cooperates with the first connecting part 12 , and the fourth connecting part 34 cooperates with the second connecting part 14 .
  • the third connecting part 32 is provided with a third opening 321 , and the third opening 321 corresponds to the first opening 121 .
  • the fourth connection part 34 is provided with a fourth flow channel 341 connected with the third sub-flow channel 331.
  • the fourth flow channel 341 is recessed from the fourth connection part 34 toward the receiving space 90.
  • the fourth flow channel 341 and the third sub-flow channel 331 are recessed.
  • the flow channels 141 correspond and cooperate to form branch flow channels connected with the cooling flow channel 50 , and the branch flow channels are used to communicate with the liquid inlet pipe 60 or the liquid outlet pipe 80 .
  • the liquid inlet pipe 60 and the liquid outlet pipe 80 can be extended at the same height.
  • the fifth section 313 is provided with a first through hole 20 communicating with the fourth sub-flow channel 333 .
  • the first opening 121 and the third opening 321 are coaxially arranged.
  • the first through hole 20 , the first opening 121 and the third opening 321 are jointly used to connect one of the liquid inlet pipe 60 and the liquid outlet pipe 80
  • the second opening 143 is used to connect the liquid inlet pipe 60 and the liquid outlet pipe.
  • Another one out of 80 for example, the first through hole 20 , the first opening 121 and the third opening 321 are jointly used to connect the liquid inlet pipe 60
  • the second opening 143 is used to connect the liquid outlet pipe 80 .
  • the liquid inlet pipe 60 has a U-shaped structure, one end of the liquid inlet pipe 60 is connected to the first through hole 20, and the other end of the liquid inlet pipe 60 extends from the receiving space 90 to connect with the third opening of the first opening 121. Hole 321 connection.
  • the liquid outlet pipe 80 is connected to the second opening 143 and communicates with the third flow channel 141 and the fourth flow channel 341 .
  • the embodiment of the present application also provides a battery pack 1000.
  • the battery pack 1000 includes at least one battery module 300 and the liquid cooling plate 100 described in any embodiment of the present application.
  • the liquid cooling plate 100 is For heat exchange of at least one battery module 300.
  • the battery pack 1000 includes one or more battery modules 300.
  • the multiple battery modules 300 are arranged in parallel.
  • Each battery module 300 can be placed in the receiving space 90 of a liquid cooling plate 100. Therefore, multiple surfaces of each battery module 300 can be attached to the liquid cooling plate 100, thereby increasing the heat exchange area between the battery module 300 and the liquid cooling plate 100, thereby improving the heat exchange efficiency.
  • the battery pack 1000 includes one or more battery modules 300.
  • the multiple battery modules 300 are arranged in parallel.
  • a battery pack 1000 includes four rows of battery modules 300.
  • the first row of batteries The module 300 is placed on one side of the liquid cooling plate 100
  • the second row of battery modules 300 and the third row of battery modules 300 are placed in the receiving space 90
  • the fourth row of battery modules 300 are placed on the side of the liquid cooling plate 100
  • Part of the structure of the liquid cooling plate 100 is located between the first row of battery modules 300 and the second row of battery modules 300. This part of the liquid cooling plate 100 simultaneously controls the first row of battery modules 300 and the second row of battery modules 300. Perform heat exchange.
  • Part of the structure of the liquid cooling plate 100 is located between the third row of battery modules 300 and the fourth row of battery modules 300. This part of the liquid cooling plate 100 simultaneously controls the third row of battery modules 300 and the fourth row of battery modules 300. Perform heat exchange.
  • One liquid cooling plate 100 is used to realize heat exchange processing for multiple battery modules 300, thereby improving the heat exchange efficiency of the liquid cooling plate 100 to the battery pack 1000, and at the same time, the cost can also be effectively reduced.
  • the first cold plate 10 and the second cold plate 30 do not need to be connected through quick-plug connectors, and the liquid cooling plate 100 is assembled in a simple manner.
  • the battery pack 1000 can use one liquid cooling plate 100 to exchange heat for multiple battery modules 300 .
  • the battery pack 1000 includes a row of battery modules 300
  • the row of battery modules 300 can be placed in the receiving space 90 of a liquid cooling plate 100, so that multiple surfaces of the row of battery modules 300 can It is attached to the liquid cooling plate 100 to increase the heat exchange area between the battery module 300 and the liquid cooling plate 100, thereby improving the heat exchange efficiency.
  • the battery module 300 includes a plurality of battery cells.
  • the battery cells may be lead-acid batteries, nickel-metal hydride batteries, lithium batteries, lithium iron phosphate batteries, or ternary batteries.
  • the battery core may be in the shape of a rectangular parallelepiped or a cylinder, and the shape of the battery core is not limited here.
  • the battery pack 1000 may also include an upper cover 400 and a lower box 500 .
  • the upper cover 400 and the lower box 500 are used to encapsulate and protect the battery module 300 and the liquid cooling plate 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种液冷板及电池包。液冷板包括第一冷板、第二冷板及至少一个加强件。第一冷板包括第一弯折部。第二冷板与第一冷板层叠设置并密封连接,第二冷板和第一冷板之间形成有冷却流道,第二冷板包括第二弯折部,第二弯折部与第一弯折部对应。至少一个加强件设置于第一弯折部和第二弯折部之间的冷却流道内。本申请的液冷板及电池包中,在第一冷板的第一弯折部与第二冷板的第二弯折部之间的冷却流道内设置至少一个加强件,至少一个加强件能够为第一弯折部和第二弯折部之间的冷却流道的侧壁提供支撑力,防止弯折处的冷却流道发生形变而崩裂,保证冷却流道的一致性。

Description

液冷板及电池包
本申请要求于2022年07月29日提交中国专利局、申请号为202222000223.0、申请名称为“液冷板及电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池冷却技术领域,具体涉及一种液冷板及电池包。
背景技术
一独立电池模组通常内设多个电芯,电池模组在充放电使用过程中,内部的多个电芯发生的化学反应会产生大量的热量,现有常采用液冷板对电池模组进行换热。然而,目前电池包通常由多个电池模组构成以形成大功率的电池,采用液冷板对多个电池模组进行换热时,常需将液冷板进行弯折处理以提高液冷板与电池模组之间的换热面积与换热效率。然而,在液冷板弯折时,弯折处的流道容易变形而导致弯折处的流道出现崩裂的现象。
申请内容
本申请提供了一种液冷板及电池包,至少用于解决液冷板弯折处的流道容易出现崩裂的问题。
本申请实施方式提供的液冷板包括第一冷板、第二冷板及至少一个加强件。所述第一冷板包括第一弯折部。所述第二冷板与所述第一冷板层叠设置并密封连接,所述第二冷板和所述第一冷板之间形成有冷却流道,所述第二冷板包括第二弯折部,所述第二弯折部与所述第一弯折部对应。所述至少一个加强件设置于所述第一弯折部和所述第二弯折部之间的所述冷却流道内。
在一种可能的实施方式中,所述加强件内形成有通道,所述通道沿所述冷却流道的延伸方向贯穿所述加强件,并与所述冷却流道连通。
可以看出,通道的设置保证增加了加强件之后冷却流道的通畅性,当冷却流道内的换热介质流经第一弯折部和第二弯折部之间的加强件时,换热介质能够通过加强件的通道71流向其余的冷却流道内。
在一种可能的实施方式中,所述加强件还包括多个隔片,所述多个隔片沿所述通道的延伸方向设于所述通道内,并将所述通道分隔成多个子通道,多个所述子通道均与所述冷却流道连通。
可以看出,隔片可以是金属加强筋,由此,有效避免换热介质长时间冲击隔片而导致隔片断裂。多个子通道还可以使得第一弯折部和第二弯折部之间的换热介质可以分流。
在一种可能的实施方式中,所述加强件包括第一分部、第二分部及至少一个第三分部,所述第一分部与所述第二分部相对设置,至少一个所述第三分部的两端分别与所述第一分部、所述第二分部连接,至少一个所述第三分部将所述通道分隔成至少两个子通道。
可以看出,加强件还可以呈“工”字形,第三分部将通道分隔成多个子通道,使得换热介质在第一弯折部和第二弯折部之间的子通道内分流。
在一种可能的实施方式中,所述加强件可以为泡沫金属。
可以看出,泡沫金属制成的加强件可以减缓流经加强件处的换热介质的流速,从而减小流经加强件时产生的横向冲击力,避免第一冷板的第一弯折部出现断裂现象。
在一种可能的实施方式中,所述加强件形成有多个气孔,所述气孔与所述冷却流道连通,以能够通过所述冷却流道内的换热介质。
可以看出,换热介质流经泡沫金属时,可通过与冷却流道连通的气孔流过,保证换热介质在第一弯折部和第二弯折部之间的流通性。
在一种可能的实施方式中,所述第一冷板与所述第二冷板形成有收容空间,所述第一冷板包括第一本体和设置于所述第一本体的第一流道,所述第一流道沿所述第一本体的长度方向延伸、且自所述第一本体朝背离所述收容空间的方向凹陷形成。所述第二冷板包括第二本体及设置于所述第二本体的第二流道,所述第二本体层叠设置于所述第一本体的朝向所述收容空间的一侧,所述第二流道沿所述第二本体的长度方向延伸、且自所述第二本体朝向所述收容空间的方向凹陷形成,所述第二流道与所述第一流道对应,所述第一本体与所述第二本体密封连接,所述第二流道与所述第一流道共同配合形成环绕所述收容空间的所述冷却流道。
可以看出,第二流道与第一流道共同配合形成的冷却流道,可使得冷却流道的容积更大,可向冷却流道内一次输入更多的换热介质,有效提高换热介质与电池模组之间的换热效率。
在一种可能的实施方式中,所述第一流道包括分布于所述第一本体的第一子流道和第二子流道,所述第一子流道和所述第二子流道互相连通。所述第二流道包括分布于所述第二本体的第三子流道和第四子流道,所述第三子流道和所述第四子流道互相连通,所述第一子流道与所述第三子流道对应。
可以看出,将第一流道分成并排设置的第一子流道和第二子流道,增加换热介质在第一流道内的分流路径,可以有效提高换热效率;在第二流道中分成并排设置且连通的第三子流道和第四子流道,增加换热介质在第二流道内的分流路径,可以有效提高换热效率。
在一种可能的实施方式中,所述液冷板包括多个加强件,所述多个加强件设置于所述第一弯折部与所述第二弯折部之间的所述第一子流道和所述第三子流道内。所述多个加强件设置于所述第一弯折部与所述第二弯折部之间的所述第二子流道和所述第四子流道内。
可以看出,在第一弯折部和第二弯折部之间的第一子流道和第三子流道内、第一弯折部和第二弯折部之间的第二子流道和第四子流道内均放置多个加强件,对每个子流道的侧壁进行增强处理,避免第一弯折部和第二弯折部之间的冷却流道出现断裂。
本申请实施方式提供的电池包包括至少一个电池模组及本申请任一实施方式所述的液冷板,所述液冷板用于对所述至少一个电池模组进行换热。
本申请的液冷板及电池包中,在第一冷板的第一弯折部与第二冷板的第二弯折部之间的冷却流道内设置至少一个加强件,至少一个加强件能够为第一弯折部和第二弯折部之间的冷却流道的侧壁提供支撑力,防止冷却流道发生形变而崩裂,保证冷却流道的一致性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的液冷板的立体结构示意图;
图2是本申请实施例提供的图2所示的液冷板的立体分解结构示意图;
图3是本申请实施例提供的液冷板中的加强件的一种立体结构示意图;
图4是本申请实施例提供的液冷板中的加强件的另一种立体结构示意图;
图5是本申请实施例提供的液冷板中的加强件的又一种立体结构示意图;
图6是本申请实施例提供的液冷板中的加强件的再一种立体结构示意图;
图7是本申请实施例提供的液冷板中的加强件的再一种立体结构示意图;
图8是本申请实施例提供的液冷板中的加强件的再一种立体结构示意图;
图9是本申请实施例提供的液冷板的中的第一冷板的立体结构示意图;
图10是本申请实施例提供的液冷板的中的第二冷板的一种立体结构示意图;
图11是本申请实施例提供的液冷板的中的第二冷板的另一种立体结构示意图;
图12是本申请实施例提供的图1所示的液冷板沿XII-XII线的立体剖面示意图;
图13是本申请实施例提供的图12所示的液冷板中XIII处的放大示意图;
图14是本申请实施例提供的一种液冷板的立体分解结构示意图;
图15是本申请实施例提供的另一种液冷板的立体分解结构示意图;
图16是本申请实施例提供的又一种液冷板的立体分解结构示意图;
图17是本申请实施例提供的电池包的立体结构示意图。
附图标记:
液冷板100;
第一冷板10、第一本体11、第一分段111、第二分段113、第三分段115、端部112、第一弯折部117、第一连接部12、第一流道13、第一子流道131、第二子流道133、第二连接部14、第一扰流部15;
第一通孔20;
第二冷板30、第二本体31、第四分段311、第五分段313、第六分段315、端部312、第二弯折部317、第三连接部32、第二流道33、第三子流道331、第四子流道333、第四连接部34、第二扰流部35;
第二通孔40;
冷却流道50;
进液管60;
加强件70、通道71、气孔72、子通道711、隔片73、第一分部75、第二分部76、第三分部77;
出液管80;
收容空间90;
电池模组300;
上盖400;
下箱体500;
电池包1000。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有 其他实施方式,都属于本申请保护的范围。
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本申请,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
请参阅图1及图2,本申请实施方式提供一种液冷板100。液冷板100包括第一冷板10、第二冷板30及至少一个加强件70。第一冷板10包括第一弯折部117。第二冷板30与第一冷板10层叠设置并密封连接,第二冷板30和第一冷板10之间形成有冷却流道50,第二冷板30包括第二弯折部317,第二弯折部317与第一弯折部117对应。至少一个加强件70设置于第一弯折部117和第二弯折部317之间的冷却流道50内。
一独立电池模组通常内设多个电芯,电池模组在充放电使用过程中,内部的多个电芯发生的化学反应会产生大量的热量,现有常采用液冷板对电池模组进行换热。然而,目前电池包通常由多个电池模组构成以形成大功率的电池,采用液冷板对多个电池模组进行换热时,常需将液冷板进行弯折处理以提高液冷板与电池模组之间的换热面积与换热效率。然而,在液冷板弯折时,弯折处的流道容易变形而导致弯折处的流道出现崩裂的现象。
本申请的液冷板100中,在第一冷板10的第一弯折部117与第二冷板30的第二弯折部317之间设置至少一个加强件70,至少一个加强件70能够为第一弯折部117和第二弯折部317之间的冷却流道50的侧壁提供支撑力,防止弯折处的冷却流道50发生形变而崩裂,保证冷却流道50的一致性。
请参阅图2,第一冷板10和第二冷板30为一对组件,第一冷板10的数量与第二冷板30的数量一致。第一冷板10和第二冷板30共同形成有收容空间90,收容空间90用于放置电池模组300,冷却流道50环绕收容空间90。具体地,第二冷板30层叠设置于第一冷板10的靠近收容空间90的一侧。
其中,第一冷板10的数量和第二冷板30的数量可均为一个或多个,以对数量更多的电池模组300进行换热。
第一冷板10和第二冷板30的材质相同,可以为金属材质,也可以为导热性好的非金属材质,具体材质不限。优选地,第一冷板10和第二冷板30可以采用铝材质制成,能够减轻液冷板100的重量,从而减轻电池包1000的整体重量。
请参阅图2及图3,在一个实施例中,加强件70内形成有通道71,通道71沿冷却流道50的延伸方向贯穿加强件70,并与冷却流道50连通。
优选地,加强件70的材质可以是金属材质,由此,增加加强件70的强度。
加强件70可通过焊接的连接方式固定安装在第一弯折部117的侧壁,再将第二冷板30通过焊接的连接方式与第一冷板10密封连接;或者加强件70通过焊接的连接方式固定安装在第二弯折部317的侧壁,再将第二冷板30通过焊接的连接方式与第一冷板10密封连接。
具体地,加强件70整体呈弧形结构,加强件70弯曲的弧度与第一弯折部117弯曲的弧形、第二弯折部317弯曲的弧度相同,使得加强件70设置于第一弯折部117和第二弯折部317之间的冷却流道50内时,加强件70的侧面能够贴合冷却流道50两侧的侧壁,从而为第 一弯折部117和第二弯折部317之间的冷却流道50提供支撑力,防止第一弯折部117和第二弯折部317之间的冷却流道50的侧壁发生形变而出现断裂,保证冷却流道50的一致性,保证液冷板100的安全性。
通道71的设置保证增加了加强件70之后冷却流道50的通畅性,当冷却流道50内的换热介质流经第一弯折部117和第二弯折部317之间的加强件70时,换热介质能够通过加强件70的通道71流向其余的冷却流道50内。
通道71的数量为一个,如图3所示。通道71的高度(高度是指在图3所示的Y方向延伸的距离)在加强件70的高度的预设范围内,例如,通道71的高度为加强件70的高度的80%~90%,若加强件70的高度记为H,则通道71的高度可以是80%H、81%H、82%、83%H、85%H、86%H、87%H、88%H、89%H、或者90%,由此,使得流经加强件70前后的换热介质的容积尽量保持一致,避免弯折处换热介质因流速变化太大而产生较大的横向冲击力,从而防止第一冷板10的第一弯折部117出现断裂现象。另外,还可以提高液冷板100对电池模组300的冷却或预热效率。
请参阅图2及图4,在另一个实施例中,通道71的数量可以为多个,多个通道71在Y方向上并列设置,且加强件70的横截面投影呈弓字形,其中两个通道71的侧壁分别与第一冷板10的第一弯折部117贴合,位于中间位置处的通道71的侧壁与第二冷板30的第二弯折部317贴合,如此,增加第一冷板10在第一弯折部117处的厚度(图4所示的X方向上延伸的距离),防止换热介质在流经通道71时产生的横向冲击力过大而导致第一冷板10的第一弯折部117出现断裂。
请参阅图5,在又一个实施例中,加强件70还包括多个隔片73,多个隔片73沿通道71的延伸方向设于通道71内,并将通道71分隔成多个子通道711,多个子通道711均与冷却流道50(图2所示)连通。
隔片73可以是金属加强筋,由此,有效避免换热介质长时间冲击隔片73而导致隔片73断裂。
例如,如图5所示,多个隔片73可在加强件70的高度方向(图5所示的Y方向)上并列且平行设置,且相邻两个隔片73之间的间隔相同,从而将通道71在高度方向上分隔成多个子通道711,如此,通道71的整个侧壁均能够与第一弯折部117的侧壁贴合,相较于上一实施例所述的加强件70而言,该实施例中的加强件70可以使得第一冷板10在第一弯折部117处整体得到加厚,换热介质在流经多个子通道711时产生的横向冲击力全部冲击到加强件70的第一面上,避免换热介质直接冲击第一冷板10,从而避免第一冷板10在第一弯折部117出现断裂现象,有效增长第一冷板10的使用寿命。
还例如,如图6所示,多个隔片73在通道71的高度方向上并列设于通道71内,多个隔片73分为多组,每组包括两个隔片73,每组的两个隔片73呈V字形设置于通道71内,不同组的隔片73互不连接。
还例如,如图7所示,多个隔片73在通道71的高度方向上并列设于通道71内,在通道71的高度方向上,除位于通道71的高度方向上最边缘的两个隔片73外,其余的多个隔片73收尾相接,使得相邻的四个隔片73形成M字形。
请参阅图8,在又一个实施例中,加强件70包括第一分部75、第二分部76和至少一个第三分部77,第一分部75和第二分部76相对设置,至少一个第三分部77的两端分别与第一分部75、第二分部76连接,至少一个第三分部77将通道71分隔成至少两个子通道711。其中,第三分部77的数量可以是一个或多个,当第三分部77的数量为一个时,加强件70的 结构如图8所示。当第三分部77的数量为多个时,多个第三分部77并列设置在第一分部75和第二分部76之间,将通道71分隔成多个子通道711,
请结合图8,在再一个实施例中,加强件70可以为泡沫金属。泡沫金属形成有多个气孔72,多个气孔72与冷却流道50连通,以能够通过冷却流道50内的换热介质。换热介质可以通过多个气孔72进入冷却流道50。泡沫金属设置在第一弯折部117和第二弯折部317之间,可以减缓流经加强件70处的换热介质的流速,从而减小流经加强件70时产生的横向冲击力,避免第一冷板10的第一弯折部117出现断裂现象。
其中,换热介质包括液体(如水、水醇混合物)介质。例如,在一个示例中,换热介质可以是水。
请参阅图2及图17,需要说明的是,换热介质可以对电池模组300进行冷却或预热处理。当需要对电池模组300进行换热处理时,朝冷却流道50内输入换热介质,由于电池模组300与液冷板100贴合,冷却流道50内的换热介质可以通过液冷板100进行换热。其中,可通过调整输入的换热介质的温度实现对电池模组300的冷却或预热处理。
在某些实施方式中,在低温环境中,电池模组300中的电芯因为正负极材料活性、电解液导电性降低,电池模组300的充放电的性能降低,此时,需要输入温度较高的换热介质到冷却流道50中,以使电池模组300达到适宜的温度。同时,液冷板100可与多个电池模组300贴合,使得液冷板100与多个电池模组300进行换热,有效提高液冷板100对电池包1000的预热效率。
在某些实施方式中,在高温环境中,会导致电池模组300中的电芯的充电效率较低、电池容量减小,且电池模组300在工作时散发热量,导致电池模组300的温度过高,因此,需要通过液冷板100对电池模组300进行散热。此时,需要输入温度较低的换热介质到冷却流道50中,以使冷却流道50内的换热介质能够带走电池模组300散发的热量,以使电池模组300的温度降到合适的温度。同时,液冷板100与多个电池模组300贴合,使得液冷板100可同时对多个电池模组300进行换热,有效提高液冷板100对电池包1000的冷却效率。
在本申请的实施例中,收容空间90放置多列电池模组300,以使液冷板100与多列电池模组300贴合,从而提高液冷板100对电池模组300的冷却效率。
请参阅图9及图10,在一个实施例中,第一冷板10包括第一本体11和设置于第一本体11的第一流道13,第一流道13沿第一本体11的长度方向延伸、且自第一本体11朝背离收容空间90的方向凹陷形成,第二冷板30与第一本体11密封连接,第一流道13与第二冷板30配合形成环绕收容空间90的冷却流道50。
第一流道13包括分布于第一本体11的第一子流道131和第二子流道133,第一子流道131和第二子流道133互相连通,相互连通的第一子流道131和第二子流道133共同形成一个环形的第一流道13。第一子流道131和第二子流道133在第一本体11的端部112处连通,其他部分的第一子流道131和第二子流道133在第一本体11的高度方向Y上平行间隔设置,即,间隔的部分未设有流道。另外,第一本体11的四周边缘部分未设置有第一流道13,第一本体11上未设有第一流道13的部分用于与第二冷板30抵接。
第二冷板30的表面为平面,此时,液冷板100的冷却流道50即为第一流道13。第一本体11上未设有第一流道13的四周边缘部分与第二冷板30抵接,第一子流道131和第二子流道133之间的间隔部分与第二冷板30抵接,并通过焊接的方式实现第一本体11和第二冷板30之间的固定连接,将第一本体11上的第一流道13进行密封,可以有效防止第一流道13内的冷却介质泄漏。
请参阅图9及图11,在另一个实施例中,第二冷板30包括第二本体31及设置于第二本体31的第二流道33。第二本体31层叠设置于第一本体11的朝向收容空间90的一侧。第二流道33沿第二本体31的长度方向延伸、且自第二本体31朝向收容空间90的方向凹陷形成。第二流道33与第一流道13对应,第二流道33的宽度等于第一流道13的宽度,在第一本体11与第二本体31密封连接的情况下,第二流道33与第一流道13共同配合形成环绕收容空间90的冷却流道50。
同样地,第一流道13包括分布于第一本体11的第一子流道131和第二子流道133,第一子流道131和第二子流道133互相连通,相互连通的第一子流道131和第二子流道133共同形成一个环形的第一流道13。
具体地,第一子流道131和第二子流道133在第一本体11的端部112处连通,其他部分的第一子流道131和第二子流道133在第一本体11的高度方向Y上平行间隔设置,即,间隔的部分未设有流道。第二流道33包括分布于第二本体31的第三子流道331和第四子流道333,第三子流道331和第四子流道333互相连通,相互连通的第三子流道331和第四子流道333共同形成一个环形的第二流道33,由此,第一流道13和第二流道33共同配合形成的冷却流道50整体呈环形。同样地,第三子流道331和第四子流道333在第二本体31的端部312处连通,其他部分的第三子流道331和第四子流道333在第二本体31的高度方向Y上平行间隔设置,由此,可将其中一个子流道(如,第一子流道131或者第三子流道331)可用于连通进液管60以向流道内输入换热介质,另一个子流道(如,第二子流道133或第四子流道333)可用于将换热后的换热介质连通出液管80排出冷却流道50外。其中,间隔部分未设有流道,第三子流道331和第四子流道333之间的间隔部分、及第一子流道131和第二子流道133之间的间隔部分相互抵接。
其中,第一流道13和第二流道33配合形成冷却流道50是指:第一本体11和第二本体31相互贴合焊接成液冷板100时,当第一本体11未设有第一流道13的部分和第二本体31未设有第二流道33的部分相互抵接,第一流道13和第二流道33在液冷板100的厚度方向上相对,第一流道13和第二流道33共同围成冷却流道50。
具体地,第一本体11的四周边缘也未设有第一流道13,第二本体31的四周边缘也未设有第二流道33。第一本体11和第二本体31焊接时,可将第一本体11的四周边缘与第二本体31的四周边缘进行焊接处理,以将第一本体11和第二本体31密封连接,从而将第一流道13和第二流道33进行密封,可以有效防止第一流道13内的换热介质泄漏。
或者在第一本体11的四周边缘与第二本体31的四周边缘进行焊接时,还可将第三子流道331和第四子流道333之间的间隔部分、及第一子流道131和第二子流道133之间的间隔部分相互抵接后进行焊接,以加固第一冷板10和第二冷板30之间焊接的稳固性。
第二流道33与第一流道13共同配合形成的冷却流道50相较于第一流道13形成的冷却流道50而言,第二流道33的增加可使得冷却流道50的容积更大,可向冷却流道50内一次输入更多的换热介质,有效提高换热介质与电池模组300之间的换热效率。本申请以第一冷板10形成有第一流道13和第二冷板30形成有第二流道33为例对液冷板100的结构进行详细说明。
在本申请的实施例中,第二流道33的宽度等于第一流道13的宽度,当第一本体11和第二本体31相对并贴合时,第一流道13的侧壁能够与第二流道33的侧壁相互抵接,将第一流道13和第二流道33进行密封。
请结合图12和图13,第一冷板10还包括沿第一流道13延伸方向且设于第一流道13的 第一扰流部15。第一扰流部15自第一流道13的侧壁朝向收容空间90的方向凸起形成。
第一扰流部15的数量包括多个,多个第一扰流部15可均匀分布于第一流道13的侧壁,或者,多个第一扰流部15非均匀地间隔分布于第一流道13的侧壁。第一扰流部15的设置可将通入第一流道13内的换热介质分流,增加换热介质在第一流道13内的流动路径,换热介质与电池模组300之间的换热时长得到有效延长,从而达到较高的换热效率。
第一扰流部15呈半圆球结构,当第一流道13内的换热介质经过第一扰流部15的表面时,换热介质可以环绕第一扰流部15的周围流动,从而在第一扰流部15周围形成倒流,延长换热介质与电池模组300之间的换热时长,从而提高换热效率。
类似地,第二冷板30还包括沿第二流道33延伸方向且设于第二流道33的第二扰流部35。第二扰流部35自第二流道33的侧壁朝背离收容空间90的方向凸起形成。第二扰流部35的结构与第一扰流部15的结构相同,第二扰流部35的数量和第一扰流部15的数量相同,在此不再赘述。
在一个实施例中,在第一本体11和第二本体31密封连接的情况下,第一扰流部15和第二扰流部35可错开设置,第一扰流部15和第二扰流部35均用于使冷却流道50内的换热介质分流,增加换热介质在冷却流道50内的流动性,以提高换热介质与电池模组300之间的换热效率。
在另一个实施例中,在第一本体11和第二本体31密封连接的情况下,第一扰流部15和第二扰流部35相互抵接。
第一流道13凹陷的深度等于第一扰流部15凸起的高度,第二流道33凹陷的深度等于第二扰流部35凸起的高度。由此,当第一本体11的四周边缘表面与第二本体31的四周边缘表面焊接时,第一扰流部15和第二扰流部35均不会影响第一本体11和第二本体31连接的密封性,保证第一本体11和第二本体31连接的密封性。
请参阅图9,第一本体11包括第一分段111、两个第一弯折部117、第二分段113和第三分段115。一个第一弯折部117的两端分别连接第一分段111与第二分段113,另一个第一弯折部117的两端分别连接第三分段115与第二分段113,第二分段113位于第一分段111与第三分段115之间。
在本申请的实施例中,第一分段111、两个第一弯折部117、第二分段113和第三分段115为一体结构,利用仿形模具进行冲压弯折处理得到第一本体11,第一分段111、两个第一弯折部117、第二分段113和第三分段115无需快插接头等连接结构进行连接,三者之间没有通过快插接头连接的接口,换热介质在第一流道13内不存在泄漏失效,使得液冷板100的安全性能高。且第一分段111、两个第一弯折部117、第二分段113和第三分段115无需快插接头等连接结构进行连接,可有效降低成本。
请结合图17,依次连接的第一分段111、两个第一弯折部117、第二分段113和第三分段115形成U型结构。第一分段111和第三分段115相对,第一分段111的长度和第三分段115的长度可根据电池模组300的长度设置,具体地,第一分段111的长度和第三分段115的长度均略大于一列电池模组300的长度。第二分段113对应两列电池模组300的宽度,第二分段113的长度略大于电池模组300的宽度,保证两列电池模组300能够放置在收容空间90内。
请参阅图9及图11,类似地,第二本体31包括第四分段311、两个第二弯折部317、第五分段313和第六分段315。第四分段311与第一分段111对应并配合连接,一个第一弯折部117的两端分别连接第五分段313与第四分段311,第五分段313与第二分段113对应并配合连接。另一个第一弯折部117的两端分别连接第六分段315与第五分段313,第六分段315 与第三分段115对应并配合连接,第五分段313位于第四分段311与第六分段315之间。
在本申请的实施例中,第四分段311、两个第二弯折部317、第五分段313及第六分段315为一体结构,利用仿形模具进行冲压弯折处理得到第二本体31,第四分段311、两个第二弯折部317、第五分段313及第六分段315无需快插接头等连接结构进行连接,三者之间没有通过快插接头连接的接口,换热介质在第一流道13内不存在泄漏失效,使得液冷板100的安全性能高。且第四分段311、两个第二弯折部317、第五分段313及第六分段315无需快插接头等连接结构进行连接,可有效降低成本。
请结合图17,依次连接的第四分段311、两个第二弯折部317、第五分段313及第六分段315形成U型结构。第四分段311和第六分段315相对,第四分段311的长度和第六分段315的长度可根据一列电池模组300的长度设置,且可别等于第一分段111的长度和第三分段115的长度,具体地,第四分段311的长度和第六分段315的长度均略大于电池模组300的长度。第五分段313对应两列电池模组300的宽度,第五分段313的长度大于两列电池模组300的宽度保证两列电池模组300能够放置在收容空间90内。
需要说明的是,第一分段111、两个第一弯折部117、第二分段113、及第三分段115可以是分体结构,第一分段111、两个第一弯折部117、第二分段113、及第三分段115通过焊接的方式连接。类似地,第四分段311、两个第二弯折部317、第五分段313级第六分段315可以是分体结构,第四分段311、两个第二弯折部317、第五分段313级第六分段315通过焊接的方式连接。具体地,当第一本体11和第二本体31焊接成液冷板100时,第一分段111与第四分段311贴合,第一弯折部117与第二弯折部317贴合,第二分段113和第五分段313贴合,第三分段115和第六分段315贴合。当液冷板100对四列电池模组300进行换热时,第一分段111和第四分段311分别位于第三列电池模组300和第四列电池模组300之间,第一分段111和第四分段311用于对第三列电池模组300和第四列电池模组300进行换热。第三分段115和第六分段315位于第一列电池模组300和第二列电池模组300之间,第三分段115和第六分段315用于对第一列电池模组300和第二列电池模组300进行换热。当向冷却流道50内通入换热介质时,四列电池模组300散发的热量通过第一分段111、第四分段311、第三分段115及第六分段315与冷却流道50内的换热介质进行换热。
在本申请的实施例中,第一分段111和第三分段115上的第一扰流部15的数量大于第二分段113上的第一扰流部15的数量,第四分段311和第六分段315上的第二扰流部35的数量大于第五分段313上的第二扰流部35的数量,保证液冷板100与电池模组300换热的冷却流道50中的换热介质与电池模组300的换热时长更长,从而提高换热效率。
请继续参阅图7及图9,第一子流道131和第二子流道133延伸贯穿于第一分段111、第二分段113和第三分段115。第三子流道331和第四子流道333延伸贯穿于第四分段311、第五分段313及第六分段315。第一子流道131与第三子流道331对应,第一子流道131的宽度等于第三子流道331的宽度,第二子流道133与第四子流道333对应,第二子流道133的宽度等于第四子流道333的宽度。
请结合图3,在本申请的实施例中,加强件70的数量包括多个,多个加强件70设置于第一弯折部117与第二弯折部317之间的第一子流道131和第三子流道331内,以及,多个加强件70设置于第一弯折部117和第二弯折部317之间的第二子流道133和第四子流道333内。
第一分段111处的第一子流道131的宽度及第三分段115处的第一子流道131的宽度均大于或等于第二分段113处的第一子流道131的宽度。第一分段111的第二子流道133的宽 度及第三分段115的第二子流道133的宽度均大于或等于第二分段113的第二子流道133的宽度。第一分段111处的第一子流道131的宽度及第三分段115处的第一子流道131的宽度均大于或等于第一弯折部117处的第一子流道131的宽度。第一分段111处的第二子流道133的宽度及第三分段115处的第二子流道133的宽度均大于或等于第一弯折部117处的第二子流道133的宽度。本申请中,在第一冷板10与电池模组300(图17所示)接触面积较大的部分设置宽度更大的第一子流道131和第二子流道133,可以有效提高换热效率。
第四分段311的第三子流道331的宽度及第六分段315的第三子流道331的宽度均大于或等于第五分段313的第三子流道331的宽度。第四分段311的第四子流道333的宽度及第六分段315的第四子流道333的宽度均大于或等于第五分段313的第四子流道333的宽度。第四分段311的第三子流道331的宽度及第六分段315的第三子流道331的宽度均大于或等于第二弯折部317的第三子流道331的宽度。第四分段311的第四子流道333的宽度及第六分段315的第四子流道333的宽度均大于或等于第二弯折部317的第四子流道333的宽度。本申请中,在第二冷板30与电池模组300接触面积较大的部分设置宽度更大的第三子流道331和第四子流道333,可以有效提高换热效率。
需要说明的是,上述涉及的各个子流道的宽度是指子流道在图2所示的Y方向上延伸的长度。
请参阅图14,在一个实施例中,第二分段113设有与第一子流道131连通的第一通孔20,第二分段113设有与第二子流道133连通的第二通孔40,第一通孔20用于连接进液管60和出液管80中的一个,第二通孔40用于连接进液管60和出液管80中的另一个。例如,第一通孔20用于连接进液管60,第二通孔40则用于连接出液管80。此时,当向进液管60输入换热介质时,换热介质通过第一通孔20流进第一子流道131和第三子流道331形成的子流道内,再流到第二子流道133和第四子流道333共同形成的子流道内,最后从连接第二通孔40的出液管80排出。该实施例中,在Y方向上,第一通孔20的中心和第二通孔40的中心位于一条直线上;或者,在Y方向上,第一通孔20的中心和第二通孔40的中心位于不同直线上。
请参阅图15,在另一个实施例中,第五分段313设有与第三子流道331连通的第一通孔20,第五分段313设有与第四子流道333连通的第二通孔40,第一通孔20用于连接进液管60和出液管80中的一个,第二通孔40用于连接进液管60和出液管80中的另一个。前上述的实施例不同的是,本实施例中,第一通孔20和第二通孔40设置在第二本体31的第五分段313上,此时,进液管60和出液管80从液冷板100的底部伸入收容空间90内并与第一通孔20和第二通孔40连接。
请参阅图16,在又一个实施例中,第一冷板10还包括设置于第二分段113的第一连接部12和第二连接部14,第一连接部12和第二连接部14间隔设置。第一连接部12设有第一开孔121。第二连接部14设有与第一子流道131连通的第三流道141,第三流道141自第二连接部14朝背离收容空间90的方向凹陷形成,第二连接部14设有第二开孔143,第二开孔143与第三流道141连通。
第二冷板30还包括设置于第五分段313的第三连接部32和第四连接部34。第三连接部32与第四连接部34间隔设置,第三连接部32和第一连接部12配合,第四连接部34和第二连接部14配合。第三连接部32设有第三开孔321,第三开孔321与第一开孔121对应。第四连接部34设有与第三子流道331连通的第四流道341,第四流道341自第四连接部34朝向收容空间90的方向凹陷形成,第四流道341和第三流道141对应并配合形成与冷却流道 50连通的支流道,支流道用于连通进液管60或者出液管80。
通过设置第一连接部12、第二连接部14、第三连接部32及第四连接部34,使得进液管60和出液管80可同等高度伸出。
具体地,第五分段313设有与第四子流道333连通的第一通孔20。在第一冷板10和第二冷板30密封连接的情况下,第一开孔121和第三开孔321同轴设置。第一通孔20、第一开孔121及第三开孔321共同用于连接进液管60和出液管80中的一个,第二开孔143用于连接进液管60和出液管80中的另一个。例如,第一通孔20、第一开孔121及第三开孔321共同用于连接进液管60,则第二开孔143用于连接出液管80。其中,进液管60呈U型结构,进液管60的一端连接第一通孔20,进液管60的另一端从收容空间90内伸出,以与第一开孔121级第三开孔321连接。出液管80连接第二开孔143并与第三流道141级第四流道341连通。
请参阅图16及图17,本申请实施方式还提供一种电池包1000,电池包1000包括至少一个电池模组300及本申请任一实施方式所述的液冷板100,液冷板100用于对至少一个电池模组300进行换热。
电池包1000包括一个或多个电池模组300,当电池模组300包括多个时,多个电池模组300并列设置,每个电池模组300可放置在一个液冷板100的收容空间90内,由此,每个电池模组300的多个表面均可与液冷板100贴合,增大电池模组300与液冷板100之间的换热面积,从而提高换热效率。
电池包1000包括一个或多个电池模组300,当电池模组300包括多个时,多个电池模组300并列设置,例如,一个电池包1000包括四列电池模组300,第一列电池模组300放置在液冷板100的一侧,第二列电池模组300和第三列电池模组300均放置在收容空间90内,第四列电池模组300放置在液冷板100的另一侧,如图17所示。液冷板100的部分结构分别位于第一列电池模组300和第二列电池模组300之间,该部分液冷板100同时对第一列电池模组300和第二列电池模组300进行换热。液冷板100的部分结构分别位于第三列电池模组300和第四列电池模组300之间,该部分液冷板100同时对第三列电池模组300和第四列电池模组300进行换热。通过一个液冷板100实现对多个电池模组300的换热处理,提高液冷板100对电池包1000的换热效率,同时,还可以有效降低成本。且第一冷板10和第二冷板30不需要通过快插接头进行连接,液冷板100的组合方式简单。
当然,电池包1000可使用一个液冷板100对多个电池模组300进行换热。例如,当电池包1000包括一列电池模组300时,可将该列电池模组300放置在一个液冷板100的收容空间90内,由此,该列电池模组300的多个表面均可与液冷板100贴合,增大电池模组300与液冷板100之间的换热面积,从而提高换热效率。
电池模组300包括多个电芯组成,具体地,电芯可以是铅酸蓄电池、镍氢蓄电池、锂电池、磷酸铁锂电池或三元电池等。电芯可以为长方体状,也可为圆柱状等,在此不对电芯的形状作限制。
电池包1000还可包括上盖400和下箱体500,上盖400和下箱体500用于将电池模组300和液冷板100进行封装保护。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (10)

  1. 一种液冷板,包括:
    第一冷板,所述第一冷板包括第一弯折部;
    第二冷板,所述第二冷板与所述第一冷板层叠设置并密封连接,所述第二冷板和所述第一冷板之间形成有冷却流道,所述第二冷板包括第二弯折部,所述第二弯折部与所述第一弯折部对应;及
    至少一个加强件,所述至少一个加强件设于所述第一弯折部和所述第二弯折部之间的所述冷却流道内。
  2. 根据权利要求1所述的液冷板,其中,所述加强件内形成有通道,所述通道沿所述冷却流道的延伸方向贯穿所述加强件,并与所述冷却流道连通。
  3. 根据权利要求2所述的液冷板,其中,所述加强件还包括多个隔片,所述多个隔片沿所述通道的延伸方向设于所述通道内,并将所述通道分隔成多个子通道,多个所述子通道均与所述冷却流道连通。
  4. 根据权利要求2所述的液冷板,其中,所述加强件包括第一分部、第二分部及至少一个第三分部,所述第一分部与所述第二分部相对设置,至少一个所述第三分部的两端分别与所述第一分部、所述第二分部连接,至少一个所述第三分部将所述通道分隔成至少两个子通道。
  5. 根据权利要求1所述的液冷板,其中,所述加强件可以为泡沫金属。
  6. 根据权利要求1或5所述的液冷板,其中,所述加强件形成有多个气孔,所述气孔与所述冷却流道连通,以能够通过所述冷却流道内的换热介质。
  7. 根据权利要求1所述的液冷板,其中,所述第一冷板与所述第二冷板形成有收容空间,所述第一冷板包括第一本体和设置于所述第一本体的第一流道,所述第一流道沿所述第一本体的长度方向延伸、且自所述第一本体朝背离所述收容空间的方向凹陷形成;所述第二冷板包括第二本体及设置于所述第二本体的第二流道,所述第二本体层叠设置于所述第一本体的朝向所述收容空间的一侧,所述第二流道沿所述第二本体的长度方向延伸、且自所述第二本体朝朝向所述收容空间的方向凹陷形成,所述第二流道与所述第一流道对应,所述第一本体与所述第二本体密封连接,所述第二流道与所述第一流道共同配合形成环绕所述收容空间的所述冷却流道。
  8. 根据权利要求7所述的液冷板,其中,所述第一流道包括分布于所述第一本体的第一子流道和第二子流道,所述第一子流道和所述第二子流道互相连通;
    所述第二流道包括分布于所述第二本体的第三子流道和第四子流道,所述第三子流道和所述第四子流道互相连通,所述第一子流道与所述第三子流道对应。
  9. 根据权利要求8所述的液冷板,其中,所述液冷板包括多个加强件,所述多个加强件设置于所述第一弯折部与所述第二弯折部之间的所述第一子流道和所述第三子流道内;及
    所述多个加强件设置于所述第一弯折部与所述第二弯折部之间的所述第二子流道和所述第四子流道内。
  10. 一种电池包,包括:
    至少一个电池模组;及
    权利要求1至9任意一项所述的液冷板,所述液冷板用于对所述至少一个电池模组进行换热。
PCT/CN2022/141651 2022-07-29 2022-12-23 液冷板及电池包 WO2024021483A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22940939.6A EP4343927A4 (en) 2022-07-29 2022-12-23 LIQUID COOLING PLATE AND BATTERY PACK
US18/386,678 US20240063466A1 (en) 2022-07-29 2023-11-03 Liquid cooling plate and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222000223.0U CN217848100U (zh) 2022-07-29 2022-07-29 液冷板及电池包
CN202222000223.0 2022-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/386,678 Continuation US20240063466A1 (en) 2022-07-29 2023-11-03 Liquid cooling plate and battery pack

Publications (1)

Publication Number Publication Date
WO2024021483A1 true WO2024021483A1 (zh) 2024-02-01

Family

ID=84012836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141651 WO2024021483A1 (zh) 2022-07-29 2022-12-23 液冷板及电池包

Country Status (4)

Country Link
US (1) US20240063466A1 (zh)
EP (1) EP4343927A4 (zh)
CN (1) CN217848100U (zh)
WO (1) WO2024021483A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218101432U (zh) * 2022-07-29 2022-12-20 厦门海辰储能科技股份有限公司 液冷板及电池包
CN217848100U (zh) * 2022-07-29 2022-11-18 厦门海辰储能科技股份有限公司 液冷板及电池包
CN116759705A (zh) * 2023-08-23 2023-09-15 深圳海辰储能控制技术有限公司 冷板、储能装置和用电设备
CN116826247B (zh) * 2023-08-31 2024-01-23 厦门海辰储能科技股份有限公司 液冷板组件、储能装置和用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090023056A1 (en) * 2007-07-18 2009-01-22 Tesla Motors, Inc. Battery pack thermal management system
CN105659430A (zh) * 2013-10-17 2016-06-08 特斯拉汽车公司 电池单元模块组件
CN108183285A (zh) * 2018-03-23 2018-06-19 华霆(合肥)动力技术有限公司 口琴管及电池模组系统
CN108461866A (zh) * 2018-03-07 2018-08-28 华霆(合肥)动力技术有限公司 温控组件及电池模组
CN208507894U (zh) * 2018-08-27 2019-02-15 华霆(合肥)动力技术有限公司 液冷扁管和电池模组
CN217848100U (zh) * 2022-07-29 2022-11-18 厦门海辰储能科技股份有限公司 液冷板及电池包

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663413B2 (ja) * 2011-06-17 2015-02-04 カルソニックカンセイ株式会社 サーペンタイン型熱交換器
DE102012005871A1 (de) * 2012-03-23 2013-09-26 Valeo Klimasysteme Gmbh Kühlvorrichtung für eine Fahrzeugbatterie sowie Fahrzeugbatterie mit Kühlvorrichtung
CN108134159A (zh) * 2018-02-06 2018-06-08 华霆(合肥)动力技术有限公司 热管理装置及电池模组
CN210242511U (zh) * 2018-07-26 2020-04-03 达纳加拿大公司 具有平行流动特征以增强热传导的热交换器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090023056A1 (en) * 2007-07-18 2009-01-22 Tesla Motors, Inc. Battery pack thermal management system
CN105659430A (zh) * 2013-10-17 2016-06-08 特斯拉汽车公司 电池单元模块组件
CN108461866A (zh) * 2018-03-07 2018-08-28 华霆(合肥)动力技术有限公司 温控组件及电池模组
CN108183285A (zh) * 2018-03-23 2018-06-19 华霆(合肥)动力技术有限公司 口琴管及电池模组系统
CN208507894U (zh) * 2018-08-27 2019-02-15 华霆(合肥)动力技术有限公司 液冷扁管和电池模组
CN217848100U (zh) * 2022-07-29 2022-11-18 厦门海辰储能科技股份有限公司 液冷板及电池包

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4343927A4

Also Published As

Publication number Publication date
EP4343927A1 (en) 2024-03-27
CN217848100U (zh) 2022-11-18
US20240063466A1 (en) 2024-02-22
EP4343927A4 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
WO2024021483A1 (zh) 液冷板及电池包
WO2024021481A1 (zh) 液冷板及电池包
WO2013171885A1 (ja) 電池モジュール
CN219203262U (zh) 一种液冷组件和电池包
CN113036262A (zh) 电池模组均衡散热装置
CN117543154A (zh) 电池箱体及电池包
CN114006078A (zh) 一种风冷电池系统
CN220155700U (zh) 一种散热泄压装置、电池模组及电池包
CN219892253U (zh) 电池包
CN219066953U (zh) 一种电池用的换热组件、电池模组及电池包
CN211182447U (zh) 液冷板
CN210926234U (zh) 方形锂电池模组及电池模组系统
CN110854466B (zh) 一种间隔交互式微通道液冷板
CN112361861A (zh) 一种多介质换热的储能换热器
CN218069983U (zh) 一种均温储能液冷板
CN116683083A (zh) 一种电池用的换热组件、电池模组及电池包
CN116169415A (zh) 电池箱体及电池包
CN116053647A (zh) 电池箱体组件、电池包和电池系统
CN210430028U (zh) 电池冷却装置及动力电池箱
CN214747436U (zh) 一种多介质换热的储能换热器
WO2018182162A1 (ko) 배터리 모듈
CN217334178U (zh) 一种软包锂电池模组热管理系统
CN220106746U (zh) 电池包和电池系统
CN221551998U (zh) 电芯正置式电池包及储能系统
CN220065943U (zh) 电池箱及电池包

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022940939

Country of ref document: EP

Effective date: 20231115