WO2024021481A1 - 液冷板及电池包 - Google Patents

液冷板及电池包 Download PDF

Info

Publication number
WO2024021481A1
WO2024021481A1 PCT/CN2022/141649 CN2022141649W WO2024021481A1 WO 2024021481 A1 WO2024021481 A1 WO 2024021481A1 CN 2022141649 W CN2022141649 W CN 2022141649W WO 2024021481 A1 WO2024021481 A1 WO 2024021481A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
sub
segment
liquid cooling
cold plate
Prior art date
Application number
PCT/CN2022/141649
Other languages
English (en)
French (fr)
Inventor
黄伟鹏
吴长风
景皛皛
Original Assignee
厦门海辰储能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门海辰储能科技股份有限公司 filed Critical 厦门海辰储能科技股份有限公司
Priority to EP22946028.2A priority Critical patent/EP4343922A1/en
Priority to US18/393,903 priority patent/US20240120574A1/en
Publication of WO2024021481A1 publication Critical patent/WO2024021481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery cooling technology, and specifically to a liquid cooling plate and a battery pack.
  • An independent battery module usually contains multiple cells. During the charging and discharging process of the battery module, the chemical reactions of the multiple cells inside will generate a large amount of heat.
  • liquid cooling plates are often used to cool the battery modules. Perform heat exchange.
  • current battery packs are usually composed of multiple battery modules to form a high-power battery.
  • Thermal efficiency is low. Therefore, how to improve the heat exchange efficiency between the liquid cooling plate and multiple battery modules has become an urgent problem that needs to be solved.
  • the present application provides a liquid cooling plate and a battery pack, which are at least used to solve the problem of low heat exchange efficiency between the liquid cooling plate and multiple battery modules.
  • the liquid cooling plate provided by this application forms a receiving space, including a first cold plate and a second cold plate.
  • the second cold plate is stacked on a side of the first cold plate facing the receiving space and is sealingly connected to the first cold plate.
  • a cooling flow channel surrounding the accommodation space is formed therebetween.
  • the first cold plate includes a first body and a first flow channel provided on the first body.
  • the first flow channel extends along the length direction of the first body and extends from The first body is formed by being recessed in a direction away from the receiving space.
  • the first flow channel is provided on the first body, the surface of the second cold plate is flat, the part of the first body that is not provided with the first flow channel is sealingly connected to the second cold plate, and the first flow channel is connected to the second cold plate.
  • the plates cooperate to form a cooling flow channel surrounding the receiving space, and only arranging the first flow channel on the first cold plate can simplify the preparation of the liquid cooling plate.
  • the second cold plate includes a second body and a second flow channel provided on the second body, and the second body is stacked on a side of the first body facing the On one side of the receiving space, the second flow channel extends along the length direction of the second body and is recessed from the second body toward the receiving space.
  • the second flow channel is provided on the second body, the surface of the first cold plate is flat, the part of the second body that is not provided with the second flow channel is sealingly connected to the first cold plate, and the second flow channel is connected with the first cold plate.
  • the first cold plate cooperates to form a cooling flow channel surrounding the receiving space, and only providing the second flow channel on the second cold plate can simplify the preparation of the liquid cooling plate.
  • the second body of the second cold plate when the first body of the first cold plate is provided with a first flow channel, and when the second body of the second cold plate is provided with a second flow channel, the second body of the second cold plate is provided with a first flow channel.
  • the flow channel corresponds to the first flow channel, the first body is sealingly connected to the second body, and the second flow channel cooperates with the first flow channel to form the cooling flow surrounding the receiving space. road.
  • first flow channel is provided on the first body and the second flow channel is provided on the second body, and the first flow channel and the second flow channel correspond to each other and jointly form a cooling flow channel surrounding the receiving space.
  • it can effectively Increasing the volume of the cooling flow channel effectively improves the heat exchange efficiency between the heat exchange medium input into the cooling flow channel and the battery module.
  • the first cold plate further includes a first spoiler arranged along the extension direction of the first flow channel and provided on the first flow channel, and the first spoiler A protrusion is formed from the side wall of the first flow channel toward the direction of the receiving space.
  • the second cold plate also includes a second spoiler arranged along the extension direction of the second flow channel and provided on the second flow channel. The second spoiler extends from the second flow channel.
  • the side walls are convexly formed in the direction away from the receiving space.
  • the arrangement of the first spoiler and the second spoiler can divert the heat exchange medium flowing into the cooling channel, increase the flow path of the heat exchange medium in the cooling channel, and improve the relationship between the heat exchange medium and the battery module.
  • the heat exchange time is effectively extended, thereby achieving higher heat exchange efficiency.
  • the second spoiler part and the first spoiler part abut each other or the second spoiler part and the first spoiler part are arranged staggered.
  • staggered first and second spoilers are used to divert the heat exchange medium in the flow channel and increase the fluidity of the heat exchange medium in the flow channel to improve the interaction between the heat exchange medium and the battery module. heat exchange efficiency.
  • the depth of the first flow channel recess is the same as the height of the first spoiler protrusion; the depth of the second flow channel recess is the same as the height of the second spoiler protrusion. of the same height.
  • the first body includes a first segment, a second segment and a third segment, and the first segment, the second segment and the third segment It is an integrated structure, and the two ends of the second section are bent and connected to the first section and the third section respectively.
  • first segment, the second segment and the third segment are an integrated structure.
  • the first body is obtained by stamping and bending using a profiling mold.
  • the first segment, the second segment and the third segment are There is no need for connection structures such as splicing, clamping or quick-plug connectors. There is no interface between the three integrations, and there is no leakage failure of the heat exchange medium in the first flow channel, making the liquid cooling plate highly safe.
  • the first segment, the second segment and the third segment do not need any connection structure to connect, which can effectively reduce costs.
  • the second body includes a fourth segment, a fifth segment, and a sixth segment, and the fourth segment, the fifth segment, and the sixth segment It is an integrated structure, and the two ends of the fifth segment are bent and connected to the fourth segment and the sixth segment respectively, and the fourth segment corresponds to and cooperates with the first segment, so The fifth segment corresponds to and cooperates with the second segment, and the sixth segment corresponds to and cooperates with the third segment.
  • the fourth segment, the fifth segment and the sixth segment are an integrated structure.
  • the second body is obtained by stamping and bending using a profiling mold.
  • the fourth, fifth and sixth segments are There is no need for connection structures such as splicing, clamping or quick-plug joints. There is no interface between the three integrations, and there is no leakage failure of the heat exchange medium in the first flow channel, making the liquid cooling plate highly safe.
  • the fourth segment, the fifth segment and the sixth segment do not need any connecting structure to connect, which can effectively reduce costs.
  • the first flow channel includes a first sub-flow channel and a second sub-flow channel distributed in the first body, and the first sub-flow channel and the second sub-flow channel Arranged side by side, the first sub-flow channel and the second sub-flow channel are connected with each other, and both the first sub-flow channel and the second sub-flow channel extend through the first segment and the third sub-flow channel.
  • the second flow channel includes a third sub-flow channel and a fourth sub-flow channel distributed in the second body. The third sub-flow channel and the fourth sub-flow channel are arranged side by side.
  • the third sub-flow channel The flow channel and the fourth sub-flow channel are connected with each other, and the third sub-flow channel and the fourth sub-flow channel extend through the fourth section, the fifth section and the sixth section. section, the first sub-flow channel corresponds to the third sub-flow channel, and the second sub-flow channel corresponds to the fourth sub-flow channel.
  • the first flow channel is divided into a first sub-flow channel and a second sub-flow channel that are arranged side by side and connected, and increasing the branch path of the heat exchange medium in the first flow channel can effectively improve the heat exchange efficiency; in the second flow channel It is divided into a third sub-flow channel and a fourth sub-flow channel that are arranged side by side and connected to increase the branching path of the heat exchange medium in the second flow channel, which can effectively improve the heat exchange efficiency.
  • the second section is provided with a first through hole connected to the first sub-channel, and the second section is provided with a first through hole connected to the second sub-channel.
  • a second through hole, the first through hole is used to connect one of the liquid inlet pipe and the liquid outlet pipe, and the second through hole is used to connect the other of the liquid inlet pipe and the liquid outlet pipe.
  • the first through hole is provided in the first sub-flow channel of the second segment
  • the second through hole is provided in the second sub-flow channel of the second segment
  • the first cold plate is smaller than the second cold plate. It is located further outside the containing space, and the liquid inlet pipe and the liquid outlet pipe can complete the input and output of the heat exchange medium without extending into the containing space.
  • the fifth segment is provided with the first through hole communicating with the third sub-channel, and the fifth segment is provided with the first through hole communicating with the fourth sub-channel.
  • the second through hole is connected, the first through hole is used to connect one of the liquid inlet pipe and the liquid outlet pipe, and the second through hole is used to connect the liquid inlet pipe and the liquid outlet pipe. of another.
  • a first through hole can also be provided in the third sub-flow channel of the fifth segment, and a second through hole can be provided in the fourth sub-flow channel of the fifth segment.
  • the first cold plate further includes a first connection part and a second connection part provided in the second section
  • the second cold plate further includes a first connection part provided in the fifth section.
  • the third connecting part and the fourth connecting part, the first connecting part cooperates with the third connecting part
  • the second connecting part cooperates with the fourth connecting part.
  • first connection part, the second connection part, the third connection part and the fourth connection part are provided to facilitate the subsequent installation of the liquid inlet pipe and the liquid outlet pipe extending from the lower box at the same height, and are arranged in the horizontal direction.
  • the heights of the first connecting part, the second connecting part, the third connecting part and the fourth connecting part are the same, so that the liquid inlet pipe and the liquid outlet pipe can extend at the same height.
  • the fifth segment is provided with a first through hole communicating with the fourth sub-flow channel, and the first connection portion is provided with a first opening.
  • the second connecting part is provided with a third flow channel connected with the first sub-flow channel.
  • the third flow channel is recessed from the second connecting part in a direction away from the receiving space.
  • the third flow channel is recessed from the second connecting part in a direction away from the receiving space.
  • the two connecting parts are provided with a second opening, and the second opening is connected with the third flow channel.
  • the third connecting part is provided with a third opening corresponding to the first opening.
  • the fourth connection part is provided with a fourth flow channel connected with the third sub-flow channel.
  • the fourth flow channel is recessed from the fourth connection part toward the direction of the receiving space.
  • the fourth flow channel is recessed from the fourth connection part toward the receiving space.
  • the flow channel corresponds to the third flow channel, wherein the first through hole, the first opening and the third opening are jointly used to connect the liquid inlet pipe and the liquid outlet pipe.
  • One, the second opening is used to connect the other of the liquid inlet pipe and the liquid outlet pipe.
  • connection positions of the liquid inlet pipe and the liquid outlet pipe at the first connection part, the second connection part, the third connection part and the fourth connection part, the liquid inlet pipe and the liquid outlet pipe can be extended at the same height. .
  • the battery pack provided by this application includes at least one battery module and the liquid cooling plate described in any embodiment of this application.
  • the liquid cooling plate is used for heat exchange of the at least one battery module.
  • the battery pack includes a plurality of battery modules, and the liquid cooling plate is disposed between the plurality of battery modules.
  • liquid cooling plate formed with a receiving space can exchange heat for multiple battery modules and improve the heat exchange efficiency of the liquid cooling plate for the battery pack.
  • the liquid cooling plate forms a receiving space
  • the liquid cooling plate includes a first cold plate and a second cold plate
  • a cold plate surrounding the receiving space is formed between the first cold plate and the second cold plate.
  • Cooling flow channel multiple battery modules can be placed inside and outside the storage space, so that a liquid cooling plate can be attached to multiple battery modules for heat exchange, and the heat exchange medium is introduced into the cooling flow channel to exchange heat. The medium exchanges heat with the battery module through the first cold plate and the second cold plate, thereby cooling or preheating the battery module.
  • Figure 1 is a schematic three-dimensional structural diagram of a liquid cooling plate provided by an embodiment of the present application.
  • Figure 2 is a schematic three-dimensional structural diagram of the first cold plate in the liquid cooling plate provided by the embodiment of the present application;
  • Figure 3 is a schematic three-dimensional structural diagram of the second cold plate in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 4 is a schematic three-dimensional structural diagram of a battery pack provided by an embodiment of the present application.
  • Figure 5 is another three-dimensional structural schematic diagram of the second cold plate in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 6 is another three-dimensional structural schematic diagram of the first cold plate in the liquid cooling plate provided by the embodiment of the present application.
  • Figure 7 is a schematic three-dimensional cross-sectional view of the liquid cooling plate shown in Figure 1 along the line VII-VII provided by the embodiment of the present application;
  • Figure 8 is an enlarged schematic diagram of position VIII of the liquid cooling plate shown in Figure 7 provided by the embodiment of the present application;
  • Figure 9 is a schematic three-dimensional exploded structural diagram of a liquid cooling plate provided by an embodiment of the present application.
  • Figure 10 is a schematic three-dimensional exploded structural diagram of another liquid cooling plate provided by an embodiment of the present application.
  • Figure 11 is a schematic three-dimensional exploded structural diagram of yet another liquid cooling plate provided by an embodiment of the present application.
  • Figure 12 is a schematic three-dimensional exploded structure diagram of another liquid cooling plate provided by an embodiment of the present application.
  • the first cold plate 10 The first body 11, the first segment 111, the end 112, the second segment 113, the third segment 115, the first connection part 12, the first opening 121, the first flow channel 13, The first sub-flow channel 131, the second sub-flow channel 133, the second connection part 14, the third flow channel 141, the second opening 143, the first spoiler 15;
  • Liquid outlet pipe 40 cooling flow channel 50;
  • connection and “connection” mentioned in this application include direct and indirect connections (connections) unless otherwise specified.
  • An embodiment of the present application provides a liquid cooling plate 100 .
  • the liquid cooling plate 100 is formed with a receiving space 70 .
  • the liquid cooling plate 100 includes a first cold plate 10 and a second cold plate 30 .
  • the second cold plate 30 is stacked on the side of the first cold plate 10 facing the receiving space 70 and is sealingly connected to the first cold plate 10.
  • a surrounding receiving space is formed between the second cold plate 30 and the first cold plate 10. 70 cooling channels 50.
  • An independent battery module usually contains multiple cells. During the charging and discharging process of the battery module, the chemical reactions of the multiple cells inside will generate a large amount of heat.
  • liquid cooling plates are often used to cool the battery modules. Perform heat exchange.
  • current battery packs are usually composed of multiple battery modules to form a high-power battery.
  • Thermal efficiency is low. Therefore, how to improve the heat exchange efficiency between the liquid cooling plate and multiple battery modules has become an urgent problem that needs to be solved.
  • the liquid cooling plate 100 forms a receiving space.
  • the liquid cooling plate 100 includes a first cold plate 10 and a second cold plate 30 . There is a space formed between the first cold plate 10 and the second cold plate 30 .
  • multiple battery modules 300 (shown in FIG. 4 ) can be placed inside and outside the accommodation space 70 , so that one liquid cooling plate 100 can be attached to multiple battery modules 300
  • the heat exchange medium is passed into the cooling channel 50 and the heat exchange medium exchanges heat with the battery module 300 through the first cold plate 10 and the second cold plate 30, thereby achieving cooling or cooling of the battery module 300. Warm up.
  • An embodiment of the present application provides a battery pack 1000.
  • the battery pack 1000 includes at least one battery module 300 and the liquid cooling plate 100 described in any embodiment of the present application.
  • the liquid cooling plate 100 is used for Perform heat exchange on at least one battery module 300.
  • the battery pack 1000 includes one or more battery modules 300.
  • the multiple battery modules 300 are arranged in parallel.
  • a battery pack 1000 includes four rows of battery modules 300.
  • One row of battery modules 300 is placed on one side of the liquid cooling plate 100
  • the second row of battery modules 300 and the third row of battery modules 300 are both placed in the receiving space 70
  • the fourth row of battery modules 300 is placed in the liquid cooling plate 100 .
  • the other side of the plate 100 is shown in Figure 4. Part of the structure of the liquid cooling plate 100 is located between the first row of battery modules 300 and the second row of battery modules 300. This part of the liquid cooling plate 100 simultaneously controls the first row of battery modules 300 and the second row of battery modules 300. Perform heat exchange.
  • Part of the structure of the liquid cooling plate 100 is located between the third row of battery modules 300 and the fourth row of battery modules 300. This part of the liquid cooling plate 100 simultaneously controls the third row of battery modules 300 and the fourth row of battery modules 300. Perform heat exchange.
  • One liquid cooling plate 100 is used to realize heat exchange processing for multiple battery modules 300, thereby improving the heat exchange efficiency of the liquid cooling plate 100 to the battery pack 1000, and at the same time, the cost can also be effectively reduced.
  • the first cold plate 10 and the second cold plate 30 do not need to be connected through quick-plug connectors, and the liquid cooling plate 100 is assembled in a simple manner.
  • the battery pack 1000 can use a liquid cooling plate 100 to exchange heat for a row of battery modules 300 .
  • the row of battery modules 300 can be placed in the receiving space 70 of a liquid cooling plate 100, so that multiple surfaces of the row of battery modules 300 can It is attached to the liquid cooling plate 100 to increase the heat exchange area between the battery module 300 and the liquid cooling plate 100, thereby improving the heat exchange efficiency.
  • the battery module 300 includes a plurality of battery cells.
  • the battery cells may be lead-acid batteries, nickel-metal hydride batteries, lithium batteries, lithium iron phosphate batteries, or ternary batteries.
  • the battery core may be in the shape of a rectangular parallelepiped or a cylinder, and the shape of the battery core is not limited here.
  • the battery pack 1000 may also include an upper cover 400 and a lower box 500 .
  • the upper cover 400 and the lower box 500 are used to encapsulate and protect the battery module 300 and the liquid cooling plate 100 .
  • the heat exchange medium may be a liquid (such as water, water-alcohol mixture) medium or a gas medium, which is not limited in the embodiments of this application.
  • the heat exchange medium may be water.
  • the heat exchange medium can cool or preheat the battery module 300 .
  • the heat exchange medium is input into the cooling channel 50. Since the battery module 300 is attached to the liquid cooling plate 100, the heat exchange medium in the cooling channel 50 can pass through the liquid cooling Plate 100 performs heat exchange. Among them, the battery module 300 can be cooled or preheated by adjusting the temperature of the input heat exchange medium.
  • the battery module 300 in a low-temperature environment, has reduced charging and discharging performance due to the reduced activity of the positive and negative electrode materials and the conductivity of the electrolyte.
  • the temperature needs to be input.
  • the higher heat exchange medium is introduced into the cooling channel 50 so that the battery module 300 reaches a suitable temperature.
  • the liquid cooling plate 100 is attached to multiple battery modules 300, so that the liquid cooling plate 100 can exchange heat for multiple battery modules 300 at the same time, effectively improving the preheating efficiency of the liquid cooling plate 100 for the battery pack 1000.
  • the charging efficiency of the cells in the battery module 300 will be low and the battery capacity will be reduced, and the battery module 300 will dissipate heat during operation, resulting in the battery module 300
  • the temperature is too high, so the battery module 300 needs to be dissipated through the liquid cooling plate 100 .
  • the liquid cooling plate 100 is attached to multiple battery modules 300, so that the liquid cooling plate 100 can exchange heat with the multiple battery modules 300, effectively improving the cooling efficiency of the liquid cooling plate 100 for the battery pack 1000.
  • the first cold plate 10 and the second cold plate 30 are a pair of components, and the number of the first cold plate 10 is the same as the number of the second cold plate 30 .
  • the number of the first cold plate 10 and the number of the second cold plate 30 may be one or more to exchange heat for a larger number of battery modules 300 .
  • the first cold plate 10 and the second cold plate 30 are made of the same material, which can be a metal material or a non-metallic material with good thermal conductivity.
  • the specific material is not limited.
  • the first cold plate 10 and the second cold plate 30 can be made of aluminum, which can reduce the weight of the liquid cooling plate 100 and thereby reduce the overall weight of the battery pack 1000 .
  • the first cold plate 10 includes a first body 11 and a first flow channel 13 provided on the first body 11.
  • the first flow channel 13 extends along the length direction of the first body 11. , and is recessed from the first body 11 in a direction away from the receiving space 70 .
  • the second cold plate 30 includes a second body 31 and a second flow channel 33 provided in the second body 31 .
  • the second body 31 is stacked on the side of the first body 11 facing the receiving space 70 and is sealingly connected with the first body 11 .
  • the second flow channel 33 extends along the length direction of the second body 31 and is recessed from the second body 31 toward the receiving space 70 .
  • the second flow channel 33 corresponds to the first flow channel 13 .
  • the second flow channel 33 is connected to the first flow channel 13 .
  • the channels 13 cooperate together to form a flow channel 50 surrounding the receiving space 70 .
  • the first flow channel 13 includes a first sub-flow channel 131 and a second sub-flow channel 133 distributed in the first body 11.
  • the first sub-flow channel 131 and the second sub-flow channel 133 are arranged side by side.
  • the first sub-flow channel 131 and the second sub-flow channel 133 are arranged side by side.
  • the two sub-flow channels 133 are connected with each other, and the first sub-flow channel 131 and the second sub-flow channel 133 that are connected with each other jointly form an annular first flow channel 13 .
  • the first flow channel 13 is divided into a first sub-flow channel 131 and a second sub-flow channel 133 arranged side by side and connected. Increasing the branching path of the heat exchange medium in the first flow channel 13 can effectively improve the heat exchange efficiency.
  • first sub-flow channel 131 and the second sub-flow channel 133 are connected at the end 112 of the first body 11
  • the other parts of the first sub-flow channel 131 and the second sub-flow channel 133 are connected at the end 112 of the first body 11 . They are arranged at parallel intervals in the height direction X, that is, the spaced parts are not provided with flow channels.
  • the second flow channel 33 includes a third sub-flow channel 331 and a fourth sub-flow channel 333 distributed in the second body 31.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are arranged side by side.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are arranged side by side.
  • the fourth sub-flow channels 333 are connected with each other.
  • the interconnected third sub-flow channels 331 and the fourth sub-flow channels 333 jointly form an annular second flow channel 33. Therefore, the first flow channel 13 and the second flow channel 33 jointly form an annular second flow channel 33.
  • the cooling flow channel 50 formed by cooperation is in an annular shape as a whole.
  • the second flow channel 33 is divided into a third sub-flow channel 331 and a fourth sub-flow channel 333 arranged side by side and connected, thereby increasing the branching path of the heat exchange medium in the second flow channel 33, which can effectively improve the heat exchange efficiency.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are connected at the end 312 of the second body 31
  • the other parts of the third sub-flow channel 331 and the fourth sub-flow channel 333 are connected at the end 312 of the second body 31 . They are arranged at parallel intervals in the height direction The spaced parts are in contact with each other.
  • the cooperation of the first flow channel 13 and the second flow channel 33 to form the cooling flow channel 50 means that when the first body 11 and the second body 31 are welded to each other to form the liquid cooling plate 100, when the first body 11 is not provided with a third
  • the portion of the first flow channel 13 and the portion of the second body 31 that is not provided with the second flow channel 33 are in contact with each other.
  • the first flow channel 13 and the second flow channel 33 are opposite in the thickness direction of the liquid cooling plate 100.
  • the first flow channel 13 and the second flow channel 33 are in contact with each other.
  • the second flow channels 33 together form a cooling flow channel 50 .
  • the first flow channel 13 is not provided on the peripheral edge of the first body 11
  • the second flow channel 33 is not provided on the peripheral edge of the second body 31 .
  • the surrounding edges of the first body 11 and the surrounding edges of the second body 31 can be welded to sealingly connect the first body 11 and the second body 31, thereby connecting the first body 11 and the second body 31.
  • the first flow channel 13 and the second flow channel 33 are sealed, which can effectively prevent the heat exchange medium in the first flow channel 13 from leaking.
  • the space between the third sub-flow channel 331 and the fourth sub-flow channel 333 and the first sub-flow channel 131 can also be welded.
  • the spaced portions between the first cold plate 10 and the second sub-flow channel 133 are abutted with each other and then welded to strengthen the stability of the welding between the first cold plate 10 and the second cold plate 30 .
  • the first cold plate 10 includes a first body 11 and a first flow channel 13 provided on the first body 11.
  • the first flow channel 13 is along the length direction of the first body 11. It extends and is recessed from the first body 11 in a direction away from the receiving space 70 .
  • the second cold plate 30 is sealingly connected to the first body 11 , and the first flow channel 13 and the second cold plate 30 cooperate to form a cooling flow channel 50 surrounding the receiving space 70 .
  • the liquid cooling plate 100 only provides the first flow channel 13 on the first cold plate 10 to form the cooling flow channel 50, which can make the preparation of the liquid cooling plate 100 simple and convenient, and when the liquid cooling plate 100 exchanges heat for a row of battery modules 300 , the volume of the cooling flow channel 50 does not need to be too large to achieve cooling.
  • the first flow channel 13 includes a first sub-flow channel 131 and a second sub-flow channel 133 distributed in the first body 11.
  • the first sub-flow channel 131 and the second sub-flow channel 133 are connected with each other, and the first sub-flow channel 133 is connected with each other.
  • the sub-flow channel 131 and the second sub-flow channel 133 together form an annular first flow channel 13 .
  • the first sub-flow channel 131 and the second sub-flow channel 133 are connected at the end 112 of the first body 11 , and the first sub-flow channel 131 and the second sub-flow channel 133 in other parts are connected in the height direction X of the first body 11
  • the upper parts are arranged at parallel intervals, that is, the separated parts are not provided with flow channels.
  • the first flow channel 13 is not provided on the peripheral edge portion of the first body 11 , and the portion of the first body 11 that is not provided with the first flow channel 13 is used to contact the second cold plate 30 .
  • the surface of the second cold plate 30 is flat.
  • the cooling flow channel 50 of the liquid cooling plate 100 is the first flow channel 13 .
  • the peripheral edge portion of the first body 11 that is not provided with the first flow channel 13 is in contact with the second cold plate 30 , and the space between the first sub-flow channel 131 and the second sub-flow channel 133 is in contact with the second cold plate 30
  • the first body 11 and the second cold plate 30 are fixedly connected by welding, and the first flow channel 13 on the first body 11 is sealed, which can effectively prevent the cooling medium in the first flow channel 13 from leaking. .
  • the second cold plate 30 includes a second body 31 and a second flow channel 33 provided in the second body 31.
  • the second body 31 is stacked on the side of the first cold plate 10 facing the receiving space 70 .
  • the second flow channel 33 extends along the length direction of the second body 31 and is recessed from the second body 31 toward the receiving space 70 . form.
  • the first cold plate 10 is sealingly connected to the second body 31 , and the second flow channel 33 cooperates with the first cold plate 10 to form a cooling flow channel 50 surrounding the receiving space 70 .
  • the liquid cooling plate 100 only provides the second flow channel 33 on the second cold plate 30 to form the cooling flow channel 50 , which can also make the preparation of the liquid cooling plate 100 simple and convenient, and when the liquid cooling plate 100 replaces a row of battery modules 300 When hot, the volume of the cooling flow channel 50 does not need to be too large to achieve cooling.
  • the second flow channel 33 includes a third sub-flow channel 331 and a fourth sub-flow channel 333 distributed in the second body 31.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are arranged side by side.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are arranged side by side.
  • the fourth sub-flow channels 333 are connected with each other.
  • the interconnected third sub-flow channels 331 and the fourth sub-flow channels 333 jointly form an annular second flow channel 33. Therefore, the first flow channel 13 and the second flow channel 33 jointly form an annular second flow channel 33.
  • the cooling flow channel 50 formed by the cooperation is in an annular shape as a whole.
  • the second flow channel 33 is divided into a third sub-flow channel 331 and a fourth sub-flow channel 333 arranged side by side and connected to increase the branching path of the heat exchange medium in the second flow channel 33, which can effectively improve the heat exchange efficiency.
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 are connected at the end 312 of the second body 31 , and the third sub-flow channel 331 and the fourth sub-flow channel 333 in other parts are connected in the height direction X of the second body 31
  • the upper portions are arranged in parallel and spaced apart, and there are no flow channels in the spaced portions.
  • the spaced portions between the third sub-flow channel 331 and the fourth sub-flow channel 333 are in contact with the surface of the first cold plate 10 .
  • the second flow channel 33 and the first flow channel 13 cooperate to form a cooling flow channel 50.
  • the increase of 33 can make the cooling channel 50 have a larger volume, and can input more heat exchange medium into the cooling channel 50 at one time, effectively improving the heat exchange efficiency between the heat exchange medium and the battery module 300 .
  • This application uses the first cold plate 10 formed with the first flow channel 13 and the second cold plate 30 formed with the second flow channel 33 as an example to describe the structure of the liquid cooling plate 100 in detail.
  • the width of the second flow channel 33 is equal to the width of the first flow channel 13.
  • the side walls of the first flow channel 13 can be aligned with the second flow channel 13.
  • the side walls of the flow channel 33 are in contact with each other to seal the first flow channel 13 and the second flow channel 33 .
  • the first cold plate 10 further includes a first spoiler 15 arranged along the extending direction of the first flow channel 13 and provided on the first flow channel 13 .
  • the first spoiler 15 is formed to protrude from the side wall of the first flow channel 13 toward the receiving space 70 .
  • the number of first spoilers 15 includes multiple ones.
  • the plurality of first spoilers 15 may be evenly distributed on the side walls of the first flow channel 13 , or the plurality of first spoilers 15 may be non-uniformly distributed on the first flow channel 13 .
  • Side wall of lane 13 The provision of the first spoiler 15 can divert the heat exchange medium flowing into the first flow channel 13, increase the flow path of the heat exchange medium in the first flow channel 13, and improve the heat exchange between the heat exchange medium and the battery module 300. The duration is effectively extended, thereby achieving higher heat exchange efficiency.
  • the first spoiler 15 has a hemispherical structure.
  • the heat exchange medium in the first flow channel 13 passes through the surface of the first spoiler 15, the heat exchange medium can flow around the first spoiler 15, so that the heat exchange medium in the first flow channel 13 passes through the first spoiler 15.
  • a reverse flow is formed around the spoiler 15 to prolong the heat exchange time between the heat exchange medium and the battery module 300, thereby improving the heat exchange efficiency.
  • the second cold plate 30 also includes a second spoiler 35 arranged along the extension direction of the second flow channel 33 and provided on the second flow channel 33 .
  • the second spoiler 35 protrudes from the side wall of the second flow channel 33 in a direction away from the receiving space 70 to form the second spoiler 35.
  • the structure of the second spoiler 35 is the same as that of the first spoiler 15.
  • the second spoiler 35 The number is the same as the number of the first spoiler 15, which will not be described again.
  • the first spoiler 15 and the second spoiler 35 may be staggered, and the first spoiler 15 and the second spoiler 35 may be staggered.
  • the parts 35 are all used to divert the heat exchange medium in the flow channel 50 and increase the fluidity of the heat exchange medium in the flow channel 50 to improve the heat exchange efficiency between the heat exchange medium and the battery module 300 .
  • the first spoiler 15 and the second spoiler 35 abut each other.
  • the depth of the recess of the first flow channel 13 is the same as the height of the protrusion of the first spoiler 15
  • the depth of the recess of the second flow channel 33 is the same as the height of the protrusion of the second spoiler 35 . Therefore, when the peripheral edge surface of the first body 11 and the peripheral edge surface of the second body 31 are welded, neither the first spoiler 15 nor the second spoiler 35 will affect the first body 11 and the second body 31
  • the sealing performance of the connection ensures the sealing performance of the connection between the first body 11 and the second body 31 .
  • the first body 11 includes a first section 111 , a second section 113 and a third section 115 . Both ends of the second section 113 are bent and connected to the first section 111 and the third section 115 respectively.
  • the first segment 111, the second segment 113 and the third segment 115 are of an integrated structure, and a profiling mold is used for stamping and bending to obtain the first body 11.
  • the first segment 111, The second segment 113 and the third segment 115 do not need to be connected by splicing, clamping or quick-plug joints. There is no interface between the three segments. There is no leakage failure of the heat exchange medium in the first flow channel 13, so that The liquid cooling plate 100 has high safety performance.
  • the first section 111, the second section 113 and the third section 115 do not need any connection structure to connect, which can effectively reduce costs.
  • the first segment 111, the second segment 113 and the third segment 115 connected in sequence form a U-shaped structure.
  • the first section 111 and the third section 115 are opposite.
  • the first section 111 and the third section 115 are respectively located between the two rows of battery modules 300.
  • the length of the first section 111 and the length of the third section 115 are It can be set according to the length of a row of battery modules 300 .
  • the length of the first segment 111 and the length of the third segment 115 are both slightly longer than the length of a row of battery modules 300 .
  • the second segment 113 corresponds to the width of the two rows of battery modules 300 , and the length of the second segment 113 is slightly larger than the width of the two rows of battery modules 300 , ensuring that the two rows of battery modules 300 can be placed in the receiving space 70 .
  • the second body 31 includes a fourth section 311 , a fifth section 313 and a sixth section 315 . Both ends of the fifth section 313 are bent and connected to the fourth section 311 and the sixth section 315 respectively.
  • the fourth segment 311 corresponds to and cooperates with the first segment 111
  • the fifth segment 313 corresponds to and cooperates with the second segment 113
  • the sixth segment 315 corresponds to and cooperates with the third segment 115 .
  • the fourth segment 311, the fifth segment 313, and the sixth segment 315 are of an integrated structure, and a profiling mold is used for stamping and bending to obtain the second body 31.
  • the fourth segment 311, The fifth segment 313 and the sixth segment 315 do not need to be connected by splicing, clamping or quick-plug joints. There is no interface between the three segments. There is no leakage failure of the heat exchange medium in the first flow channel 13, so that The liquid cooling plate 100 has high safety performance.
  • the fourth segment 311, the fifth segment 313, and the sixth segment 315 do not need any connecting structure to connect, which can effectively reduce costs.
  • the fourth segment 311 , the fifth segment 313 and the sixth segment 315 connected in sequence form a U-shaped structure.
  • the fourth segment 311 and the sixth segment 315 are opposite.
  • the fourth segment 311 and the sixth segment 315 are respectively located between the two rows of battery modules 300.
  • the length of the fourth segment 311 and the length of the sixth segment 315 are It can be set according to the length of the battery module 300 and can be equal to the length of the first segment 111 and the length of the third segment 115 respectively.
  • the lengths of the fourth segment 311 and the length of the sixth segment 315 are both abbreviated. Greater than the length of a row of 300 battery modules.
  • the fifth segment 313 corresponds to the width of the two rows of battery modules 300 , and the length of the fifth segment 313 is slightly larger than the width of the two rows of battery modules 300 , ensuring that the two rows of battery modules 300 can be placed in the receiving space 70 .
  • the first segment 111 is bonded with the fourth segment 311, and the second segment 113 is bonded with the fifth segment 313.
  • the third section 115 and the sixth section 315 fit together.
  • the liquid cooling plate 100 is used to exchange heat for the four-row battery module 300, as shown in FIG. 4, the first segment 111 and the fourth segment 311 are located in the third-row battery module 300 and the fourth-row battery respectively.
  • the first section 111 and the fourth section 311 are used to exchange heat between the third row of battery modules 300 and the fourth row of battery modules 300.
  • the third section 115 and the sixth section 315 are respectively located between the first row of battery modules 300 and the second row of battery modules 300.
  • the third section 115 and the sixth section 315 are used to modify the first row of battery modules.
  • the group 300 and the second row of battery modules 300 perform heat exchange.
  • the heat exchange medium is introduced into the cooling flow channel 50 , the heat dissipated by the four-row battery module 300 passes through the first section 111 , the fourth section 311 , the third section 115 and the sixth section 315 and interacts with the cooling flow.
  • the heat exchange medium in channel 50 is used for heat exchange.
  • both the second section 113 and the fifth section 313 can be in contact with the short sides of the two rows of battery modules 300, so that the cooling flow channels 50 in the second section 113 and the fifth section 313 can also contact the battery modules.
  • the battery module 300 performs heat exchange to further improve the heat exchange efficiency of the liquid cooling plate 100 to the battery module 300 .
  • the number of the first spoilers 15 on the first segment 111 and the third segment 115 is greater than the number of the first spoilers 15 on the second segment 113.
  • the fourth segment 311 and the number of the second spoilers 35 on the sixth segment 315 is greater than the number of the second spoilers 35 on the fifth segment 313, ensuring a cooling flow for heat exchange between the liquid cooling plate 100 and the battery module 300.
  • the heat exchange medium in the channel 50 has a longer heat exchange time with the battery module 300, thereby improving the heat exchange efficiency.
  • the first sub-flow channel 131 and the second sub-flow channel 133 extend through the first section 111 , the second section 113 and the third section 115 .
  • the third sub-flow channel 331 and the fourth sub-flow channel 333 extend through the fourth section 311 , the fifth section 313 and the sixth section 315 .
  • the first sub-runner 131 corresponds to the third sub-runner 331
  • the width of the first sub-runner 131 is equal to the width of the third sub-runner 331
  • the second sub-runner 133 corresponds to the fourth sub-runner 333
  • the second sub-runner 131 corresponds to the third sub-runner 331.
  • the width of the sub-flow channel 133 is equal to the width of the fourth sub-flow channel 333 .
  • one of the sub-flow channels (such as the first sub-flow channel 131 or the third sub-flow channel 331) can be used to communicate with the liquid inlet pipe 20 to input the heat exchange medium into the cooling flow channel 50, and the other sub-flow channel A channel (such as the second sub-channel 133 or the fourth sub-channel 333) can be used to connect the heat-exchange medium after heat exchange to the liquid outlet pipe 40 and discharge it out of the flow channel 50.
  • the width of the first sub-channel 131 at the first section 111 and the width of the first sub-channel 131 at the third section 115 are both greater than or equal to the width of the first sub-channel 131 at the second section 113 ;
  • the width of the second sub-channel 133 of the first segment 111 and the width of the second sub-channel 133 of the third segment 115 are both greater than or equal to the width of the second sub-channel 133 of the second segment 113.
  • the width of the third sub-channel 331 of the fourth segment 311 and the width of the third sub-channel 331 of the sixth segment 315 are both greater than or equal to the width of the third sub-channel 331 of the fifth segment 313; the fourth The width of the fourth sub-flow channel 333 of the segment 311 and the width of the fourth sub-flow channel 333 of the sixth segment 315 are both greater than or equal to the width of the fourth sub-flow channel 333 of the fifth segment 313 .
  • each sub-flow channel mentioned above refers to the length of the sub-flow channel extending in the height direction X of the first body 11 or the second body 31 .
  • the width of the first sub-flow channel 131 is equal to the width of the second sub-flow channel 133 .
  • the width of the first sub-flow channel 131 at the first segment 111 and the width of the first sub-flow channel 131 at the third segment 115 are both greater than the width of the first sub-flow channel 131 at the second segment 113 . Since the width of the first sub-flow channel 131 is equal to the width of the third sub-flow channel 331, the width of the third sub-flow channel 331 of the fourth segment 311 and the width of the third sub-flow channel 331 of the sixth segment 315 are Both are larger than the width of the third sub-flow channel 331 of the fifth segment 313 .
  • the second section 113 is provided with a first through hole 60 connected with the first sub-channel 131
  • the second section 113 is provided with a third through hole connected with the second sub-channel 133 .
  • Two through holes 80 the first through hole 60 is used to connect one of the liquid inlet pipe 20 and the liquid outlet pipe 40
  • the second through hole 80 is used to connect the other of the liquid inlet pipe 20 and the liquid outlet pipe 40 .
  • the first through hole 60 is used to connect the liquid inlet pipe 20
  • the second through hole 80 is used to connect the liquid outlet pipe 40 .
  • the heat exchange medium when the heat exchange medium is input into the liquid inlet pipe 20, the heat exchange medium flows into the sub-flow channel formed by the first sub-flow channel 131 and the third sub-flow channel 331 through the first through hole 60, and then flows into the second sub-flow channel.
  • the sub-flow channel 133 and the fourth sub-flow channel 333 form a sub-flow channel, and are finally discharged from the liquid outlet pipe 40 connected to the second through hole 80 .
  • the fifth section 313 is provided with a first through hole 60 connected with the third sub-channel 331, and the fifth section 313 is provided with a first through hole 60 connected with the fourth sub-channel 333.
  • the second through hole 80 , the first through hole 60 is used to connect one of the liquid inlet pipe 20 and the liquid outlet pipe 40
  • the second through hole 80 is used to connect the other of the liquid inlet pipe 20 and the liquid outlet pipe 40 .
  • the first through hole 60 and the second through hole 80 are provided on the fifth section 313 of the second body 31.
  • the liquid inlet pipe 20 and the liquid outlet pipe The bend 40 extends from the top or bottom of the liquid cooling plate 100 into the receiving space 70 and is connected with the first through hole 60 and the second through hole 80 .
  • the first cold plate 10 further includes a first connecting part 12 and a second connecting part 14 disposed on the second section 113 .
  • the first connecting part 12 and the second connecting part 14 Interval settings.
  • the first connecting part 12 is provided with a first opening 121 .
  • the second connecting part 14 is provided with a third flow channel 141 connected with the first sub-flow channel 131 .
  • the third flow channel 141 is recessed from the second connecting part 14 in a direction away from the receiving space 70 .
  • the second connecting part 14 is provided with The second opening 143 is connected with the third flow channel 141 .
  • the second cold plate 30 further includes a third connection portion 32 and a fourth connection portion 34 provided on the fifth section 313 .
  • the third connecting part 32 is spaced apart from the fourth connecting part 34 , the third connecting part 32 cooperates with the first connecting part 12 , and the fourth connecting part 34 cooperates with the second connecting part 14 .
  • the third connecting part 32 is provided with a third opening 321 , and the third opening 321 corresponds to the first opening 121 .
  • the fourth connection part 34 is provided with a fourth flow channel 341 connected with the third sub-flow channel 331.
  • the fourth flow channel 341 is recessed from the fourth connection part 34 toward the receiving space 70.
  • the fourth flow channel 341 and the third sub-flow channel 331 are recessed from the fourth connection part 34 toward the receiving space 70.
  • the flow channels 141 correspond to and cooperate to form branch flow channels connected with the flow channel 50 , and the branch flow channels are used to communicate with the liquid inlet pipe 20 or the liquid outlet pipe 40 .
  • connection position of the liquid inlet pipe 20 and the liquid cooling plate 100 of the liquid cooling plate 100 and the connection position of the liquid outlet pipe 40 and the liquid cooling plate 100 are not at the same height, in order to facilitate the liquid inlet pipe 20 and the liquid outlet pipe 40 to be at the same height from the bottom
  • the box body 500 (shown in FIG. 4 ) is extended, and the first connecting part 12 , the second connecting part 14 , the third connecting part 32 and the fourth connecting part 34 are arranged at the same height in the horizontal direction, so that liquid can be introduced.
  • the tube 20 and the liquid outlet tube 40 can extend at the same height.
  • the fifth section 313 is provided with a first through hole 60 communicating with the fourth sub-flow channel 333 .
  • the first opening 121 and the third opening 321 are coaxially arranged.
  • the first through hole 60 , the first opening 121 and the third opening 321 are jointly used to connect one of the liquid inlet pipe 20 or the liquid outlet pipe 40
  • the second opening 143 is used to connect the liquid inlet pipe 20 and the liquid outlet pipe.
  • Another one out of 40 for example, the first through hole 60 , the first opening 121 and the third opening 321 are jointly used to connect the liquid inlet pipe 20
  • the second opening 143 is used to connect the liquid outlet pipe 40 .
  • the liquid inlet pipe 20 has a U-shaped structure, one end of the liquid inlet pipe 20 is connected to the first through hole 60, and the other end of the liquid inlet pipe 20 extends from the receiving space 70 to connect with the third opening of the first opening 121. Hole 321 connection.
  • the liquid outlet pipe 40 is connected to the second opening 143 and communicates with the third flow channel 141 and the fourth flow channel 341 .
  • the second section 113 is provided with a first through hole 60 connected with the second sub-flow channel 133.
  • the first connecting portion 12 may not be provided with the first opening 121 (shown in Figure 11 (shown)
  • the first through hole 60 is used to connect one of the liquid inlet pipe 20 or the liquid outlet pipe 40
  • the second opening 143 is used to connect the other one of the liquid inlet pipe 20 and the liquid outlet pipe 40.
  • the first through hole 60 is used to connect the liquid inlet pipe 20, and the second opening 143 is used to connect the liquid outlet pipe 40.
  • the liquid outlet pipe 40 has an L-shaped structure, and the liquid outlet pipe 40 is located outside the receiving space 70. The end of the liquid outlet pipe 40 that is not connected to the first through hole 60 is disposed at the same height as the second opening 143 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种液冷板及电池包。液冷板形成有收容空间。液冷板包括第一冷板及第二冷板。第二冷板层叠设置于第一冷板的朝向收容空间的一侧,并与第一冷板密封连接。第二冷板与第一冷板之间形成有环绕收容空间的冷却流道。本申请的液冷板及电池包中,液冷板形成有收容空间,液冷板包括第一冷板和第二冷板,第一冷板和第二冷板之间形成有环绕收容空间的冷却流道,多个电池模组可以放置在收容空间内和收容空间外,使得一个液冷板可以与多个电池模组贴合进行换热,向冷却流道内通入换热介质,换热介质通过第一冷板、第二冷板与电池模组换热,从而实现对电池模组的冷却或预热。

Description

液冷板及电池包
本申请要求于2022年07月29日提交中国专利局、申请号为202221999891.2、申请名称为“液冷板及电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池冷却技术领域,具体涉及一种液冷板及电池包。
背景技术
一独立电池模组通常内设多个电芯,电池模组在充放电使用过程中,内部的多个电芯发生的化学反应会产生大量的热量,现有常采用液冷板对电池模组进行换热。然而,目前电池包通常由多个电池模组构成以形成大功率的电池,采用液冷板对多个电池模组进行换热时,不仅结构复杂而且液冷板与电池模组之间的换热效率低。因此,如何提高液冷板与多个电池模组之间的换热效率成为亟需解决的问题。
申请内容
本申请提供了一种液冷板及电池包,至少用于解决液冷板与多个电池模组之间的换热效率低的问题。
本申请提供的液冷板形成有收容空间,包括第一冷板及第二冷板。所述第二冷板层叠设置于所述第一冷板的朝向所述收容空间的一侧,并与所述第一冷板密封连接,所述第二冷板与所述第一冷板之间形成有环绕所述收容空间的冷却流道。
在一种可能的实施方式中,所述第一冷板包括第一本体和设置于所述第一本体的第一流道,所述第一流道沿所述第一本体的长度方向延伸、且自所述第一本体朝背离所述收容空间的方向凹陷而形成。
可以看出,在第一本体上设置第一流道,第二冷板的表面为平面,第一本体上未设有第一流道的部分与第二冷板密封连接,第一流道与第二冷板配合形成环绕收容空间的冷却流道,且仅在第一冷板上设置第一流道可使得液冷板的制备简单。
在一种可能的实施方式中,所述第二冷板包括第二本体及设置于所述第二本体的第二流道,所述第二本体层叠设置于所述第一本体的朝向所述收容空间的一侧,所述第二流道沿所述第二本体的长度方向延伸、且自所述第二本体朝向所述收容空间的方向凹陷而形成。
可以看出,在第二本体上设置第二流道,第一冷板的表面为平面,第二本体上未设有第二流道的部分与第一冷板密封连接,第二流道与第一冷板配合形成环绕收容空间的冷却流道,且仅在第二冷板上设置第二流道可使得液冷板的制备简单。
在一种可能的实施方式中,在所述第一冷板的第一本体设置第一流道,且在所述第二冷板的第二本体设置第二流道的情况下,所述第二流道与所述第一流道相对应,所述第一本体与所述第二本体密封连接,所述第二流道与所述第一流道共同配合形成环绕所述收容空间的所述冷却流道。
可以看出,在第一本体上设置第一流道、在第二本体上设置第二流道,且第一流道和第二流道相对应共同形成环绕收容空间的冷却流道,如此,可以有效增加冷却流道的容积,有 效提高输入冷却流道内的换热介质与电池模组之间的换热效率。
在一种可能的实施方式中,所述第一冷板还包括沿所述第一流道的延伸方向设置、且设于所述第一流道的第一扰流部,所述第一扰流部自所述第一流道的侧壁朝向所述收容空间的方向凸起形成。所述第二冷板还包括沿所述第二流道的延伸方向设置、且设于所述第二流道的第二扰流部,所述第二扰流部自所述第二流道的侧壁朝背离所述收容空间的方向凸起形成。
可以看出,第一扰流部和第二扰流部的设置可将通入冷却流道内的换热介质分流,增加换热介质在冷却流道内的流动路径,换热介质与电池模组之间的换热时长得到有效延长,从而达到较高的换热效率。
在一种可能的实施方式中,所述第二扰流部与所述第一扰流部互相抵接或者所述第二扰流部与所述第一扰流部错开设置。
可以看出,错开设置的第一扰流部和第二扰流部均用于使流道内的换热介质分流,增加换热介质在流道内的流动性,以提高换热介质与电池模组之间的换热效率。
在一种可能的实施方式中,所述第一流道凹陷的深度与所述第一扰流部凸起的高度相同;所述第二流道凹陷的深度与所述第二扰流部凸起的高度相同。
可以看出,当第一本体的四周边缘表面与第二本体的四周边缘表面焊接时,第一扰流部和第二扰流部均不会影响第一本体和第二本体连接的密封性,保证第一本体和第二本体连接的密封性。
在一种可能的实施方式中,所述第一本体包括第一分段、第二分段及第三分段,所述第一分段、所述第二分段与所述第三分段为一体结构,所述第二分段的两端分别与所述第一分段、所述第三分段弯折连接。
可以看出,第一分段、第二分段和第三分段为一体结构,利用仿形模具进行冲压弯折处理得到第一本体,第一分段、第二分段和第三分段无需拼接、卡接或者快插接头等连接结构进行连接,三者之间一体化没有接口,换热介质在第一流道内不存在泄漏失效,使得液冷板的安全性能高。且第一分段、第二分段和第三分段无需任何连接结构进行连接,可有效降低成本。
在一种可能的实施方式中,所述第二本体包括第四分段、第五分段及第六分段,所述第四分段、所述第五分段及所述第六分段为一体结构,所述第五分段的两端分别与所述第四分段、所述第六分段弯折连接,所述第四分段与所述第一分段对应并配合,所述第五分段与所述第二分段对应并配合,所述第六分段与所述第三分段对应并配合。
可以看出,第四分段、第五分段及第六分段为一体结构,利用仿形模具进行冲压弯折处理得到第二本体,第四分段、第五分段及第六分段无需拼接、卡接或者快插接头等连接结构进行连接,三者之间一体化没有接口,换热介质在第一流道内不存在泄漏失效,使得液冷板的安全性能高。且第四分段、第五分段及第六分段无需任何连接结构进行连接,可有效降低成本。
在一种可能的实施方式中,所述第一流道包括分布于所述第一本体的第一子流道和第二子流道,所述第一子流道与所述第二子流道并排设置,所述第一子流道和所述第二子流道互相连通,所述第一子流道和所述第二子流道均延伸贯穿于所述第一分段、所述第二分段及所述第三分段。所述第二流道包括分布于所述第二本体的第三子流道和第四子流道,所述第三子流道与所述第四子流道并排设置,所述第三子流道和所述第四子流道互相连通,所述第三子流道和所述第四子流道延伸贯穿于所述第四分段、所述第五分段及所述第六分段,所述第一子流道与所述第三子流道对应,所述第二子流道与所述第四子流道对应。
可以看出,在第一流道中分成并排设置且连通的第一子流道和第二子流道,增加换热介质在第一流道内的分流路径,可以有效提高换热效率;在第二流道中分成并排设置且连通的第三子流道和第四子流道,增加换热介质在第二流道内的分流路径,可以有效提高换热效率。
在一种可能的实施方式中,所述第二分段设有与所述第一子流道连通的第一通孔,所述第二分段设有与所述第二子流道连通的第二通孔,所述第一通孔用于连接进液管和出液管中的一个,所述第二通孔用于连接所述进液管和所述出液管中的另一个。
可以看出,在第二分段的第一子流道设置第一通孔,第二分段的第二子流道设置第二通孔,且第一冷板相较于第二冷板而言位于收容空间的更外侧,进液管和出液管无需伸入收容空间内便可完成换热介质的输入和输出。
在一种可能的实施方式中,所述第五分段设有与所述第三子流道连通的所述第一通孔,所述第五分段设有与所述第四子流道连通的所述第二通孔,所述第一通孔用于连接进液管和出液管中的一个,所述第二通孔用于连接所述进液管和所述出液管中的另一个。
可以看出,还可以在第五分段的第三子流道设置第一通孔,第五分段的第四子流道设置第二通孔,此时,进液管和出液管均伸入收容空间内以完成换热介质的输入和输出,使得液冷板连接进液管和出液管的方式多样化。
在一种可能的实施方式中,所述第一冷板还包括设置于所述第二分段的第一连接部和第二连接部,第二冷板还包括设置于所述第五分段的第三连接部和第四连接部,所述第一连接部和所述第三连接部配合,所述第二连接部和所述第四连接部配合。
可以看出,设置第一连接部、第二连接部、第三连接部和第四连接部,便于后续设置进液管和出液管同等高度从下箱体伸出,设置在水平方向上的高度是同等高度的第一连接部、第二连接部、第三连接部以及第四连接部,使得进液管和出液管可同等高度伸出。
在一种可能的实施方式中,所述第五分段设有与所述第四子流道连通的第一通孔,所述第一连接部设有第一开孔。所述第二连接部设有与所述第一子流道连通的第三流道,所述第三流道自所述第二连接部朝背离所述收容空间的方向凹陷形成,所述第二连接部设有第二开孔,所述第二开孔与所述第三流道连通。所述第三连接部设有第三开孔,所述第三开孔与所述第一开孔对应。所述第四连接部设有与所述第三子流道连通的第四流道,所述第四流道自所述第四连接部朝向所述收容空间的方向凹陷形成,所述第四流道与所述第三流道对应,其中,所述第一通孔、所述第一开孔及所述第三开孔共同用于连接所述进液管和所述出液管中的一个,所述第二开孔用于连接所述进液管和所述出液管中的另一个。
可以看出,在第一连接部、第二连接部、第三连接部和第四连接部设置进液管、出液管的连接位置,可以使得进液管和出液管可同等高度伸出。
本申请提供的电池包包括至少一个电池模组及本申请任一实施方式所述的液冷板。所述液冷板用于对所述至少一个电池模组进行换热。
在一种可能的实施方式中,所述电池包包括多个电池模组,所述液冷板设于所述多个电池模组之间。
可以看出,形成有收容空间的液冷板可以对多个电池模组进行换热,提高液冷板对电池包的换热效率。
本申请的液冷板及电池包中,液冷板形成有收容空间,液冷板包括第一冷板和第二冷板,第一冷板和第二冷板之间形成有环绕收容空间的冷却流道,多个电池模组可以放置在收容空间内和收容空间外,使得一个液冷板可以与多个电池模组贴合进行换热,向冷却流道内通入换热介质,换热介质通过第一冷板、第二冷板与电池模组换热,从而实现对电池模组的冷却 或预热。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的液冷板的立体结构示意图;
图2是本申请实施例提供的液冷板中的第一冷板的立体结构示意图;
图3是本申请实施例提供的液冷板中的第二冷板的一种立体结构示意图;
图4是本申请实施例提供的电池包的立体结构示意图;
图5是本申请实施例提供的液冷板中的第二冷板的另一种立体结构示意图;
图6是本申请实施例提供的液冷板中的第一冷板的另一种立体结构示意图;
图7是本申请实施例提供的图1所示的液冷板沿VII-VII线的立体剖面示意图;
图8是本申请实施例提供的图7所示的液冷板中VIII处的放大示意图;
图9是本申请实施例提供的一种液冷板的立体分解结构示意图;
图10是本申请实施例提供的另一种液冷板的立体分解结构示意图;
图11是本申请实施例提供的又一种液冷板的立体分解结构示意图;
图12是本申请实施例提供的另一种液冷板的立体分解结构示意图。
附图标记:
液冷板100;
第一冷板10、第一本体11、第一分段111、端部112、第二分段113、第三分段115、第一连接部12、第一开孔121、第一流道13、第一子流道131、第二子流道133、第二连接部14、第三流道141、第二开孔143、第一扰流部15;
进液管20;
第二冷板30、第二本体31、第四分段311、端部312、第五分段313、第六分段315、第三连接部32、第三开孔321、第二流道33、第三子流道331、第四子流道333、第四连接部34、第四流道341、第二扰流部35;
出液管40;冷却流道50;
第一通孔60;
收容空间70;
第二通孔80;
电池模组300;
上盖400;
下箱体500;
电池包1000。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有 其他实施方式,都属于本申请保护的范围。
以下各实施例的说明是参考附加的图示,用以例示本可用以实施的特定实施例。本中所提到的方向用语,例如,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”、“侧面”等,仅是参考附加图式的方向,因此,使用的方向用语是为了更好、更清楚地说明及理解本,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本的限制。
此外,本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
请继续参阅图1、图2及图3,本申请实施方式提供一种液冷板100,液冷板100形成有收容空间70。液冷板100包括第一冷板10及第二冷板30。第二冷板30层叠设置于第一冷板10的朝向收容空间70的一侧,并与第一冷板10密封连接,第二冷板30与第一冷板10之间形成有环绕收容空间70的冷却流道50。
一独立电池模组通常内设多个电芯,电池模组在充放电使用过程中,内部的多个电芯发生的化学反应会产生大量的热量,现有常采用液冷板对电池模组进行换热。然而,目前电池包通常由多个电池模组构成以形成大功率的电池,采用液冷板对多个电池模组进行换热时,不仅结构复杂而且液冷板与电池模组之间的换热效率低。因此,如何提高液冷板与多个电池模组之间的换热效率成为亟需解决的问题。
本申请的液冷板100中,液冷板100形成有收容空间,液冷板100包括第一冷板10和第二冷板30,第一冷板10和第二冷板30之间形成有环绕收容空间70的冷却流道50,多个电池模组300(图4所示)可以放置在收容空间70内和收容空间70外,使得一个液冷板100可以与多个电池模组300贴合进行换热,向冷却流道50内通入换热介质,换热介质通过第一冷板10、第二冷板30与电池模组300换热,从而实现对电池模组300的冷却或预热。
请参阅图1及图4,本申请实施方式提供一种电池包1000,电池包1000包括至少一个电池模组300及本申请任一实施方式所述的液冷板100,液冷板100用于对至少一个电池模组300进行换热。
电池包1000包括一个或多个电池模组300,当电池包1000包括多个电池模组300时,多个电池模组300并列设置,例如,一个电池包1000包括四列电池模组300,第一列电池模组300放置在液冷板100的一侧,第二列电池模组300和第三列电池模组300均放置在收容空间70内,第四列电池模组300放置在液冷板100的另一侧,如图4所示。液冷板100的部分结构分别位于第一列电池模组300和第二列电池模组300之间,该部分液冷板100同时对第一列电池模组300和第二列电池模组300进行换热。液冷板100的部分结构分别位于第三列电池模组300和第四列电池模组300之间,该部分液冷板100同时对第三列电池模组300和第四列电池模组300进行换热。通过一个液冷板100实现对多个电池模组300的换热处理,提高液冷板100对电池包1000的换热效率,同时,还可以有效降低成本。且第一冷板10和第二冷板30不需要通过快插接头进行连接,液冷板100的组合方式简单。
当然,电池包1000可使用一个液冷板100对一列电池模组300进行换热。例如,当电池包1000包括一列电池模组300时,可将该列电池模组300放置在一个液冷板100的收容空间70内,由此,该列电池模组300的多个表面均可与液冷板100贴合,增大电池模组300与液冷板100之间的换热面积,从而提高换热效率。
电池模组300包括多个电芯组成,具体地,电芯可以是铅酸蓄电池、镍氢蓄电池、锂电 池、磷酸铁锂电池或三元电池等。电芯可以为长方体状,也可为圆柱状等,在此不对电芯的形状作限制。
电池包1000还可包括上盖400和下箱体500,上盖400和下箱体500用于将电池模组300和液冷板100进行封装保护。
其中,换热介质可以是液体(如水、水醇混合物)介质,也可以是气体介质,在本申请实施方式不限定。例如,在一个示例中,换热介质可以是水。
需要说明的是,换热介质可以对电池模组300进行冷却或预热处理。当需要对电池模组300进行换热处理时,朝冷却流道50内输入换热介质,由于电池模组300与液冷板100贴合,冷却流道50内的换热介质可以通过液冷板100进行换热。其中,可通过调整输入的换热介质的温度实现对电池模组300的冷却或预热处理。
在某些实施方式中,在低温环境中,电池模组300中的电芯因为正负极材料活性、电解液导电性降低,电池模组300的充放电的性能降低,此时,需要输入温度较高的换热介质到冷却流道50中,以使电池模组300达到适宜的温度。同时,液冷板100与多个电池模组300贴合,使得液冷板100可同时对多个电池模组300进行换热,有效提高液冷板100对电池包1000的预热效率。
在某些实施方式中,在高温环境中,会导致电池模组300中的电芯的充电效率较低、电池容量减小,且电池模组300在工作时散发热量,导致电池模组300的温度过高,因此,需要通过液冷板100对电池模组300进行散热。此时,需要输入温度较低的换热介质到冷却流道50中,以使冷却流道50内的换热介质能够带走电池模组300散发的热量,以使电池模组300的温度降到合适的温度。同时,液冷板100与多个电池模组300贴合,使得液冷板100可对多个电池模组300进行换热,有效提高液冷板100对电池包1000的冷却效率。
请参阅图1及图4,第一冷板10和第二冷板30为一对组件,第一冷板10的数量与第二冷板30的数量一致。其中,第一冷板10的数量和第二冷板30的数量可均为一个或多个,以对数量更多的电池模组300进行换热。
第一冷板10和第二冷板30的材质相同,可以为金属材质,也可以为导热性好的非金属材质,具体材质不限。优选地,第一冷板10和第二冷板30可以采用铝材质制成,能够减轻液冷板100的重量,从而减轻电池包1000的整体重量。
请参阅图2及图3,在一个实施例中,第一冷板10包括第一本体11和设置于第一本体11的第一流道13,第一流道13沿第一本体11的长度方向延伸、且自第一本体11朝背离收容空间70的方向凹陷形成。
第二冷板30包括第二本体31及设置于第二本体31的第二流道33。第二本体31层叠设置于第一本体11的朝向收容空间70的一侧,并与第一本体11密封连接。第二流道33沿第二本体31的长度方向延伸、且自第二本体31朝向收容空间70的方向凹陷形成,第二流道33与第一流道13对应,第二流道33与第一流道13共同配合形成环绕收容空间70的流道50。
第一流道13包括分布于第一本体11的第一子流道131和第二子流道133,第一子流道131和第二子流道133并排设置,第一子流道131和第二子流道133互相连通,相互连通的第一子流道131和第二子流道133共同形成一个环形的第一流道13。第一流道13中分成并排设置且连通的第一子流道131和第二子流道133,增加换热介质在第一流道13内的分流路径,可以有效提高换热效率。
具体地,第一子流道131和第二子流道133在第一本体11的端部112处连通,其他部分的第一子流道131和第二子流道133在第一本体11的高度方向X上平行间隔设置,即,间 隔的部分未设有流道。
第二流道33包括分布于第二本体31的第三子流道331和第四子流道333,第三子流道331和第四子流道333并排设置,第三子流道331和第四子流道333互相连通,相互连通的第三子流道331和第四子流道333共同形成一个环形的第二流道33,由此,第一流道13和第二流道33共同配合形成的冷却流道50整体呈环形。在第二流道33中分成并排设置且连通的第三子流道331和第四子流道333,增加换热介质在第二流道33内的分流路径,可以有效提高换热效率。
同样地,第三子流道331和第四子流道333在第二本体31的端部312处连通,其他部分的第三子流道331和第四子流道333在第二本体31的高度方向X上平行间隔设置,间隔部分未设有流道,第三子流道331和第四子流道333之间的间隔部分、及第一子流道131和第二子流道133之间的间隔部分相互抵接。
其中,第一流道13和第二流道33配合形成冷却流道50是指:第一本体11和第二本体31相互贴合焊接成液冷板100时,当第一本体11未设有第一流道13的部分和第二本体31未设有第二流道33的部分相互抵接,第一流道13和第二流道33在液冷板100的厚度方向上相对,第一流道13和第二流道33共同围成冷却流道50。
具体地,第一本体11的四周边缘也未设有第一流道13,第二本体31的四周边缘也未设有第二流道33。第一本体11和第二本体31焊接时,可将第一本体11的四周边缘与第二本体31的四周边缘进行焊接处理,以将第一本体11和第二本体31密封连接,从而将第一流道13和第二流道33进行密封,可以有效防止第一流道13内的换热介质泄漏。
或者在第一本体11的四周边缘与第二本体31的四周边缘进行焊接时,还可将第三子流道331和第四子流道333之间的间隔部分、及第一子流道131和第二子流道133之间的间隔部分相互抵接后进行焊接,以加固第一冷板10和第二冷板30之间焊接的稳固性。
请参阅图2及图5,在另一个实施例中,第一冷板10包括第一本体11和设置于第一本体11的第一流道13,第一流道13沿第一本体11的长度方向延伸、且自第一本体11朝背离收容空间70的方向凹陷形成。第二冷板30与第一本体11密封连接,第一流道13和第二冷板30配合形成环绕收容空间70的冷却流道50。
液冷板100仅在第一冷板10上设置第一流道13构成冷却流道50,可使得液冷板100的制备简单方便,且当液冷板100对一列电池模组300进行换热时,冷却流道50的容积无需过大便可实现冷却。
同样地,第一流道13包括分布于第一本体11的第一子流道131和第二子流道133,第一子流道131和第二子流道133互相连通,相互连通的第一子流道131和第二子流道133共同形成一个环形的第一流道13。第一子流道131和第二子流道133在第一本体11的端部112处连通,其他部分的第一子流道131和第二子流道133在第一本体11的高度方向X上平行间隔设置,即,间隔的部分未设有流道。另外,第一本体11的四周边缘部分未设置有第一流道13,第一本体11上未设有第一流道13的部分用于与第二冷板30抵接。
第二冷板30的表面为平面,此时,液冷板100的冷却流道50即为第一流道13。第一本体11上未设有第一流道13的四周边缘部分与第二冷板30抵接,第一子流道131和第二子流道133之间的间隔部分与第二冷板30抵接,并通过焊接的方式实现第一本体11和第二冷板30之间的固定连接,将第一本体11上的第一流道13进行密封,可以有效防止第一流道13内的冷却介质泄漏。
请参阅图3和图6,在又一个实施例中,第二冷板30包括第二本体31及设置于第二本 体31的第二流道33。第二本体31层叠设于第一冷板10的朝向收容空间70的一侧,第二流道33沿第二本体31的长度方向延伸、且自第二本体31朝向收容空间70的方向凹陷而形成。第一冷板10与第二本体31密封连接,第二流道33与第一冷板10配合形成环绕收容空间70的冷却流道50。
液冷板100仅在第二冷板30上设置第二流道33构成冷却流道50,同样可使得液冷板100的制备简单方便,且当液冷板100对一列电池模组300进行换热时,冷却流道50的容积无需过大便可实现冷却。
第二流道33包括分布于第二本体31的第三子流道331和第四子流道333,第三子流道331和第四子流道333并排设置,第三子流道331和第四子流道333互相连通,相互连通的第三子流道331和第四子流道333共同形成一个环形的第二流道33,由此,第一流道13和第二流道33共同配合形成的冷却流道50整体呈环形。在第二流道33中分成并排设置且连通的第三子流道331和第四子流道333,增加换热介质在第二流道33内的分流路径,可以有效提高换热效率。
第三子流道331和第四子流道333在第二本体31的端部312处连通,其他部分的第三子流道331和第四子流道333在第二本体31的高度方向X上平行间隔设置,间隔部分未设有流道,第三子流道331和第四子流道333之间的间隔部分与第一冷板10的表面相互抵接。
第二流道33与第一流道13共同配合形成的冷却流道50相较于第一流道13形成的冷却流道50和第二流道33形成的冷却流道50而言,第二流道33的增加可使得冷却流道50的容积更大,可向冷却流道50内一次输入更多的换热介质,有效提高换热介质与电池模组300之间的换热效率。本申请以第一冷板10形成有第一流道13和第二冷板30形成有第二流道33为例对液冷板100的结构进行详细说明。
在本申请的实施例中,第二流道33的宽度等于第一流道13的宽度,当第一本体11和第二本体31相对并贴合时,第一流道13的侧壁能够与第二流道33的侧壁相互抵接,将第一流道13和第二流道33进行密封。
请结合图7和图8,第一冷板10还包括沿第一流道13延伸方向设置、且设于第一流道13的第一扰流部15。第一扰流部15自第一流道13的侧壁朝向收容空间70的方向凸起形成。
第一扰流部15的数量包括多个,多个第一扰流部15可均匀分布于第一流道13的侧壁,或者,多个第一扰流部15非均匀地间隔分布于第一流道13的侧壁。第一扰流部15的设置可将通入第一流道13内的换热介质分流,增加换热介质在第一流道13内的流动路径,换热介质与电池模组300之间的换热时长得到有效延长,从而达到较高的换热效率。
第一扰流部15呈半圆球结构,当第一流道13内的换热介质经过第一扰流部15的表面时,换热介质可以环绕第一扰流部15的周围流动,从而在第一扰流部15周围形成倒流,延长换热介质与电池模组300之间的换热时长,从而提高换热效率。
请结合图8,同样地,第二冷板30还包括沿第二流道33的延伸方向设置、且设于第二流道33的第二扰流部35。第二扰流部35自第二流道33的侧壁朝背离收容空间70的方向凸起形成第二扰流部35的结构与第一扰流部15的结构相同,第二扰流部35的数量和第一扰流部15的数量相同,在此不再赘述。
在一个实施例中,在第一本体11和第二本体31密封连接的情况下,第一扰流部15和第二扰流部35可错开设置,第一扰流部15和第二扰流部35均用于使流道50内的换热介质分流,增加换热介质在流道50内的流动性,以提高换热介质与电池模组300之间的换热效率。
在另一个实施例中,在第一本体11与第二本体31密封连接的情况下,第一扰流部15和 第二扰流部35相互抵接。
请结合图8,第一流道13凹陷的深度与第一扰流部15凸起的高度相同,第二流道33凹陷的深度与第二扰流部35凸起的高度相同。由此,当第一本体11的四周边缘表面与第二本体31的四周边缘表面焊接时,第一扰流部15和第二扰流部35均不会影响第一本体11和第二本体31连接的密封性,保证第一本体11和第二本体31连接的密封性。
请参阅图2,第一本体11包括第一分段111、第二分段113和第三分段115。第二分段113的两端分别与第一分段111和第三分段115弯折连接。在本申请的实施例中,第一分段111、第二分段113和第三分段115为一体结构,利用仿形模具进行冲压弯折处理得到第一本体11,第一分段111、第二分段113和第三分段115无需拼接、卡接或者快插接头等连接结构进行连接,三者之间一体化没有接口,换热介质在第一流道13内不存在泄漏失效,使得液冷板100的安全性能高。且第一分段111、第二分段113和第三分段115无需任何连接结构进行连接,可有效降低成本。
依次连接的第一分段111、第二分段113和第三分段115形成U型结构。第一分段111和第三分段115相对,第一分段111和第三分段115分别位于两列电池模组300之间,第一分段111的长度和第三分段115的长度可根据一列电池模组300的长度设置,具体地,第一分段111的长度和第三分段115的长度均略大于一列电池模组300的长度。第二分段113对应两列电池模组300的宽度,第二分段113的长度略大于两列电池模组300的宽度,保证两列电池模组300能够放置在收容空间70内。
请参阅图2及图3,类似地,第二本体31包括第四分段311、第五分段313和第六分段315。第五分段313的两端分别与第四分段311、第六分段315弯折连接。第四分段311与第一分段111对应并配合,第五分段313与第二分段113对应并配合,第六分段315与第三分段115对应并配合。
在本申请的实施例中,第四分段311、第五分段313及第六分段315为一体结构,利用仿形模具进行冲压弯折处理得到第二本体31,第四分段311、第五分段313及第六分段315无需拼接、卡接或者快插接头等连接结构进行连接,三者之间一体化没有接口,换热介质在第一流道13内不存在泄漏失效,使得液冷板100的安全性能高。且第四分段311、第五分段313及第六分段315无需任何连接结构进行连接,可有效降低成本。
请结合图4,依次连接的第四分段311、第五分段313及第六分段315形成U型结构。第四分段311和第六分段315相对,第四分段311和第六分段315分别位于两列电池模组300之间,第四分段311的长度和第六分段315的长度可根据电池模组300的长度设置,且可分别等于第一分段111的长度和第三分段115的长度,具体地,第四分段311的长度和第六分段315的长度均略大于一列电池模组300的长度。第五分段313对应两列电池模组300的宽度,第五分段313的长度略大于两列电池模组300的宽度,保证两列电池模组300能够放置在收容空间70内。
具体地,当第一本体11和第二本体31焊接成液冷板100时,第一分段111与第四分段311贴合,第二分段113和第五分段313贴合,第三分段115和第六分段315贴合。当液冷板100用于对四列电池模组300进行换热时,如图4所示,第一分段111和第四分段311分别位于第三列电池模组300和第四列电池模组300之间,第一分段111和第四分段311用于对第三列电池模组300和第四列电池模组300进行换热。第三分段115和第六分段315分别位于第一列电池模组300和第二列电池模组300之间,第三分段115和第六分段315用于对第一列电池模组300和第二列电池模组300进行换热。当向冷却流道50内通入换热介质时,四列 电池模组300散发的热量通过第一分段111、第四分段311、第三分段115和第六分段315与冷却流道50内的换热介质进行换热。
当然,第二分段113和第五分段313均可与两列电池模组300的短边接触,使得第二分段113和第五分段313内的冷却流道50也可对电池模组300进行换热,进一步提高液冷板100对电池模组300的换热效率。
在本申请的实施例中,第一分段111和第三分段115上的第一扰流部15的数量大于第二分段113上的第一扰流部15的数量,第四分段311和第六分段315上的第二扰流部35的数量大于第五分段313上的第二扰流部35的数量,保证液冷板100与电池模组300进行换热的冷却流道50中的换热介质与电池模组300的换热时长更长,从而提高换热效率。
请继续参阅图2及图3,第一子流道131和第二子流道133延伸贯穿于第一分段111、第二分段113和第三分段115。第三子流道331和第四子流道333延伸贯穿于第四分段311、第五分段313及第六分段315。第一子流道131与第三子流道331对应,第一子流道131的宽度等于第三子流道331的宽度,第二子流道133与第四子流道333对应,第二子流道133的宽度等于第四子流道333的宽度。
由此,可将其中一个子流道(如,第一子流道131或者第三子流道331)可用于连通进液管20以向冷却流道50内输入换热介质,另一个子流道(如,第二子流道133或第四子流道333)可用于将换热后的换热介质连通出液管40排出流道50外。
第一分段111处的第一子流道131的宽度及第三分段115处的第一子流道131的宽度均大于或等于第二分段113处的第一子流道131的宽度;第一分段111的第二子流道133的宽度及第三分段115的第二子流道133的宽度均大于或等于第二分段113的第二子流道的宽度。
第四分段311的第三子流道331的宽度及第六分段315的第三子流道331的宽度均大于或等于第五分段313的第三子流道331的宽度;第四分段311的第四子流道333的宽度及第六分段315的第四子流道333的宽度均大于或等于第五分段313的第四子流道333的宽度。
需要说明的是,上述涉及的各个子流道的宽度是指子流道在第一本体11或第二本体31的高度方向X上延伸的长度。
在本申请的实施例中,第一子流道131的宽度等于第二子流道133的宽度。第一分段111处的第一子流道131的宽度及第三分段115处的第一子流道131的宽度均大于第二分段113处的第一子流道131的宽度。由于第一子流道131的宽度等于第三子流道331的宽度,因此,第四分段311的第三子流道331的宽度及第六分段315的第三子流道331的宽度均大于第五分段313的第三子流道331的宽度。
请参阅图9,在一个实施例中,第二分段113设有与第一子流道131连通的第一通孔60,第二分段113设有与第二子流道133连通的第二通孔80,第一通孔60用于连接进液管20和出液管40中的一个,第二通孔80用于连接进液管20和出液管40中的另一个。例如,第一通孔60用于连接进液管20,第二通孔80则用于连接出液管40。此时,当向进液管20输入换热介质时,换热介质通过第一通孔60流进第一子流道131和第三子流道331形成的子流道内,再流到第二子流道133和第四子流道333共同形成的子流道内,最后从连接第二通孔80的出液管40排出。
请参阅图10,在另一个实施例中,第五分段313设有与第三子流道331连通的第一通孔60,第五分段313设有与第四子流道333连通的第二通孔80,第一通孔60用于连接进液管20和出液管40中的一个,第二通孔80用于连接进液管20和出液管40中的另一个。前上述的实施例不同的是,本实施例中,第一通孔60和第二通孔80设置在第二本体31的第五分段 313上,此时,进液管20和出液管40弯折从液冷板100的顶部或者底部伸入收容空间70内并与第一通孔60和第二通孔80连接。
请参阅图11,在又一个实施例中,第一冷板10还包括设置于第二分段113的第一连接部12和第二连接部14,第一连接部12和第二连接部14间隔设置。第一连接部12设有第一开孔121。第二连接部14设有与第一子流道131连通的第三流道141,第三流道141自第二连接部14朝背离收容空间70的方向陷形成,第二连接部14设有第二开孔143,第二开孔143与第三流道141连通。
第二冷板30还包括设置于第五分段313的第三连接部32和第四连接部34。第三连接部32与第四连接部34间隔设置,第三连接部32和第一连接部12配合,第四连接部34和第二连接部14配合。第三连接部32设有第三开孔321,第三开孔321与第一开孔121对应。第四连接部34设有与第三子流道331连通的第四流道341,第四流道341自第四连接部34朝向收容空间70的方向凹陷形成,第四流道341和第三流道141对应并配合形成与流道50连通的支流道,支流道用于连通进液管20或者出液管40。
由于液冷板100的进液管20与液冷板100的连接位置和出液管40与液冷板100的连接位置不在同一高度,为了便于进液管20、出液管40同等高度从下箱体500(图4所示)伸出,设置在水平方向上的高度是同等高度的第一连接部12、第二连接部14、第三连接部32以及第四连接部34,使得进液管20和出液管40可同等高度伸出。
具体地,第五分段313设有与第四子流道333连通的第一通孔60。在第一冷板10和第二冷板30密封连接的情况下,第一开孔121和第三开孔321同轴设置。第一通孔60、第一开孔121及第三开孔321共同用于连接进液管20或出液管40中的一个,第二开孔143用于连接进液管20和出液管40中的另一个。例如,第一通孔60、第一开孔121及第三开孔321共同用于连接进液管20,则第二开孔143用于连接出液管40。其中,进液管20呈U型结构,进液管20的一端连接第一通孔60,进液管20的另一端从收容空间70内伸出,以与第一开孔121级第三开孔321连接。出液管40连接第二开孔143并与第三流道141及第四流道341连通。
请参阅图12,具体地,第二分段113设有与第二子流道133连通的第一通孔60,此时,第一连接部12可未设置第一开孔121(图11所示),第一通孔60用于连接进液管20或出液管40中的一个,第二开孔143用于连接进液管20和出液管40中的另一个。例如,第一通孔60用于连接进液管20,第二开孔143用于连接出液管40,其中,出液管40呈L型结构,出液管40设于收容空间70外,出液管40未与第一通孔60连接的一端与第二开孔143同等高度设置。
以上是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请的保护范围。

Claims (15)

  1. 一种液冷板,所述液冷板形成有收容空间,包括:
    第一冷板;
    第二冷板,所述第二冷板层叠设置于所述第一冷板的朝向所述收容空间的一侧,并与所述第一冷板密封连接,所述第二冷板与所述第一冷板之间形成有环绕所述收容空间的冷却流道。
  2. 根据权利要求1所述的液冷板,其中,所述第一冷板包括第一本体和设置于所述第一本体的第一流道,所述第一流道沿所述第一本体的长度方向延伸、且自所述第一本体朝背离所述收容空间的方向凹陷而形成。
  3. 根据权利要求2所述的液冷板,其中,所述第二冷板包括第二本体及设置于所述第二本体的第二流道,所述第二本体层叠设置于所述第一本体的朝向所述收容空间的一侧,所述第二流道沿所述第二本体的长度方向延伸、且自所述第二本体朝向所述收容空间的方向凹陷而形成。
  4. 根据权利要求3所述的液冷板,其中,在所述第一冷板的第一本体设置第一流道,且在所述第二冷板的第二本体设置第二流道的情况下,所述第二流道与所述第一流道相对应,所述第一本体与所述第二本体密封连接,所述第二流道与所述第一流道共同配合形成环绕所述收容空间的所述冷却流道。
  5. 根据权利要求4所述的液冷板,其中,所述第一冷板还包括沿所述第一流道的延伸方向设置、且设于所述第一流道的第一扰流部,所述第一扰流部自所述第一流道的侧壁朝向所述收容空间的方向凸起形成;
    所述第二冷板还包括沿所述第二流道的延伸方向设置、且设于所述第二流道的第二扰流部,所述第二扰流部自所述第二流道的侧壁朝背离所述收容空间的方向凸起形成。
  6. 根据权利要求5所述的液冷板,其中,所述第二扰流部与所述第一扰流部互相抵接或者所述第二扰流部与所述第一扰流部错开设置。
  7. 根据权利要求6所述的液冷板,其中,所述第一流道凹陷的深度与所述第一扰流部凸起的高度相同;所述第二流道凹陷的深度与所述第二扰流部凸起的高度相同。
  8. 根据权利要求4所述的液冷板,其中,所述第一本体包括第一分段、第二分段及第三分段,所述第一分段、所述第二分段与所述第三分段为一体结构,所述第二分段的两端分别与所述第一分段、所述第三分段弯折连接。
  9. 根据权利要求8所述的液冷板,其中,所述第二本体包括第四分段、第五分段及第六分段,所述第四分段、所述第五分段及所述第六分段为一体结构,所述第五分段的两端分别与所述第四分段、所述第六分段弯折连接,所述第四分段与所述第一分段对应并配合,所述 第五分段与所述第二分段对应并配合,所述第六分段与所述第三分段对应并配合。
  10. 根据权利要求9所述的液冷板,其中,所述第一流道包括分布于所述第一本体的第一子流道和第二子流道,所述第一子流道与所述第二子流道并排设置,所述第一子流道和所述第二子流道互相连通,所述第一子流道和所述第二子流道延伸贯穿于所述第一分段、所述第二分段及所述第三分段;
    所述第二流道包括分布于所述第二本体的第三子流道和第四子流道,所述第三子流道与所述第四子流道并排设置,所述第三子流道和所述第四子流道互相连通,所述第三子流道和所述第四子流道延伸贯穿所述第四分段、所述第五分段及所述第六分段,所述第一子流道与所述第三子流道对应,所述第二子流道与所述第四子流道对应。
  11. 根据权利要求10所述的液冷板,其中,所述第二分段设有与所述第一子流道连通的第一通孔,所述第二分段设有与所述第二子流道连通的第二通孔,所述第一通孔用于连接进液管和出液管中的一个,所述第二通孔用于连接所述进液管和所述出液管中的另一个;或者
    所述第五分段设有与所述第三子流道连通的所述第一通孔,所述第五分段设有与所述第四子流道连通的所述第二通孔,所述第一通孔用于连接进液管和出液管中的一个,所述第二通孔用于连接所述进液管和所述出液管中的另一个。
  12. 根据权利要求11所述的液冷板,其中,所述第一冷板还包括设置于所述第二分段的第一连接部和第二连接部,第二冷板还包括设置于所述第五分段的第三连接部和第四连接部,所述第一连接部和所述第三连接部配合,所述第二连接部和所述第四连接部配合。
  13. 根据权利要求12所述的液冷板,其中,所述第五分段设有与所述第四子流道连通的第一通孔,所述第一连接部设有第一开孔;
    所述第二连接部设有与所述第一子流道连通的第三流道,所述第三流道自所述第二连接部朝背离所述收容空间的方向凹陷形成,所述第二连接部设有第二开孔,所述第二开孔与所述第三流道连通;
    所述第三连接部设有第三开孔,所述第三开孔与所述第一开孔对应;及
    所述第四连接部设有与所述第三子流道连通的第四流道,所述第四流道自所述第四连接部朝向所述收容空间的方向凹陷形成,所述第四流道与所述第三流道对应,其中,所述第一通孔、所述第一开孔及所述第三开孔共同用于连接所述进液管和所述出液管中的一个,所述第二开孔用于连接所述进液管和所述出液管中的另一个。
  14. 一种电池包,包括:
    至少一个电池模组;
    权利要求1至13任意一项所述的液冷板,所述液冷板用于对所述至少一个电池模组进行换热。
  15. 根据权利要求14所述的电池包,其中,所述电池包包括多个电池模组,所述液冷板设于所述多个电池模组之间。
PCT/CN2022/141649 2022-07-29 2022-12-23 液冷板及电池包 WO2024021481A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22946028.2A EP4343922A1 (en) 2022-07-29 2022-12-23 Liquid cooling plate and battery pack
US18/393,903 US20240120574A1 (en) 2022-07-29 2023-12-22 Liquid cooling plate and battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221999891.2 2022-07-29
CN202221999891.2U CN218101432U (zh) 2022-07-29 2022-07-29 液冷板及电池包

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/393,903 Continuation US20240120574A1 (en) 2022-07-29 2023-12-22 Liquid cooling plate and battery pack

Publications (1)

Publication Number Publication Date
WO2024021481A1 true WO2024021481A1 (zh) 2024-02-01

Family

ID=84484254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141649 WO2024021481A1 (zh) 2022-07-29 2022-12-23 液冷板及电池包

Country Status (4)

Country Link
US (1) US20240120574A1 (zh)
EP (1) EP4343922A1 (zh)
CN (1) CN218101432U (zh)
WO (1) WO2024021481A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218101432U (zh) * 2022-07-29 2022-12-20 厦门海辰储能科技股份有限公司 液冷板及电池包
CN116937008B (zh) * 2023-09-18 2023-12-01 浙江启辰新能科技有限公司 电池冷却装置及电池模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208315712U (zh) * 2018-07-05 2019-01-01 桑德集团有限公司 一种液冷装置及采用其的电池模组
CN112259822A (zh) * 2019-09-29 2021-01-22 蜂巢能源科技有限公司 冷却板套、电池模组和电池包
CN113471604A (zh) * 2021-06-29 2021-10-01 东风海博新能源科技有限公司 一种动力电池包
CN114267901A (zh) * 2021-12-10 2022-04-01 荣盛盟固利新能源科技股份有限公司 一种电池模组及电池包
CN217848100U (zh) * 2022-07-29 2022-11-18 厦门海辰储能科技股份有限公司 液冷板及电池包
CN218101432U (zh) * 2022-07-29 2022-12-20 厦门海辰储能科技股份有限公司 液冷板及电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208315712U (zh) * 2018-07-05 2019-01-01 桑德集团有限公司 一种液冷装置及采用其的电池模组
CN112259822A (zh) * 2019-09-29 2021-01-22 蜂巢能源科技有限公司 冷却板套、电池模组和电池包
CN113471604A (zh) * 2021-06-29 2021-10-01 东风海博新能源科技有限公司 一种动力电池包
CN114267901A (zh) * 2021-12-10 2022-04-01 荣盛盟固利新能源科技股份有限公司 一种电池模组及电池包
CN217848100U (zh) * 2022-07-29 2022-11-18 厦门海辰储能科技股份有限公司 液冷板及电池包
CN218101432U (zh) * 2022-07-29 2022-12-20 厦门海辰储能科技股份有限公司 液冷板及电池包

Also Published As

Publication number Publication date
EP4343922A1 (en) 2024-03-27
CN218101432U (zh) 2022-12-20
US20240120574A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2024021481A1 (zh) 液冷板及电池包
WO2024021483A1 (zh) 液冷板及电池包
KR101326086B1 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
EP2866296B1 (en) Cell module assembly
EP2763213B1 (en) Battery pack having a novel cooling structure
US5356735A (en) Heated/cooled battery
EP2725652B1 (en) Battery pack of air cooling structure
EP2802035B1 (en) Battery pack having novel air cooling type structure
WO2013171885A1 (ja) 電池モジュール
US20120171532A1 (en) Middle or large-sized battery pack of improved cooling efficiency
JP7418558B2 (ja) 電池モジュールおよびこれを含む電池パック
JP2023501680A (ja) 電池モジュールおよびこれを含む電池パック
KR101623251B1 (ko) 이차 전지모듈의 냉각시스템
WO2023092363A1 (zh) 电池箱体、电池、用电装置及电池箱体制造方法
CN217656011U (zh) 电池模块
JP7395232B2 (ja) 電池パックおよびこれを含むデバイス
CN210430028U (zh) 电池冷却装置及动力电池箱
CN219106298U (zh) 电池包
CN219066968U (zh) 热管理组件、电池和用电装置
CN220106746U (zh) 电池包和电池系统
WO2024065814A1 (zh) 集流体、热管理组件、电池以及用电装置
CN220021269U (zh) 围框式液冷的储能装置
CN220065943U (zh) 电池箱及电池包
CN216354429U (zh) 一种电池包
CN217158331U (zh) 一种逆流式圆柱电池堆及其电池热管理系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022946028

Country of ref document: EP

Effective date: 20231217