WO2018182162A1 - 배터리 모듈 - Google Patents

배터리 모듈 Download PDF

Info

Publication number
WO2018182162A1
WO2018182162A1 PCT/KR2018/001405 KR2018001405W WO2018182162A1 WO 2018182162 A1 WO2018182162 A1 WO 2018182162A1 KR 2018001405 W KR2018001405 W KR 2018001405W WO 2018182162 A1 WO2018182162 A1 WO 2018182162A1
Authority
WO
WIPO (PCT)
Prior art keywords
manifold
housing
plate
hollows
length
Prior art date
Application number
PCT/KR2018/001405
Other languages
English (en)
French (fr)
Inventor
김현
안장근
Original Assignee
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이주식회사 filed Critical 삼성에스디아이주식회사
Priority to PL18774223.4T priority Critical patent/PL3605721T3/pl
Priority to EP18774223.4A priority patent/EP3605721B1/en
Priority to CN201880022099.1A priority patent/CN110521054B/zh
Priority to US16/488,916 priority patent/US11211649B2/en
Publication of WO2018182162A1 publication Critical patent/WO2018182162A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the invention relate to a battery module, and more particularly to a battery module having a cooling plate.
  • Battery packs in which several battery cells are installed are used in various industrial fields.
  • battery packs have been used as energy sources of power devices of vehicles.
  • Embodiments of the present invention provide a battery module having a cooling plate capable of cooling the battery pack.
  • a cooling plate having a housing, a first manifold coupled to one end of the housing and a first manifold coupled to the other end of the housing; And at least one battery pack disposed on the cooling plate, wherein the housing includes a plurality of flow paths and a plurality of hollows penetrating through the housing from the one end to the other end therein;
  • the hollows disclose a battery module arranged side by side and symmetrically arranged.
  • the weight of the cooling plate for cooling the battery pack can be reduced, and the cooling efficiency of the battery pack can be improved.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a perspective view schematically showing a battery module according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a cooling plate of the battery module of FIG. 1.
  • FIG. 3 is an exploded perspective view schematically showing a part of the cooling plate of FIG. 2.
  • FIG. 4 is a cross-sectional view schematically showing an example of the II ′ and II ′ II ′ cross-sections of FIG. 2.
  • 5 to 7 are cross-sectional views illustrating examples of the III-III ′ cross section of FIG. 2, respectively.
  • FIG. 8 is a diagram illustrating a result of measuring an average temperature of a battery pack according to a channel shape of the cooling plate of FIG. 1.
  • a battery module having a housing, a first manifold coupled to one end of the housing and a first manifold coupled to the other end of the housing; And at least one battery pack disposed on the cooling plate, wherein the housing includes a plurality of flow paths and a plurality of hollows penetrating through the housing from the one end to the other end therein; The hollows can be arranged side by side and sympathetically.
  • the cooling plate may further include a spacer disposed between the one end and the first manifold, and between the other end and the second manifold, for sealing the plurality of hollows.
  • the spacer comprises a plate disposed on the one or the other end and a plurality of blocks protruding from the plate, the plurality of blocks are inserted into the plurality of hollows, the plurality of hollows You can seal them.
  • the plate may include a plurality of first holes in positions corresponding to the plurality of flow paths.
  • the first manifold includes a cooling water inlet at one side, and the size of the plurality of first holes may be smaller as it approaches the cooling water inlet.
  • each of the plurality of blocks may include an empty space therein, and the plate may further include a second hole connected to the empty space.
  • the first manifold overlaps an edge of one end of the housing, and the overlapping edge of the first manifold and one end of the housing may be joined.
  • the first manifold further includes a stopper protruding perpendicularly from the inner side inwardly of the first manifold, and the stopper may contact an edge of the plate.
  • the first manifold has a rectangular parallelepiped shape, and the first manifold has a first guide projecting inward from at least one of two main side surfaces having a wider area among the sides of the rectangular parallelepiped. It may include.
  • the first manifold may include a cooling water inlet at one side, and the first guide may decrease in height as it moves away from the cooling water inlet.
  • the second manifold has a rectangular parallelepiped shape, and the second manifold has a second guide projecting inwardly from at least one side of two major side surfaces having a wider area among the sides of the rectangular parallelepiped. It may include.
  • the second manifold may include a cooling water outlet at a diagonal position with the cooling water inlet, and the second guide may increase in height as it moves away from the cooling water outlet.
  • the cross section of each of the plurality of flow paths may have a quadrangle, and a length of a lower side of the quadrangle may be three times or less than a length of an upper side of the quadrangle adjacent to the battery pack.
  • the length of the lower side may be equal to or less than the length of the upper side.
  • a cross section of each of the plurality of flow paths may be an inverted triangle having a bottom side adjacent to the battery pack.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
  • FIG. 1 is a perspective view schematically illustrating a battery module according to an embodiment of the present invention
  • FIG. 2 is a perspective view schematically showing a cooling plate of the battery module of FIG. 1
  • FIG. 3 is a schematic view of a portion of the cooling plate of FIG. 2.
  • 4 is a cross-sectional view schematically illustrating an example of the II ′ and II-II ′ cross-sections of FIG. 2.
  • the battery module 10 may include a battery pack P and a cooling plate 100 for cooling the battery pack P. Referring to FIG. 1 to 4, the battery module 10 according to an embodiment of the present invention may include a battery pack P and a cooling plate 100 for cooling the battery pack P.
  • the battery pack P may include a plurality of battery cells.
  • Each of the plurality of battery cells may be a secondary battery capable of charging and discharging.
  • Each of the plurality of battery cells may include an electrode assembly therein.
  • the electrode assembly may include a first electrode plate and a second electrode plate to which the electrode active material is applied and have different polarities, and a separator interposed therebetween.
  • the electrode assembly may be manufactured by winding the first electrode plate, the separator, and the second electrode plate sequentially to form a jellyroll, and in another example, the first electrode plate, the separator, and the second electrode plate may be sequentially It may be a laminated stack.
  • each of the plurality of battery cells may be a lithium ion secondary battery, but is not limited thereto.
  • the battery pack P may be located on the cooling plate 100 and cooled by the cooling plate 100. Meanwhile, a plurality of battery packs P may be positioned on the cooling plate 100. For example, in FIG. 1, two battery packs P are positioned on the cooling plate 100, but the present invention is not limited thereto.
  • the cooling plate 100 includes a housing 110, a first manifold 140 and a second manifold 150 coupled to both ends of the housing 110, and the housing 110 and the first manifold 140. ) And a pair of spacers 120 disposed between the housing 110 and the second manifold 150, respectively.
  • the housing 110 may be formed of a material having excellent mechanical strength and heat transfer rate, and may include a plurality of flow paths 112 and a plurality of hollows 114 therein.
  • the housing 110 may be formed of a material such as SUS, steel, aluminum, or the like.
  • the plurality of flow paths 112 and the plurality of hollows 114 are parallel to each other in the housing 110 and alternately disposed, and at one end of the housing 110 in which a pair of spacers 120 are disposed, respectively. It may be formed through the inside of the housing 110 to the other end. Meanwhile, partition walls are formed between the plurality of flow paths 112 and the plurality of hollows 114, whereby the cooling plate 100 is formed by the load of the battery pack P located on the cooling plate 100. The deformation can be prevented.
  • the plurality of flow paths 112 may be a passage through which the coolant flows, and the plurality of hollows 114 may be closed to block the inflow of the coolant, thereby reducing the weight of the housing 110.
  • the plurality of hollows 114 may be filled with a heat transfer medium, and the heat transfer medium serves to transfer the heat generated from the battery pack P to the coolant flowing through the plurality of flow paths 112, thereby cooling.
  • the cooling efficiency of the plate 100 can be improved.
  • the spacers 120 are respectively coupled to both ends of the housing 110 to seal the plurality of hollows 114 to prevent the coolant from flowing into the hollows 114 and to adjust the flow rate of the coolant into the plurality of flow paths 112. Can be.
  • the spacer 120 may be formed of a material such as SUS, steel, aluminum, or plastic.
  • the spacer 120 may include a plate 122 positioned at both ends of the housing 110 and a plurality of blocks 125 protruding from the plate 122.
  • Each of the plurality of blocks 125 has a cross section having the same shape as the corresponding plurality of hollows 114 and may be inserted into the plurality of hollows 114. As a result, the plurality of hollows 114 may be sealed, and the spacer 120 may be stably coupled to both ends of the housing 110.
  • the plate 122 may include a plurality of first holes 123 at positions corresponding to the plurality of flow paths 112.
  • the plurality of first holes 123 may be formed to penetrate the plate 122 in the thickness direction of the plate 122, and may adjust the amount of cooling water flowing into the plurality of flow paths 112. For example, the closer to the cooling water inlet 142 of the first manifold 140, the size of the first hole 123 may be reduced. Therefore, the cooling water inlet 142 is compensated for the decrease in the amount of inflow of the cooling water, so that the cooling water can be uniformly distributed to the plurality of flow paths (112).
  • the plate 122 may further include second holes 126 at positions corresponding to the plurality of blocks 125.
  • Each of the plurality of blocks 125 may be inserted into the hollow 114 to form a box having an outer shape for coupling with the hollow 114 and an empty space therein, whereby the weight of the cooling plate 100 is increased. It can prevent the increase.
  • the second hole 126 is connected to the internal space of the block 125, attracts the cooling water flowing from the cooling water inlet 142 to the internal empty space of the block 125, thereby generating a vortex of the cooling water, Concentration of the coolant may be prevented in the flow path 112 close to the inlet 142.
  • the spacer 120 may be positioned on one end and the other end of the housing 110, and the plurality of blocks 125 may be coupled to the housing 110 by being inserted into the hollows 114.
  • silicone, an adhesive, or the like may be applied between the spacer 120 and the housing 110 to improve adhesion between the spacer 120 and the housing 110 and seal the plurality of hollows 114.
  • silicon, an adhesive, and the like may be applied to the surface where the block 125 is located among the outer surface of the block 125 and the surface of the plate 122.
  • the first manifold 140 coupled to one end of the housing 110 includes a coolant inlet 142 for inflow of coolant on one side and includes a structure that serves as a pipe for uniform distribution of the coolant therein. can do.
  • the first manifold 140 is made of SUS, steel, aluminum, or the like, and is formed to cover the edge of one end of the housing 110. That is, the first manifold 140 may overlap one end edge of the housing 110, and the overlapped portion may be welded to couple the first manifold and the housing 110 to each other.
  • a sealing member such as silicon may be applied to the overlapped portion of the first manifold 140 and the housing 110 to prevent the leakage of the cooling water.
  • the first manifold 140 may include a first stopper 144 that sets a coupling position with the housing 110.
  • the first stopper 144 protrudes perpendicularly from the inner side surface of the first manifold 140 in the inner direction of the first manifold 140, so that the plate when the first manifold 140 and the housing 110 are coupled to each other. Abut the edge of 122.
  • the first stopper 144 may be formed over the entire inner surface of the first manifold 140 to contact the entire edge of the plate 122.
  • the first manifold 140 may further include a first guide 146 therein.
  • the first guide 146 may be formed on at least one of two major side surfaces of the first manifold 140. It may be a protrusion formed. That is, the first guide 146 protrudes from at least one main side surface of the first manifold 140, and the height of the first guide 146 may be lowered away from the cooling water inlet 142. Therefore, by inducing the inflow of the coolant into the flow path 112 spaced apart from the coolant inlet 142, the coolant may be uniformly distributed to the plurality of flow paths 112. Meanwhile, when a structure for uniform distribution of the coolant is formed in the first manifold 140, the first guide 146 may be spaced apart from the structure, and may be located between the coolant inlet 142 and the structure.
  • the second manifold 150 includes a coolant outlet 152 on one side and may be coupled to the other end of the housing 110.
  • the cooling water outlet 152 may be positioned in a diagonal direction with the cooling water inlet 142.
  • the second manifold 150 may be coupled to the housing 110 in the same manner as the first manifold 140. That is, the second manifold is coupled with the housing 110 so as to cover the spacer 120 covering the other end of the housing 110 and the edge of the other end of the housing 110, and the overlapping second manifold 150.
  • the other end edge of the housing 110 may be welded.
  • the second manifold 150 includes a second stopper 154 that sets a coupling position with the housing 110 therein, and further includes a second guide 156 for uniform distribution of the coolant.
  • the second guide 156 may protrude from at least one of two main side surfaces of the second manifold 150. In this case, the height of the second guide 156 may increase as the distance from the cooling water outlet 152 increases.
  • the coolant flowing through the plurality of flow paths 112 may cool the battery pack P disposed on the cooling plate 100.
  • the cross section of the plurality of flow paths 112 may have a circular shape. It may have a triangular or polygonal shape.
  • 5 to 7 are cross-sectional views illustrating examples of the III-III ′ cross section of FIG. 2, respectively.
  • the housing 110B of FIG. 5 includes a hollow 114 and a flow path 112B, but the hollow 114 is the same as illustrated and described with reference to FIGS. 1 to 4 and will not be repeated.
  • the passage 112B may have a rectangular cross section.
  • the flow path 112B may have a trapezoidal cross-sectional shape having different lengths of the lower side and the upper side.
  • the length L1 of the lower side may be three times or less than the length L2 of the upper side.
  • the heat exchange through the bottom surface of the housing 110B is superior to the cooling of the battery pack (P in FIG. 1) by the coolant, Cooling efficiency of the battery pack (P in FIG. 1) may be reduced by the cooling plate 100 in FIG. 1.
  • the housing 110C of FIG. 6 includes a flow path 112C having an inverted trapezoid in cross section.
  • the flow rates of the flow path 112B and the cooling water of FIG. 5 can be maintained the same, but as the length L2 of the upper side of the flow path 112C is larger than the length L1 of the lower side, The cooling efficiency of the battery pack (P in FIG. 1) may be better.
  • heat exchange with the bottom on which the cooling plate (100 in FIG. 1) is placed decreases, and the battery pack (P in FIG. 1) can be efficiently cooled.
  • the housing 110D of FIG. 7 includes a flow path 112D having an inverted triangle in cross section. That is, the bottom side of the triangle is formed to face the upper side, it is possible to minimize the heat exchange through the bottom surface of the housing 110B, thereby improving the cooling efficiency of the battery pack (P of FIG. 1).
  • FIG. 8 is a diagram illustrating a result of measuring an average temperature of a battery pack according to a channel shape of the cooling plate of FIG. 1.
  • FIGS. 8 and 5 a description will be given with reference to FIGS. 8 and 5.
  • the average temperature means an average value of the lowest temperature measured at the bottom of the battery pack (P of FIG. 1) and the highest temperature measured at the top surface of the battery pack (P of FIG. 1).
  • the average temperature of the battery pack (P in FIG. 1) decreases.
  • the average temperature of the battery pack (P in FIG. 1) decreases rapidly as the ratio L1 / L2 of the length L2 of the upper side and the length L1 of the lower side becomes 1 or less. Therefore, when the cross section of the flow path 112B is rectangular, it is preferable that ratio (L1 / L2) of the length L1 of the lower side and the length L2 of the upper side is formed to 1 or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예는, 하우징, 상기 하우징의 일단에 결합된 제1 매니폴드 및 상기 하우징의 타단에 결합된 제1 매니폴드를 구비한 냉각 플레이트; 및 상기 냉각 플레이트 상에 배치된 적어도 하나의 배터리 팩;을 포함하고, 상기 하우징은 상기 일단에서 상기 타단까지 상기 하우징을 관통하는 복수의 유로들과 복수의 중공들을 내부에 포함하며, 상기 유로들과 상기 중공들은 서로 나란하고, 교변적으로 배치된 배터리 모듈을 개시한다.

Description

배터리 모듈
본 발명의 실시예들은 배터리 모듈에 관한 것으로, 더욱 상세하게는 냉각 플레이트를 구비한 배터리 모듈에 관한 것이다.
여러 개의 배터리 셀들이 설치된 배터리 팩은 여러 산업 분야에서 사용되고 있다. 특히 최근에는 하이브리드 차량 및 전기 자동차가 활발히 개발됨에 따라 차량의 동력 장치의 에너지원으로 배터리 팩이 많이 사용되고 있다.
한편, 배터리 팩의 작동 시 내부의 배터리 셀들은 열을 발생하게 되며, 그러한 발열로 인하여 배터리 셀이 고온에 장시간 노출되게 되면 배터리 팩의 성능 및 수명이 저하되게 된다.
본 발명의 실시예들은, 배터리 팩을 냉각시킬 수 있는 냉각 플레이트를 구비한 배터리 모듈을 제공한다.
본 발명의 일 실시예는, 하우징, 상기 하우징의 일단에 결합된 제1 매니폴드 및 상기 하우징의 타단에 결합된 제1 매니폴드를 구비한 냉각 플레이트; 및 상기 냉각 플레이트 상에 배치된 적어도 하나의 배터리 팩;을 포함하고, 상기 하우징은 상기 일단에서 상기 타단까지 상기 하우징을 관통하는 복수의 유로들과 복수의 중공들을 내부에 포함하며, 상기 유로들과 상기 중공들은 서로 나란하고, 교변적으로 배치된 배터리 모듈을 개시한다.
본 발명의 실시예들에 의하면, 배터리 팩을 냉각시키는 냉각 플레이트의 무게가 감소하고, 배터리 팩의 냉각효율이 향상될 수 있다. 물론, 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈을 대략적으로 도시한 사시도이다.
도 2는 도 1의 배터리 모듈의 냉각 플레이트를 개략적으로 도시한 사시도이다.
도 3은 도 2의 냉각 플레이트의 일부를 개략적으로 도시한 분해 사시도이다.
도 4는 도 2의 I-I' 단면 및 II-II' 단면의 일 예를 개략적으로 도시한 단면도이다.
도 5 내지 도 7은 도 2의 III-III' 단면의 예들을 각각 도시한 단면도들이다.
도 8은 도 1의 냉각 플레이트의 유로 형상에 따른 배터리 팩의 평균 온도를 측정한 결과를 도시한 도이다.
본 발명의 일 실시예에 따른 배터리 모듈은, 하우징, 상기 하우징의 일단에 결합된 제1 매니폴드 및 상기 하우징의 타단에 결합된 제1 매니폴드를 구비한 냉각 플레이트; 및 상기 냉각 플레이트 상에 배치된 적어도 하나의 배터리 팩;을 포함하고, 상기 하우징은 상기 일단에서 상기 타단까지 상기 하우징을 관통하는 복수의 유로들과 복수의 중공들을 내부에 포함하며, 상기 유로들과 상기 중공들은 서로 나란하고, 교변적으로 배치될 수 있다.
본 실시예에 있어서, 상기 냉각 플레이트는 상기 일단과 상기 제1 매니폴드 사이, 및 상기 타단과 상기 제2 매니폴드 사이에 각각 배치되고, 상기 복수의 중공들을 밀봉하는 스페이서를 더 포함할 수 있다.
본 실시예에 있어서, 상기 스페이서는 상기 일단 또는 상기 타단 상에 배치된 플레이트와 상기 플레이트로부터 돌출된 복수의 블록들을 포함하고, 상기 복수의 블록들은 상기 복수의 중공들에 삽입되어, 상기 복수의 중공들을 밀폐할 수 있다.
본 실시예에 있어서, 상기 플레이트는 상기 복수의 유로들과 대응하는 위치에 복수의 제1 홀들을 포함할 수 있다.
본 실시예에 있어서, 상기 제1 매니폴드는 일측에 냉각수 유입구를 포함하고, 상기 복수의 제1 홀들의 크기는 상기 냉각수 유입구에 근접할수록 작아질 수 있다.
본 실시예에 있어서, 상기 복수의 블록들 각각은 내부에 빈 공간을 포함하며, 상기 플레이트는 상기 빈 공간과 연결되는 제2 홀을 더 포함할 수 있다.
본 실시예에 있어서, 상기 제1 매니폴드는 상기 하우징의 일단부의 가장자리와 중첩하고, 중첩된 상기 제1 매니폴드와 상기 하우징의 일단부의 가장자리는 접합될 수 있다.
본 실시예에 있어서, 상기 제1 매니폴드는 내측면으로부터 상기 제1 매니폴드의 내부방향으로 수직하게 돌출된 스토퍼를 더 포함하고, 상기 스토퍼는 상기 플레이트의 가장자리와 접할 수 있다.
본 실시예에 있어서, 상기 제1 매니폴드는 직육면체 형상을 가지고, 상기 제1 매니폴드는 상기 직육면체의 측면들 중 넓이가 넓은 두 개의 주측면 중 적어도 어느 하나의 측면에서 내부로 돌출된 제1 가이드를 포함할 수 있다.
본 실시예에 있어서, 상기 제1 매니폴드는 일측에 냉각수 유입구를 포함하고, 상기 제1 가이드는 상기 냉각수 유입구에서 멀어질수록 높이가 감소할 수 있다.
본 실시예에 있어서, 상기 제2 매니폴드는 직육면체 형상을 가지고, 상기 제2 매니폴드는 상기 직육면체의 측면들 중 넓이가 넓은 두 개의 주측면 중 적어도 어느 하나의 측면에서 내부로 돌출된 제2 가이드를 포함할 수 있다.
본 실시예에 있어서, 상기 제2 매니폴드는 상기 냉각수 유입구와 대각선 위치에 냉각수 유출구를 포함하고, 상기 제2 가이드는 상기 냉각수 유출구에서 멀어질수록 높이가 증가할 수 있다.
본 실시예에 있어서, 상기 복수의 유로들 각각의 단면은 사각형이고, 상기 사각형의 아랫변의 길이는 상기 배터리 팩과 인접한 상기 사각형의 윗변의 길이의 3배 이하일 수 있다.
본 실시예에 있어서, 상기 아랫변의 길이는 상기 윗변의 길이 이하일 수 있다.
본 실시예에 있어서, 상기 복수의 유로들 각각의 단면은 밑변이 상기 배터리 팩과 인접한 역삼각형일 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 구성요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 각 도면에서, 구성요소는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었으며, 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
각 구성요소의 설명에 있어서, 상(on)에 또는 하(under)에 형성되는 것으로 기재되는 경우에 있어, 상(on)과 하(under)는 직접 또는 다른 구성요소를 개재하여 형성되는 것을 모두 포함하며, 상(on) 및 하(under)에 대한 기준은 도면을 기준으로 설명한다.
이하, 본 발명의 실시 예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 모듈을 대략적으로 도시한 사시도, 도 2는 도 1의 배터리 모듈의 냉각 플레이트를 개략적으로 도시한 사시도, 도 3은 도 2의 냉각 플레이트의 일부를 개략적으로 도시한 분해 사시도, 그리고 도 4는 도 2의 I-I' 단면 및 II-II' 단면의 일 예를 개략적으로 도시한 단면도이다.
도 1 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 배터리 모듈(10)은 배터리 팩(P), 배터리 팩(P)을 냉각시키는 냉각 플레이트(100)를 포함할 수 있다.
배터리 팩(P)은 복수의 배터리 셀들을 포함할 수 있다. 복수의 배터리 셀들 각각은 충전 및 방전이 가능한 이차 전지일 수 있다. 복수의 배터리 셀들 각각은 내부에 전극 조립체를 포함할 수 있다. 전극 조립체는 전극 활물질이 도포되고 서로 다른 극성을 가지는 제1 전극판과 제2 전극판, 및 이들 사이에 개재된 세퍼레이터를 포함할 수 있다. 일 예로, 전극 조립체는 제1 전극판, 세퍼레이터 및 제2 전극판이 순차적으로 적층된 후 젤리롤 형태가 되도록 권취하여 제작될 수 있고, 다른 예로, 제1 전극판, 세퍼레이터 및 제2 전극판이 순차적으로 적층된 적층체일 수 있다. 일 예로, 복수의 배터리 셀들 각각은 리튬 이온 이차 전지일 수 있으나, 이에 한정되는 것은 아니다.
배터리 팩(P)은 냉각 플레이트(100) 상에 위치하여 냉각 플레이트(100)에 의해 냉각될 수 있다. 한편, 냉각 플레이트(100) 상에는 복수 개의 배터리 팩(P)들이 위치할 수 있다. 일 예로, 도 1에는 냉각 플레이트(100) 상에 두 개의 배터리 팩(P)들이 위치하는 것을 도시하고 있으나, 본 발명은 이에 한정되는 것은 아니다.
냉각 플레이트(100)는 하우징(110), 하우징(110)의 양 단부에 각각 결합하는 제1 매니폴드(140)와 제2 매니폴드(150), 그리고 하우징(110)과 제1 매니폴드(140) 사이 및 하우징(110)과 제2 매니폴드(150) 사이에 각각 배치된 한 쌍의 스페이서(120)를 포함할 수 있다.
하우징(110)은 기계적 강도 및 열전달율이 우수한 재질로 형성될 수 있으며, 내부에 복수의 유로(112)들과 복수의 중공(114)들을 포함할 수 있다. 일 예로, 하우징(110)은 SUS, 스틸, 알루미늄 등의 재질로 형성될 수 있다.
복수의 유로(112)들과 복수의 중공(114)들은 하우징(110)의 내부에서 서로 나란하고, 교번적으로 배치되며, 한 쌍의 스페이서(120)가 각각 배치되는 하우징(110)의 일단에서 타단까지 하우징(110) 내부를 관통하여 형성될 수 있다. 한편, 복수의 유로(112)들과 복수의 중공(114)들 사이에는 격벽들이 형성되며, 이에 의해 냉각 플레이트(100) 상에 위치하는 배터리 팩(P)의 하중에 의해 냉각 플레이트(100)가 변형되는 것을 방지할 수 있다.
복수의 유로(112)들은 냉각수가 흐르는 통로가 되며, 복수의 중공(114)들은 밀폐되어 냉각수의 유입이 차단되므로 하우징(110)의 무게가 감소할 수 있다. 선택적 실시예로, 복수의 중공(114)들 내부에는 열전달 매체가 채워질 수 있고, 열전달 매체는 배터리 팩(P)에서 발생한 열을 복수의 유로(112)에 흐르는 냉각수로 전달하는 역할을 함으로써, 냉각 플레이트(100)의 냉각 효율을 향상시킬 수 있다.
스페이서(120)는 하우징(110)의 양단부에 각각 결합하여 복수의 중공(114)들을 밀폐시켜, 냉각수가 중공(114)으로 유입되는 것을 방지하며, 복수의 유로(112)들로의 냉각수의 유입량을 조절할 수 있다. 스페이서(120)는 SUS, 스틸, 알루미늄, 플라스틱 등의 재질로 형성될 수 있다.
스페이서(120)는 하우징(110)의 양단부에 각각 위치하는 플레이트(122)와 상기 플레이트(122)로부터 돌출된 복수의 블록(125)들을 포함할 수 있다. 복수의 블록(125)들 각각은 대응하는 복수의 중공(114)들과 동일한 형상의 단면을 가지며, 복수의 중공(114)들에 삽입될 수 있다. 이에 의해 복수의 중공(114)들이 밀폐되고, 스페이서(120)가 하우징(110)의 양단부에 안정적으로 결합될 수 있다.
한편, 플레이트(122)는 복수의 유로(112)들과 대응하는 위치에 복수의 제1 홀(123)들을 포함할 수 있다. 복수의 제1 홀(123)들은 플레이트(122)를 플레이트(122)의 두께 방향으로 관통하여 형성되며, 복수의 유로(112)들로 유입되는 냉각수의 양을 조절할 수 있다. 일 예로, 제1 매니폴드(140)의 냉각수 유입구(142)에 가까울수록 제1 홀(123)의 크기는 감소할 수 있다. 따라서, 냉각수 유입구(142)에서 멀어질수록 냉각수의 유입량이 감소하는 것을 보완함으로써, 복수의 유로(112)들로 냉각수가 균일하게 분배되도록 할 수 있다.
또한, 플레이트(122)는 복수의 블록(125)들에 대응하는 위치에 제2 홀(126)들을 더 포함할 수 있다. 복수의 블록(125)들 각각은 중공(114) 내부로 삽입되어 중공(114)과 결합하기 위한 외형과, 내부의 빈 공간을 가지는 박스 형태일 수 있으며, 이에 의해 냉각 플레이트(100)의 무게가 증가하는 것을 방지할 수 있다. 한편, 제2 홀(126)은 블록(125)의 내부 공간과 연결되어, 냉각수 유입구(142)으로부터 유입되는 냉각수를 블록(125)의 내부 빈 공간으로 유인하여, 냉각수의 와류를 발생시킴으로써, 냉각수 유입구(142)에 가까운 유로(112)로 냉각수가 집중되는 것을 방지할 수 있다.
이와 같은 스페이서(120)는 하우징(110)의 일단부와 타단부 상에 위치하여, 복수의 블록(125)들이 중공(114)들에 삽입됨으로써 하우징(110)과 결합될 수 있다. 또한, 스페이서(120)와 하우징(110) 사이에는 실리콘(Silicone), 접착제 등을 도포하여, 스페이서(120)와 하우징(110) 간의 접착력을 향상시키고, 복수의 중공(114)들을 밀봉할 수 있다. 일 예로, 실리콘(Silicone), 접착제 등은 블록(125)의 외측면 및 플레이트(122)의 면 중, 블록(125)이 위치하는 면에 도포될 수 있다.
하우징(110)의 일단과 결합하는 제1 매니폴드(140)는 일측에 냉각수의 유입을 위한 냉각수 유입구(142)을 포함하고, 냉각수의 균일한 분배를 위한 배관의 역할을 하는 구조물을 내부에 포함할 수 있다.
제1 매니폴드(140)는 SUS, 스틸, 알루미늄 등의 재질로 형성되며, 하우징(110)의 일단부 가장자리를 덮도록 형성된다. 즉, 제1 매니폴드(140)는 하우징(110)의 일단부 가장자리와 중첩하고, 중첩된 부분은 용접되어 제1 매니폴드와 하우징(110)은 결합될 수 있다. 또한, 제1 매니폴드(140)와 하우징(110)의 중첩부위에는 냉각수의 유출을 방지하기 위한 실리콘(Silicone) 등의 실링부재가 도포될 수 있다.
제1 매니폴드(140)는 하우징(110)과의 결합위치를 설정하는 제1 스토퍼(144)를 포함할 수 있다. 제1 스토퍼(144)는 제1 매니폴드(140)의 내측면으로부터 제1 매니폴드(140)의 내부방향으로 수직하게 돌출되어, 제1 매니폴드(140)와 하우징(110)의 결합시 플레이트(122)의 가장자리와 접할 수 있다. 일 예로, 제1 스토퍼(144)는 플레이트(122)의 가장자리 전체와 접하도록 제1 매니폴드(140)의 내측면 전체에 걸쳐 형성될 수 있다.
한편, 제1 매니폴드(140)는 내부에 제1 가이드(146)를 더 포함할 수 있다. 예를 들어, 제1 매니폴드(140)가 직육면체의 형상을 가질 때, 제1 가이드(146)는 제1 매니폴드(140)의 측면들 중, 넓이가 넓은 두 개의 주측면 중 적어도 어느 하나에 형성된 돌기부일 수 있다. 즉, 제1 가이드(146)는 제1 매니폴드(140)의 적어도 하나의 주측면에서 돌출되어 형성되며, 이때 제1 가이드(146)의 높이는 냉각수 유입구(142)에서 멀어질수록 낮아질 수 있다. 따라서, 냉각수 유입구(142)으로부터 멀리 이격된 유로(112)로 냉각수의 유입을 유도함으로써, 복수의 유로(112)들로 냉각수가 균일하게 분배되도록 할 수 있다. 한편, 제1 매니폴드(140) 내부에 냉각수의 균일한 분배를 위한 구조물이 형성된 경우, 제1 가이드(146)는 구조물과 이격되고, 냉각수 유입구(142)과 구조물 사이에 위치할 수 있다.
제2 매니폴드(150)는 일측에 냉각수 배출구(152)을 포함하며, 하우징(110)의 타단과 결합할 수 있다. 냉각수 배출구(152)는 냉각수 유입구(142)와 대각선 방향에 위치할 수 있다.
제2 매니폴드(150)는 제1 매니폴드(140)와 동일한 방식에 의해 하우징(110)과 결합할 수 있다. 즉, 제2 매니폴드는, 하우징(110)의 타단을 커버하는 스페이서(120) 및 하우징(110) 타단의 가장자리를 덮도록 하우징(110)과 결합하며, 중첩된 제2 매니폴드(150)와 하우징(110)의 타단부 가장자리는 용접될 수 있다.
또한, 제2 매니폴드(150)는 내부에 하우징(110)과의 결합위치를 설정하는 제2 스토퍼(154)를 포함하고, 냉각수의 균일한 분배를 위한 제2 가이드(156)를 더 포함할 수 있다. 제2 가이드(156)는 제1 가이드(146)와 유사하게, 제2 매니폴드(150)의 두 개의 주측면 중 적어도 어느 하나에서 돌출되어 형성될 수 있다. 이때, 제2 가이드(156)의 높이는 냉각수 배출구(152)에서 멀어질수록 증가할 수 있다. 이에 의해, 냉각수 유입구(142)와 근접한 위치의 유로(112)를 통과하는 냉각수의 흐름에 상대적으로 큰 저항을 가함으로써, 냉각수 유입구(142)와 근접한 위치의 유로(112)로 냉각수가 과도하게 유입되는 것을 방지할 수 있다.
한편, 복수의 유로(112)들을 흐르는 냉각수는 냉각 플레이트(100) 상에 배치된 배터리 팩(P)을 냉각시킬 수 있는데, 냉각 효율을 향상시키기 위해 복수의 유로(112)들의 단면은 원형뿐만 아니라, 삼각형 또는 다각형의 형상을 가질 수 있다.
도 5 내지 도 7은 도 2의 III-III' 단면의 예들을 각각 도시한 단면도들이다.
도 5의 하우징(110B)은 중공(114)과 유로(112B)를 포함하는데, 중공(114)은 도 1 내지 도 4에서 도시하고 설명한 바와 동일하므로 반복하여 설명하지 않는다. 도 5에 도시하는 바와 같이, 유로(112B)는 단면이 사각형일 수 있다. 구체적으로, 유로(112B)는 아랫변과 윗변의 길이가 서로 다른 사다리꼴의 단면 형상을 가질 수 있다. 이때, 아랫변의 길이(L1)는 윗변 길이(L2)의 3배 이하일 수 있다. 후술하는 바와 같이 아랫변의 길이(L1)가 윗변 길이(L2)의 3배보다 커지면, 냉각수에 의한 배터리 팩(도 1의 P)의 냉각보다는 하우징(110B)의 바닥면을 통한 열교환이 우세해져서, 냉각 플레이트(도 1의 100)에 의해 배터리 팩(도 1의 P)의 냉각 효율이 감소될 수 있다.
도 6의 하우징(110C)은 단면이 역사다리꼴인 유로(112C)를 포함한다. 도 6의 유로(112C)는 도 5의 유로(112B)와 냉각수의 유량은 동일하게 유지할 수 있지만, 유로(112C)의 윗변의 길이(L2)가 아랫변의 길이(L1)보다 크게 형성됨에 따라, 배터리 팩(도 1의 P)의 냉각효율이 더 우수해질 수 있다. 또한, 아랫변(L1)의 길이가 줄어듬에 따라, 냉각 플레이트(도 1의 100)가 놓여지는 바닥과의 열교환이 감소하여, 효율적으로 배터리 팩(도 1의 P)을 냉각시킬 수 있다.
도 7의 하우징(110D)은 단면이 역삼각형인 유로(112D)를 포함한다. 즉, 삼각형의 밑변이 상부를 향하도록 형성됨으로써, 하우징(110B)의 바닥면을 통한 열교환을 최소화할 수 있고, 이에 따라 배터리 팩(도 1의 P)의 냉각 효율을 향상시킬 수 있다.
도 8은 도 1의 냉각 플레이트의 유로 형상에 따른 배터리 팩의 평균 온도를 측정한 결과를 도시한 도이다. 이하에서는 도 8과 도 5를 함께 참조하여 설명하기로 한다.
도 8은 도 5에 도시된 유로(112B)의 단면 형상에서, 아랫변의 길이(L1)와 윗변의 길이(L2)의 비율(L1/L2)에 따른 배터리 팩(도 1의 P)의 평균 온도를 측정한 결과이다. 여기서 평균 온도란, 배터리 팩(도 1의 P)의 바닥에서 측정된 최저 온도와, 배터리 팩(도 1의 P)의 상부면에서 측정된 최고 온도의 평균 값을 의미한다.
도 8에서 알 수 있는 바와 같이, 유로(112B)의 아랫변의 길이(L1)와 윗변의 길이(L2)의 비율(L1/L2)이 3보다 커지면, 배터리 팩(도 1의 P)의 평균 온도가 35℃ 보다 커지는 것을 알 수 있다. 배터리 팩(도 1의 P)의 평균 온도가 35℃ 보다 커지면, 발열에 의해 배터리 팩(도 1의 P)의 성능이 저하될 수 있으므로, 유로(112B)의 단면이 사각형일 때, 아랫변의 길이(L1)는 윗변의 길이(L2)의 3배 이하로 형성되어야 함을 알 수 있다.
한편, 윗변의 길이(L2)와 아랫변의 길이(L1)의 비율(L1/L2)이 감소함에 따라, 배터리 팩(도 1의 P)의 평균 온도는 감소한다. 특히, 윗변의 길이(L2)와 아랫변의 길이(L1)의 비율(L1/L2)이 1 이하로 되면서, 배터리 팩(도 1의 P)의 평균 온도가 급격히 감소하는 것을 알 수 있다. 따라서, 유로(112B)의 단면이 사각형일 때, 아랫변의 길이(L1)와 윗변의 길이(L2)의 비율(L1/L2)은 1 이하로 형성되는 것이 바람직하다. 이와 같이, 아랫변의 길이(L1)가 윗변의 길이(L2) 이하로 형성되면, 냉각 플레이트(도 1의 100)의 바닥면을 통해 냉각수의 열교환이 외부와 이루어지는 것이 감소하며, 그 결과 배터리 팩(도 1의 P)과의 열교환이 보다 효과적으로 이루어질 수 있다.
특히, 아랫변의 길이(L1)와 윗변의 길이(L2)의 비율(L1/L2)이 0에 인접할 때 즉, 아랫변의 길이(L1)가 0에 수렴함으로써 도 7에 도시된 유로(112D)와 같은 형상을 가질 때, 냉각 플레이트(도 1의 100)의 냉각 효율은 최대가 됨을 알 수 있다.
이상에서는 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (15)

  1. 하우징, 상기 하우징의 일단에 결합된 제1 매니폴드 및 상기 하우징의 타단에 결합된 제1 매니폴드를 구비한 냉각 플레이트; 및
    상기 냉각 플레이트 상에 배치된 적어도 하나의 배터리 팩;을 포함하고,
    상기 하우징은 상기 일단에서 상기 타단까지 상기 하우징을 관통하는 복수의 유로들과 복수의 중공들을 내부에 포함하며,
    상기 유로들과 상기 중공들은 서로 나란하고, 교변적으로 배치된 배터리 모듈.
  2. 제1항에 있어서,
    상기 냉각 플레이트는 상기 일단과 상기 제1 매니폴드 사이, 및 상기 타단과 상기 제2 매니폴드 사이에 각각 배치되고, 상기 복수의 중공들을 밀봉하는 스페이서를 더 포함하는 배터리 모듈.
  3. 제2항에 있어서,
    상기 스페이서는 상기 일단 또는 상기 타단 상에 배치된 플레이트와 상기 플레이트로부터 돌출된 복수의 블록들을 포함하고,
    상기 복수의 블록들은 상기 복수의 중공들에 삽입되어, 상기 복수의 중공들을 밀폐하는 배터리 모듈.
  4. 제3항에 있어서,
    상기 플레이트는 상기 복수의 유로들과 대응하는 위치에 복수의 제1 홀들을 포함하는 배터리 모듈.
  5. 제4항에 있어서,
    상기 제1 매니폴드는 일측에 냉각수 유입구를 포함하고,
    상기 복수의 제1 홀들의 크기는 상기 냉각수 유입구에 근접할수록 작아지는 배터리 모듈.
  6. 제2항에 있어서,
    상기 복수의 블록들 각각은 내부에 빈 공간을 포함하며,
    상기 플레이트는 상기 빈 공간과 연결되는 제2 홀을 더 포함하는 배터리 모듈.
  7. 제2항에 있어서,
    상기 제1 매니폴드는 상기 하우징의 일단부의 가장자리와 중첩하고, 중첩된 상기 제1 매니폴드와 상기 하우징의 일단부의 가장자리는 접합된 배터리 모듈.
  8. 제7항에 있어서,
    상기 제1 매니폴드는 내측면으로부터 상기 제1 매니폴드의 내부방향으로 수직하게 돌출된 스토퍼를 더 포함하고,
    상기 스토퍼는 상기 플레이트의 가장자리와 접하는 배터리 모듈.
  9. 제1항에 있어서,
    상기 제1 매니폴드는 직육면체 형상을 가지고, 상기 제1 매니폴드는 상기 직육면체의 측면들 중 넓이가 넓은 두 개의 주측면 중 적어도 어느 하나의 측면에서 내부로 돌출된 제1 가이드를 포함하는 배터리 모듈.
  10. 제9항에 있어서,
    상기 제1 매니폴드는 일측에 냉각수 유입구를 포함하고,
    상기 제1 가이드는 상기 냉각수 유입구에서 멀어질수록 높이가 감소하는 배터리 모듈.
  11. 제10항에 있어서,
    상기 제2 매니폴드는 직육면체 형상을 가지고, 상기 제2 매니폴드는 상기 직육면체의 측면들 중 넓이가 넓은 두 개의 주측면 중 적어도 어느 하나의 측면에서 내부로 돌출된 제2 가이드를 포함하는 배터리 모듈.
  12. 제11항에 있어서,
    상기 제2 매니폴드는 상기 냉각수 유입구와 대각선 위치에 냉각수 유출구를 포함하고,
    상기 제2 가이드는 상기 냉각수 유출구에서 멀어질수록 높이가 증가하는 배터리 모듈.
  13. 제1항에 있어서,
    상기 복수의 유로들 각각의 단면은 사각형이고,
    상기 사각형의 아랫변의 길이는 상기 배터리 팩과 인접한 상기 사각형의 윗변의 길이의 3배 이하인 배터리 모듈.
  14. 제13항에 있어서,
    상기 아랫변의 길이는 상기 윗변의 길이 이하인 배터리 모듈.
  15. 제1항에 있어서,
    상기 복수의 유로들 각각의 단면은 밑변이 상기 배터리 팩과 인접한 역삼각형인 배터리 모듈.
PCT/KR2018/001405 2017-03-30 2018-02-01 배터리 모듈 WO2018182162A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL18774223.4T PL3605721T3 (pl) 2017-03-30 2018-02-01 Moduł akumulatora
EP18774223.4A EP3605721B1 (en) 2017-03-30 2018-02-01 Battery module
CN201880022099.1A CN110521054B (zh) 2017-03-30 2018-02-01 电池模块
US16/488,916 US11211649B2 (en) 2017-03-30 2018-02-01 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0040790 2017-03-30
KR1020170040790A KR102399509B1 (ko) 2017-03-30 2017-03-30 배터리 모듈

Publications (1)

Publication Number Publication Date
WO2018182162A1 true WO2018182162A1 (ko) 2018-10-04

Family

ID=63677848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001405 WO2018182162A1 (ko) 2017-03-30 2018-02-01 배터리 모듈

Country Status (7)

Country Link
US (1) US11211649B2 (ko)
EP (1) EP3605721B1 (ko)
KR (1) KR102399509B1 (ko)
CN (1) CN110521054B (ko)
HU (1) HUE064958T2 (ko)
PL (1) PL3605721T3 (ko)
WO (1) WO2018182162A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4037070A4 (en) * 2020-04-29 2022-12-14 LG Energy Solution, Ltd. BATTERY PACK, ELECTRONIC DEVICE CONTAINING IT AND VEHICLE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3127075A1 (fr) * 2021-09-15 2023-03-17 Renault S.A.S. Interface pour collecteur de fluide de refroidissement de plaque de refroidissement.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100047101A (ko) * 2008-10-27 2010-05-07 주식회사 엘지화학 정박형 나사들을 가진 냉각 매니폴드를 포함하고 있는 전지모듈, 및 상기 전지모듈을 냉각시키기 위한 방법
KR20140007029A (ko) * 2012-07-03 2014-01-16 (주)인벤티오 배터리 냉각 장치 및 배터리 냉각 장치의 제조 방법
KR101367212B1 (ko) * 2012-11-20 2014-03-14 대한칼소닉주식회사 자체 발열 기능 판형 열교환기를 이용한 전기차 냉난방 및 배터리 온도관리 시스템 그리고 그 운용방법
JP2014192091A (ja) * 2013-03-28 2014-10-06 Auto Network Gijutsu Kenkyusho:Kk 蓄電モジュール
KR20150111757A (ko) * 2014-03-26 2015-10-06 에스케이배터리시스템즈 주식회사 수냉식 배터리모듈용 수냉장치 및 이를 구비한 배터리팩

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846573B2 (en) * 2007-06-01 2010-12-07 Cobasys, Llc Coolant manifold
DE102008027293A1 (de) * 2008-06-06 2009-12-10 Behr Gmbh & Co. Kg Vorrichtung zur Kühlung einer Fahrzeugbatterie
US8067111B2 (en) 2008-06-30 2011-11-29 Lg Chem, Ltd. Battery module having battery cell assembly with heat exchanger
US8426050B2 (en) * 2008-06-30 2013-04-23 Lg Chem, Ltd. Battery module having cooling manifold and method for cooling battery module
DE102011107075B4 (de) * 2010-08-30 2019-11-28 Samsung Sdi Co., Ltd. Batteriemodul
KR101261736B1 (ko) * 2011-06-13 2013-05-07 로베르트 보쉬 게엠베하 배터리 팩
EP2696433B1 (de) * 2012-08-08 2015-03-04 MAGNA STEYR Battery Systems GmbH & Co OG Batteriekühlvorrichtung für eine Fahrzeugbatterie
US8999548B2 (en) * 2013-03-13 2015-04-07 GM Global Technology Operations LLC Liquid-cooled battery module
US10062934B2 (en) * 2013-07-25 2018-08-28 Johnson Controls Technology Company Cooling system and method for lithium-ion battery module
KR20150024999A (ko) 2013-08-28 2015-03-10 삼성에스디아이 주식회사 배터리 모듈
KR102246772B1 (ko) 2014-04-23 2021-04-30 삼성에스디아이 주식회사 배터리 팩
KR102329216B1 (ko) 2014-08-25 2021-11-22 현대자동차주식회사 차량용 배터리 냉각장치
KR102314041B1 (ko) * 2015-03-12 2021-10-18 삼성에스디아이 주식회사 베터리 팩
KR101780037B1 (ko) * 2015-04-22 2017-09-19 주식회사 엘지화학 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈
WO2017154071A1 (ja) * 2016-03-07 2017-09-14 株式会社東芝 電池装置
KR101750029B1 (ko) 2017-02-24 2017-06-23 엠에이치기술개발 주식회사 배터리 냉각장치 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100047101A (ko) * 2008-10-27 2010-05-07 주식회사 엘지화학 정박형 나사들을 가진 냉각 매니폴드를 포함하고 있는 전지모듈, 및 상기 전지모듈을 냉각시키기 위한 방법
KR20140007029A (ko) * 2012-07-03 2014-01-16 (주)인벤티오 배터리 냉각 장치 및 배터리 냉각 장치의 제조 방법
KR101367212B1 (ko) * 2012-11-20 2014-03-14 대한칼소닉주식회사 자체 발열 기능 판형 열교환기를 이용한 전기차 냉난방 및 배터리 온도관리 시스템 그리고 그 운용방법
JP2014192091A (ja) * 2013-03-28 2014-10-06 Auto Network Gijutsu Kenkyusho:Kk 蓄電モジュール
KR20150111757A (ko) * 2014-03-26 2015-10-06 에스케이배터리시스템즈 주식회사 수냉식 배터리모듈용 수냉장치 및 이를 구비한 배터리팩

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4037070A4 (en) * 2020-04-29 2022-12-14 LG Energy Solution, Ltd. BATTERY PACK, ELECTRONIC DEVICE CONTAINING IT AND VEHICLE

Also Published As

Publication number Publication date
PL3605721T3 (pl) 2024-01-29
HUE064958T2 (hu) 2024-04-28
EP3605721A4 (en) 2020-12-30
KR102399509B1 (ko) 2022-05-18
EP3605721B1 (en) 2023-09-06
US11211649B2 (en) 2021-12-28
US20200036061A1 (en) 2020-01-30
EP3605721A1 (en) 2020-02-05
CN110521054A (zh) 2019-11-29
KR20180110890A (ko) 2018-10-11
CN110521054B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2011145830A2 (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
WO2012023753A2 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
WO2011145831A2 (ko) 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2015030431A1 (ko) 냉매 및 배기 가스의 혼합을 방지하는 구조를 포함하는 전지모듈
WO2011013905A2 (ko) 냉각 효율성이 향상된 전지모듈
WO2012102496A2 (ko) 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
WO2010067943A1 (en) Battery module having excellent heat dissipation ability and battery pack employed with the same
US11404732B2 (en) Battery pack
WO2012177000A2 (ko) 신규한 공냉식 구조의 전지팩
WO2013168856A1 (ko) 높은 효율성의 냉각 구조를 포함하는 전지모듈
WO2011068320A2 (ko) 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
WO2019235724A1 (ko) 개선된 냉각 구조를 갖는 배터리 모듈
WO2012020941A2 (ko) 신규한 구조의 전지팩
WO2017043889A1 (ko) 냉각 성능이 개선된 배터리 모듈
WO2017217633A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2012064160A2 (ko) 배터리 모듈 케이스
WO2014010842A1 (ko) 간접 공냉 구조를 포함하는 전지모듈
WO2013133636A1 (ko) 신규한 공냉식 구조의 전지팩
WO2013103254A1 (ko) 배터리 모듈
WO2012067364A2 (ko) 우수한 냉각 효율성의 전지팩
WO2010071370A2 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2024021481A1 (zh) 液冷板及电池包
WO2018080182A1 (ko) 전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018774223

Country of ref document: EP

Effective date: 20191030