WO2017043889A1 - 냉각 성능이 개선된 배터리 모듈 - Google Patents
냉각 성능이 개선된 배터리 모듈 Download PDFInfo
- Publication number
- WO2017043889A1 WO2017043889A1 PCT/KR2016/010099 KR2016010099W WO2017043889A1 WO 2017043889 A1 WO2017043889 A1 WO 2017043889A1 KR 2016010099 W KR2016010099 W KR 2016010099W WO 2017043889 A1 WO2017043889 A1 WO 2017043889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- cooling plate
- battery
- plate
- battery module
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/64—Heating or cooling; Temperature control characterised by the shape of the cells
- H01M10/647—Prismatic or flat cells, e.g. pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6551—Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
- H01M10/6555—Rods or plates arranged between the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/211—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/258—Modular batteries; Casings provided with means for assembling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery module, and more particularly, to a water-cooled battery module having high thermal conductivity efficiency and structural stability.
- the secondary battery having high application characteristics and high electrical energy characteristics such as high energy density according to the product range is not only a portable device but also an electric vehicle (EV) or a hybrid electric vehicle (HEV), electric power driven by an electric driving source. It is commonly applied to a storage device.
- the secondary battery is attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of drastically reducing the use of fossil fuels is generated but also no by-products of energy use are generated.
- the battery pack applied to the electric vehicle or the like has a structure in which a plurality of cell assemblies including a plurality of unit cells are connected in series to obtain a high output.
- the unit cell may be repeatedly charged and discharged by an electrochemical reaction between components, including a positive electrode and a negative electrode current collector, a separator, an active material, an electrolyte, and the like.
- the battery pack of the multi-module structure is manufactured in a form in which a plurality of secondary batteries are concentrated in a narrow space, it is important to easily discharge heat generated from each secondary battery. Since the process of charging or discharging the secondary battery battery is performed by the electrochemical reaction as described above, if the heat of the battery module generated in the charging and discharging process is not effectively removed, thermal accumulation occurs and consequently, deterioration of the battery module is promoted. In some cases, fire or explosion may occur.
- a high output large capacity battery module and a battery pack to which it is mounted require a cooling device to cool the battery cells embedded therein.
- a commercially available battery module includes a stack in which a plurality of battery cells are stacked as many as necessary.
- a cooling fin is inserted in the middle of the battery cell to cool the heat generated in the process of generating electricity in the unit battery cell to maintain the temperature of the battery module properly. Cooling fins that absorb heat in each unit cell transfer the heat to the cooling plate and the cooling plate is cooled by a heat sink.
- the conventional battery module has a limitation that does not smoothly discharge the heat generated from the battery cell to the outside due to the low thermal conductivity.
- the contact surface between the cooling fin and the cooling plate is not completely in contact with each other. It's quite big.
- FIG. 1 when a swelling phenomenon in which the battery cell 1 swells due to a temperature rise occurs, an expansion pressure of the battery cell 1 is transmitted to the cooling fins 2, thereby cooling the fins 2.
- the contact between the cooling plate 3 and the worse is a problem that the contact between the cooling plate 3 and the worse.
- the present invention has been made to solve the above problems, to provide a water-cooled battery module with improved cooling performance by reducing the thermal contact resistance.
- it is to provide a structurally stable battery module that can maintain the contact between the cooling fin and the cooling plate even during battery cell swelling.
- a battery module including: a cooling plate provided in a plate shape and having a plurality of slits in predetermined positions; A plurality of battery cells standing upright in parallel with each other in one direction on an upper portion of the cooling plate; And a wall surface standing up on the cooling plate so as to contact one surface of the battery cell, and a bottom flange formed integrally with the wall surface and passing through a slit of the cooling plate to be in contact with the bottom surface of the cooling plate.
- the cooling fins may include a plurality of cooling fins spaced apart from each other by a predetermined interval and arranged between the plurality of battery cells.
- the apparatus may further include a heat sink having a hollow structure disposed to face the lower portion of the cooling plate and having a flow path through which a refrigerant flows.
- At least a portion of the lower flange of the cooling fin may be disposed between the lower surface of the cooling plate and the upper surface of the heat sink.
- the lower flange of the cooling fin may include a plurality of unit lower flanges divided into several branches along the longitudinal direction of the cooling fin, and the slits of the cooling plate may allow the unit lower flanges to pass individually. It may be configured to correspond to each one.
- the cooling plate may include a plurality of protrusions protruded convexly with respect to the flat upper surface, and the plurality of protrusions may be provided at equal intervals along the horizontal direction or the vertical direction.
- the plurality of cooling fins are configured by a pair of two cooling fins, and the pair of cooling fins is erected by the wall surfaces abutting each other on one of the protrusions, and the lower flanges extend in a symmetrical direction. It may be provided to surround any one of the protrusions.
- the pair of cooling fins adjacent to each other may be provided at the lower surface of the cooling plate such that the ends of the lower flanges contact each other.
- the cooling plate and the plurality of cooling fins may be integrally formed by bonding or welding to each other.
- the cooling plate and the cooling fin may be made of a thermally conductive metal material.
- a battery pack including the battery module described above may be provided.
- an automobile including the battery pack may be provided.
- the contact between the cooling fins and the cooling plate can be maintained even when the battery cell swelling, the cooling performance can be maintained as it is.
- the lower flanges of the cooling fins may be in direct contact with the heat sink to further increase the cooling efficiency.
- FIG. 1 is a cross-sectional view schematically showing a contact structure between a cooling fin and a cooling plate of a battery module according to the prior art.
- FIG. 2 is a perspective view schematically showing the configuration of a battery module according to an embodiment of the present invention.
- FIG. 3 is a perspective view illustrating a state in which cell cartridges are partially inserted into a lower housing according to an embodiment of the present invention.
- FIG. 4 is a perspective view illustrating the lower housing of FIG. 3.
- FIG. 5 is a cross-sectional view taken along line II ′ of FIG. 4.
- FIG. 6 is an enlarged view of region A of FIG. 5.
- FIG. 7 and 8 are partial perspective views schematically showing before and after coupling between a cooling fin and a cooling plate according to another embodiment of the present invention.
- FIG. 9 is a plan view illustrating a part of the cooling plate of FIG. 7.
- FIG. 2 is a perspective view schematically showing a configuration of a battery module according to an embodiment of the present invention
- Figure 3 is a perspective view showing a state in which the cell cartridge is partially inserted into the lower housing according to an embodiment of the present invention. .
- the battery module 10 includes a battery cell 100, a cell cartridge 200, and a lower housing 300.
- the battery cell 100 may be provided in plural numbers.
- the battery cell 100 may be a pouch type secondary battery.
- the pouch type secondary battery may be composed of an electrode assembly, an electrolyte, and a pouch packaging material.
- the electrode assembly may be configured such that at least one positive electrode plate and at least one negative electrode plate are disposed with a separator therebetween. More specifically, the electrode assembly may be divided into a winding type in which one positive electrode plate and one negative electrode plate are wound together with a separator, and a stack type in which the positive electrode plate and the negative electrode plate are alternately stacked with the separator interposed therebetween.
- the pouch packaging material is a laminate sheet including a resin layer and a metal layer, and may be configured to heat seal the outer circumferential surface in a state in which the electrode assembly and the electrolyte are embedded.
- the pouch facer may be composed of two laminate sheets, and at least one of the pouch facer may be formed with a concave inner space.
- the electrode assembly may be accommodated in the inner space of the pouch.
- the pouch sheath may be sealed by heat melting the edge portions of the two laminate sheets in a state where the electrode assembly is accommodated.
- each electrode plate of the electrode assembly is provided with an electrode tab, one or more electrode tabs may be connected to the electrode lead.
- the electrode lead may be interposed between the heat-sealed portions of the two pouches and exposed to the outside of the pouch packaging material, and may function as an electrode terminal of the battery cell 100. Since the pouch-type battery cell 100 has a weak mechanical rigidity, the pouch-type battery cell 100 may be accommodated in the cell cartridge 200 to absorb external shocks and facilitate stacking.
- the cell cartridge 200 is configured to hold the battery cells 100 to prevent their flow and to be stacked on each other to guide assembly of the battery cells 100.
- One cell cartridge 200 may be configured to accommodate at least one battery cell 100.
- the cell cartridge 200 of this embodiment is configured to accommodate two battery cells 100 per one.
- the cell cartridge 200 may include first and second frames 210 and 220 having a quadrangular frame having an empty central portion, and the first frame 210 and the second frame 220 may be divided into two.
- the battery cells 100 may be interposed therebetween.
- the two battery cells 100 may be stacked on the first frame 210, and then the first frame 210 may be covered with the second frame 220, and they may be bound to each other by a hook fastening method. In this case, one surface of the two battery cells 100 may be exposed to the outside through an empty center portion.
- the size of the center portion of the first and second frame 220 may be a size corresponding to the electrode assembly portion of the pouch-type secondary battery.
- the cell cartridge 200 is preferably made of reinforced plastic or the like which is lightweight and has good mechanical rigidity.
- the lower housing 300 provides a space in which the plurality of cell cartridges 200 may be stacked in one direction, and also serves to discharge heat of the battery cells to the outside.
- FIG. 4 is a perspective view illustrating the lower housing 300 of FIG. 3
- FIG. 5 is a cross-sectional view taken along line II ′ of FIG. 4
- FIG. 6 is an enlarged view of region A of FIG. 5.
- the lower housing 300 includes a plurality of cooling fins 310 and cooling plates 320.
- the cooling fin 310 is formed integrally with the wall surface 312 and the wall surface 312 and standing up on the cooling plate 320 to contact one surface of the battery cell 100 and the cooling plate 320 of the
- the lower flange 313 is disposed in contact with the lower surface of the cooling plate 320 through the slit 322.
- the cooling fins 310 are provided in plural, and the plurality of cooling fins 310, as illustrated in FIGS. 4 and 5, have wall surfaces 312 mutually aligned in one direction on the upper portion of the cooling plate 320. Can be placed upright.
- the cell cartridges 200 may be vertically disposed between the cooling fins 310.
- the cell cartridges 200 may be disposed in the space between the cooling fins 310 in a manner of being fitted from the top to the bottom.
- the central portion of the cell cartridge 200 since the central portion of the cell cartridge 200 is empty, one surface of the battery cells 100 and the wall surface 312 of the cooling fin 310 may naturally contact each other.
- the wide surface of the pouch exterior material and the wall surface 312 of the cooling fin 310 are in surface contact, heat generated during charging and discharging in the battery cell 100 may be released to the outside through the cooling fin 310. have.
- the lower flange 313 of the cooling fin 310 is a portion disposed in contact with the cooling plate 320. Bonding or welding the bottom flange 313 of the cooling fin 310 and the cooling plate 320 may lower the thermal contact resistance therebetween.
- the lower flange 313 of the cooling fin 310 may be disposed in contact with the bottom surface of the cooling plate 320 through the slit 322 of the cooling plate 320. A more detailed description thereof will be described later.
- cartridge assembly guides 311 may be provided at both ends of the cooling fin 310.
- the cartridge 200 assembly guide part 311 may be bent or curved inwardly of the cooling fin 310.
- the cell cartridge 200 may further include a slot 230 in a direction in which the cooling cartridge 310 is inserted. As the slot 230 and the cartridge assembly guide 311 are slide-coupled with each other, the cell cartridge 200 may be inserted into and fixed to the space between the cooling fins 310.
- the cooling fin 310 is preferably made of a metal material.
- the metal material may be an aluminum alloy having high thermal conductivity and light weight among metals, but is not limited thereto. For example, copper, gold and silver are also possible.
- ceramic materials such as aluminum nitride and silicon carbide are also possible.
- the cooling plate 320 is in the form of a plate, and provides a place where the plurality of cooling fins 310 and the battery cells 100 are standing up.
- the cooling plate 320 includes a plurality of protrusions 321 protruded convexly with respect to the flat upper surface.
- the plurality of protrusions 321 may be provided at equal intervals along the horizontal direction or the vertical direction.
- the cell cartridges 200 may be vertically disposed between the protrusions 321.
- the gap between the protrusions 321 may correspond to the bottom width of the cell cartridge 200. Accordingly, the lower end of the cell cartridge 200 may be supported by the sides of both protrusions 321.
- the cooling plate 320 having the uneven structure may be advantageous in increasing the fixing force of the cell cartridge 200 when the cell cartridge 200 is assembled.
- the protrusion 321 may provide a space for the cable (not shown) to be routed under the cooling plate 320. That is, since various cables can be wired through the space under the protrusion 321, cable wiring is easy, and since the cable is not exposed to the outside, damage to the cable can be prevented.
- the cooling plate 320 may have a larger heat capacity because the cross-sectional area capable of absorbing heat is wider than when the surface is flat. Therefore, the cooling plate 320 may absorb and dissipate a greater amount of heat from the battery cells 100.
- the cooling plate 320 may be formed of the same or similar thermally conductive metal plate as the cooling fin 310.
- the heat sink 400 may be further provided below the cooling plate 320.
- the heat sink 400 serves to cool the cooling plate 320.
- the heat sink 400 refers to an object that absorbs and dissipates heat from another object by thermal contact.
- the heat sink 400 may be configured as a hollow structure including a flow path therein, and a coolant such as cooling water, a cooling gas, and air may flow in the flow path.
- the plurality of cooling fins 310 of the present embodiment may be configured by using two cooling fins 310 as a group.
- a set of cooling fins 310 are erected on the wall surface 312 abut each other on any one of the protrusions 321, each of the lower flanges 313 extend in a direction symmetrical to each other, and surrounds the protrusions 321 It may be arranged to.
- the set of cooling fins 310 may be integrally manufactured.
- the cooling plate 320 has a plurality of slits 322 at predetermined positions.
- the predetermined positions may be left and right boundary line portions of the protrusion 321 based on the protrusion 321.
- the slit 322 is preferably configured such that the lower flange 313 can be forcibly fitted. That is, the gap between the cooling fin 310 and the cooling plate 320 may be reduced as much as possible.
- the lower flange 313 of the cooling fin 310 is disposed in contact with the bottom surface of the cooling plate 320 through the slit 322 of the cooling plate 320, as shown in FIGS. 5 and 6.
- the cooling fins 310 of each pair are disposed such that the distal end portion E of the lower flanges 313 abuts each other on the lower surfaces of the cooling fins 310 and the cooling plate 320 of the adjacent pair.
- the cooling fin 310 is prepared in a state in which the distal end E of the lower flange 313 is extended.
- the end portion E of the lower flange 313 passes through the slit 322 of the cooling plate 320, and then bends in parallel to the lower surface of the cooling plate 320, by bonding or welding it, the lower flange
- the distal end E of 313 may be fixed to the lower surface of the cooling plate 320.
- the adhesion between the cooling fin 310 and the cooling plate 320 can be enhanced than before. Therefore, the thermal contact resistance between the cooling fin 310 and the cooling plate 320 may be lowered to increase the thermal conductivity.
- the portion of the flange 313 may continue to be in close contact with the lower surface of the cooling plate 320.
- the contact between the bottom flange 313 of the cooling fin 310 and the cooling plate 320 may be maintained even when the battery cell 100 is swelled, so that the cooling performance of the battery module 10 is not deteriorated. It is possible to prevent further swelling of the battery cell 100.
- the distal end E of the lower flange 313 of the cooling fin 310 may be disposed between the cooling plate 320 and the heat sink 400.
- the cooling fin 310 has a distal end E of the lower flange 313 of the cooling fin 310 between the lower surface of the cooling plate 320 and the upper surface of the heat sink 400. The arrangement may make contact with the cooling plate 320 and the heat sink 400 more stable.
- the distal end E of the lower flange 313 of the cooling fin 310 is in direct contact with the heat sink 400, so that the cooling performance can be further improved.
- FIG. 7 and 8 are partial perspective views schematically showing before and after coupling between a cooling fin and a cooling plate according to another embodiment of the present invention
- FIG. 9 is a plan view showing a portion of the cooling plate of FIG. 7.
- the lower flange 313 of the cooling fin 310 includes a plurality of unit lower flanges divided into several branches along the longitudinal direction of the cooling fin 310. (313a-313e).
- the slits 322a to 322e of the cooling plate 320 are configured to correspond one-to-one with the unit bottom flanges 313, respectively.
- the slits 322a to 322e of the cooling plate 320 of the present exemplary embodiment may be provided in a horizontally divided manner as well as a vertical direction (arrangement direction of the cooling fins 310) as shown in FIG. 9.
- one cooling fin 310 is provided with a plurality of unit lower flanges 313a to 313e by cutting the distal end portion E of the lower flange 313 into several branches.
- the unit lower flanges 313a to 313e may be individually fitted into the corresponding slits 322a to 322e divided in the horizontal direction.
- the mechanical rigidity of the cooling plate 320 may be increased, as compared with the case where the slits 322 are not divided in the horizontal direction. Therefore, even if the battery module 10 of the present embodiment is exposed to external shock or vibration, the coupling force and contact between the cooling plate 320 and the cooling fins 310 may be more stably ensured.
- the battery pack according to the present invention may include one or more battery modules according to the present invention described above.
- the battery pack may further include a case for covering the battery module, various devices for controlling charging and discharging of the battery module, such as a BMS, a current sensor, a fuse, and the like.
- the battery pack according to the present invention can be applied to an automobile such as an electric vehicle or a hybrid vehicle. That is, the vehicle according to the present invention may include a battery module according to the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Mounting, Suspending (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims (15)
- 판상체 형태로 마련되고 미리 결정된 위치들 마다 복수의 슬릿들을 구비하는 쿨링 플레이트;상기 쿨링 플레이트의 상부에 일 방향으로 상호 간 나란하게 기립 배치되는 복수의 배터리 셀들; 및상기 배터리 셀의 일면과 접하도록 상기 쿨링 플레이트의 상부에 기립 배치되는 벽면과, 상기 벽면과 일체로 형성되고 상기 쿨링 플레이트의 슬릿을 통과해 상기 쿨링 플레이트의 하면에 접촉 배치되는 하단 플랜지를 구비하고, 상호 간 소정 간격 이격되어 상기 복수의 배터리 셀들 사이에 배열되는 복수의 쿨링 핀들을 포함하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 쿨링 플레이트의 하부에 대면 배치되고, 내부에 냉매가 흐르는 유로가 형성된 중공 구조의 히트 싱크를 더 포함하는 것을 특징으로 하는 배터리 모듈.
- 제2항에 있어서,상기 쿨링 핀의 하단 플랜지는, 적어도 일 부분이 상기 쿨링 플레이트의 하면과 상기 히트 싱크의 상면 사이에 배치되는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 쿨링 핀의 하단 플랜지는, 상기 쿨링 핀의 길이방향을 따라 여러 갈래로 나뉘어진 복수 개의 단위 하단 플랜지를 포함하며,상기 쿨링 플레이트의 슬릿들은 상기 단위 하단 플랜지들이 개별적으로 통과되도록 상기 단위 하단 플랜지들 각각과 일대일 대응되게 구성된 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 쿨링 플레이트는,평평한 상면에 대해 볼록하게 돌출 형성된 복수의 돌출부를 구비하고, 상기 복수의 돌출부는 가로 방향 또는 세로 방향을 따라 등 간격으로 마련된 것을 특징으로 하는 배터리 모듈.
- 제5항에 있어서,상기 복수의 쿨링 핀들은 2개의 쿨링 핀을 한 조로 하여 구성되며,상기 한 조의 쿨링 핀은 상기 어느 하나의 돌출부 위에 서로 상기 벽면들이 맞닿아 기립 배치되고, 상기 하단 플렌지들은 서로 대칭되는 방향으로 연장되고 상기 어느 하나의 돌출부를 감싸도록 마련되는 것을 특징으로 하는 배터리 모듈.
- 제6항에 있어서,서로 이웃한 한 조의 쿨링 핀들은,상기 쿨링 플레이트의 하면에서, 각각 상기 하단 플렌지들의 끝단이 서로 맞닿도록 마련된 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 쿨링 플레이트와 상기 복수의 쿨링 핀들은 상호 간 본딩(bonding) 또는 용접(welding)되어 일체로 형성된 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서,상기 쿨링 플레이트 및 상기 쿨링 핀은 열전도성 금속 소재로 마련되는 것을 특징으로 하는 배터리 모듈.
- 판상체 형태로 마련되고 미리 결정된 위치들 마다 복수의 슬릿들을 구비하는 쿨링 플레이트;상기 쿨링 플레이트의 상부에 일 방향으로 상호 간 나란하게 기립 배치되는 복수의 배터리 셀들;상기 배터리 셀의 일면과 접하도록 상기 쿨링 플레이트의 상부에 기립 배치되는 벽면과, 상기 벽면과 일체로 형성되고 상기 쿨링 플레이트의 슬릿을 통과해 상기 쿨링 플레이트의 하면에 접촉 배치되는 하단 플랜지를 구비하고, 상호 간 소정 간격 이격되어 상기 복수의 배터리 셀들 사이에 배열되는 복수의 쿨링 핀들; 및상기 쿨링 플레이트의 하부에 대면 배치되고, 내부에 냉매가 흐르는 유로가 형성된 중공 구조의 히트 싱크를 포함하며,상기 쿨링 핀의 하단 플랜지는, 적어도 일 부분이 상기 쿨링 플레이트의 하면과 상기 히트 싱크의 상면에 모두 접촉되는 배터리 모듈.
- 제10항에 있어서,상기 쿨링 핀의 하단 플랜지는, 상기 쿨링 핀의 길이방향을 따라 여러 갈래로 나뉘어진 복수 개의 단위 하단 플랜지를 포함하며,상기 쿨링 플레이트의 슬릿들은 상기 단위 하단 플랜지들이 개별적으로 통과되도록 상기 단위 하단 플랜지들 각각과 일대일 대응되게 구성된 것을 특징으로 하는 배터리 모듈.
- 제10항에 있어서,상기 쿨링 플레이트는,평평한 상면에 대해 볼록하게 돌출 형성된 복수의 돌출부를 구비하고, 상기 복수의 돌출부는 가로 방향 또는 세로 방향을 따라 등 간격으로 마련된 것을 특징으로 하는 배터리 모듈.
- 제12항에 있어서,상기 복수의 쿨링 핀들은 2개의 쿨링 핀을 한 조로 하여 구성되며,상기 한 조의 쿨링 핀은 상기 어느 하나의 돌출부 위에 서로 상기 벽면들이 맞닿아 기립 배치되고, 상기 하단 플렌지들은 서로 대칭되는 방향으로 연장되고 상기 어느 하나의 돌출부를 감싸도록 마련되는 것을 특징으로 하는 배터리 모듈.
- 제13항에 있어서,서로 이웃한 한 조의 쿨링 핀들은,상기 쿨링 플레이트의 하면에서, 각각 상기 하단 플렌지들의 끝단이 서로 맞닿도록 마련된 것을 특징으로 하는 배터리 모듈.
- 제1항 내지 제14항 중 어느 한 항에 따른 배터리 모듈을 포함하는 것을 특징으로 하는 배터리 팩.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/555,741 US10347880B2 (en) | 2015-09-08 | 2016-09-08 | Battery module having improved cooling performance |
CN201680017396.8A CN107431161B (zh) | 2015-09-08 | 2016-09-08 | 具有改进的冷却性能的电池模块 |
EP16844705.0A EP3264518B1 (en) | 2015-09-08 | 2016-09-08 | Battery module having improved cooling performance |
JP2018518558A JP6494870B2 (ja) | 2015-09-08 | 2016-09-08 | 冷却性能の改善したバッテリーモジュール |
US16/421,209 US10978759B2 (en) | 2015-09-08 | 2019-05-23 | Battery module having improved cooling performance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0127129 | 2015-09-08 | ||
KR20150127129 | 2015-09-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/555,741 A-371-Of-International US10347880B2 (en) | 2015-09-08 | 2016-09-08 | Battery module having improved cooling performance |
US16/421,209 Continuation US10978759B2 (en) | 2015-09-08 | 2019-05-23 | Battery module having improved cooling performance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017043889A1 true WO2017043889A1 (ko) | 2017-03-16 |
Family
ID=58240136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/010099 WO2017043889A1 (ko) | 2015-09-08 | 2016-09-08 | 냉각 성능이 개선된 배터리 모듈 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10347880B2 (ko) |
EP (1) | EP3264518B1 (ko) |
JP (1) | JP6494870B2 (ko) |
KR (1) | KR101910244B1 (ko) |
CN (1) | CN107431161B (ko) |
WO (1) | WO2017043889A1 (ko) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102050025B1 (ko) | 2017-09-04 | 2020-01-08 | 주식회사 엘지화학 | 냉각수 직접 접촉 냉각 방식의 배터리 팩 |
JP6965717B2 (ja) * | 2017-12-13 | 2021-11-10 | トヨタ自動車株式会社 | 電池パックの製造方法 |
CN108172929B (zh) * | 2017-12-22 | 2024-03-15 | 银隆新能源股份有限公司 | 电池芯散热结构及具有风冷散热装置的电池包 |
KR102361272B1 (ko) * | 2018-07-26 | 2022-02-09 | 주식회사 엘지에너지솔루션 | 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩 |
KR20200104615A (ko) | 2019-02-27 | 2020-09-04 | 에이치엘그린파워 주식회사 | 배터리 셀 모듈 조립체 및 이의 조립 방법 |
CN113508491B (zh) | 2019-03-01 | 2023-06-30 | 米沃奇电动工具公司 | 电动工具和用于与其一起使用的电池组 |
DE102019113603A1 (de) * | 2019-05-22 | 2020-11-26 | Lisa Dräxlmaier GmbH | Kühlplatte für eine batterie eines kraftfahrzeugs und batterie für ein kraftfahrzeug mit einer kühlplatte |
US11267354B2 (en) * | 2019-08-16 | 2022-03-08 | DESIGNWERK TECHNOLOGIES GmbH | Power supply |
KR20210035522A (ko) * | 2019-09-24 | 2021-04-01 | 주식회사 엘지화학 | 배터리 모듈 및 이러한 배터리 모듈을 포함하는 배터리 랙 및 전력 저장 장치 |
KR20210130550A (ko) * | 2020-04-22 | 2021-11-01 | 주식회사 엘지에너지솔루션 | 전지 모듈 및 그 제조 방법 |
US11581595B2 (en) * | 2020-09-02 | 2023-02-14 | Ford Global Technologies, Llc | Battery array frames with split thermal fin designs for reducing thermal interface material usage |
KR20220075045A (ko) * | 2020-11-26 | 2022-06-07 | 주식회사 엘지에너지솔루션 | 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차 |
CN115966823A (zh) * | 2021-05-14 | 2023-04-14 | 中创新航科技股份有限公司 | 电池包、电池包的装配工艺及车辆 |
DE102021113416A1 (de) | 2021-05-25 | 2022-12-01 | Lisa Dräxlmaier GmbH | Batteriemodul für eine traktionsbatterie eines elektrofahrzeugs, traktionsbatterie für ein elektrofahrzeug und verfahren zum herstellen einer solchen traktionsbatterie |
DE102022113965A1 (de) | 2022-06-02 | 2023-12-07 | Volkswagen Aktiengesellschaft | Kühlkörper zur Aufnahme von Batteriezellen für ein Batteriemodul |
WO2024014925A1 (ko) * | 2022-07-15 | 2024-01-18 | 주식회사 엘지에너지솔루션 | 배터리 팩, 이러한 배터리 팩을 포함하는 자동차 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130110400A (ko) * | 2012-03-29 | 2013-10-10 | 에스케이이노베이션 주식회사 | 배터리 모듈 |
KR20140037351A (ko) * | 2012-09-17 | 2014-03-27 | 한라비스테온공조 주식회사 | 차량용 배터리 냉각 장치 |
KR20140039350A (ko) * | 2012-09-19 | 2014-04-02 | 주식회사 엘지화학 | 냉각 효율이 향상된 전지모듈 |
KR20140102610A (ko) * | 2013-02-13 | 2014-08-22 | 주식회사 엘지화학 | 전지셀 어셈블리 및 전지셀 어셈블리의 제조방법 |
KR20140110233A (ko) * | 2013-03-06 | 2014-09-17 | 엘지전자 주식회사 | 전기 자동차의 배터리 냉각 시스템 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8153290B2 (en) * | 2008-10-28 | 2012-04-10 | Tesla Motors, Inc. | Heat dissipation for large battery packs |
US8852778B2 (en) * | 2009-04-30 | 2014-10-07 | Lg Chem, Ltd. | Battery systems, battery modules, and method for cooling a battery module |
US8399118B2 (en) * | 2009-07-29 | 2013-03-19 | Lg Chem, Ltd. | Battery module and method for cooling the battery module |
DE102009039394A1 (de) * | 2009-08-31 | 2011-03-03 | Behr Gmbh & Co. Kg | Kühlblech für eine galvanische Zelle und Verfahren zum Anbinden eines Kühlblechs |
DE102010005154A1 (de) * | 2010-01-20 | 2011-07-21 | Continental Automotive GmbH, 30165 | Gekühlter Energiespeicher |
US9196938B2 (en) * | 2010-07-06 | 2015-11-24 | Samsung Sdi Co., Ltd. | Battery module |
JP5740189B2 (ja) * | 2011-03-24 | 2015-06-24 | カヤバ工業株式会社 | 蓄電装置 |
JP5422596B2 (ja) * | 2011-04-22 | 2014-02-19 | 株式会社日立製作所 | 二次電池モジュール及び二次電池パック |
DE102011077924A1 (de) * | 2011-06-21 | 2012-12-27 | Robert Bosch Gmbh | Speichereinheit zum Speichern elektrischer Energie mit einer Heat-Pipe |
DE102011119212A1 (de) * | 2011-11-23 | 2013-05-23 | Li-Tec Battery Gmbh | Elektroenergie-Speichervorrichtung mit flachen Speicherzellen |
KR101447057B1 (ko) | 2012-01-26 | 2014-10-07 | 주식회사 엘지화학 | 전지셀의 장착 및 방열을 위한 방열 지지부재를 포함하는 전지모듈 |
KR200472189Y1 (ko) * | 2012-07-03 | 2014-04-17 | 현대중공업 주식회사 | 아크 용접용 토치 |
JP2014093238A (ja) * | 2012-11-06 | 2014-05-19 | Nissan Motor Co Ltd | 組電池の熱交換装置 |
JP5954258B2 (ja) * | 2013-05-24 | 2016-07-20 | 株式会社デンソー | 電池パック及びその製造方法 |
KR101589996B1 (ko) * | 2013-06-07 | 2016-01-29 | 주식회사 엘지화학 | 액상 냉매 유출에 대한 안전성이 향상된 전지팩 |
US9502740B2 (en) * | 2014-01-12 | 2016-11-22 | Gerald Ho Kim | Thermal management in electronic apparatus with phase-change material and silicon heat sink |
US9666843B2 (en) * | 2014-07-30 | 2017-05-30 | Ford Global Technologies, Llc | Array frame design for electrified vehicle battery arrays |
US20180248238A1 (en) * | 2014-09-15 | 2018-08-30 | James O. Pinon | Graphene enhanced cooling fin |
KR101865995B1 (ko) * | 2015-03-27 | 2018-06-08 | 주식회사 엘지화학 | 배터리 모듈 |
KR101900998B1 (ko) * | 2015-06-18 | 2018-09-20 | 주식회사 엘지화학 | 경량화를 위한 냉각 플레이트, 이를 포함하는 전지모듈 및 제조방법 |
US10326185B2 (en) * | 2015-09-21 | 2019-06-18 | Lg Chem, Ltd. | Battery module including array of cooling fins having different thicknesses |
KR102285283B1 (ko) * | 2016-05-11 | 2021-08-03 | 에스케이이노베이션 주식회사 | 서브모듈 및 서브모듈을 포함하는 전지모듈 |
KR102051108B1 (ko) * | 2016-06-13 | 2019-12-02 | 주식회사 엘지화학 | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 |
US10516193B2 (en) * | 2017-10-16 | 2019-12-24 | Ford Global Technologies, Llc | Battery thermal fin and method of thermal energy transfer using a thermal fin |
KR102410862B1 (ko) * | 2017-11-10 | 2022-06-21 | 에스케이온 주식회사 | 배터리 모듈 |
-
2016
- 2016-09-08 CN CN201680017396.8A patent/CN107431161B/zh active Active
- 2016-09-08 JP JP2018518558A patent/JP6494870B2/ja active Active
- 2016-09-08 US US15/555,741 patent/US10347880B2/en active Active
- 2016-09-08 KR KR1020160115760A patent/KR101910244B1/ko active IP Right Grant
- 2016-09-08 EP EP16844705.0A patent/EP3264518B1/en active Active
- 2016-09-08 WO PCT/KR2016/010099 patent/WO2017043889A1/ko active Application Filing
-
2019
- 2019-05-23 US US16/421,209 patent/US10978759B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130110400A (ko) * | 2012-03-29 | 2013-10-10 | 에스케이이노베이션 주식회사 | 배터리 모듈 |
KR20140037351A (ko) * | 2012-09-17 | 2014-03-27 | 한라비스테온공조 주식회사 | 차량용 배터리 냉각 장치 |
KR20140039350A (ko) * | 2012-09-19 | 2014-04-02 | 주식회사 엘지화학 | 냉각 효율이 향상된 전지모듈 |
KR20140102610A (ko) * | 2013-02-13 | 2014-08-22 | 주식회사 엘지화학 | 전지셀 어셈블리 및 전지셀 어셈블리의 제조방법 |
KR20140110233A (ko) * | 2013-03-06 | 2014-09-17 | 엘지전자 주식회사 | 전기 자동차의 배터리 냉각 시스템 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3264518A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN107431161A (zh) | 2017-12-01 |
KR20170030070A (ko) | 2017-03-16 |
KR101910244B1 (ko) | 2018-12-28 |
US20180114957A1 (en) | 2018-04-26 |
US20190280258A1 (en) | 2019-09-12 |
JP2018523282A (ja) | 2018-08-16 |
CN107431161B (zh) | 2020-11-20 |
EP3264518A1 (en) | 2018-01-03 |
EP3264518A4 (en) | 2018-01-31 |
US10978759B2 (en) | 2021-04-13 |
US10347880B2 (en) | 2019-07-09 |
EP3264518B1 (en) | 2019-01-30 |
JP6494870B2 (ja) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017043889A1 (ko) | 냉각 성능이 개선된 배터리 모듈 | |
WO2018186566A1 (ko) | 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩 | |
WO2018186582A1 (ko) | 크래쉬 빔 구조를 갖는 배터리 팩 | |
WO2016171345A1 (ko) | 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈 | |
WO2017104938A1 (ko) | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 | |
WO2018008866A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 | |
WO2011083968A2 (ko) | 냉각 효율성이 향상된 중대형 전지팩 | |
WO2012023753A2 (ko) | 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩 | |
WO2014010842A1 (ko) | 간접 공냉 구조를 포함하는 전지모듈 | |
WO2013111959A1 (ko) | 신규한 구조의 전지모듈 | |
WO2014196778A1 (ko) | 액상 냉매 유출에 대한 안전성이 향상된 전지팩 | |
WO2016204489A1 (ko) | 이차 전지용 셀 커버 및 이를 포함하는 배터리 모듈 | |
WO2017209365A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 | |
WO2016159549A2 (ko) | 배터리 모듈 | |
WO2017146379A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 | |
WO2017217633A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 | |
WO2017095003A1 (ko) | 그립핑부가 구비되어 있는 카트리지를 포함하고 있는 전지모듈 | |
WO2013187685A1 (ko) | 냉각 효율성이 향상된 전지셀 | |
WO2011013905A2 (ko) | 냉각 효율성이 향상된 전지모듈 | |
WO2013168989A1 (en) | Secondary battery module having through type cool channel | |
WO2017160029A1 (ko) | 배터리 모듈 | |
WO2014035160A1 (ko) | 배터리 모듈 | |
WO2010114318A2 (ko) | 모듈의 구조 설계에 유연성을 가진 전지모듈 및 이를 포함하는 중대형 전지팩 | |
WO2017217641A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 | |
WO2012053829A2 (ko) | 우수한 냉각 효율성의 전지팩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16844705 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15555741 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2016844705 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018518558 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |