WO2013187685A1 - 냉각 효율성이 향상된 전지셀 - Google Patents

냉각 효율성이 향상된 전지셀 Download PDF

Info

Publication number
WO2013187685A1
WO2013187685A1 PCT/KR2013/005163 KR2013005163W WO2013187685A1 WO 2013187685 A1 WO2013187685 A1 WO 2013187685A1 KR 2013005163 W KR2013005163 W KR 2013005163W WO 2013187685 A1 WO2013187685 A1 WO 2013187685A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat dissipation
battery cell
dissipation member
heat
Prior art date
Application number
PCT/KR2013/005163
Other languages
English (en)
French (fr)
Inventor
이재헌
정승현
정근창
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP13804675.0A priority Critical patent/EP2840644A4/en
Priority to CN201380027697.5A priority patent/CN104321926B/zh
Priority to JP2015513953A priority patent/JP2015522912A/ja
Publication of WO2013187685A1 publication Critical patent/WO2013187685A1/ko
Priority to US14/540,799 priority patent/US9214705B2/en
Priority to US14/935,635 priority patent/US9865904B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor

Definitions

  • the present invention relates to a battery cell with improved cooling efficiency, and more particularly, at least one electrode assembly having a positive electrode, a negative electrode, and a separator structure interposed between the positive electrode and the negative electrode is mounted inside the battery case, and is charged or discharged. At least one heat dissipation member for dissipating heat generated inside the electrode assembly when a short circuit occurs is mounted in contact with the inside of the electrode assembly and / or the outer surface of the electrode assembly, and a part of the heat dissipation member is external to the electrode assembly. It relates to a battery cell, characterized in that exposed to.
  • the secondary battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle that has been proposed as a solution for air pollution of existing gasoline and diesel vehicles using fossil fuel. It is attracting attention as a power source such as (Plug-In HEV).
  • One or two or four battery cells are used for small mobile devices, whereas medium and large battery modules, which are electrically connected to a plurality of battery cells, are used in medium and large devices such as automobiles due to the necessity of high output capacity.
  • medium and large battery modules are preferably manufactured in a small size and weight as possible
  • square batteries and pouch-type batteries which can be charged with high integration and have a small weight to capacity, are mainly used as battery cells (unit cells) of medium and large battery modules.
  • battery cells unit cells
  • a pouch-type battery using an aluminum laminate sheet or the like as an exterior member has attracted much attention in recent years due to advantages such as low weight, low manufacturing cost, and easy form deformation.
  • the battery cells constituting the medium-large battery module are composed of secondary batteries capable of charging and discharging, and the battery temperature is increased due to the heat generated by the internal resistance of the battery during the charging and discharging process.
  • heat is added to the exothermic reaction heat inside the battery, so that the degree of heat generation is greater, thereby increasing the temperature. If the temperature of the battery rises, the life characteristics of the battery deteriorate and problems such as gas generation due to side reactions occur, so cooling the battery is an important factor.
  • a battery pack which is a high output large capacity battery requires a cooling system for cooling the battery cells embedded therein.
  • the method that relies on heat transfer by convection or conduction from the outside of the battery is, when the thickness of the battery becomes thick, since the temperature rise from the center of the inside of the battery cell is not easy to transfer the temperature to the heat sink outside the battery cell, The temperature of the whole battery cell cannot be cooled uniformly.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application after various experiments and in-depth studies, when the heat dissipation member is in contact with the inside of the electrode assembly and / or the outer surface of the electrode assembly, when manufacturing a battery cell to expose a portion of the heat dissipation member outside the electrode assembly, It was confirmed that the heat generated inside the electrode assembly can be effectively released to the outside, the battery life characteristics can be improved, and the cost is excellent.
  • an object of the present invention is to provide a battery cell that can improve the life characteristics of the battery by effectively dissipating heat generated inside the electrode assembly to the outside.
  • Still another object of the present invention is to provide a battery cell excellent in the strength of the battery against external impacts by suppressing the temperature rise as much as it effectively releases heat to the outside even when an internal short circuit occurs due to penetration of the needle conductor.
  • Another object of the present invention to provide a battery module or a battery pack that maximizes the cooling efficiency using the battery cell.
  • the positive electrode, the negative electrode, and at least one electrode assembly having a separator structure interposed between the positive electrode and the negative electrode is mounted inside the battery case, the electrode assembly when charging or discharging or short circuit occurs
  • At least one heat dissipation member for dissipating heat generated from the inside of the electrode assembly is mounted in contact with the inside of the electrode assembly and / or the outer surface of the electrode assembly, and a part of the heat dissipation member is exposed to the outside of the electrode assembly. It consists of.
  • the heat dissipation member included in the battery cell according to the present invention transmits heat to the outside depending on the outer surface of the battery cell, by inserting a metal heat dissipation member capable of direct heat conduction into the battery. Inefficient ways can be improved.
  • the heat dissipation member may be of a plate-like structure to be mounted while maintaining a more effectively contacted state inside the electrode assembly and / or the outer surface of the electrode assembly.
  • the electrode assembly mounted on the battery case accommodating part is not particularly limited as long as it has a structure in which a plurality of electrode tabs are connected to each other to form a positive electrode and a negative electrode and a separator interposed therebetween, preferably, a wound type (jelly-roll). , Stacked or stacked / folding type. Details of the electrode assembly of the stack / foldable structure are disclosed in Korean Patent Application Publication Nos. 2001-0082058, 2001-0082059, and 2001-0082060, which are described in the context of the present invention. Incorporated by reference.
  • a jelly-roll it is preferably a structure in which a heat radiating member is mounted at its winding center. Mounting of the heat dissipation member to the winding center may be introduced during the winding process, or after winding by the mandrel, the heat dissipation member may be inserted instead after removing the mandrel.
  • the battery cell according to the present invention may optionally include two or more electrode assemblies, and in this case, the heat dissipation member may preferably have a structure interposed at the interface of the electrode assemblies. Therefore, by contacting the heat dissipation member to the interface of the electrode assembly, heat generated inside the battery cell during charge and discharge can be removed via the heat dissipation member, the mounting process is very easy.
  • the heat radiation member may be mounted at the interface between the jelly rolls.
  • the thickness of the heat dissipation member is about 0.1 to 20% of the total thickness of the electrode assembly and the size is based on the width of the electrode assembly. 50% or more. If the size of the heat dissipation member is too small, it is difficult to easily transfer the heat of the battery cells, on the contrary, if the size is too large, the overall size of the battery cells becomes large, which is not preferable, but the size thereof is within the above illustrated range. Of course, it is not limited.
  • the preferred exposure size is 1 to 50%, preferably 5 to 40%, based on the total size of the heat dissipation member, More preferably 10 to 30% in size.
  • the exposure size of the heat dissipation member may be set based on the electrode assembly.
  • the heat dissipation member may have a size of 2 to 30% based on the area of the electrode assembly on a plane.
  • At least one end of the heat dissipation member may be in contact with the battery case. Since one end of the heat dissipation member is in contact with the battery case, the heat generated inside the heat dissipation through the battery case, it can be efficiently radiated.
  • Such a structure is particularly preferable for a cylindrical battery cell using a cylindrical metal can made of a metal material as a battery case, and a rectangular battery cell using a rectangular metal can.
  • At least one end of the heat dissipation member may have a structure extending to the outside of the battery case via the battery case.
  • the heat dissipation member Since at least one end of the heat dissipation member extends to the outside of the battery case, heat generated inside the battery cell during charge / discharge is transferred to the outside through the heat dissipation member, thereby enabling more efficient cooling.
  • Such a structure is particularly preferable when the battery case is made of a material or a structure having a somewhat low thermal conductivity.
  • the battery case is formed of a laminate sheet including a resin layer and a metal layer
  • the surface is coated with a polymer material having low thermal conductivity, there is a problem that it is difficult to effectively cool the temperature of the entire battery cell.
  • the structure in which at least one end of the heat dissipation member is extended to the outside of the battery case can solve this cooling problem.
  • the laminate sheet may be heat-sealed in a state where at least one end of the heat dissipation member is interposed.
  • the laminate sheet including the resin layer and the metal layer in one specific example, the electrode assembly is built in the housing portion of the pouch-type case of the aluminum laminate sheet, the sheet in a state where at least one end of the heat radiation member is interposed It may be prepared by heat-sealing and sealing a separate sheet or a sheet extending therefrom separated from the.
  • the portion of the heat dissipation member exposed to the outside of the battery case is at least one end thereof, for example, when the heat dissipation member is rectangular in plan, its one side edge, two side edges, and three sides Corners, or four-sided corners may be exposed, or all or part of each corner may be exposed.
  • At least one end of the heat dissipation member may extend in an opposite surface or an adjacent side direction of the surface where the electrode terminal is located.
  • the heat dissipation members interposed at the interface of the electrode assemblies may be interposed in opposite directions of the electrode terminals for charging and discharging, or may be interposed in the lateral direction of the electrode terminals for charging and discharging. Such a structure can prevent the possibility of a short circuit.
  • the heat dissipation member is not particularly limited as long as it is a thermally conductive material.
  • the heat dissipation member may be made of a metal material having high thermal conductivity.
  • the size of the heat dissipation member exposed to the outside of the electrical case is not particularly limited, and in particular, in order to maximize the cooling characteristics of the heat dissipation member when adding other members or devices to the heat dissipation member, It may be larger than the site size.
  • the present invention also provides a battery module comprising two or more of the battery cells.
  • the battery module further includes a heat exchange member
  • the heat dissipation member protruding to the outside of the battery cell may have a structure in contact with the heat exchange member.
  • the combination of the heat dissipation member and the heat exchange member enables efficient heat transfer, and the contact method may be variously made by welding or mechanical fastening.
  • the structure of the heat exchange member is not particularly limited, and preferably, may be a structure in which one or more flow paths for the flow of the refrigerant are formed.
  • a coolant flow path for the flow of a liquid refrigerant such as water in the heat exchange member it is possible to exhibit an excellent cooling effect with high reliability compared to the conventional air-cooled structure.
  • the heat exchange member is a base portion in close contact with the heat dissipation member, both side portions connected to the base portion and the refrigerant passage penetrates in the longitudinal direction, and a plurality of heat dissipation fins extending upward from the base portion between the side portions. It may be made of a structure including the.
  • the heat transferred from the inside of the battery cell to the heat dissipation member is in close contact with the bottom surface of the base, and conducts water cooling through the refrigerant passage passing through both side portions and predetermined air cooling from the heat dissipation fins. It can be done effectively.
  • the present invention also provides a battery pack manufactured by combining one or more battery modules according to a desired output and capacity, and a device including the battery pack.
  • the device according to the present invention includes a plurality of battery packs to achieve a high output large capacity, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, or electric power that is seriously emerging in terms of safety of high heat generated during charging and discharging It can be preferably used for a power supply such as a storage device.
  • the battery pack according to the present invention is an electric vehicle and a plug-in. More preferably used in hybrid electric vehicles.
  • FIG. 1 is a schematic diagram of a battery cell inside the heat dissipation member according to an embodiment of the present invention is interposed in the electrode assembly;
  • FIG. 2 is a schematic diagram of a battery cell inside the heat dissipation member according to another embodiment of the present invention is interposed in the electrode assembly;
  • FIG. 3 is a top view of FIG. 2;
  • FIG. 4 is a schematic diagram of a battery cell interior in which a heat dissipation member according to another embodiment of the present invention is interposed in an electrode assembly;
  • FIG. 5 is a top view of FIG. 4;
  • FIG. 6 is a schematic diagram of one exemplary heat exchange member
  • FIG. 7 is a schematic view of a battery pack structure according to an embodiment of the present invention.
  • FIG. 1 is a schematic view of the inside of a battery cell in which a heat dissipation member according to an embodiment of the present invention is interposed in an electrode assembly.
  • the battery cell 100 includes two or more electrode assemblies 150 and 160, electrode tabs 130 and 140 and electrode tabs extending from the respective electrode assemblies 150 and 160.
  • the electrode lead 110 welded to the 130 and 140, the heat dissipation member 180 interposed between the electrode assemblies 150 and 160, and the battery case 170 surrounding the outer surface thereof are included.
  • the battery case 170 is made of a metal can of a rectangular shape.
  • At least one end of the heat dissipation member 180 is exposed to the outer surfaces of the electrode assemblies 150 and 160.
  • the exposed size l is about 10% based on the total size L of the electrode assemblies 150 and 160.
  • the exposed heat dissipation member 180 is in contact with the inner surface of the battery case 170.
  • one end portion of the heat dissipation member 180 exposed on the outer surfaces of the electrode assemblies is bent to widen the contact area with the battery case 170. Therefore, one end of the heat dissipation member 180 is in contact with the battery case 170, the heat generated inside the heat dissipation through the battery case 170, it can be efficiently radiated.
  • the heat dissipation member 180 is located at the interface between the electrode assemblies, the heat inside the battery cell is more efficiently conducted to the heat dissipation member 180 to radiate heat through one end of the heat dissipation member 180. consist of.
  • FIG. 2 schematically illustrates a battery cell in which a heat dissipation member according to another embodiment of the present invention is interposed in an electrode assembly
  • FIG. 3 is a plan view of FIG. 2.
  • the battery case 172 is made of a laminate sheet including a metal layer and a resin layer, and the battery cell in a state of partially exposing the laminate sheet to the outside of the battery case 172 by heat-sealing the laminate sheet in a state where the heat dissipation member 180 is interposed therebetween. 200).
  • the stack or stack / foldable electrode assemblies 150 and 160 are accommodated.
  • One end 181 of the heat dissipation member 180 extends in the direction of the opposite surface of the surface on which the electrode terminals 112 and 114 are located, and thus a short circuit can be prevented.
  • FIG. 4 is a diagram schematically illustrating an inside of a battery cell in which a heat dissipation member according to another embodiment of the present invention is interposed in an electrode assembly
  • FIG. 5 is a plan view of FIG. 4.
  • At least one end 181 of the heat dissipation member 180 extends in an adjacent side direction of a surface where the electrode terminals 112 and 114 are located. Since one end portion 181 of the heat dissipation member 180 extends to the outside of the battery case 172, more efficient cooling is performed because heat generated inside the battery cell during charge / discharge is transferred to the outside through the heat dissipation member 180. can do.
  • FIG. 6 schematically illustrates one exemplary heat exchange member that may be used in the present invention, and schematically illustrates a battery pack structure in which the heat exchange member of FIG. 7 is connected to a heat radiating member according to an embodiment of the present invention. It is.
  • the battery pack 700 is stacked such that a plurality of battery cells 200 face in the lateral direction, and the heat dissipation member 181 exposed in the opposite direction of the electrode terminals 112 and 114. ), The heat exchange member 600 is located.
  • the heat exchange member 600 is connected to one end portion 181 of the heat dissipation member protruding to the outside of the battery cell, and is attached to the bottom surface of the one end 181 of the heat dissipation member, the bottom part 610 and the bottom part 610.
  • the heat dissipation fins 630 of the structure including the.
  • the coolant flow paths 621 and 622 are formed for the flow of the coolant, such as water, and the plurality of heat dissipation fins 630 have a predetermined distance (D) for the flow of air, so that the heat dissipation member 180 The heat transferred from) can be removed with high reliability and good cooling efficiency.
  • the battery cell according to the present invention is exposed to the outside of the electrode assembly in a state that the heat dissipation member for promoting heat dissipation of the battery is in contact with the inside of the electrode assembly and / or the outer surface of the electrode assembly, The generated heat can be effectively released to the outside, thereby improving the life characteristics of the battery.
  • the cooling structure can be simplified, and the safety of the battery module to the battery pack can be further improved.

Abstract

본 발명은 양극, 음극, 및 상기 양극과 음극 사이에 개재된 분리막 구조의 전극조립체 하나 이상이 전지케이스 내부에 장착되어 있고, 충방전 또는 단락 발생시 전극조립체의 내부에서 발생하는 열을 방열하기 위한 하나 이상의 방열부재가 상기 전극조립체의 내부 및/또는 전극조립체의 외면에 접촉된 상태로 장착되어 있으며, 상기 방열부재의 일부가 전극조립체의 외부로 노출되어 있는 것을 특징으로 하는 전지셀을 제공한다.

Description

냉각 효율성이 향상된 전지셀
본 발명은 냉각 효율성이 향상된 전지셀에 관한 것으로, 더욱 상세하게는, 양극, 음극, 및 상기 양극과 음극 사이에 개재된 분리막 구조의 전극조립체 하나 이상이 전지케이스 내부에 장착되어 있고, 충방전 또는 단락 발생시 전극조립체의 내부에서 발생하는 열을 방열하기 위한 하나 이상의 방열부재가 상기 전극조립체의 내부 및/또는 전극조립체의 외면에 접촉된 상태로 장착되어 있으며, 상기 방열부재의 일부가 전극조립체의 외부로 노출되어 있는 것을 특징으로 하는 전지셀에 관한 것이다.
최근, 충방전이 가능한 이차전지는 와이어리스 모바일 기기의 에너지원으로 광범위하게 사용되고 있다. 또한, 이차전지는 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(Plug-In HEV) 등의 동력원으로서도 주목받고 있다.
소형 모바일 기기들에는 디바이스 1 대당 하나 또는 두서너 개의 전지셀들이 사용됨에 반하여, 자동차 등과 같은 중대형 디바이스에는 고출력 대용량의 필요성으로 인해, 다수의 전지셀을 전기적으로 연결한 중대형 전지모듈이 사용된다.
중대형 전지모듈은 가능하면 작은 크기와 중량으로 제조되는 것이 바람직하므로, 높은 집적도로 충적될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지모듈의 전지셀(단위전지)로서 주로 사용되고 있다. 특히, 알루미늄 라미네이트 시트 등을 외장부재로 사용하는 파우치형 전지는 중량이 작고 제조비용이 낮으며 형태 변형이 용이하다는 등의 이점으로 인해 최근 많은 관심을 모으고 있다.
이러한 중대형 전지모듈을 구성하는 전지셀들은 충방전이 가능한 이차전지로 구성되어 있으며, 충방전 과정에서 전지의 내부 저항에 의한 발열로 전지 온도가 상승하게 된다. 특히, 방전시에는 전지 내부에서의 발열 반응열까지 더해지므로, 발열의 정도가 더욱 크고, 그에 따른 온도 상승은 더욱 커지게 된다. 전지의 온도가 상승하게 되면, 전지의 수명 특성이 나빠지고 부반응에 의한 가스 발생 등의 문제가 발생하게 되므로, 전지를 냉각하는 것이 중요한 요소로 작용하게 된다.
더욱이, 상기 전지모듈에 널리 사용되는 파우치형 전지의 라미네이트 시트는 열전도성이 낮은 고분자 물질로 표면이 코팅되어 있으므로, 전지셀 전체의 온도를 효과적으로 냉각시키기 어려운 실정이다.
특히, 전기자동차의 경우와 같이, 고출력을 내기 위하여 큰 전류를 사용하는 경우에는 전지의 발열이 더욱 크며, 충방전 과정에서 발생한 전지모듈의 열이 효과적으로 제거되지 못하면 열 축적이 발생하므로, 결과적으로 전지모듈의 열화를 촉진하며, 경우에 따라서는 발화 또는 폭발을 유발할 수 있다. 따라서, 고출력 대용량의 전지인 전지팩은 그것에 내장되어 있는 전지셀들을 냉각시키는 냉각 시스템이 필요하다.
또한, 최근 전지의 용량을 크게 하고 가격을 낮추기 위해서, 개별 전지의 용량이 커지고 있으며, 이에 따라 전지 발열의 문제도 심각해지고 있다.
상기와 같은 문제를 해결하기 위해, 비효율적인 직접 공냉 방식, 효율성은 향상되지만 비용이 많이 드는 방열판을 사용하는 간접 공냉 방식, 방열판 내에 수로를 만들어 냉각수를 흘려서 냉각하는 수냉 방식 등이 사용되어 왔다.
그러나, 전지의 외부에서 대류 또는 전도에 의한 열전달에 의존하는 방식은, 전지의 두께가 두꺼워지는 경우, 전지셀 내부의 중심에서 상승한 온도가 전지셀 외부에 있는 방열판으로의 온도 전달이 쉽지 않기 때문에, 전지셀 전체의 온도를 균일하게 냉각시킬 수 없다.
상기와 같은 문제를 해결하기 위해서는, 더욱 큰 비용으로 냉각 시스템을 만들어야 하며, 그로 인해 전지팩의 가격은 상승하는 문제점이 발생하게 된다.
또한, 침상 도체의 관통 등에 대한 내부 단락이 발생시, 온도 상승을 균일하게 억제할 수 없고, 외부 충격에 대한 전지의 강도도 낮으므로, 전지의 안전성 확보 측면에서도 한계가 있다.
따라서, 고출력 대용량의 전력을 제공하면서도 충방전 과정에서 생기는 발열을 효율적으로 냉각할 수 있고, 외부 충격, 침상 도체의 관통 등에 의한 내부 단락시, 보다 효율적인 방법에 따른 냉각과 안전성 및 수명 특성이 향상된 전지셀에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 다양한 실험과 심도있는 연구를 거듭한 끝에, 방열부재를 전극조립체 내부 및/또는 전극조립체 외면에 접촉시키고, 방열부재의 일부가 전극조립체 외부로 노출되도록 전지셀을 제조할 경우, 전극조립체 내부에서 발생하는 열을 효과적으로 외부로 방출할 수 있으며, 전지의 수명 특성을 향상시킬 수 있고, 비용 측면에서도 뛰어난 효과를 발휘하는 것을 확인하였다.
따라서, 본 발명의 목적은 전극조립체 내부에서 발생하는 열을 효과적으로 외부로 방출시킴에 따라 전지의 수명 특성을 향상시킬 수 있는 전지셀을 제공하는 것이다.
본 발명의 또 다른 목적은 침상 도체의 관통에 의한 내부 단락이 발생하더라도 열을 효과적으로 외부로 방출시킴에 따라 온도 상승을 최대한 억제하고, 외부 충격에 대한 전지의 강도가 뛰어난 전지셀을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 상기 전지셀을 사용하여 냉각 효율성을 극대화시킨 전지모듈 내지 전지팩을 제공하는 것이다
이러한 목적을 달성하기 위한 본 발명에 따른 전지셀은, 양극, 음극, 및 상기 양극과 음극 사이에 개재된 분리막 구조의 전극조립체 하나 이상이 전지케이스 내부에 장착되어 있고, 충방전 또는 단락 발생시 전극조립체의 내부에서 발생하는 열을 방열하기 위한 하나 이상의 방열부재가 상기 전극조립체의 내부 및/또는 전극조립체의 외면에 접촉된 상태로 장착되어 있으며, 상기 방열부재의 일부가 전극조립체의 외부로 노출되어 있는 것으로 구성되어 있다.
앞서 설명한 바와 같이, 본 발명에 따른 전지셀 내부에 포함되어 있는 방열부재는, 전지 내부에 직접 열전도가 가능한 금속 방열부재를 넣음으로써, 종래와 같이, 전지셀 외면에 의존하여 외부로 열을 전달하는 비효율적인 방식을 향상시킬 수 있다.
또한, 방열부재의 일부가 전극조립체에 포함됨으로써, 침상 도체의 관통에 따른 내부 단락의 발생시, 온도 상승을 최대한 억제하는 현저한 효과가 있고, 종래의 전지케이스에만 의존하는 전지셀 보다 전지의 강도도 향상시킬 수 있다. 이러한 효과들에 의해 전지의 안정성은 더욱 향상될 수 있다.
하나의 바람직한 예에서, 상기 방열부재는 전극조립체의 내부 및/또는 전극조립체의 외면에 보다 효과적으로 접촉된 상태를 유지하면서 장착될 수 있도록 판상형 구조로 이루어질 수 있다.
상기 전지케이스 수납부에 장착되는 전극조립체는, 다수의 전극 탭들을 연결하여 양극과 음극 및 그 사이에 개재되어 있는 분리막으로 이루어진 구조라면 특별히 제한되는 것은 아니며, 바람직하게는 권취형(젤리-롤), 스택형 또는 스택/폴딩형으로 이루어진 구조를 들 수 있다. 스택/폴딩형 구조의 전극조립체에 대한 자세한 내용은 본 출원인의 한국 특허출원공개 제2001-0082058호, 제2001-0082059호 및 제2001-0082060호에 개시되어 있으며, 상기 출원은 본 발명의 내용에 참조로서 합체된다.
젤리-롤의 경우, 바람직하게는, 그것의 권취 중심에 방열부재가 장착되어 있는 구조일 있다. 이러한 권취 중심에 대한 방열부재의 장착은 권취 과정에서 도입될 수도 있고, 맨드렐에 의한 권취 후, 상기 맨드렐을 제거한 뒤 방열부재를 대신 삽입할 수도 있다.
본 발명에 따른 전지셀은 경우에 따라서는 둘 이상의 전극조립체들을 포함할 수 있고, 이 경우, 방열부재는 바람직하게는 전극조립체들의 계면에 개재되어 있는 구조일 수 있다. 따라서, 상기 전극조립체들의 계면에 방열부재를 접촉시킴으로써, 충방전시 전지셀 내부에서 발생하는 열이 상기 방열부재를 경유하여 제거될 수 있고, 장착 과정은 매우 용이하다.
전지셀이 둘 이상의 젤리-롤을 포함하는 경우에는, 젤리-롤들 사이의 계면에 방열부재를 장착할 수 있음은 물론이다.
방열부재의 방열 효율은 전극조립체에 접하는 그것의 표면적에 의해 영향을 받으므로, 예를 들어, 방열부재의 두께는 전극조립체 전체 두께에 대해 약 0.1 내지 20%이고 크기는 전극조립체의 폭을 기준으로 50% 이상일 수 있다. 상기 방열부재의 크기가 너무 작은 경우에는 전지셀들의 열을 용이하게 전달하기 어렵고, 반대로 너무 큰 경우에는 전지셀의 전체 크기가 커지게 되므로, 바람직하지 않지만, 그것의 상기 크기가 상기 예시된 범위로 한정되지 않음은 물론이다.
앞서 설명한 바와 같이, 방열 효율성을 높이기 위하여 방열부재의 일부가 전극조립체의 외부로 노출되어 있는 바, 바람직한 노출 크기는 방열부재의 전체 크기를 기준으로 1 내지 50%, 바람직하게는 5 내지 40%, 더욱 바람직하게는 10 내지 30% 크기일 수 있다. 방열부재의 노출 크기는 전극조립체를 기준으로 설정될 수도 있는 바, 예를 들어, 평면상으로 전극조립체의 면적을 기준으로 2 내지 30% 크기일 수 있다.
하나의 바람직한 예에서, 상기 방열부재의 적어도 일측 단부가 전지케이스에 접촉되어 있는 구조일 수 있다. 방열부재의 일측 단부가 전지케이스에 접촉됨으로써, 내부에서 발생하는 열이 전지케이스를 통해 방열되므로, 효율적으로 방열이 될 수 있다.
이러한 구조는, 특히, 전지케이스로서 금속 소재로 이루어진 원통형의 금속 캔을 사용하는 원통형 전지셀과, 각형의 금속 캔을 사용하는 각형 전지셀에 더욱 바람직하다.
또 다른 바람직한 예에서, 상기 방열부재의 적어도 일측 단부가 전지케이스를 경유하여 전지케이스의 외부로 연장되어 있는 구조일 수 있다.
방열부재의 적어도 일측 단부가 전지케이스의 외부로 연장되어 있으므로, 충방전시 전지셀 내부에서 발생하는 열이 방열부재를 통해 외부로 전달되기 때문에 보다 효율적인 냉각을 할 수 있다. 이러한 구조는 특히 전지케이스가 열전도성이 다소 낮은 소재 내지 구조로 이루어진 경우에 더욱 바람직하다.
예를 들어, 전지케이스가 수지층 및 금속층을 포함하는 라미네이트 시트로 이루어져 있는 경우, 열전도성이 낮은 고분자 물질로 표면이 코팅되어 있으므로, 전지셀 전체의 온도를 효과적으로 냉각시키기 어려운 문제가 존재하였다. 반면에, 상기와 같이, 방열부재의 적어도 일측 단부가 전지케이스의 외부로 연장되어 있는 구조는 이러한 냉각 문제를 해결할 수 있다.
이 경우, 상기 라미네이트 시트는 방열부재의 적어도 일측 단부가 개재된 상태에서 열융착 될 수 있다. 구체적으로, 수지층 및 금속층을 포함하는 라미네이트 시트는, 하나의 구체적인 예에서 알루미늄 라미네이트 시트의 파우치형 케이스의 수납부에 전극조립체가 내장되어 있고, 방열부재의 적어도 일측 단부가 개재된 상태에서 상기 시트와 분리되어 있는 별도의 시트 또는 그로부터 연장되어 있는 시트를 열융착하여 밀봉하여 제조될 수 있다.
앞서 설명한 바와 같이, 전지케이스 외부로 노출된 방열부재의 부위는 그것의 적어도 일측 단부이므로, 예를 들어, 방열부재가 평면상으로 사각형인 경우, 그것의 1면 모서리, 2면 모서리들, 3면 모서리들, 또는 4면 모서리들이 노출된 구조일 수 있고, 각 모서리의 전부 또는 일부가 노출된 구조일 수도 있다.
바람직하게는, 상기 방열부재의 적어도 일측 단부는 전극단자가 위치하는 면의 대향면 또는 인접한 측면 방향으로 연장되어 있을 수 있다.
구체적으로, 전극조립체들의 계면에 개재된 방열부재들은 각각의 충방전을 위한 전극단자 반대방향으로 개재될 수도 있고, 충방전을 위한 전극단자들의 옆 방향으로 개재될 수도 있다. 이러한 구조에 의해 단락 가능성을 방지할 수 있다.
상기 방열 부재는 열전도성 소재라면 특별히 제한되는 것은 아니며, 예를 들어, 높은 열전도성의 금속 소재로 이루어질 수 있다.
전기케이스의 외부로 노출된 방열부재의 크기는 특별히 제한되지 않으며, 특히, 상기 방열부재의 냉각 특성을 극대화하기 위해 기타 부재 내지 장치를 방열부재에 부가하는 경우에는 전지셀 내부에 위치하는 방열부재의 부위 크기 이상으로 클 수 있다.
본 발명은 또한 상기 전지셀을 둘 이상 포함하는 전지모듈을 제공한다.
하나의 바람직한 예에서, 상기 전지모듈은 열교환 부재를 추가로 포함하고 있고, 전지셀의 외부로 돌출된 방열부재가 상기 열교환 부재에 접촉되어 있는 구조일 수 있다. 이러한 방열부재와 열교환 부재의 조합은 효율적인 열 전달을 가능하게 하며, 상기 접촉 방법은 용접이나, 기계적 체결 등으로 다양하게 이루어질 수 있다.
열교환 부재의 구조는 특별히 제한되지 않으며, 바람직하게는, 냉매의 유동을 위한 하나 또는 둘 이상의 유로가 형성되어 있는 구조일 수 있다. 예를 들어, 열교환 부재에 물 등과 같은 액상 냉매의 유동을 위한 냉매 유로를 형성함으로써, 종래의 공냉식 구조에 비해 높은 신뢰성으로 우수한 냉각 효과를 발휘할 수 있다.
구체적으로, 상기 열교환 부재는 방열부재에 밀착되어 있는 기저부, 상기 기저부에 연결되어 있고 냉매 유로가 길이방향으로 관통해 있는 양 측면부들, 및 상기 양 측면부들 사이에서 기저부로부터 상향 연장되어 있는 다수의 방열핀들을 포함하는 구조로 이루어질 수 있다.
따라서, 전지셀 내부에서 방열부재로 전달된 열이 기저의 하단면에 밀착되어 전도되고, 양 측면부들을 관통한 냉매 유로를 통한 수냉 및 상기 방열핀들로부터 소정의 공냉을 이룸으로써, 전지셀의 방열을 효과적으로 수행할 수 있다.
그러나, 상기 구조에서 공냉 만을 달성할 수 있도록 열교환 부재에서 냉매 유로 만이 제거된 구조도 가능함은 물론이다.
또한, 본 발명은 소망하는 출력 및 용량에 따라 하나 이상의 전지모듈을 조합하여 제조되는 전지팩과, 상기 전지팩을 포함하는 디바이스를 제공한다.
본 발명에 따른 디바이스는 고출력 대용량의 달성을 위해 다수의 전지팩을 포함함으로써, 충방전시 발생하는 고열의 안전성 측면에서 심각하게 대두되는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치 등의 전원에 바람직하게 사용될 수 있다.
특히, 장시간에 걸쳐 전지팩을 통한 높은 출력이 요구되는 전기자동차와 플러그-인 하이브리드 전기자동차의 경우, 높은 방열 특성이 요구되는 바, 그러한 측면에서 본 발명에 따른 전지팩은 전기자동차와 플러그-인 하이브리드 전기자동차에 더욱 바람직하게 사용될 수 있다.
앞서 설명한 전지모듈, 전지팩, 디바이스는 전지셀을 사용하는 당해 분야에서 그것의 구조 및 제작 방법이 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.
도 1은 본 발명의 하나의 실시예에 따른 방열부재가 전극조립체에 개재되어 있는 전지셀 내부의 모식도이다;
도 2는 본 발명의 또 다른 실시예에 따른 방열부재가 전극조립체에 개재되어 있는 전지셀 내부의 모식도이다;
도 3은 도 2의 평면도이다;
도 4는 본 발명의 또 다른 실시예에 따른 방열부재가 전극조립체에 개재되어 있는 전지셀 내부의 모식도이다;
도 5는 도 4의 평면도이다;
도 6은 하나의 예시적인 열교환 부재의 모식도이다;
도 7은 본 발명의 하나의 실시예에 따른 전지팩 구조의 모식도이다.
이하, 본 발명의 실시예에 따른 도면을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 1에는 본 발명의 하나의 실시예에 따른 방열부재가 전극조립체에 개재되어 있는 전지셀 내부의 모식적으로 도시되어 있다.
도 1을 참조하면, 전지셀(100)은 둘 이상의 전극조립체들(150, 160), 각각의 전극조립체들(150, 160)로부터 연장되어 있는 전극탭들(130, 140), 전극탭들(130, 140)에 용접되어 있는 전극리드(110), 전극조립체들(150, 160) 사이에 개재되어 있는 방열부재(180), 외면을 감싸고 있는 전지케이스(170) 등을 포함하고 있다. 전지케이스(170)는 각형의 금속 캔으로 이루어져 있다.
방열부재(180)는 그것의 적어도 일측 단부가 전극조립체들(150, 160)의 외면으로 노출되어 있다. 노출된 크기(ℓ)는 전극조립체들(150, 160) 전체 크기(L)을 기준으로 약 10% 정도의 크기이다.
더 나아가, 노출된 방열부재(180)는 전지케이스(170)의 내면에 접촉되어 있다. 이를 위해, 전극조립체들의 외면에 노출된 방열부재(180)의 일측 단부가 전지케이스(170)와의 접촉 면적을 넓히기 위하여 절곡된 형태로 구성되어 있다. 따라서, 방열부재(180)의 일측 단부가 전지케이스(170)에 접촉됨으로써, 내부에서 발생하는 열이 전지케이스(170)를 통해 방열이 되므로, 효율적으로 방열이 될 수 있다.
또한, 방열부재(180)가 전극조립체들 사이의 계면에 위치하고 있으므로, 전지셀 내부의 열이 방열부재(180)에 더욱 효율적으로 전도되어 방열부재(180)의 일측 단부를 통해 방열이 되는 구조로 이루어져 있다.
일반적으로, 전극조립체에서 발생한 열은 전지케이스를 통해 외부로 방출되므로, 전극조립체에서 열이 발생할 경우, 전극조립체의 내측의 온도가 외측의 온도보다 높게 형성된다. 따라서, 전지케이스 내에 2개의 전극조립체들을 수납하고, 전극조립체들 사이에 방열부를 개재함으로써, 전지케이스와 인접하지 않은 내측 부위의 열을 효과적으로 제거할 수 있는 구조를 형성하고 있다.
도 2에는 본 발명의 또 다른 실시예에 따른 방열부재가 전극조립체에 개재되어 있는 전지셀 내부가 모식적으로 도시되어 있고, 도 3에는 도 2의 평면도가 도시되어 있다.
도 2 및 도 3을 참조하면, 방열부재(180)의 일측 단부(181)는 전지케이스(172)의 외부로 연장되어 있다. 전지케이스(172)는 금속층과 수지층을 포함하는 라미네이트 시트로 이루어져 있고, 방열부재(180)가 개재된 상태에서 라미네이트 시트를 열융착하여 전지케이스(172) 외부로 일부 노출시킨 상태로 전지셀(200)를 구성한다. 전지케이스(172)에는, 예를 들어, 스택 또는 스택/폴딩형 전극조립체들(150, 160)이 수납되어 있다.
따라서, 충방전시 전지셀 내부에서 발생하는 열이 방열부재(180)를 통해 외부로 전달되기 때문에 보다 효율적인 냉각을 할 수 있다. 즉, 방열부재(180)의 일부가 전지케이스(170) 외부로 노출됨으로써, 정상적인 조건하에서의 충방전 발행하는 열 뿐만 아니라, 침상 관통 시험에서 내부 단락에 의해 온도가 급격히 상승하는 것을 크게 억제할 수 있다. 더 나아가, 전극조립체(150, 160)의 기계적 강도의 상승에 의해, 결과적으로 전지셀의 강성을 향상시킬 수 있다.
방열부재(180)의 일측 단부(181)는 전극단자(112, 114)가 위치하는 면의 대향면 방향으로 연장되어 있으므로, 단락을 방지할 수 있다.
도 4에는 본 발명의 또 다른 실시예에 따른 방열부재가 전극조립체에 개재되어 있는 전지셀 내부가 모식적으로 도시되어 있고, 도 5에는 도 4의 평면도가 도시되어 있다.
도 4 및 도 5를 참조하면, 방열부재(180)의 적어도 일측 단부(181)가 전극단자(112, 114)가 위치하는 면의 인접한 측면 방향으로 연장되어 있다. 방열부재(180)의 일측 단부(181)가 전지케이스(172)의 외부로 연장되어 있으므로, 충방전시 전지셀 내부에서 발생하는 열이 방열부재(180)를 통하여 외부로 전달되기 때문에 보다 효율적인 냉각을 할 수 있다.
도 6에는 본 발명에 사용될 수 있는 하나의 예시적인 열교환 부재가 모식적으로 도시되어 있고, 본 발명의 하나의 실시예에 따라 도 7의 열교환 부재가 방열부재에 연결된 전지팩 구조가 모식적으로 도시되어 있다.
도 6 및 7을 참조하면, 전지팩(700)은 다수의 전지셀들(200)이 측면 방향으로 대면하도록 적층되어 있고, 전극단자들(112, 114)의 대향 방향으로 노출된 방열부재(181)에 열교환 부재(600)이 위치하고 있다.
열교환 부재(600)는, 전지셀의 외부로 돌출된 방열 부재의 일측 단부(181)와 연결되고, 방열부재의 일측 단부(181)의 하단면에 밀착되어 있는 기저부(610), 기저부(610)에 연결되어 있으며 냉매 유로(621, 622)가 길이 방향으로 관통되어 있는 양 측면부들(620, 620’), 및 양 측면부들(620, 620’) 사이에서 기저부(610)로부터 상향 연장되어 있는 다수의 방열핀들(630)을 포함하는 구조로 이루어져 있다.
따라서, 물과 같은 냉매의 유동을 위한 냉매 유로(621, 622)가 형성되어 있고, 다수의 방열핀들(630)은 공기의 유동을 위해 소정의 이격 간격(D)을 가지고 있으므로, 방열부재(180)로부터 전달된 열을 높은 신뢰성과 우수한 냉각 효율성으로 제거할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지셀은 전지의 방열을 촉진하기 위한 방열부재가 전극조립체 내부 및/또는 전극조립체의 외면에 접촉된 상태로 전극조립체 외부로 노출되어 있으므로, 전지셀 내부에서 발생하는 열을 효과적으로 외부로 방출할 수 있으며, 그에 따라 전지의 수명 특성을 향상시킬 수 있다.
바람직하게는 전지셀의 외부로 돌출된 방열부재가 열교환 부재에 접촉되어 있음으로써, 냉각 구조를 단순화 시킬 수 있으며, 전지모듈 내지 전지팩의 안전성을 더욱 향상시킬 수 있다.

Claims (20)

  1. 양극, 음극, 및 상기 양극과 음극 사이에 개재된 분리막 구조의 전극조립체 하나 이상이 전지케이스 내부에 장착되어 있고, 충방전 또는 단락 발생시 전극조립체의 내부에서 발생하는 열을 방열하기 위한 하나 이상의 방열부재가 상기 전극조립체의 내부 및/또는 전극조립체의 외면에 접촉된 상태로 장착되어 있으며, 상기 방열부재의 일부가 전극조립체의 외부로 노출되어 있는 것을 특징으로 하는 전지셀.
  2. 제 1 항에 있어서, 상기 방열부재는 판상형 구조로 이루어진 것을 특징으로 하는 전지셀.
  3. 제 1 항에 있어서, 상기 전극조립체는 권취형 구조(젤리-롤)로 이루어진 것을 특징으로 하는 전지셀.
  4. 제 1 항에 있어서, 상기 전극조립체는 스택형 또는 스택/폴딩형 구조로 이루어진 것을 특징으로 하는 전지셀.
  5. 제 3 항에 있어서, 상기 젤리-롤의 권취 중심에 방열부재가 장착되어 있는 것을 특징으로 하는 전지셀.
  6. 제 1 항에 있어서, 상기 전지셀은 둘 이상의 전극조립체들을 포함하고 있고, 상기 전극조립체들의 계면에 방열부재가 개재되어 있는 것을 특징으로 하는 전지셀.
  7. 제 1 항에 있어서, 상기 방열부재의 적어도 일측 단부가 전지케이스에 접촉되어 있는 것을 특징으로 하는 전지셀.
  8. 제 7 항에 있어서, 상기 전지케이스는 금속 소재의 원통형 또는 각형 케이스인 것을 특징으로 하는 전지셀.
  9. 제 1 항에 있어서, 상기 방열부재의 적어도 일측 단부가 전지케이스의 외부로 연장되어 있는 것을 특징으로 하는 전지셀.
  10. 제 9 항에 있어서, 상기 전지케이스는 수지층 및 금속층을 포함하는 라미네이트 시트로 이루어져 있고, 상기 라미네이트 시트는 방열부재의 적어도 일측 단부가 개재된 상태에서 열융착되는 것을 특징으로 하는 전지셀.
  11. 제 9 항에 있어서, 상기 방열부재의 적어도 일측 단부는 전극단자가 위치하는 면의 대향면 또는 인접한 측면 방향으로 연장되어 있는 것을 특징으로 하는 전지셀.
  12. 제 1 항에 있어서, 상기 방열 부재는 열전도성 소재로 이루어지는 것 특징으로 하는 전지셀.
  13. 제 1 항에 있어서, 상기 방열 부재는 금속 소재로 이루어지는 것을 특징으로 하는 전지셀.
  14. 제 1 항 내지 제 13 항 중 어느 하나에 따른 전지셀이 둘 이상 포함되어 있는 것을 특징으로 하는 전지모듈.
  15. 제 14 항에 있어서, 상기 전지모듈은 열교환 부재는 포함하고 있고, 전지셀의 외부로 돌출된 방열부재가 상기 열교환 부재에 접촉되어 있는 것을 특징으로 하는 전지모듈.
  16. 제 15 항에 있어서, 상기 열교환 부재에는 냉매의 유동을 위한 하나 또는 둘 이상의 유로가 형성되어 있는 것을 특징으로 하는 전지모듈.
  17. 제 16 항에 있어서, 상기 열교환 부재는 방열부재에 밀착되어 있는 기저부, 상기 기저부에 연결되어 있고 냉매 유로가 길이방향으로 관통해 있는 양 측면부들, 및 상기 양 측면부들 사이에서 기저부로부터 상향 연장되어 있는 다수의 방열핀들을 포함하는 구조로 이루어지는 것을 특징으로 하는 전지모듈.
  18. 출력 및 용량에 대응하여 제 14 항에 따른 전지모듈을 하나 이상을 포함하고 있는 전지팩.
  19. 제 18 항에 따른 전지팩을 포함하고 있는 디바이스.
  20. 제 19 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장장치인 것을 특징으로 하는 디바이스.
PCT/KR2013/005163 2012-06-12 2013-06-12 냉각 효율성이 향상된 전지셀 WO2013187685A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13804675.0A EP2840644A4 (en) 2012-06-12 2013-06-12 BATTERY CELL WITH ENHANCED COOLING EFFICIENCY
CN201380027697.5A CN104321926B (zh) 2012-06-12 2013-06-12 具有提高的冷却效率的电池单元
JP2015513953A JP2015522912A (ja) 2012-06-12 2013-06-12 冷却効率性が向上した電池セル
US14/540,799 US9214705B2 (en) 2012-06-12 2014-11-13 Battery cell of improved cooling efficiency
US14/935,635 US9865904B2 (en) 2012-06-12 2015-11-09 Battery cell of improved cooling efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120062397A KR101571774B1 (ko) 2012-06-12 2012-06-12 냉각 효율성이 향상된 전지셀
KR10-2012-0062397 2012-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/540,799 Continuation US9214705B2 (en) 2012-06-12 2014-11-13 Battery cell of improved cooling efficiency

Publications (1)

Publication Number Publication Date
WO2013187685A1 true WO2013187685A1 (ko) 2013-12-19

Family

ID=49758452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005163 WO2013187685A1 (ko) 2012-06-12 2013-06-12 냉각 효율성이 향상된 전지셀

Country Status (6)

Country Link
US (2) US9214705B2 (ko)
EP (1) EP2840644A4 (ko)
JP (1) JP2015522912A (ko)
KR (1) KR101571774B1 (ko)
CN (1) CN104321926B (ko)
WO (1) WO2013187685A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029624A (ja) * 2014-07-25 2016-03-03 日立オートモティブシステムズ株式会社 電池ブロックおよび電池モジュール
US20160164149A1 (en) * 2014-12-03 2016-06-09 K2 Energy Solutions, Inc. Long Cycle Life Prismatic Battery Cell for High Power Applications
CN106299544A (zh) * 2016-10-21 2017-01-04 法乐第(北京)网络科技有限公司 电池模组和电池包
CN109560344A (zh) * 2018-02-07 2019-04-02 骆驼集团武汉光谷研发中心有限公司 一种耐压柔性液冷散热片
JP2020149931A (ja) * 2019-03-15 2020-09-17 ビークルエナジージャパン株式会社 電池パック
CN109560344B (zh) * 2018-02-07 2024-05-03 骆驼集团武汉光谷研发中心有限公司 一种耐压柔性液冷散热片

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916882B (zh) * 2015-07-07 2017-12-12 张燎源 手机散热锂电池
KR102092267B1 (ko) * 2015-07-20 2020-03-23 주식회사 엘지화학 배터리 모듈, 배터리 모듈을 포함하는 배터리 팩 및 배터리 팩을 포함하는 자동차
CN106299543B (zh) * 2016-10-21 2018-12-28 江苏理工学院 一种石墨烯电池组热管理系统
KR102258174B1 (ko) * 2017-04-26 2021-05-28 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR102308017B1 (ko) * 2017-12-01 2021-09-30 주식회사 엘지에너지솔루션 열전도성 수지로 채워진 중공을 가지는 이차전지
KR102528575B1 (ko) 2018-11-20 2023-05-04 주식회사 엘지에너지솔루션 이차전지
JP7136708B2 (ja) * 2019-01-16 2022-09-13 本田技研工業株式会社 全固体電池セル
US10903537B2 (en) 2019-01-31 2021-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Optimized heat conducting member for battery cell thermal management
KR20200115824A (ko) * 2019-03-27 2020-10-08 현대자동차주식회사 차량용 배터리 냉각 시스템
CN110492119A (zh) * 2019-08-14 2019-11-22 润远建设发展有限公司 一种散热性能好的防爆型锂电池
DE102020006268A1 (de) 2020-10-12 2022-04-14 Daimler Ag Galvanische Zelle für eine Batterie
CN114552046A (zh) * 2020-11-20 2022-05-27 北京小米移动软件有限公司 一种锂离子电池及电子设备
CN115347306A (zh) * 2021-05-14 2022-11-15 中创新航科技股份有限公司 电池及电池组
KR20230119472A (ko) * 2022-02-07 2023-08-16 주식회사 엘지에너지솔루션 발화억제 구조의 리튬이차전지
DE102022105602A1 (de) 2022-03-10 2023-09-14 Volkswagen Aktiengesellschaft Batterie mit Wärmeleiter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20110030225A (ko) * 2009-09-17 2011-03-23 주식회사 엘지화학 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
KR20110063007A (ko) * 2009-12-04 2011-06-10 주식회사 엘지화학 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
KR20110112716A (ko) * 2010-04-07 2011-10-13 주식회사 이아이지 이차전지 모듈
KR20110126764A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
KR20120006136A (ko) * 2010-07-12 2012-01-18 주식회사 엘지화학 냉각 설계 신뢰성이 향상된 냉각부재와 이를 포함하는 전지모듈

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079572B2 (ja) * 2000-04-14 2008-04-23 松下電器産業株式会社 電池パック
JP4543710B2 (ja) * 2004-03-11 2010-09-15 日産自動車株式会社 組電池
KR100649561B1 (ko) * 2004-09-21 2006-11-24 삼성에스디아이 주식회사 케이스와 이차전지 및 전지 모듈
KR100648698B1 (ko) * 2005-03-25 2006-11-23 삼성에스디아이 주식회사 이차 전지 모듈
JP4923679B2 (ja) * 2006-03-31 2012-04-25 トヨタ自動車株式会社 積層型電池
JP5061502B2 (ja) * 2006-05-20 2012-10-31 日産自動車株式会社 電池構造体
KR100910624B1 (ko) * 2006-07-28 2009-08-05 주식회사 엘지화학 중첩식 이차전지
KR100870355B1 (ko) * 2007-07-19 2008-11-25 삼성에스디아이 주식회사 파우치형 전지팩
KR100998845B1 (ko) * 2007-11-09 2010-12-08 주식회사 엘지화학 방열특성의 전지모듈, 열교환 부재 및 이를 이용하는 중대형 전지팩
KR101095346B1 (ko) 2008-12-12 2011-12-16 주식회사 엘지화학 우수한 방열 특성의 전지모듈 및 중대형 전지팩
JP2010287487A (ja) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd 二次電池
KR20110012716A (ko) 2009-07-31 2011-02-09 주식회사 한진중공업 시운전 정보 관리 장치 및 방법
KR101093890B1 (ko) * 2010-01-12 2011-12-13 삼성에스디아이 주식회사 이차전지
KR101073010B1 (ko) * 2010-04-19 2011-10-12 삼성에스디아이 주식회사 이차 전지
DE102010021908A1 (de) * 2010-05-28 2011-12-01 Li-Tec Battery Gmbh Elektroenergiespeicherzelle und -vorrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010082058A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기 화학 셀
KR20010082059A (ko) 2000-02-08 2001-08-29 성재갑 중첩 전기화학 셀 및 그의 제조 방법
KR20010082060A (ko) 2000-02-08 2001-08-29 성재갑 다중 중첩 전기화학 셀 및 그의 제조방법
KR20110030225A (ko) * 2009-09-17 2011-03-23 주식회사 엘지화학 신규한 구조의 방열부재를 포함하는 전지모듈 및 중대형 전지팩
KR20110063007A (ko) * 2009-12-04 2011-06-10 주식회사 엘지화학 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
KR20110112716A (ko) * 2010-04-07 2011-10-13 주식회사 이아이지 이차전지 모듈
KR20110126764A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
KR20120006136A (ko) * 2010-07-12 2012-01-18 주식회사 엘지화학 냉각 설계 신뢰성이 향상된 냉각부재와 이를 포함하는 전지모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840644A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029624A (ja) * 2014-07-25 2016-03-03 日立オートモティブシステムズ株式会社 電池ブロックおよび電池モジュール
US20160164149A1 (en) * 2014-12-03 2016-06-09 K2 Energy Solutions, Inc. Long Cycle Life Prismatic Battery Cell for High Power Applications
US10651517B2 (en) * 2014-12-03 2020-05-12 K2 Energy Solutions, Inc. Long cycle life prismatic battery cell for high power applications
CN106299544A (zh) * 2016-10-21 2017-01-04 法乐第(北京)网络科技有限公司 电池模组和电池包
CN109560344A (zh) * 2018-02-07 2019-04-02 骆驼集团武汉光谷研发中心有限公司 一种耐压柔性液冷散热片
CN109560344B (zh) * 2018-02-07 2024-05-03 骆驼集团武汉光谷研发中心有限公司 一种耐压柔性液冷散热片
JP2020149931A (ja) * 2019-03-15 2020-09-17 ビークルエナジージャパン株式会社 電池パック
JP7053524B2 (ja) 2019-03-15 2022-04-12 ビークルエナジージャパン株式会社 電池パック

Also Published As

Publication number Publication date
US9865904B2 (en) 2018-01-09
CN104321926A (zh) 2015-01-28
US9214705B2 (en) 2015-12-15
CN104321926B (zh) 2018-01-12
KR101571774B1 (ko) 2015-11-25
US20160064782A1 (en) 2016-03-03
EP2840644A1 (en) 2015-02-25
JP2015522912A (ja) 2015-08-06
KR20130138893A (ko) 2013-12-20
US20150072191A1 (en) 2015-03-12
EP2840644A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2013187685A1 (ko) 냉각 효율성이 향상된 전지셀
WO2018186566A1 (ko) 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2012023753A2 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
CN104285315B (zh) 具有高效冷却结构的电池模块
WO2013111959A1 (ko) 신규한 구조의 전지모듈
WO2011145830A2 (ko) 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
WO2015182909A1 (ko) 수냉식 냉각구조를 포함하는 전지모듈
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2014010842A1 (ko) 간접 공냉 구조를 포함하는 전지모듈
WO2011145831A2 (ko) 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
WO2017043889A1 (ko) 냉각 성능이 개선된 배터리 모듈
WO2013183945A1 (ko) 안정성이 향상된 구조 및 높은 냉각 효율성을 갖는 전지모듈
WO2014035160A1 (ko) 배터리 모듈
WO2017095003A1 (ko) 그립핑부가 구비되어 있는 카트리지를 포함하고 있는 전지모듈
WO2019107795A1 (ko) 배터리 팩
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2010067943A1 (en) Battery module having excellent heat dissipation ability and battery pack employed with the same
WO2015016557A1 (ko) 냉매 유로를 포함하는 전지모듈 어셈블리
WO2011013905A2 (ko) 냉각 효율성이 향상된 전지모듈
WO2013168989A1 (en) Secondary battery module having through type cool channel
WO2013089468A1 (ko) 신뢰성이 향상된 전지모듈 어셈블리 및 이를 포함하는 중대형 전지팩
WO2012102496A2 (ko) 조립 생산성이 향상된 냉각부재와 이를 포함하는 전지모듈
WO2010050697A2 (ko) 전지 카트리지와 이를 포함하는 전지모듈
WO2015126204A1 (ko) 냉각 효율이 향상된 자동차용 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013804675

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015513953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE