WO2018080182A1 - 전지 모듈 - Google Patents

전지 모듈 Download PDF

Info

Publication number
WO2018080182A1
WO2018080182A1 PCT/KR2017/011884 KR2017011884W WO2018080182A1 WO 2018080182 A1 WO2018080182 A1 WO 2018080182A1 KR 2017011884 W KR2017011884 W KR 2017011884W WO 2018080182 A1 WO2018080182 A1 WO 2018080182A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
path plate
battery module
cooling
cooling channel
Prior art date
Application number
PCT/KR2017/011884
Other languages
English (en)
French (fr)
Inventor
쉬미도퍼크리스토프
라스헬무트
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP16195786.5A external-priority patent/EP3316340B1/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201780066216.XA priority Critical patent/CN109891666B/zh
Priority to US16/342,501 priority patent/US20190260102A1/en
Publication of WO2018080182A1 publication Critical patent/WO2018080182A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module having a cooling device and an automobile including the battery module.
  • a rechargeable battery is different from a primary battery that only reversibly converts electrical energy from chemical energy in that charging and discharging may be repeatedly performed.
  • Low-capacity secondary batteries are used as power sources for small electronic devices such as mobile phones, notebook computers, and camcorders, and high-capacity secondary batteries are used as power sources for driving motors such as hybrid cars.
  • a secondary battery in general, includes an electrode assembly including a positive electrode and a negative electrode, and a separator interposed between the positive electrode and the negative electrode, a case housing the electrode assembly, and an electrode terminal electrically connected to the electrode assembly.
  • the case may be made to be modified to suit the purpose of use, such as cylindrical or rectangular.
  • the electrolyte is injected into the case, and the secondary battery performs charging and discharging through an electrochemical reaction between the positive electrode, the negative electrode, and the electrolyte.
  • the secondary battery may be used as a battery module in which a plurality of unit cells are connected in series and / or in parallel so as to drive a motor of a hybrid vehicle requiring high energy density. That is, the battery module is configured by connecting the positive terminals of the plurality of battery cells to each other, and by connecting the electrode terminals of the plurality of unit batteries corresponding to the required amount of power to each other, a secondary battery having a high output for driving the motor of an electric vehicle, etc. Can be implemented.
  • the battery thermal management system can cool the secondary battery by efficiently generating, releasing, and / or dissipating heat generated from the secondary battery for safe use of the battery module. If the heat generated by the battery is not sufficiently generated, released, and / or dissipated, temperature variations between the battery cells may occur, which may prevent one or more battery modules from generating the desired amount of power. In addition, increasing the internal temperature of the secondary battery leads to an internal abnormal reaction, thereby deteriorating the charge / discharge performance of the secondary battery and shortening the life of the secondary battery.
  • cooling devices well known in the art efficiently heat, release, and / or dissipate heat generated in a cell.
  • One well known cooling device is a cooling plate sandwiched between neighboring battery cells.
  • Such cooling plates generally comprise a closed face with cooling passages for the refrigerant to flow through.
  • the cooling plate usually has a structure in which a cooling passage is located only on one surface of the cooling plate, so that both surfaces of the battery cell may be unevenly cooled to lower cooling efficiency.
  • the present invention can solve or reduce the above disadvantages, and in particular provides a battery module having improved cooling efficiency.
  • a plurality of secondary battery cells arranged in a row, a first cooling channel and a second cooling channel arranged on one side of a row, and refrigerant from the first cooling channel toward the second cooling channel
  • a flow path plate disposed between the adjacent battery cells forming a cooling passage to flow, wherein the flow path plate is an outlet of the plate communicating with the second cooling channel at an inlet of the plate in communication with the first cooling channel.
  • the guide member includes a plurality of curved ribs and a plurality of circular members connected by a network connection structure.
  • the present invention provides the battery module having the cooling plate in order to increase the cooling efficiency.
  • the curved rib and the circular member turn the direction of the refrigerant flow to generate turbulence. This turbulence minimizes airflow while providing maximum linear velocity at the surface. Therefore, turbulence generated around the curved ribs and the circular member may increase cooling performance.
  • the plurality of curved ribs and the plurality of circular members are connected through the mesh support having a network connection structure, and an opening may be located between the curved ribs and the circular member. Accordingly, the cooling passages for allowing the refrigerant to flow through the guide member may be shared by both adjacent battery cells evenly. Both front and rear surfaces of each of the battery cells may be uniformly cooled to increase cooling efficiency.
  • the plurality of curved ribs and the plurality of circular members can provide a long cooling path, which can also increase the cooling efficiency. Furthermore, it is possible to provide a stable structure with a low material consumption to make the mesh support.
  • the guide member may further include a center pin to extend from the center of the plate to a portion of the plate between the inlet and the outlet.
  • the central fin can provide mechanical stability to the network structure of the cooling plate.
  • the center pin may have a first length
  • the plate may have a second length from the inlet and extend toward the opposite side of the plate, and the ratio of the second length to the first length is 1: 2. To 1: 3. If you have this range, you can optimize the stability.
  • the center pin may have a rounded tip, and the circular member may be installed in close proximity to the inlet of the plate.
  • Such a structure can increase the turbulence in the refrigerant flow to increase the cooling efficiency.
  • the inlet and outlet may be disposed on the long side of the plate. Accordingly, the cooling path can be long.
  • the battery module may include the housing, and the first and second cooling channels may be located at the bottom of the housing. This can increase the cooling efficiency because the bottom of the battery cell can be cooled by the refrigerant.
  • the battery cell and the flow path plate may be square, and the guide member extends from the side in which the injection hole and the discharge port are divided by dividing the flow path plate into two parts having the same contour. It can be formed symmetrically with respect to the axis to be. Due to this symmetrical arrangement of the guide members, the length of the cooling path of one of the two parts of the flow path plate is equal to the length of the cooling path of the other of the two parts of the plate. Therefore, the cooling efficiency can be improved by evenly distributing the refrigerant on the surface of the plate.
  • the battery module may further include a frame surrounding the guide member. Accordingly, the stability of the cooling plate can be improved.
  • the upper portion of the flow path plate may be sealed by a sealing member.
  • This can seal the cooling plate from the exhaust gas region provided in the battery cell or the battery module, thereby improving thermal stability.
  • the sealing member is preferably made of a non-conductive resin member or a steel plate.
  • the battery module may include a plurality of the secondary battery cells arranged side by side in a matrix, and the flow path plate may be installed between neighboring battery cells arranged in a column direction. .
  • Such a structure can reduce the volume of the battery module and simplify the process of the battery module.
  • the battery module according to another aspect of the present invention provides an automobile including the battery module as described above.
  • a cooling passage having a long cooling path and creating turbulence may provide a battery module having high cooling efficiency, as two adjacent battery cells are shared.
  • FIG. 1 is a perspective view of a battery module.
  • FIG. 2 is a schematic perspective view of a battery cell according to an embodiment of the present invention.
  • FIG 3 is a schematic cross-sectional view of a battery module using an active air cooling method according to an embodiment of the present invention.
  • FIG. 4 is a schematic perspective view of a housing supporting an active air cooling method according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a flow path plate according to an embodiment of the present invention.
  • FIG. 6 is a schematic perspective view of a flow path plate connected to a battery cell according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a battery module having a flow path plate according to another embodiment of the present invention.
  • first and second are used to describe various components, but the components are not limited thereto. The expression is used only to distinguish one component from another component.
  • first component may be referred to as a second component, and likewise, the second component may be referred to as a first component without departing from the present invention.
  • region or component when referring to one film, region or component being “on” or “top” of another film, region or component, it may be provided directly on the other film, region or component. Or may be interposed with another film, region or component.
  • one component or layer When one component or layer is expressed as “on”, “connected” or “combined” with another component or layer, it may be directly connected to another component or layer, or at least one or more between the components. There may be another intervening component or layer. In addition, one component or layer may be uniquely present between two other components or layers, or at least one intermediate component or layer may be interposed therebetween.
  • one embodiment of a general battery module 100 includes a plurality of battery cells 10 aligned in one direction.
  • the pair of end plates 18 face the wide surface of the battery cells 10 outside of the battery cells 10, and the connection plate 19 connects the pair of end plates 18 to each other to form a plurality of battery cells. And 10 to secure together.
  • the fastening portions 18a formed at both sides of the battery module 100 are fixed to the support plate 31 by bolts 40.
  • the support plate 31 is part of the housing 30.
  • the battery module 100 includes a bus bar 15 for electrically connecting the positive terminal 11 and the negative terminal 12 of the adjacent battery cell 10, and the bus bar 15 may be connected to a nut 16 or the like. Can be fixed with
  • each battery cell 10 is a square (or square) cell, and a wide plane of cells may be stacked together to form the battery module 100.
  • the battery case 18 is sealed by the cap assembly 14.
  • the cap assembly 14 has a positive terminal 11, a negative terminal 12, and a vent 13 having different polarities.
  • the vent 13, which is a safety means of the battery cell 10 serves as a passage to discharge the gas generated in the battery cell 10 to the outside.
  • electrode terminals 11 and 12 of battery cells 10 adjacent to each other are electrically connected to each other via a bus bar 15. Therefore, the battery module 100 may be used as a power supply by electrically connecting a plurality of battery cells 10 in a bundle.
  • FIG. 3 is a schematic perspective view of a battery module 100 according to an embodiment of the present invention
  • FIG. 4 is a schematic perspective view of a housing 3 according to an embodiment of the present invention.
  • the plurality of aligned battery cells 10 are disposed along one row, and the flow path plate 50 is disposed between adjacent battery cells 10.
  • the battery module 100 further includes a first cooling channel 20 and a second cooling channel 40 that are aligned on the same side in a row.
  • the refrigerant flows into the inlet 20a of the first cooling channel 20 and flows to the outlet 40a of the second cooling channel 40.
  • the refrigerant flows into the flow path plate 50 from the first cooling channel 20 and flows into the second cooling channel 40 from the flow path plate 50. Therefore, the flow path plate 50 forms a cooling passage for the refrigerant to flow from the inlet 20a of the first cooling channel 20 to the outlet 40a of the second cooling channel 40.
  • the flow path plate 50 is disposed between the battery cells 10 to cool the battery cells 10 while the refrigerant passes therethrough.
  • the refrigerant may be air, but is not limited thereto.
  • the battery module 100 may further include a housing 30 and a support plate 31 surrounding the battery module 100. As shown in FIG. 4, the first cooling channel 20 and the second cooling channel 40 may be located at the bottom of the housing 30. Accordingly, the bottom of the battery cell 10 may also be cooled by the refrigerant.
  • the flow path plate 50 includes an inlet 51 and an outlet 52 of the refrigerant.
  • the inlet 51 of the flow path plate 50 communicates with the first cooling channel 20 through a gap between the battery cell 10 and the flow path plate 50. Accordingly, the refrigerant flows from the first cooling channel 20 to the flow path plate 50 through the injection hole 51.
  • the refrigerant flowing through the inlet 51 of the flow path plate 50 is guided by the guide member formed on the flow path plate 50 and flows toward the discharge port 52 of the flow path plate 50.
  • the outlet 52 of the flow path plate 50 communicates with the second cooling channel 40 through a gap between the battery cell 10 and the flow path plate 50. Therefore, the refrigerant flows from the outlet 52 of the flow path plate 50 toward the second cooling channel 40.
  • the flow path plate 50 of the present invention may further include a side protrusion 53 and a lower support part 54 connected to the battery cell 10.
  • the side protrusion 53 may be connected to the battery cell 10 by a hinge structure, and the lower support portion 54 may be welded to the support plate 31 of the housing 30.
  • the present invention is not limited thereto.
  • the inlet 51 and outlet 52 of the flow path plate 50 may be disposed on the long side portion of the rectangular flow path plate 50.
  • the length of the long side portion of the flow path plate 50 is longer than the length of the other two sides of the flow path plate 50.
  • the present invention is not limited thereto.
  • the inlet 51 and outlet 52 of the flow path plate 50 may be disposed at any position that can communicate with the first cooling channel 20 and the second cooling channel 40, respectively.
  • the guide member of the flow path plate 50 of the present invention includes a plurality of curved ribs 62 and a plurality of circular members 63.
  • the curved ribs 62 and the circular member 63 cause turbulence by rotating the refrigerant flow. As is well known, turbulence increases cooling performance. Therefore, ribs and circular members having various structures may be applied to the flow path plate 50 of the present invention to enable the flow of the refrigerant.
  • the circular member 63 may be implemented as a circular disk or an elliptical disk.
  • the circular member 63 may be installed in close proximity to the inlet 51 and / or outlet 52 of the flow path plate (50). This also can increase the cooling efficiency.
  • the plurality of curved ribs 62 and the plurality of circular members 63 are connected through the mesh support 61.
  • the expression "net” means a structure having a connection portion connecting one opening portion and another opening portion to each other.
  • the cooling water passage through which the refrigerant flows may be shared by the neighboring battery cells 10, and may cool the front and rear surfaces of the respective battery cells 10.
  • the battery module 100 may include a frame 55 surrounding the guide member, and the guide member may include a center pin 64.
  • the frame 55 and the center pin 64 provide mechanical stability to the network connection structure of the flow path plate 50.
  • the center pin 64 extends from the bottom of the flow path plate 50 toward the center of the flow path plate 50.
  • the center pin 64 increases mechanical stability and preferably extends from the midpoint of the bottom of the flow path plate 50 to ensure uniform flow of refrigerant within the flow path plate 50, but the invention is not so limited.
  • the center pin 64 may extend from another point between the inlet 51 and the outlet 52 of the channel plate 50 as long as it can stably support the channel plate 50.
  • the length of the center pin 64 is determined not only to increase the stability of the flow path plate 50 but also to ensure a uniform refrigerant distribution.
  • the length of the center pin 64 versus the bottom length of the flow path plate 50 is preferably selected to have a range of 1: 2 to 1: 3.
  • the center pin 64 may include a rounded tip 65. This round tip 65 can also create turbulence.
  • the guide member may be arranged so as to be symmetrical with respect to an axis extending from the side in which the inlet 51 and the outlet 52 are arranged by dividing the flow path plate 50 into two parts having the same contour. Due to the symmetrical arrangement of the guide members, the length of the cooling path of one of the two parts of the flow path plate 50 is equal to the length of the cooling path of the other part of the two parts of the flow path plate 50. Accordingly, a uniform distribution of the refrigerant flow on the surface of the flow path plate 50 may be ensured to increase the cooling efficiency.
  • FIG. 6 is a schematic perspective view of a flow path plate 50 connected to a battery cell 10 according to an embodiment of the present invention.
  • the upper portion of the flow path plate 50 may be sealed by the sealing member 70 (see FIG. 7).
  • the upper part of the flow path plate 50 may be a side facing the side (lower side) of the flow path plate 50 in which the injection port 51 and the discharge port 52 are disposed.
  • the battery cell 10 includes a vent 13, which is a safety means that serves as a passage for discharging the gas generated in the battery cell 10 to the outside of the battery cell 10.
  • the discharged gas usually flows through the exhaust gas region, which may be provided in the housing 30 of the battery cell 10 and / or in the busbar 15 connecting the plurality of battery cells 10 together. have.
  • the flow path plate 50 is sealed from the exhaust gas region by the sealing member 70, thereby improving the stability to heat.
  • the sealing member 70 may be a non-conductive resin member or a steel plate, but the present invention is not limited thereto.
  • FIG. 7 illustrates a cross-sectional view of a battery module 100 having a flow path plate 50 according to another embodiment of the present invention.
  • the flow path plate 50 is provided between adjacent battery cells 10 arranged in rows.
  • the upper portion of the flow path plate 50 may be sealed by the sealing member 70, and the exhaust gas region may be formed at a portion of the bus bar carrier 17 provided with a bus bar connecting two battery cells 10. 80) may be provided.
  • the secondary battery cell 10 may rupture when subjected to high thermal stress, and may generate a significant amount of flammable and harmful gases. For automotive applications, provision should be made to prevent gas from entering the vehicle's boarding area.
  • the cooling system provides a closed exhaust gas region from the cooling channels 20, 40 over the battery cells.
  • the cooling passages having a long cooling path and causing turbulence are shared equally by two adjacent battery cells.
  • a battery module having high cooling efficiency is provided.
  • the cooling passages symmetrically arranged on the flow path plate the flow of refrigerant is evenly distributed in the flow path plate 50.
  • vent 55 frame
  • busbar 61 net support
  • first and second cooling channels 62 ribs
  • housing 63 circular member

Abstract

본 발명은 일렬로 정렬된 다수의 이차 전지 셀과, 상기 열의 일측에 정렬된 제1 냉각 채널 및 제2 냉각 채널, 및 상기 제1 냉각 채널로부터 상기 제2 냉각 채널을 향해 냉매가 흐르도록 냉각 통로를 형성하는 인접한 상기 전지 셀 사이에 설치되는 유로 플레이트를 포함하며, 상기 유로 플레이트는 상기 제1 냉각 채널과 연통하는 상기 유로 플레이트의 주입구에서 상기 제2 냉각 채널과 연통하는 상기 플레이트의 배출구까지 냉매 흐름을 안내하도록 구성된 가이드 부재를 포함하는 전지 모듈에 관한 것이다. 상기 가이드 부재는 네트워크 연결 구조로 연결된 다수의 만곡된 리브 및 다수의 원형부재를 포함한다. 본 발명에 따르면, 긴 냉각 경로를 갖고 난류를 만드는 상기 냉각 통로는 2개의 인접한 상기 전지 셀에 의해 공유된다. 이에 따라, 냉각 효율이 높은 상기 전지 모듈이 제공된다.

Description

전지 모듈
본 발명은 냉각 장치를 갖는 전지 모듈 및 전지 모듈을 포함하는 자동차에 관한 것이다.
이차 전지(rechargeable battery)는 충전과 방전을 반복적으로 수행할 수 있다는 점에서, 화학 에너지로부터 전기 에너지를 비가역적으로 변환만을 하는 일차 전지와 차이를 보인다. 저용량 이차 전지는 휴대폰이나 노트북 컴퓨터 및 캠코더와 같은 소형 전자 장치용 전원으로서 사용되며, 고용량 이차 전지는 하이브리드(hybrid) 자동차 등 모터 구동용 전원으로 사용된다.
일반적으로, 이차 전지는 양극과 음극, 그리고 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 전극 조립체, 전극 조립체를 수용하는 케이스 및 전극 조립체에 전기적으로 연결된 전극 단자를 포함한다. 케이스는 원통형 또는 직사각형 등 사용 목적에 적합하도록 변형되어 만들어질 수 있다. 케이스 내부로 전해액이 주입되고, 양극과 음극, 그리고 전해액의 전기화학적 반응을 통하여 이차 전지는 충전과 방전 작용을 수행하게 된다.
이차 전지는 높은 에너지 밀도를 요구하는 하이브리드 자동차의 모터 등이 구동될 수 있도록 직렬 및/또는 병렬로 연결된 다수의 단위 셀이 자리하는 전지 모듈로서 사용될 수 있다. 즉, 전지 모듈은 다수의 전지 셀의 적극 단자를 서로 연결하여 구성하고, 필요한 전력량에 부합하는 다수의 단위 전지의 전극 단자를 서로 연결함으로써, 전기 자동차의 모터 등의 구동을 위한 고출력을 갖는 이차 전지를 구현할 수 있다.
전지 열 관리 시스템은 전지 모듈의 안전한 사용을 위해, 이차 전지로부터 발생한 열을 효율적으로 발열, 방출, 및/또는 소산 시켜서 이차 전지를 냉각시킬 수 있다. 전지에서 발생하는 열을 충분히 발열, 방출, 및/또는 소산시키지 않으면 전지 셀 간의 온도 편차가 발생하여 하나 이상의 전지 모듈이 원하는 양의 전력을 생성할 수 없게 된다. 또한, 이차 전지의 내부 온도를 상승시키게 되면 내부 이상 반응으로 이어져, 이에 따라 이차 전지의 충/방전 성능이 악화되며 이차 전지의 수명을 단축한다.
이처럼, 당해 분야에 널리 알려진 냉각 장치는 셀에서 발생하는 열을 효율적으로 발열, 방출, 및/또는 소산시킨다. 잘 알려진 냉각 장치 중 하나는 이웃하는 전지 셀 사이에 개재된 냉각 플레이트이다. 상기한 냉각 플레이트는 일반적으로 냉매가 흐르기 위한 냉각 통로를 갖는 폐쇄 면을 포함한다. 냉각 플레이트는 대개 냉각 플레이트의 일면에만 냉각 통로를 자리하는 구조를 갖고 있어 전지 셀의 양면을 불균일하게 냉각하여 냉각 효율을 저하시킬 수 있다.
따라서, 본 발명의 목적은 상기한 단점을 해소하거나 줄일 수 있고, 특히 개선된 냉각 효율을 갖는 전지 모듈을 제공하는 것이다.
본 발명은 상기한 단점을 해소하거나 줄일 수 있으며, 특히 개선된 냉각 효율을 갖는 전지 모듈을 제공한다.
본 발명의 일 측면에 따르면, 일렬로 정렬된 다수의 이차 전지 셀과, 열의 일측에 정렬된 제1 냉각 채널 및 제2 냉각 채널, 및 상기 제1 냉각 채널로부터 상기 제2 냉각 채널을 향해 냉매가 흐르도록 냉각 통로를 형성하는 인접한 상기 전지 셀 사이에 설치되는 유로 플레이트를 포함하여, 상기 유로 플레이트는 상기 제1 냉각 채널과 연통하는 상기 플레이트의 주입구에서 상기 제2 냉각 채널과 연통하는 상기 플레이트의 배출구까지 냉매의 흐름을 안내하도록 구성된 가이드 부재를 포함하는 전지 모듈에 관한 것이다. 가이드 부재는 네트워트 연결 구조에 의해 연결된 다수의 만곡된 리브 및 다수의 원형부재를 포함한다.
본 발명은 냉각 효율을 높이기 위해, 상기 냉각 플레이트를 갖는 상기 전지 모듈을 제공한다. 만곡된 상기 리브와 상기 원형부재는 냉매 흐름의 방향을 돌려 난류를 발생시킨다. 이런 난류는 표면에서 최대 선속도를 제공하면서 풍량을 최소화한다. 따라서, 만곡된 상기 리브 및 상기 원형부재 주변으로 발생하는 난류는 냉각 성능을 높일 수 있다. 또한, 다수의 만곡된 상기 리브와 다수의 상기 원형부재는 네트워크 연결 구조를 갖는 상기 그물상 지지부를 통해 연결되는 바, 만곡된 상기 리브와 상기 원형부재 사이에 개구가 자리할 수 있다. 이에 따라, 가이드 부재에 냉매가 흐르기 위한 냉각 통로는 양쪽의 인접한 상기 전지 셀에 의해 균등하게 공유될 수 있다. 각각의 상기 전지 셀의 전면과 후면을 모두 균일하게 냉각시켜 냉각 효율을 높일 수 있다. 다수의 만곡된 상기 리브 및 다수의 상기 원형부재는 긴 냉각 경로를 제공할 수 있어, 이 또한 냉각 효율을 높일 수 있다. 나아가, 상기 그물상 지지부를 만들기 위해 재료소비가 적고 동시에 안정적인 구조를 제공할 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 가이드 부재는 상기 플레이트의 중심에서 상기 주입구와 상기 배출구 사이의 일부 상기 플레이트까지 연장되도록 중심 핀을 더 포함할 수 있다. 상기 중심 핀은 상기 냉각 플레이트의 망상 구조에 기계적 안정성을 제공할 수 있다. 상기 중심 핀은 제1 길이를 가질 수 있고, 상기 플레이트는 상기 주입구로부터 제2 길이를 갖고 상기 플레이트의 반대 측을 향해 연장될 수 있으며, 상기 제1 길이 대비 상기 제2 길이의 비율은 1:2 내지 1:3의 범위를 갖는다. 이 범위를 가질 경우 안정성을 최적화할 수 있다.
바람직하게는, 상기 중심 핀은 둥근 팁을 가질 수 있고, 상기 원형부재는 상기 플레이트의 상기 주입구에 근접하게 설치될 수 있다. 이러한 구조는 냉매 흐름에 난류를 증가시켜 냉각 효율을 높일 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 상기 주입구 및 상기 배출구는 상기 플레이트의 장변부 상에 배치될 수 있다. 이에 따라, 냉각 경로는 길어질 수 있다.
또한, 본 발명의 또 다른 측면은, 상기 전지 모듈은 상기 하우징을 포함할 수 있고, 상기 제1 및 상기 제2 냉각 채널은 상기 하우징의 바닥에 위치할 수 있다. 이는 상기 전지 셀의 바닥이 냉매에 의해 냉각될 수 있으므로 냉각 효율을 높일 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 상기 전지 셀과 상기 유로 플레이트는 각형일 수 있고, 가이드 부재는 상기 유로 플레이트를 같은 윤곽을 갖는 2개의 부분으로 나누어 상기 주입구와 상기 배출구가 배치하는 측면으로부터 연장되는 축에 대해 서로 대칭되게 형성할 수 있다. 가이드 부재의 이러한 대칭적인 배열로 인해, 상기 유로 플레이트의 두 부분 중 하나의 냉각 경로의 길이는 상기 플레이트의 두 부분 중 다른 부분의 냉각 경로의 길이와 같다. 따라서, 상기 플레이트 표면에 냉매를 고르게 분포하여 냉각 효율을 높일 수 있다.
상기 전지 모듈은 가이드 부재를 둘러싸는 프레임을 더 포함하는 것이 좋다. 이에 따라 상기 냉각 플레이트의 안정성을 높일 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 상기 유로 플레이트의 상부는 밀봉부재에 의해 밀봉될 수 있다. 이는 상기 전지 셀 또는 상기 전지 모듈에 제공된 배기 가스 영역으로부터 상기 냉각 플레이트를 밀봉할 수 있으므로 열적 안정성을 향상시킬 수 있다. 상기 밀봉부재는 비 도전성 수지부재로 만들거나 스틸 플레이트로 만드는 것이 좋다.
본 발명의 바람직한 일 실시예에 따르면, 상기 전지 모듈은 행렬로 나란히 배열된 다수의 상기 이차 전지 셀을 포함할 수 있으며, 열 방향으로 정렬된 이웃하는 상기 전지 셀 사이에 상기 유로 플레이트를 설치할 수 있다. 이러한 구조는 상기 전지 모듈의 부피를 감소시키고 상기 전지 모듈의 공정을 단순화시킬 수 있다.
본 발명의 또 다른 측면에 따른 상기 전지 모듈은 상기한 바와 같은 상기 전지 모듈을 포함하는 자동차를 제공한다.
본 발명의 추가 측면은 종속 청구항 또는 후술한 설명으로부터 알 수 있다.
본 발명의 실시예에 따르면, 긴 냉각 경로를 갖고 난류를 만드는 냉각 통로는 2개의 인접한 전지 셀이 공유함에 따라, 높은 냉각 효율을 갖는 전지 모듈을 제공할 수 있다.
본 발명의 특징은 후술한 도면을 참고로 한 여러 실시예의 상세한 설명을 통하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다:
도 1은 전지 모듈의 사시도이다.
도 2는 본 발명의 일 실시예에 따른 전지 셀의 개략 사시도이다.
도 3은 본 발명의 일 실시예에 따른 액티브 공기 냉각 방식을 사용하는 전지 모듈의 개략적인 단면도이다.
도 4는 본 발명의 일 실시예에 따른 액티브 공기 냉각 방식을 지원하는 하우징의 개략적인 사시도이다.
도 5는 본 발명의 일 실시예에 따른 유로 플레이트의 사시도이다.
도 6은 본 발명의 일 실시예에 따른 전지 셀에 연결된 유로 플레이트의 개략적인 사시도이다.
도 7은 본 발명의 다른 일 실시예에 따른 유로 플레이트를 갖는 전지 모듈의 단면도이다.
이하 첨부된 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 효과와 특징을 설명한다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 중복되는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서 같은 참조부호를 붙였다. 또한, 본 발명의 실시예를 기술하기 위해 "할 수 있다"라는 표현을 사용하는 것은 "본 발명의 적어도 하나 이상의 실시예"를 뜻한다.
"제1" 및 "제2"라는 표현은 다양한 구성요소를 설명하기 위해 사용되나, 상기 구성요소는 이로써 한정되지 않는다. 상기 표현은 일 구성요소를 다른 일 구성요소와 구별하기 위해서만 사용된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 마찬가지로, 제2 구성요소는 본 발명을 벗어나지 않는 범위에서 제1 구성요소로 명명될 수 있다.
본 발명의 실시예에 대한 설명에서, 단수 형태의 표현은 문맥에 달리 명시하지 않는 한 복수 형태를 포함할 수 있다.
또한, "포함하는", "갖는"이란 표현은 영역, 고정된 수, 단계, 공정, 성분, 구성요소, 및 상기 조합을 특정하고 있으나, 이로써 한정되지 않는다.
또한, 하나의 필름, 영역 또는 구성요소가 다른 하나의 필름, 영역 또는 구성요소의 "위에" 또는 "상부에" 있는 것을 언급할 경우, 다른 하나의 필름, 영역 또는 구성요소 상에 직접 제공될 수 있거나, 또 다른 하나의 필름, 영역 또는 구성요소가 개재되어 존재할 수 있다.
일 구성요소 또는 레이어가 다른 일 구성요소 또는 레이어의 "위에", "연결되어" 또는 "결합한" 것으로 표현할 경우, 이는 다른 일 구성요소 또는 레이어에 직접 연결될 수 있거나, 상기 구성요소 사이에 적어도 하나 이상의 개재된 또 다른 구성요소 또는 레이어가 존재할 수 있다. 또한, 일 구성요소 또는 레이어는 2개의 다른 구성요소 또는 레이어 "사이에" 유일하게 존재할 수 있는가 하면, 이들 사이에 적어도 하나 이상의 중간 구성요소 또는 레이어가 개재되어 포함될 수도 있다.
달리 언급하지 않는 이상, 사용되는 기술 용어 및 과학 용어를 포함한 모든 표현은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 같은 의미가 있다. 일반적으로 사용되는 사전에서 정의된 용어와 같은 용어는 관련 기술의 맥락에서 의미와 일치하는 것으로 해석되어야 하며, 명시적으로 정의되지 않은 이상 이상적이거나 지나치게 형식적인 의미로 해석되어서는 아니된다.
도 1을 참고하면, 일반적인 전지 모듈(100)의 일 실시 형태는, 일 방향으로 정렬된 다수의 전지 셀(10)을 포함한다. 한 쌍의 엔드 플레이트(18)는 전지 셀(10) 외부에서 전지 셀(10)의 넓은 표면과 마주하고, 연결 플레이트(19)는 한 쌍의 엔드 플레이트(18)를 서로 연결하여 복수의 전지 셀(10)을 함께 고정하도록 구성된다. 전지 모듈(100) 양측에 형성된 체결부(18a)는 볼트(40)에 의해 지지 플레이트(31)에 고정된다. 지지 플레이트(31)는 하우징(30)의 일부이다. 전지 모듈(100)은 인접한 전지 셀(10)의 양극 단자(11) 및 음극 단자(12)를 전기적으로 연결하는 버스바(15)를 포함하고 있으며, 버스바(15)를 너트(16) 등으로 고정할 수 있다.
도 2를 참고하면, 각 전지 셀(10)은 각형 (또는 사각형) 셀이고, 셀의 넓은 평면이 함께 적층 되어 전지 모듈(100)을 형성할 수 있다. 전지 케이스(18)는 캡 조립체(14)에 의해 밀폐된다. 캡 조립체(14)는 서로 다른 극성을 갖는 양극 단자(11)와 음극 단자(12), 및 벤트(13)를 구비한다. 전지 셀(10)의 안전수단인 벤트(13)는 전지 셀(10)에서 생성되는 가스를 외부로 배출하도록 통로 역할을 한다. 도 1에 도시된 바와 같이, 서로 인접한 전지 셀(10)의 전극 단자(11, 12)는 버스바(15)을 통하여 전기적으로 연결된다. 따라서, 전지 모듈(100)은 다수의 전지 셀(10)을 한 묶음이 되도록 전기적으로 연결하여 전원 장치로 사용할 수 있다.
도 3은 본 발명의 일 실시예에 따른 전지 모듈(100)의 개략적인 사시도이고, 도 4는 본 발명의 일 실시예에 따른 하우징(3)의 개략적인 사시도이다.
다수의 정렬 전지 셀(10)은 일 열을 따라 배치되고, 유로 플레이트(50)는 인접한 전지 셀(10) 사이에 배치된다. 전지 모듈(100)은 일 열의 같은 측면에 정렬되는 제1 냉각 채널(20) 및 제2 냉각 채널(40)을 더 포함한다. 도 4에 도시된 바와 같이, 냉매는 제1 냉각 채널(20)의 주입구(20a)에 유입되어 제2 냉각 채널(40)의 배출구(40a)로 흐른다. 상세하게, 냉매는 제1 냉각 채널(20)에서 유로 플레이트(50)로 유입되고 유로 플레이트(50)에서 제2 냉각 채널(40)로 유입된다. 따라서, 유로 플레이트(50)는 제1 냉각 채널(20)의 주입구(20a)에서 제2 냉각 채널(40)의 배출구(40a)로 냉매가 흐르기 위한 냉각 통로를 형성한다. 전지 셀(10) 사이에 유로 플레이트(50)를 배치하여, 냉매가 통과하게 되면서 전지 셀(10)을 냉각시킨다. 냉매는 공기일 수 있으나, 이에 한정되는 것은 아니다.
전지 모듈(100)은 전지 모듈(100)을 둘러싸는 하우징(30) 및 지지 플레이트(31)를 더 포함할 수 있다. 도 4에 도시된 바와 같이, 제1 냉각 채널(20)과 제2 냉각 채널(40)은 하우징(30)의 바닥에 위치할 수 있다. 이에 따라, 냉매에 의해 전지 셀(10)의 바닥도 냉각될 수 있다.
도 5는 본 발명의 일 실시예에 따른 유로 플레이트(50)의 사시도이다. 도 5에 도시된 바와 같이, 유로 플레이트(50)는 냉매의 주입구(51) 및 배출구(52)를 포함한다. 유로 플레이트(50)의 주입구(51)는 전지 셀(10)과 유로 플레이트(50) 사이의 갭을 통해 제1 냉각 채널(20)과 연통된다. 이에 따라 냉매는 제1 냉각 채널(20)에서 주입구(51)를 통해 유로 플레이트(50)로 흐르게 된다. 도 5에 도시된 바와 같이, 유로 플레이트(50)의 주입구(51)를 통해 흐르는 냉매는 유로 플레이트(50) 상에 형성된 가이드 부재에 의해 안내되어 유로 플레이트(50)의 배출구(52) 쪽으로 흐른다. 유로 플레이트(50)의 배출구(52)는 전지 셀(10)과 유로 플레이트(50) 사이의 갭을 통해 제2 냉각 채널(40)과 연통된다. 따라서 냉매는 유로 플레이트(50)의 배출구(52)로부터 제2 냉각 채널(40) 쪽으로 흐른다.
본 발명의 유로 플레이트(50)는 전지 셀(10)과 연결되는 측면 돌출부(53) 및 하부 지지부(54)를 더 포함할 수 있다. 측면 돌출부(53)는 전지 셀(10)에 경첩 구조로 연결될 수 있으며, 하부 지지부(54)는 하우징(30)의 지지 플레이트(31)에 용접될 수 있다. 그러나, 본 발명은 이로써 한정되지 않는다.
본 발명의 바람직한 일 실시예에 따르면, 유로 플레이트(50)의 주입구(51) 및 배출구(52)는 각형의 유로 플레이트(50)의 장변부 상에 배치될 수 있다. 여기서, 유로 플레이트(50)의 장변부 길이는 유로 플레이트(50)의 다른 2개의 변의 길이보다 길다. 그러나, 본 발명은 이로써 한정되지 않는다. 유로 플레이트(50)의 주입구(51) 및 배출구(52)는 제1 냉각 채널(20) 및 제2 냉각 채널(40)과 각각 연통할 수 있는 임의의 위치에 배치될 수 있다.
도 5에 도시된 바와 같이, 본 발명의 유로 플레이트(50)의 가이드 부재는 다수의 만곡된 리브(62) 및 다수의 원형부재(63)를 포함한다. 만곡된 리브(62) 및 원형부재(63)는 냉매 흐름을 회전시켜 난류를 일으킨다. 잘 알려진 바와 같이, 난류는 냉각 성능을 높인다. 따라서, 냉매의 유동을 가능케 하기 위해 다양한 구조를 갖는 리브 및 원형부재가 본 발명의 유로 플레이트(50)에 적용될 수 있다. 원형부재(63)는 원형 디스크 또는 타원형 디스크 등으로 구현될 수 있다. 여기서 원형부재(63)는 유로 플레이트(50)의 주입구(51) 및/또는 배출구(52)에 근접하여 설치될 수 있다. 이 또한 냉각 효율을 높일 수 있다.
도 5에 도시된 바와 같이, 다수의 만곡된 리브(62)와 다수의 원형부재(63)는 그물상 지지부(61)를 통해 연결된다. "그물상"이라는 표현은 하나의 개구부와 다른 개구부를 서로 연결하는 연결부를 갖는 구조체를 의미한다. 그물상 지지부(61)의 개구부에 의해, 냉매가 흐르는 냉각수 통로는 이웃하는 전지 셀(10)에 의해 공유될 수 있으며, 각 전지 셀(10)의 전면과 후면을 냉각시킬 수 있다.
도 5에 도시된 바와 같이, 본 발명에 따른 전지 모듈(100)은 가이드 부재를 둘러싸는 프레임(55)을 포함할 수 있고 가이드 부재는 중심 핀(64)을 포함할 수 있다. 프레임(55) 및 중심 핀(64)은 유로 플레이트(50)의 네트워크 연결 구조에 기계적 안정성을 제공한다. 도 5에 도시된 바와 같이, 중심 핀(64)은 유로 플레이트(50)의 바닥에서 유로 플레이트(50)의 중심을 향해 연장된다. 중심 핀(64)은 기계적 안정성을 높이며, 유로 플레이트(50) 내에 균일한 냉매의 흐름을 보장하기 위해 유로 플레이트(50)의 바닥의 중간지점으로부터 연장되는 것이 좋으나, 본 발명은 이로써 한정되지 않는다. 중심 핀(64)은 유로 플레이트(50)를 안정적으로 지지할 수 있는 한, 유로 플레이트(50)의 주입구(51)와 배출구(52) 사이의 다른 지점으로부터 연장될 수 있다. 중심 핀(64)의 길이는 유로 플레이트(50)의 안정성을 높이기 위함은 물론, 균일한 냉매 분포를 보장하기 위해 결정된다. 중심 핀(64)의 길이 대 유로 플레이트(50)의 바닥 길이는, 1:2 내지 1:3의 범위를 갖도록 선택하는 것이 좋다. 도 5에 도시된 바와 같이, 중심 핀(64)은 둥근 팁(65)을 포함할 수 있다. 이 둥근 팁(65) 또한 난류를 만들 수 있다.
가이드 부재는 유로 플레이트(50)를 같은 윤곽을 갖는 2개의 부분으로 나누어 주입구(51)와 배출구(52)가 배치하는 측면으로부터 연장되는 축에 대해 서로 대칭되도록 배열될 수 있다. 가이드 부재의 대칭적인 배열로 인해, 유로 플레이트(50)의 두 부분 중 하나의 냉각 경로의 길이는 유로 플레이트(50)의 두 부분 중 다른 부분의 냉각 경로의 길이와 같다. 이에 따라, 유로 플레이트(50)의 표면 위로 냉매 흐름의 균일한 분포를 확보하여 냉각 효율을 높일 수 있다.
도 6은 본 발명의 일 실시예에 따른 전지 셀(10)에 연결된 유로 플레이트(50)의 사시도를 개략적으로 도시한다. 도 6에 도시된 바와 같이, 유로 플레이트(50)의 상부는 밀봉부재(70, 도 7 참조)에 의해 밀봉될 수 있다. 여기서, 유로 플레이트(50)의 상부는, 주입구(51) 및 배출구(52)가 배치된 유로 플레이트(50)의 측(하부 측)을 대향한 측일 수 있다. 상기한 바와 같이, 전지 셀(10)은 전지 셀(10)에서 발생한 가스를 전지 셀(10)의 외부로 배출하기 위한 통로 역할을 하는 안전 수단인 벤트(13)를 포함한다. 배출된 가스는 대개 배기 가스 영역을 통해 흐르고, 배기 가스 영역은 전지 셀(10)의 하우징(30) 내 및/또는 다수의 전지 셀(10)을 함께 연결하는 버스바(15)에 제공될 수 있다. 본 발명에 따르면, 유로 플레이트(50)는 밀봉부재(70)에 의해 배기 가스 영역으로부터 밀봉되어, 열에 대한 안정성을 높일 수 있다. 밀봉부재(70)는 비도전성 수지부재 또는 스틸 플레이트 일 수 있으나, 본 발명은 이에 한정하지 않는다.
도 7은 본 발명의 다른 일 실시예에 따른 유로 플레이트(50)를 구비한 전지 모듈(100)의 단면도를 도시한다. 상기한 바와 같이, 유로 플레이트(50)는 열로 정렬된 인접한 전지 셀(10) 사이에 설치된다. 본 실시예에 있어 유로 플레이트(50)의 상부는 밀봉부재(70)에 의해 밀봉될 수 있으며, 2개의 전지 셀(10)을 연결하는 버스바가 제공된 버스바 캐리어(17) 부위에 배기 가스 영역(80)이 제공될 수 있다. 이차 전지 셀(10)은 열적으로 높은 스트레스를 받게 되면 파열될 수 있는 바, 상당한 양의 인화성 및 유해 가스를 발생시킬 수 있다. 자동차에 응용할 경우 차량 탑승부 내로 가스가 침입하지 않도록 마련되어야 한다. 이를 위해, 냉각 시스템은 냉각 채널(20, 40)로부터 밀폐된 배기 가스 영역을 전지 셀 위에 제공한다.
본 발명에 따르면, 긴 냉각 경로를 갖고 난류를 일으키는 냉각 통로가 2개의 인접한 전지 셀에 의해 균등하게 공유된다. 따라서, 냉각 효율이 높은 전지 모듈이 제공된다. 더욱이, 유로 플레이트 상에 대칭적으로 배열된 냉각 통로에 의해, 냉매의 흐름이 유로 플레이트(50)에 골고루 분포된다.
이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.
-부호의 설명-
10: 전지 셀 53: 측면 돌출부
100: 전지 모듈 54: 하부 지지부
13: 벤트 55: 프레임
15: 버스바 61: 그물상 지지부
20, 40: 제1 및 제2 냉각 채널 62: 리브
30: 하우징 63: 원형부재
31: 지지 플레이트 64: 중심 핀
50: 유로 플레이트 65: 원형 팁
51: 주입구 70: 밀봉부재
52: 배출구 80: 배기 가스 영역

Claims (14)

  1. 일렬로 정렬된 다수의 이차 전지 셀;
    상기 열의 일측에 정렬된 제1 냉각 채널 및 제2 냉각 채널; 및
    인접한 상기 전지 셀 사이에 설치되어, 상기 제1 냉각 채널로부터 상기 제2 냉각 채널을 향해 냉매가 흐르도록 냉각 통로를 형성하는 유로 플레이트
    를 포함하고,
    상기 유로 플레이트는 상기 제1 냉각 채널과 연통하는 상기 유로 플레이트의 주입구에서 상기 제2 냉각 채널과 연통하는 상기 유로 플레이트의 배출구까지 상기 냉매 흐름을 안내하도록 구성된 가이드 부재를 포함하고,
    상기 가이드 부재는 네트워크 연결 구조로 연결된 다수의 만곡된 리브 및 다수의 원형부재를 포함하며 네트워크 연결 구조를 포함하는 전지 모듈.
  2. 제1 항에 있어서,
    상기 가이드 부재는 상기 유로 플레이트의 상기 주입구와 상기 배출구 사이의 상기 유로 플레이트의 일부분으로부터 상기 유로 플레이트의 중심을 향해 연장되는 중신 핀을 더욱 포함하는 전지 모듈.
  3. 제2 항에 있어서,
    상기 중심 핀은 둥근 팁을 갖는 전지 모듈.
  4. 제2 항 또는 제3 항에 있어서,
    상기 중심 핀은 제1 길이를 갖고,
    상기 유로 플레이트는 제2 길이를 갖고 상기 주입구로부터 상기 배출구를 향해 연장되고,
    상기 제1 길이 대 제2 길이의 비는 1:2 내지 1:3의 범위를 갖는 전지 모듈.
  5. 제1 항에 있어서,
    상기 원형부재는 상기 주입구 및/또는 상기 배출구에 근접하게 설치되는 전지 모듈.
  6. 제1 항에 있어서,
    상기 유로 플레이트의 상기 주입구와 상기 유로 플레이트의 상기 배출구는 상기 유로 플레이트의 장변부 상에 배치되는 전지 모듈.
  7. 제1 항에 있어서,
    상기 제1 및 상기 제2 냉각 채널을 바닥에 배치하는 하우징을 포함하는 전지 모듈.
  8. 제1 항에 있어서,
    상기 전지 셀 및 상기 유로 플레이트는 각형인 전지 모듈.
  9. 제8 항에 있어서,
    상기 가이드 부재는 상기 유로 플레이트를 같은 윤곽을 갖는 2개의 부분으로 나누어 상기 주입구와 상기 배출구가 배치하는 측면으로부터 연장되는 축에 대해 서로 대칭하도록 배치되는 전지 모듈.
  10. 제1 항에 있어서,
    상기 유로 플레이트를 둘러싸는 프레임을 더욱 포함하는 전지 모듈.
  11. 제1 항에 있어서,
    상기 플레이트의 상부는 밀봉부재에 의해 밀봉되는 전지 모듈.
  12. 제11 항에 있어서,
    상기 밀봉부재는 비도전성 수지부재 또는 스틸 플레이트를 포함하는 전지 모듈.
  13. 제11 항에 있어서,
    상기 밀봉부재 상의 배기 가스 영역을 더 포함하는 전지 모듈.
  14. 제1 항에 따른 전지 모듈을 포함하는 자동차.
PCT/KR2017/011884 2016-10-26 2017-10-26 전지 모듈 WO2018080182A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780066216.XA CN109891666B (zh) 2016-10-26 2017-10-26 电池模块
US16/342,501 US20190260102A1 (en) 2016-10-26 2017-10-26 Battery module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP16195786.5 2016-10-26
EP16195786.5A EP3316340B1 (en) 2016-10-26 2016-10-26 Battery module
KR10-2017-0139409 2017-10-25
KR1020170139409A KR102195583B1 (ko) 2016-10-26 2017-10-25 전지 모듈

Publications (1)

Publication Number Publication Date
WO2018080182A1 true WO2018080182A1 (ko) 2018-05-03

Family

ID=62023753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011884 WO2018080182A1 (ko) 2016-10-26 2017-10-26 전지 모듈

Country Status (2)

Country Link
CN (1) CN109891666B (ko)
WO (1) WO2018080182A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102331723B1 (ko) * 2017-03-21 2021-11-26 삼성에스디아이 주식회사 배터리팩의 냉각 장치
KR20200143976A (ko) * 2019-06-17 2020-12-28 주식회사 엘지화학 냉각부재를 구비한 배터리 모듈 및 배터리 팩 및 전력 저장장치
GB2588587B (en) * 2019-10-18 2022-09-21 Dyson Technology Ltd Battery pack
CN113471584A (zh) * 2020-03-31 2021-10-01 东莞新能安科技有限公司 电池包及电动车辆
EP3890099B1 (en) * 2020-03-31 2022-03-23 Samsung SDI Co., Ltd. Robust interface for cooler to housing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102851A (ko) * 2005-03-25 2006-09-28 삼성에스디아이 주식회사 이차 전지 모듈
KR101149406B1 (ko) * 2010-11-29 2012-06-01 주식회사 한국쿨러 전기 차량용 전지셀의 히트 싱크 및 그를 이용한 전지셀 모듈
KR20140077272A (ko) * 2012-12-13 2014-06-24 대한칼소닉주식회사 적층형 유로 형성 구조를 갖는 배터리 히트 싱크
JP2016091665A (ja) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 蓄電装置の温度調節構造
KR20160058684A (ko) * 2014-11-17 2016-05-25 주식회사 엘지화학 이차전지용 냉각 플레이트 및 이를 포함하는 이차전지 모듈
KR20160065637A (ko) * 2014-12-01 2016-06-09 주식회사 엘지화학 배터리 모듈

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684766B1 (ko) * 2005-07-29 2007-02-20 삼성에스디아이 주식회사 이차 전지 모듈
JP2007200778A (ja) * 2006-01-27 2007-08-09 Toyota Motor Corp 2次電池の冷却構造
US20120308868A1 (en) * 2011-05-31 2012-12-06 Delphi Tecnologies, Inc. Battery arrangement
US8835039B2 (en) * 2011-10-21 2014-09-16 Avl Powertrain Engineering, Inc. Battery cooling plate and cooling system
DE102014202542A1 (de) * 2014-02-12 2015-08-13 MAHLE Behr GmbH & Co. KG Kühlvorrichtung, insbesondere für eine Batterie eines Kraftfahrzeugs
JP6393147B2 (ja) * 2014-10-21 2018-09-19 ダイキョーニシカワ株式会社 車両用バッテリの冷却構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102851A (ko) * 2005-03-25 2006-09-28 삼성에스디아이 주식회사 이차 전지 모듈
KR101149406B1 (ko) * 2010-11-29 2012-06-01 주식회사 한국쿨러 전기 차량용 전지셀의 히트 싱크 및 그를 이용한 전지셀 모듈
KR20140077272A (ko) * 2012-12-13 2014-06-24 대한칼소닉주식회사 적층형 유로 형성 구조를 갖는 배터리 히트 싱크
JP2016091665A (ja) * 2014-10-30 2016-05-23 トヨタ自動車株式会社 蓄電装置の温度調節構造
KR20160058684A (ko) * 2014-11-17 2016-05-25 주식회사 엘지화학 이차전지용 냉각 플레이트 및 이를 포함하는 이차전지 모듈
KR20160065637A (ko) * 2014-12-01 2016-06-09 주식회사 엘지화학 배터리 모듈

Also Published As

Publication number Publication date
CN109891666A (zh) 2019-06-14
CN109891666B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
KR102195583B1 (ko) 전지 모듈
KR102029407B1 (ko) 전지 시스템
WO2018080182A1 (ko) 전지 모듈
WO2018009002A1 (en) Battery submodule carrier, battery submodule, battery system and vehicle
WO2018186566A1 (ko) 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
WO2013048060A2 (ko) 신규한 냉각구조를 가진 전지팩
WO2018009003A1 (en) Battery module carrier, battery module, and vehicle with a battery system
EP3584877A1 (en) Battery pack comprising a frame profile with integral coolant circuit elements
US9761918B2 (en) Vehicle traction battery assembly
WO2013133636A1 (ko) 신규한 공냉식 구조의 전지팩
WO2015182909A1 (ko) 수냉식 냉각구조를 포함하는 전지모듈
WO2012177000A2 (ko) 신규한 공냉식 구조의 전지팩
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2015016566A1 (ko) 전지모듈 어셈블리
WO2012023753A2 (ko) 콤팩트한 구조와 우수한 방열 특성의 전지모듈 및 그것을 포함하는 중대형 전지팩
CN106935927A (zh) 电池模块和包括其的车辆
WO2019107795A1 (ko) 배터리 팩
US20120288738A1 (en) Battery pack
WO2011021843A2 (ko) 신규한 냉각구조를 가진 전지팩
WO2017014449A1 (ko) 단자 플레이트 및 bms가 직접 연결된 구조의 전지모듈
WO2015016564A1 (ko) 냉매 유로를 포함하는 전지모듈 어셈블리
WO2019221376A1 (ko) 일체형 냉매 회로 부재를 갖는 프레임 프로파일을 포함한 전지 팩
EP3319146A1 (en) Battery system
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2013103254A1 (ko) 배터리 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863493

Country of ref document: EP

Kind code of ref document: A1