WO2024021268A1 - 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用 - Google Patents

多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024021268A1
WO2024021268A1 PCT/CN2022/120183 CN2022120183W WO2024021268A1 WO 2024021268 A1 WO2024021268 A1 WO 2024021268A1 CN 2022120183 W CN2022120183 W CN 2022120183W WO 2024021268 A1 WO2024021268 A1 WO 2024021268A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic material
entropy
preparation
element high
doping
Prior art date
Application number
PCT/CN2022/120183
Other languages
English (en)
French (fr)
Inventor
李红霞
王刚
梁鹏鹏
赵世贤
冯晶
李虹屿
李凌锋
Original Assignee
中钢集团洛阳耐火材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中钢集团洛阳耐火材料研究院有限公司 filed Critical 中钢集团洛阳耐火材料研究院有限公司
Publication of WO2024021268A1 publication Critical patent/WO2024021268A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention belongs to the field of thermal barrier coatings, and in particular relates to a multi-element high-entropy doped zirconia-based ceramic material and its preparation method.
  • the operating temperature of aircraft hot-end components is also constantly increasing.
  • the inlet temperature of the M501J gas turbine developed by Mitsubishi Heavy Industries has reached 1,600°C, and the engine temperature in high thrust-to-weight ratio fighter jets can even reach over 2,000°C.
  • the safe use temperature of the high-temperature alloys currently used in hot-end components is relatively low ( ⁇ 1000°C).
  • Film cooling technology can reduce the blade surface temperature by 100°C to 200°C, but it still cannot meet the operating temperature requirements of gas turbines.
  • Thermal barrier coatings are widely used in hot-end components of aerospace engines and industrial gas turbines to ensure that hot-end components can continue to work in high-temperature environments.
  • the mainstream material for aero-engine thermal barrier coatings is yttria-stabilized zirconia (YSZ).
  • YSZ yttria-stabilized zirconia
  • this material will undergo a phase change when the temperature reaches above 1200°C, from the tetragonal phase to the monoclinic phase, which will cause 3 to 5 % volume expansion, and volume expansion will cause problems such as cracking and peeling of the coating, and ultimately lead to the failure of the coating, which makes it unable to meet the needs of contemporary use. It is necessary to develop new thermal barrier coating materials.
  • the purpose of the present invention is to solve the problems of poor high-temperature phase stability of known thermal barrier coating materials in the prior art, and to provide a multi-element high-entropy doped zirconia-based ceramic material and a preparation method thereof.
  • the first aspect of the present invention provides a multi-element high-entropy doped zirconia-based ceramic material, which is characterized in that the ceramic material uses ZrO 2 ceramic material as a matrix, and five or more doping elements are added in equal amounts. It is obtained by multi-element high-entropy doping at the Zr position, and the doping elements are selected from Ca, Mg, Sr, Sc, Ce, Gd, La, Y, Yb, and Sm.
  • the molar proportion of zirconium oxide in the ceramic material obtained after multi-element high-entropy doping is 65% to 95%.
  • the molar proportion of zirconium oxide in the ceramic material obtained after multi-element high-entropy doping is 82% to 95%.
  • the molar proportion of zirconium oxide in the ceramic material obtained after multi-element high-entropy doping is 88% to 95%.
  • a second aspect of the present invention provides a method for preparing multi-element high-entropy doped zirconia-based ceramic materials, which is characterized in that the preparation method includes the following steps:
  • step S2 Dry the slurry obtained in step S1 to obtain dry powder
  • step S3 The dry powder obtained in step S2 is pressed into shape and then reacted at high temperature.
  • the purity of the oxide powder doped with elements in step S1 is greater than 99%, and the particle size is less than 10 ⁇ m;
  • the wet ball mill uses zirconia balls as grinding media, and the ball-to-material ratio is 8 to 10:1;
  • the wet ball milling is performed by using a wet ball mill.
  • the rotation speed of the wet ball mill is 1000-3000r/min, and the wet ball milling time is 12-36 hours.
  • the temperature at which the slurry is dried in step S2 is 30-50°C.
  • step S3 the pressure when pressing the dry powder is 10 to 100 MPa.
  • the high-temperature reaction includes a heating stage and a heat preservation stage
  • the heating rate of the heating stage is 2-10°C/min;
  • the temperature of the heat preservation stage is 1600-1850°C;
  • the heat preservation time of the heat preservation stage is 24 to 36 hours.
  • a third aspect of the present invention provides the application of the above-mentioned multi-element high-entropy doped zirconia-based ceramic material or the multi-element high-entropy doped zirconia-based ceramic material prepared according to the above-mentioned preparation method in hot-end components of aerospace engines and industrial gas turbines.
  • the ceramic material of the present invention uses ZrO 2 ceramic material as the matrix, and is doped with five or more elements selected from Ca, Mg, Sr, Sc, Ce, Gd, La, Y, Yb, Sm, etc.
  • the quantitative form is obtained by multi-element high-entropy doping at the Zr site.
  • the ceramic material of the present invention can be used for a long time at a temperature of 1600°C without phase change, and also has With excellent properties such as low thermal conductivity, high thermal expansion coefficient and high fracture toughness, it is a promising new material for thermal barrier coatings.
  • the material obtained by the present invention not only does not undergo phase change at higher service temperatures, but also has better thermal insulation performance and better Resistance to sintering.
  • the high-entropy doped zirconia material of the present invention can be used at high temperatures for a long time without desolvation or phase change, and has stable performance.
  • the present invention further found that when there are more types of doping elements, the high-entropy doped ceramic material has better thermal insulation properties, but when the content of doping elements is too high, the anti-sintering performance will decrease.
  • the method of the present invention has simple process, high production efficiency and is suitable for large-scale industrial production.
  • Figure 1 is the XRD pattern of the high-entropy doped zirconia-based ceramic material before and after being continuously subjected to 1600°C ⁇ 200h according to Embodiment 1 of the present invention
  • Figure 2A is a scanning electron microscope photo of the high-entropy doped zirconia-based ceramic material after sintering at 1800°C for a long time according to Embodiment 1 of the present invention
  • Figure 2B is a backscattered electron image scanning electron microscope photograph of the high-entropy doped zirconia-based ceramic material according to Embodiment 1 of the present invention after sintering at 1800° C. for a long time.
  • a multi-element high-entropy doped zirconia-based ceramic material is prepared by: accurately weighing 9 mol of ZrO 2 (purity greater than 99.99%, average particle size 2 ⁇ m), 0.1 mol Y 2 O 3 (purity greater than 99.99 %, average particle size is 1 ⁇ m), 0.1 mol Gd 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m), 0.2 mol MgO (purity greater than 99.99%, average particle size 1 ⁇ m), 0.1 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m) and 0.1 mol Ce 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m), using zirconia as ball milling medium, alcohol as dispersion medium, wet Prepare the slurry by ball milling, where the ratio of ball mass: powder mass: alcohol mass is 8:1:1, the ball milling speed is 2000r/min, and the ball milling time is 12h; then the obtained
  • the chemical formula of the obtained high-entropy doped zirconia-based ceramic material with five elements is: Zr 0.9 Y 0.02 Gd 0.02 Mg 0.02 Sc 0.02 Ce 0.02 O 1.94 ; thermal conductivity is 1.90W ⁇ mK -1 (1300°C); average thermal expansion coefficient It is 10.5 ⁇ 10 -6 K -1 (RT ⁇ 1500°C); the fracture toughness is 3.5MPa m 1/2 .
  • FIG. 2A is a scanning electron microscope photo of the ceramic material prepared in Example 1 after long-term sintering at 1800°C. It can be seen from Figure 2A that there are still many pores in the ceramic material and there is no densification caused by long-term sintering, indicating that the Example 1 The ceramic material prepared has better sintering resistance.
  • Figure 2B is a backscattered electron image of the ceramic material prepared in Example 1, showing the distribution of the six elements Zr, Y, Gd, Mg, Sc, and Ce in the ceramic material. It can be seen from Figure 2B that the six elements are evenly distributed in the ceramic material, and there is no uneven distribution of elements such as segregation or agglomeration.
  • a multi-element high-entropy doped zirconia-based ceramic material is: accurately weigh 9.5 mol of ZrO 2 (purity greater than 99.99%, average particle size 2 ⁇ m), 0.05 mol La 2 O 3 (purity greater than 99.99%, average particle size is 2 ⁇ m), 0.05 mol Yb 2 O 3 (purity is greater than 99.99%, average particle size is 2 ⁇ m), 0.1 mol CaO (purity is greater than 99.99%, average particle size is 2 ⁇ m), 0.05 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 2 ⁇ m) and 0.05 mol Gd 2 O 3 (purity greater than 99.99%, average particle size 2 ⁇ m), using zirconia as ball milling medium, alcohol as dispersion medium, wet Prepare the slurry by ball milling, where the ratio of ball mass: powder mass: alcohol mass is 10:1:1, the ball milling speed is 3000r/min, and the ball milling time is 14h
  • the chemical formula of the obtained high-entropy doped zirconia-based ceramic material with five elements is: Zr 0.95 La 0.01 Yb 0.01 Ca 0.01 Sc 0.01 Gd 0.01 O 1.97 ; thermal conductivity is 2.1W ⁇ mK -1 (1300°C); average thermal expansion coefficient The fracture toughness is 11.8 ⁇ 10 -6 K -1 (RT ⁇ 1500°C); the fracture toughness is 2.2MPa m 1/2 ; the material has high temperature phase stability without phase change before and after continuous withstanding 1600°C ⁇ 200h. Sintering at 1800°C for a long time failed to achieve sintering densification of the material.
  • a multi-element high-entropy doped zirconia-based ceramic material is: accurately weigh 7.5 mol of ZrO 2 (purity greater than 99.99%, average particle size 2 ⁇ m), 0.25 mol Y 2 O 3 (purity greater than 99.99%, average particle size is 1 ⁇ m), 0.25 mol Gd 2 O 3 (purity is greater than 99.99%, average particle size is 1 ⁇ m), 0.5 mol CaO (purity is greater than 99.99%, average particle size is 1 ⁇ m), 0.25 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m) and 0.25 mol Ce 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m), using zirconia as the ball milling medium and alcohol as the dispersion medium,
  • the slurry is prepared by wet ball milling, in which the ratio of ball mass: powder mass: alcohol mass is 10:1:1, the ball milling speed is 1500r/min, and the ball milling time is
  • the chemical formula of the obtained five-element high-entropy doped zirconia-based ceramic material is: Zr 0.75 Y 0.05 Gd 0.05 Ca 0.05 Sc 0.05 Ce 0.05 O 1.85 ; at this temperature, sintering densification of the material is achieved, and the thermal conductivity is 1.71 W ⁇ mK -1 (1300°C); the average thermal expansion coefficient is 9.6 ⁇ 10 -6 K -1 (RT ⁇ 1500°C); the fracture toughness is 3.85MPa m 1/2 . Sintering at 1700°C for a long time failed to achieve junction densification of the material.
  • a multi-element high-entropy doped zirconia-based ceramic material is prepared by: accurately weighing 6.5 mol of ZrO 2 (purity greater than 99.99%, average particle size 2 ⁇ m), 0.35 mol La 2 O 3 (purity greater than 99.99%, average particle size is 3 ⁇ m), 0.35 mol Yb 2 O 3 (purity is greater than 99.99%, average particle size is 3 ⁇ m), 0.7 mol MgO (purity is greater than 99.99%, average particle size is 3 ⁇ m), 0.35 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 3 ⁇ m) and 0.35 mol Gd 2 O 3 (purity greater than 99.99%, average particle size 3 ⁇ m), using zirconia as ball milling medium, alcohol as dispersion medium, wet Prepare the slurry by ball milling, where the ratio of ball mass: powder mass: alcohol mass is 12:1:1, the ball milling speed is 3000r/min, and the ball milling time is 20
  • the chemical formula of the obtained high-entropy doped zirconia-based ceramic material with five elements is: Zr 0.65 La 0.07 Yb 0.07 Mg 0.07 Sc 0.07 Gd 0.07 O 1.65 ; thermal conductivity is 1.67W ⁇ mK -1 (1300°C); average thermal expansion coefficient
  • the fracture toughness is 9.2 ⁇ 10 -6 K -1 (RT ⁇ 1500°C); the fracture toughness is 3.9MPa m 1/2 ; the material has high temperature phase stability without phase change before and after being continuously subjected to 1600°C ⁇ 200h. After sintering at 1650°C for a long time, the material did not become densified by sintering.
  • a multi-element high-entropy doped zirconia-based ceramic material is: accurately weigh 8.8 mol of ZrO 2 (purity greater than 99.99%, average particle size 2 ⁇ m), 0.1 mol Sm 2 O 3 (purity greater than 99.99%, average particle size is 1 ⁇ m), 0.1 mol Y 2 O 3 (purity is greater than 99.99%, average particle size is 1 ⁇ m), 0.1 mol Gd 2 O 3 (purity is greater than 99.99%, average particle size is 1 ⁇ m), 0.1 mol Yb 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m), 0.1 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m) and 0.1 mol Ce 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m), using zirconia as the ball milling medium, alcohol as the dispersion medium, and wet ball milling to prepare the slurry, in which the ratio of ball mass
  • the chemical formula of the obtained six-element high-entropy doped zirconia-based ceramic material is: Zr 0.88 Sm 0.02 Y 0.02 Gd 0.02 Yb 0.02 Sc 0.02 Ce 0.02 O 1.94 ; the thermal conductivity is 1.50W ⁇ mK -1 (1300°C); average The thermal expansion coefficient is 9.8 ⁇ 10 -6 K -1 (RT ⁇ 1500°C); the fracture toughness is 4.0MPa m 1/2 ; the material has high temperature phase stability without phase change before and after continuous withstanding 1600°C ⁇ 200h. After sintering at 1780°C for a long time, the sintering densification of the material was not achieved.
  • a multi-element high-entropy doped zirconia-based ceramic material is prepared by: accurately weighing 8.8 mol ZrO 2 (purity greater than 99.99%, average particle size 2 ⁇ m), 0.2 mol MgO (purity greater than 99.99%, average particle size 2 ⁇ m), Particle size is 3 ⁇ m), 0.1 mol La 2 O 3 (purity is greater than 99.99%, average particle size is 3 ⁇ m), 0.1 mol Gd 2 O 3 (purity is greater than 99.99%, average particle size is 3 ⁇ m), 0.1 mol Sm 2 O 3 (purity greater than 99.99%, average particle size is 3 ⁇ m), 0.1 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 3 ⁇ m) and 0.1 mol Yb 2 O 3 (purity greater than 99.99%, average particle size
  • the particle size is 3 ⁇ m), zirconium oxide is used as the ball milling medium, alcohol is used as the dispersion medium, and the s
  • the ratio of ball mass: powder mass: alcohol mass is 13:1:1, and the ball milling speed is 2500r/min. , the ball milling time is 20h; then the obtained slurry is dried to a constant weight at a temperature of 35°C to obtain a uniformly mixed dry powder; the obtained dry powder is machine-pressed into a green body under a pressure of 50MPa; the molded body is The final green body is put into a gas kiln, heated to 1750°C at a rate of 4°C/min, held for 30 hours, and then cooled in the furnace to obtain high-entropy doped zirconia-based ceramic materials with six elements.
  • the chemical formula of the obtained six-element high-entropy doped zirconia-based ceramic material is: Zr 0.88 Mg 0.02 La 0.02 Gd 0.02 Sm 0.02 Sc 0.02 Yb 0.02 O 1.93 ; the thermal conductivity is 1.58W ⁇ mK -1 (1300°C); average The thermal expansion coefficient is 9.4 ⁇ 10 -6 K -1 (RT ⁇ 1500°C); the fracture toughness is 2.9MPa m 1/2 ; the material has high temperature phase stability without phase change before and after continuous withstanding 1600°C ⁇ 200h. After sintering at 1750°C for a long time, the sintering densification of the material was not achieved.
  • a multi-element high-entropy doped zirconia-based ceramic material is prepared by: accurately weighing 8.6 mol ZrO 2 (purity greater than 99.99%, average particle size 2 ⁇ m), 0.1 mol MgO (purity greater than 99.99%, average particle size 2 ⁇ m), Particle size is 3 ⁇ m), 0.2 mol SrO (purity is greater than 99.99%, average particle size is 3 ⁇ m), 0.1 mol La 2 O 3 (purity is greater than 99.99%, average particle size is 3 ⁇ m), 0.1 mol Gd 2 O 3 (purity greater than 99.99%, average particle size is 3 ⁇ m), 0.1 mol Sm 2 O 3 (purity greater than 99.99%, average particle size 3 ⁇ m), 0.1 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 3 ⁇ m) and 0.1mol Yb 2 O 3 (purity greater than 99.99%, average particle size 3 ⁇ m), using zirconia as the ball milling medium, alcohol
  • the chemical formula of the obtained seven-element high-entropy doped zirconia-based ceramic material is: Zr 0.86 Mg 0.02 Sr 0.02 La 0.02 Gd 0.02 Sm 0.02 Sc 0.02 Yb 0.02 O 1.91 ; the thermal conductivity is 1.30W ⁇ mK -1 (1300°C) ; The average thermal expansion coefficient is 9.2 ⁇ 10 -6 K -1 (RT ⁇ 1500°C); the fracture toughness is 3.3MPa m 1/2 ; the material has high temperature phase stability without phase change before and after continuous withstanding 1600°C ⁇ 200h. After sintering at 1700°C for a long time, the sintering densification of the material was not achieved.
  • a multi-element high-entropy doped zirconia-based ceramic material is prepared by accurately weighing 9.6 mol of ZrO 2 (purity greater than 99.99%, average particle size 0.5 ⁇ m), 0.04 mol Sm 2 O 3 (purity Greater than 99.99%, average particle size is 1 ⁇ m), 0.04 mol Gd 2 O 3 (purity greater than 99.99%, average particle size is 1 ⁇ m), 0.08 mol CaO (purity greater than 99.99%, average particle size is 1 ⁇ m), 0.04 mol Sc 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m) and 0.04mol Ce 2 O 3 (purity greater than 99.99%, average particle size 1 ⁇ m), using zirconia as the ball milling medium and alcohol as the dispersion medium , prepare slurry by wet ball milling, where the ratio of ball mass: powder mass: alcohol mass is 10:1:1, the ball milling speed is 1500r/min, and the ball milling time is 17h; then the
  • the chemical formula of the obtained five-element high-entropy doped zirconia-based ceramic material is: Zr 0.96 Y 0.008 Gd 0.008 Ca 0.008 Sc 0.008 Ce 0.008 O 1.978 ; the physical phase of the material is a monoclinic phase, which occurs when the material is heated at about 1150°C. Phase change (from monoclinic phase to tetragonal phase), the phase change produces a large volume change, this ceramic material is not suitable as a high temperature thermal barrier coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种多元素高熵掺杂氧化锆基陶瓷材料及其制备方法,属于热障涂层领域。本发明的多元素高熵掺杂氧化锆基陶瓷材料以ZrO2 陶瓷材料为基体,通过五种或五种以上掺杂元素以等量形式在Zr位进行多元素高熵掺杂获得,所述掺杂元素选自Ca、Mg、Sr、Sc、Ce、Gd、La、Y、Yb、Sm。本发明的陶瓷材料的抗烧结性较佳,可在 1600℃以下长时间使用且不发生相变,还具有热导率较低,热膨胀系数较高和断裂韧性高等优异的性能,是一种极具前景的热障涂层新材料。

Description

多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
本申请要求2022年07月29日向中国专利局提交的、申请号为202210903998.0、发明名称“多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用”的中国专利申请的优先权,并将上述专利申请的全部内容通过引用的方式引入本申请中。
技术领域
本发明是属于热障涂层领域,特别是关于一种多元素高熵掺杂氧化锆基陶瓷材料及其制备方法。
背景技术
随着航空航天技术的快速发展,飞机热端部件的工作温度也在不断提高,例如三菱重工研发M501J型燃气轮机的进口温度达到了1600℃,高推重比战斗机中的发动机温度甚至能够达到2000℃以上。然而目前热端部件所使用的高温合金的安全使用温度较低(~1000℃)。气膜冷却技术可以将叶片表面温度降低100℃~200℃,但仍无法满足燃气轮机工作温度需求。
热障涂层广泛用于航空发动机和工业燃气轮机的热端部件,保证热端部件能够在高温环境中持续工作中。现在,航空发动机热障涂层主流材料为氧化钇稳定氧化锆(YSZ),但该材料在温度达到1200℃以上时会发生相变,从四方相转变为单斜相,这会造成3~5%的体积膨胀,而体积膨胀会引起涂层开裂、剥落等问题,最终导致涂层的失效,这使得其已经不能满足当代的使用需求。开发新的热障涂层材料是十分必要的。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于解决现有技术中的已知热障涂层材料的高温相稳定性较差等问题,提供一种多元素高熵掺杂氧化锆基陶瓷材料及其制备方法。
本发明第一方面提供一种多元素高熵掺杂氧化锆基陶瓷材料,其特征在于,所述陶瓷材料以ZrO 2陶瓷材料为基体,通过五种或五种以上掺杂元素以等量形式在Zr位进行多元素高熵掺杂获得,所述掺杂元素选自Ca、Mg、Sr、Sc、Ce、Gd、La、Y、Yb、Sm。
在一些实施方式中,进行多元素高熵掺杂后获得的所述陶瓷材料中氧化锆的摩尔占比为65%~95%。
在一些实施方式中,进行多元素高熵掺杂后获得的所述陶瓷材料中氧化锆的摩尔占比为82%~95%。
在一些实施方式中,进行多元素高熵掺杂后获得的所述陶瓷材料中氧化锆的摩尔占比为88%~95%。
本发明第二方面提供一种多元素高熵掺杂氧化锆基陶瓷材料的制备方法,其特征在于,所述制备方法包括以下步骤:
S1:将ZrO 2、所述掺杂元素的氧化物粉体以及溶剂通过湿法球磨制成浆料;
S2:将步骤S1中得到的所述浆料干燥,得到干燥粉末;
S3:将步骤S2中得到的所述干燥粉末压制成型,然后高温反应,即得。
在一些实施方式中,在步骤S1中所述掺杂元素的氧化物粉体的纯度大于99%,粒径小于10μm;
和/或,所述湿法球磨以氧化锆球作为研磨介质,球料比为8~10:1;
和/或,所述湿法球磨通过使用湿式球磨机进行,在湿法球磨过程中,所述湿式球磨机的转速为1000~3000r/min,所述湿法球磨进行的时间为12~36h。
在一些实施方式中,在所述步骤S2中所述浆料干燥的温度为30~50℃。
在一些实施方式中,在所述步骤S3中,将所述干燥粉末压制成型时压力为10~100MPa。
在一些实施方式中,在所述步骤S3中,所述高温反应包括加热阶段和保温阶段,
优选的,
所述加热阶段的加热速率为2~10℃/min;
和/或,所述保温阶段的温度为1600~1850℃;
和/或,所述保温阶段的保温时间为24~36h。
本发明第三方面提供上述多元素高熵掺杂氧化锆基陶瓷材料或根据上述制备方法制备的多元素高熵掺杂氧化锆基陶瓷材料在航空发动机和工业燃气轮机的热端部件中的应用。
与现有技术相比,本发明达到的技术效果如下:
(1)本发明的陶瓷材料以ZrO 2陶瓷材料为基体,通过选自Ca、Mg、Sr、Sc、Ce、Gd、La、Y、Yb、Sm的五种或五种以上掺杂元素以等量形式在Zr位进行多元素高熵掺杂获得,通过五种或五种以上多元素高熵掺杂,本发明的陶瓷材料可在1600℃温度下长时间使用且不发生相变,还具有热导率较低,热膨胀系数较高和断裂韧性高等优异的性能,是一种极具前景的热障涂层新材料。
(2)与现役的氧化亿稳定氧化锆热障涂层相比,本发明所获得的材料不仅可以在更高服役温度下不发生相变,而且还具有更好的隔热性能,较好的抗烧结性。
(3)本发明高熵掺杂氧化锆材料可以在高温长时间使用不脱溶,不相变,性能稳定。
(4)本发明进一步发现,掺杂元素种类越多时候,高熵掺杂的陶瓷材料具有更好的隔热性能,但在掺杂元素含量太多时,抗烧结性能会出现下降。
(5)本发明方法工艺简单、生产效率高、适合大规模工业生产。
附图说明
图1是根据本发明实施例1的高熵掺杂氧化锆基陶瓷材料连续经受1600℃×200h前后的XRD图谱;
图2A是根据本发明实施例1的高熵掺杂氧化锆基陶瓷材料在1800℃长时间烧结后的扫描电镜照片;
图2B是根据本发明实施例1的高熵掺杂氧化锆基陶瓷材料在1800℃长时间烧结后的背散射电子像扫描电镜照片。
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
实施例1
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量9mol的ZrO 2(纯度大于99.99%、平均粒径为2μm)、0.1mol的Y 2O 3(纯度大于99.99%、平均粒径为1μm)、0.1mol的Gd 2O 3(纯度大于99.99%、平均粒径为1μm)、0.2mol的MgO(纯度大于99.99%、平均粒径为1μm)、0.1mol的Sc 2O 3(纯度大于99.99%、平均粒径为1μm)和0.1mol的Ce 2O 3(纯度大于99.99%、平均粒径为1μm),以氧化锆为球磨介质,以酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料 质量:酒精质量的比例为8:1:1,球磨转速为2000r/min,球磨时间为12h;然后将所得浆料在35℃的温度下烘干至恒重,得到干燥粉末;将所得干燥粉末在20MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以3℃/min速率升温至1800℃,保温时间15h,随炉冷却,即得到五种元素高熵掺杂氧化锆基陶瓷材料。所得五种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.9Y 0.02Gd 0.02Mg 0.02Sc 0.02Ce  0.02O 1.94;热导率为1.90W·mK -1(1300℃);平均热膨胀系数为10.5×10 -6K -1(RT~1500℃);断裂韧性为3.5MPa m 1/2
实施例1制备的陶瓷材料连续经受1600℃×200h前后XRD图谱如图1所示,由图1可知,实施例1制备的陶瓷材料高温相稳定性较优,可以在1600℃下长时间使用不发生相变。图2A为实施例1制备的陶瓷材料在1800℃长时间烧结后的扫描电镜照片,从图2A可以看出,陶瓷材料中气孔依然较多,并未因长时间烧结导致致密化,表明实施例1制备的陶瓷材料的抗烧结性能较好。图2B为实施例1制备的陶瓷材料的背散射电子像,显示了Zr、Y、Gd、Mg、Sc、Ce六种元素在陶瓷材料中的分布情况。从图2B可以看出,六种元素在陶瓷材料中的分布都很均匀,无偏析或团聚等元素分布不均现象。
实施例2
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量9.5mol的ZrO 2(纯度大于99.99%、平均粒径为2μm)、0.05mol的La 2O 3(纯度大于99.99%、平均粒径为2μm)、0.05mol的Yb 2O 3(纯度大于99.99%、平均粒径为2μm)、0.1mol的CaO(纯度大于99.99%、平均粒径为2μm)、0.05mol的Sc 2O 3(纯度大于99.99%、平均粒径为2μm)和0.05mol的Gd 2O 3(纯度大于99.99%、平均粒径为2μm),以氧化锆为球磨介质,酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料质量:酒精质量的比例为10:1:1,球磨转速为3000r/min,球磨时间为14h;然后将所得浆料在35℃的温度下烘干至恒重,得到干燥粉末;将所得干燥粉末在55MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以5℃/min速率升温至1800℃,保温时间20h,随炉冷却,即可得到五种元素高熵 掺杂氧化锆基陶瓷材料。所得五种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.95La 0.01Yb 0.01Ca 0.01Sc 0.01Gd 0.01O 1.97;热导率为2.1W·mK -1(1300℃);平均热膨胀系数为11.8×10 -6K -1(RT~1500℃);断裂韧性为2.2MPa m 1/2;该材料连续经受1600℃×200h前后高温相稳定性不发生相变。1800℃度长时间烧结未能实现材料的烧结致密化。
实施例3
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量7.5mol的ZrO 2(纯度大于99.99%、平均粒径为2μm)、0.25mol的Y 2O 3(纯度大于99.99%、平均粒径为1μm)、0.25mol的Gd 2O 3(纯度大于99.99%、平均粒径为1μm)、0.5mol的CaO(纯度大于99.99%、平均粒径为1μm)、0.25mol的Sc 2O 3(纯度大于99.99%、平均粒径为1μm)和0.25mol的Ce 2O 3(纯度大于99.99%、平均粒径为1μm),以氧化锆为球磨介质,以酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料质量:酒精质量的比例为10:1:1,球磨转速为1500r/min,球磨时间为17h;然后将所得浆料在45℃的温度下烘干至恒重,得到干燥粉末;将所得干燥粉末在100MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以5/min速率升温至1800℃,保温时间15h,随炉冷却,即得到五种元素高熵掺杂氧化锆基陶瓷材料。所得五种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.75Y 0.05Gd 0.05Ca 0.05Sc 0.05Ce 0.05O 1.85;在该温度下实现了材料的烧结致致密化,热导率为1.71W·mK -1(1300℃);平均热膨胀系数为9.6×10 -6K -1(RT~1500℃);断裂韧性为3.85MPa m 1/2。1700℃度烧结长时间烧结未能实现材料的结致密化。
实施例4
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量6.5mol的ZrO 2(纯度大于99.99%、平均粒径为2μm)、0.35mol的La 2O 3(纯度大于99.99%、平均粒径为3μm)、0.35mol的Yb 2O 3(纯度大于99.99%、平均粒径为3μm)、0.7mol的MgO(纯度大于99.99%、平均粒径为3μm)、0.35mol的Sc 2O 3(纯度大于99.99%、平均粒径为3μm)和0.35mol的Gd 2O 3(纯度大于99.99%、 平均粒径为3μm),以氧化锆为球磨介质,酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料质量:酒精质量的比例为12:1:1,球磨转速为3000r/min,球磨时间为20h;然后将所得浆料在35℃的温度下烘干至恒重,得到干燥粉末;将所得干燥粉末在50MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以6℃/min速率升温至1650℃,保温时间15h,随炉冷却,即可得到五种元素高熵掺杂氧化锆基陶瓷材料。所得五种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.65La 0.07Yb 0.07Mg 0.07Sc 0.07Gd 0.07O 1.65;热导率为1.67W·mK -1(1300℃);平均热膨胀系数为9.2×10 -6K -1(RT~1500℃);断裂韧性为3.9MPa m 1/2;该材料连续经受1600℃×200h前后高温相稳定性不发生相变。1650℃度长时间烧结后,材料没有烧结致密化。
实施例5
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量8.8mol的ZrO 2(纯度大于99.99%、平均粒径为2μm)、0.1mol的Sm 2O 3(纯度大于99.99%、平均粒径为1μm)、0.1mol的Y 2O 3(纯度大于99.99%、平均粒径为1μm)、0.1mol的Gd 2O 3(纯度大于99.99%、平均粒径为1μm)、0.1的mol Yb 2O 3(纯度大于99.99%、平均粒径为1μm)、0.1mol的Sc 2O 3(纯度大于99.99%、平均粒径为1μm)和0.1mol的Ce 2O 3(纯度大于99.99%、平均粒径为1μm),以氧化锆为球磨介质,酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料质量:酒精质量的比例为14:1:1,球磨转速为1500r/min,球磨时间为18h;然后所得浆料在35℃的温度烘干至恒重,得到混合均匀的干燥粉末;将所得干燥粉末在45MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以3℃/min速率升温至1780℃,保温时间15h,随炉冷却,即可得到六种元素高熵掺杂氧化锆基陶瓷材料。所得六种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.88Sm 0.02Y 0.02Gd 0.02Yb 0.02Sc 0.02Ce 0.02O 1.94;热导率为1.50W·mK -1(1300℃);平均热膨胀系数为9.8×10 -6K -1(RT~1500℃);断裂韧性为4.0MPa m 1/2;该材料连续经受1600℃×200h前后高温相稳定性不发生相变。1780℃度长时间烧结后,没有实现材料的烧结致密化。
实施例6
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量8.8mol ZrO 2(纯度大于99.99%、平均粒径为2μm)、0.2mol的MgO(纯度大于99.99%、平均粒径为3μm)、0.1mol的La 2O 3(纯度大于99.99%、平均粒径为3μm)、0.1mol的Gd 2O 3(纯度大于99.99%、平均粒径为3μm)、0.1mol的Sm 2O 3(纯度大于99.99%、平均粒径为3μm)、0.1mol的Sc 2O 3(纯度大于99.99%、平均粒径为3μm)和0.1mol的Yb 2O 3(纯度大于99.99%、平均粒径为3μm),以氧化锆为球磨介质,酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料质量:酒精质量的比例为13:1:1,球磨转速为2500r/min,球磨时间为20h;然后以35℃的温度将所得到的浆料烘干至恒重,得到混合均匀的干燥粉末;将所得干燥粉末在50MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以4℃/min速率升温至1750℃,保温时间30h,随炉冷却,即可得到六种元素高熵掺杂氧化锆基陶瓷材料。所得六种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.88Mg 0.02La 0.02Gd 0.02Sm 0.02Sc 0.02Yb 0.02O 1.93;热导率为1.58W·mK -1(1300℃);平均热膨胀系数为9.4×10 -6K -1(RT~1500℃);断裂韧性为2.9MPa m 1/2;该材料连续经受1600℃×200h前后高温相稳定性不发生相变。1750℃度长时间烧结后,没有实现材料的烧结致密化。
实施例7
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量8.6mol ZrO 2(纯度大于99.99%、平均粒径为2μm)、0.1mol的MgO(纯度大于99.99%、平均粒径为3μm)、0.2mol的SrO(纯度大于99.99%、平均粒径为3μm)、0.1mol的La 2O 3(纯度大于99.99%、平均粒径为3μm)、0.1mol的Gd 2O 3(纯度大于99.99%、平均粒径为3μm)、0.1mol的Sm 2O 3(纯度大于99.99%、平均粒径为3μm)、0.1mol的Sc 2O 3(纯度大于99.99%、平均粒径为3μm)和0.1mol的Yb 2O 3(纯度大于99.99%、平均粒径为3μm),以氧化锆为球磨介质,酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料质量:酒精质量的比例为10:1:1,球 磨转速为2500r/min,球磨时间为20h;然后以35℃的温度将所得到的浆料烘干至恒重,得到混合均匀的干燥粉末;将所得的干燥粉末在68MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以3℃/min速率升温至1700℃,保温时间15h,随炉冷却,即可得到七种元素高熵掺杂氧化锆基陶瓷材料。所得七种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.86Mg 0.02Sr 0.02La 0.02Gd 0.02Sm 0.02Sc 0.02Yb 0.02O 1.91;热导率为1.30W·mK -1(1300℃);平均热膨胀系数为9.2×10 -6K -1(RT~1500℃);断裂韧性为3.3MPa m 1/2;该材料连续经受1600℃×200h前后高温相稳定性不发生相变。1700℃度长时间烧结后,没有实现材料的烧结致密化。
对比例
一种多元素高熵掺杂氧化锆基陶瓷材料,其制备方法为:准确称量9.6mol的ZrO 2(纯度大于99.99%、平均粒径为0.5μm)、0.04mol的Sm 2O 3(纯度大于99.99%、平均粒径为1μm)、0.04mol的Gd 2O 3(纯度大于99.99%、平均粒径为1μm)、0.08mol的CaO(纯度大于99.99%、平均粒径为1μm)、0.04mol的Sc 2O 3(纯度大于99.99%、平均粒径为1μm)和0.04mol的Ce 2O 3(纯度大于99.99%、平均粒径为1μm),以氧化锆为球磨介质,以酒精为分散介质,湿法球磨制备浆料,其中球质量:粉料质量:酒精质量的比例为10:1:1,球磨转速为1500r/min,球磨时间为17h;然后将所得浆料在45℃的温度下烘干至恒重,得到干燥粉末;将所得干燥粉末在100MPa压力下,机压成型制成坯体;将成型后的坯体放入气窑中,以5/min速率升温至1800℃,保温时间15h,随炉冷却,即得到五种元素高熵掺杂氧化锆基陶瓷材料。所得五种元素高熵掺杂氧化锆基陶瓷材料的化学式为:Zr 0.96Y 0.008Gd 0.008Ca 0.008Sc 0.008Ce 0.008O 1.978;材料的物相为单斜相,材料受热时在1150℃左右时发生相变(由单斜相变为四方相),相变产生较大的体积变化,该陶瓷材料不适合作为高温热障涂层。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些 描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (13)

  1. 一种多元素高熵掺杂氧化锆基陶瓷材料,其特征在于,所述陶瓷材料以ZrO 2陶瓷材料为基体,通过五种或五种以上掺杂元素以等量形式在Zr位进行多元素高熵掺杂获得,所述掺杂元素选自Ca、Mg、Sr、Sc、Ce、Gd、La、Y、Yb、Sm。
  2. 根据权利要求1所述的陶瓷材料,其特征在于,进行多元素高熵掺杂后获得的所述陶瓷材料中氧化锆的摩尔占比为65%~95%。
  3. 根据权利要求1所述的陶瓷材料,其特征在于,进行多元素高熵掺杂后获得的所述陶瓷材料中氧化锆的摩尔占比为82%~95%。
  4. 根据权利要求1所述的陶瓷材料,其特征在于,进行多元素高熵掺杂后获得的所述陶瓷材料中氧化锆的摩尔占比为88%~95%。
  5. 根据权利要求1-4中任一项所述的多元素高熵掺杂氧化锆基陶瓷材料的制备方法,其特征在于,所述制备方法包括以下步骤:
    S1:将ZrO 2、所述掺杂元素的氧化物粉体以及溶剂通过湿法球磨制成浆料;
    S2:将步骤S1中得到的所述浆料干燥,得到干燥粉末;
    S3:将步骤S2中得到的所述干燥粉末压制成型,然后高温反应,即得。
  6. 根据权利要求5所述的制备方法,其特征在于,在步骤S1中所述掺杂元素的氧化物粉体的纯度大于99%,粒径小于10μm;
    和/或,所述湿法球磨以氧化锆球作为研磨介质,球料比为8~10:1;
    和/或,所述湿法球磨通过使用湿式球磨机进行,在湿法球磨过程中,所述湿式球磨机的转速为1000~3000r/min,所述湿法球磨进行的时间为12~36h。
  7. 根据权利要求5所述的制备方法,其特征在于,在所述步骤S2中所述浆料干燥的温度为30~50℃。
  8. 根据权利要求5所述的制备方法,其特征在于,在所述步骤S3中,将所述干燥粉末压制成型时压力为10~100MPa。
  9. 根据权利要求5所述的制备方法,其特征在于,在所述步骤S3中,所述高温反应包括加热阶段和保温阶段。
  10. 根据权利要求9所述的制备方法,其特征在于,所述加热阶段的加热速率为2~10℃/min。
  11. 根据权利要求9所述的制备方法,其特征在于,所述保温阶段的温度为1600~1850℃。
  12. 根据权利要求9所述的制备方法,其特征在于,所述保温阶段的保温时间为24~36h。
  13. 根据权利要求1-4中任一项所述的多元素高熵掺杂氧化锆基陶瓷材料或根据权利要求5-12中任一项所述的制备方法制备的多元素高熵掺杂氧化锆基陶瓷材料在航空发动机或工业燃气轮机的热端部件中的应用。
PCT/CN2022/120183 2022-07-29 2022-09-21 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用 WO2024021268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210903998.0 2022-07-29
CN202210903998.0A CN115124339B (zh) 2022-07-29 2022-07-29 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024021268A1 true WO2024021268A1 (zh) 2024-02-01

Family

ID=83386630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120183 WO2024021268A1 (zh) 2022-07-29 2022-09-21 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115124339B (zh)
WO (1) WO2024021268A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894027A (zh) * 2022-12-12 2023-04-04 广东省科学院新材料研究所 基于锆酸钆的高熵陶瓷热障涂层粉体及其制备方法和应用
CN116535209B (zh) * 2023-04-29 2023-12-15 上海大学 一种高熵稳定立方氧化锆和四方氧化锆相结构的方法
CN117684115A (zh) * 2023-12-12 2024-03-12 杭钢金属陶瓷(安吉)有限公司 一种多元高熵稳定氧化钇热障涂层材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495235A (zh) * 2002-08-21 2004-05-12 联合工艺公司 具有低导热率的绝热涂层
US20040197580A1 (en) * 2000-12-08 2004-10-07 Dorfman Mitchell R. Method of producinhg a pre-alloyed stabilized zironia powder
CN101439969A (zh) * 2008-12-22 2009-05-27 西北有色金属研究院 稀土氧化物和氧化锰共稳定的氧化锆陶瓷及其制备方法
CN106588042A (zh) * 2016-11-18 2017-04-26 北京理工大学 一种三元稀土掺杂ysz热障涂层材料及其制备方法
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
CN114538922A (zh) * 2022-03-22 2022-05-27 北京理工大学 一种用于氧化锆的多主组元掺杂剂

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008221A (en) * 1985-04-11 1991-04-16 Corning Incorporated High toughness ceramic alloys
US6875529B1 (en) * 2003-12-30 2005-04-05 General Electric Company Thermal barrier coatings with protective outer layer for improved impact and erosion resistance
JP4959213B2 (ja) * 2006-03-31 2012-06-20 三菱重工業株式会社 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
CN104445394A (zh) * 2014-11-06 2015-03-25 北京矿冶研究总院 一种用于热障涂层的锆基氧化物陶瓷粉体的制备方法
JP7154752B2 (ja) * 2016-12-11 2022-10-18 ゼネラル・エレクトリック・カンパニイ 低い熱伝導率を有する遮熱コーティング
FR3077288A1 (fr) * 2018-01-31 2019-08-02 Saint-Gobain Centre De Recherches Et D'etudes Europeen Poudre pour barriere thermique
GB201901061D0 (en) * 2019-01-25 2019-03-13 Ceramic Powder Tech As Process
CN110272278B (zh) * 2019-05-17 2021-11-05 东华大学 热障涂层用高熵陶瓷粉体及其制备方法
JP2024501159A (ja) * 2021-01-05 2024-01-11 エリコン メテコ(ユーエス)インコーポレイテッド 低い熱慣性及び低い熱伝導率を有する複合酸化物遮熱コーティング
CN112919908B (zh) * 2021-03-04 2023-03-21 内蒙古工业大学 一种新型钙钛矿结构高熵陶瓷及其制备方法
CN113683430B (zh) * 2021-10-12 2022-11-22 西北工业大学 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
CN113912394A (zh) * 2021-10-19 2022-01-11 西安交通大学 一种多元稀土元素取代掺杂的二氧化锆基陶瓷隔热材料及制备方法
CN114149260B (zh) * 2021-12-14 2023-01-03 内蒙古工业大学 一种低热导率高熵陶瓷热障涂层材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040197580A1 (en) * 2000-12-08 2004-10-07 Dorfman Mitchell R. Method of producinhg a pre-alloyed stabilized zironia powder
CN1495235A (zh) * 2002-08-21 2004-05-12 联合工艺公司 具有低导热率的绝热涂层
CN101439969A (zh) * 2008-12-22 2009-05-27 西北有色金属研究院 稀土氧化物和氧化锰共稳定的氧化锆陶瓷及其制备方法
CN106588042A (zh) * 2016-11-18 2017-04-26 北京理工大学 一种三元稀土掺杂ysz热障涂层材料及其制备方法
CN112839915A (zh) * 2018-10-09 2021-05-25 欧瑞康美科(美国)公司 用于热障涂层(tbc)面涂层的高熵氧化物
CN114538922A (zh) * 2022-03-22 2022-05-27 北京理工大学 一种用于氧化锆的多主组元掺杂剂

Also Published As

Publication number Publication date
CN115124339B (zh) 2023-09-26
CN115124339A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2024021268A1 (zh) 多元素高熵掺杂氧化锆基陶瓷材料及其制备方法和应用
CN113023776B (zh) 一种热障涂层用萤石结构高熵氧化物粉体及其制备方法
CA2647453C (en) Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body
CN100386391C (zh) 稀土锆酸盐高温热障涂层材料及其制备方法
CN113683430B (zh) 缺陷萤石结构的氧化物高熵陶瓷及其抗烧蚀涂层的制备方法
WO2022247346A1 (zh) 一种氧化物高熵陶瓷纤维的制备方法
CN104891990B (zh) 共晶结构热障涂层材料及其可用于热喷涂的粉粒制造方法
CN102659403A (zh) 一种耐高温热障涂层陶瓷材料及其制备方法
CN109942301A (zh) 一种低成本氮化硅陶瓷的制备方法
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
CN113185305B (zh) 一种高温隔热高熵氧化物及其制备方法
CN101417880A (zh) 低温烧结硼化物基陶瓷材料及其制备方法
WO2024093144A1 (zh) 一种高断裂韧性、抗cmas腐蚀及超高温烧结热障涂层材料及其制备和应用、热障涂层
US20220306472A1 (en) Orthophosphate thermal barrier coating material with high coefficient of thermal expansion and preparation method thereof
CN108358646A (zh) 一种硼化锆基陶瓷及其制备方法
CN112279650A (zh) 一种高致密度的碳化硅陶瓷复合材料的制备方法
CN113912394A (zh) 一种多元稀土元素取代掺杂的二氧化锆基陶瓷隔热材料及制备方法
CN108439977B (zh) 一种高温低热导氧化铪基热障涂层材料及其制备方法
CN111099907A (zh) 一种表面改性氧化锆纤维复合稀土锆酸镧的高性能陶瓷及其制备方法
CN113233883A (zh) 一种四元稀土硅酸盐固溶体球形团聚粉体及其制备方法
CN115073172B (zh) 一种陶瓷靶材及其制备方法和应用
CN105908043B (zh) 一种Mo‑ZrB2‑SiC‑AlN复合材料及其制备方法
CN115093218B (zh) 一种锆酸盐陶瓷材料及其制备方法和应用
CN111217608A (zh) 一种氧化物陶瓷的低温烧结方法
CN114956811A (zh) 一种钪铈共掺杂锆酸钆热障涂层材料及其制备方法、以及一种热障涂层及其制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952709

Country of ref document: EP

Kind code of ref document: A1