WO2024021200A1 - 一种探针高速测试装置及测试系统 - Google Patents

一种探针高速测试装置及测试系统 Download PDF

Info

Publication number
WO2024021200A1
WO2024021200A1 PCT/CN2022/113303 CN2022113303W WO2024021200A1 WO 2024021200 A1 WO2024021200 A1 WO 2024021200A1 CN 2022113303 W CN2022113303 W CN 2022113303W WO 2024021200 A1 WO2024021200 A1 WO 2024021200A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
substrate
positioning
speed
plate
Prior art date
Application number
PCT/CN2022/113303
Other languages
English (en)
French (fr)
Inventor
邱碧辉
梁建
罗雄科
Original Assignee
上海泽丰半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海泽丰半导体科技有限公司 filed Critical 上海泽丰半导体科技有限公司
Publication of WO2024021200A1 publication Critical patent/WO2024021200A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2884Testing of integrated circuits [IC] using dedicated test connectors, test elements or test circuits on the IC under test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Definitions

  • This specification relates to the technical field of probe testing, and specifically to a probe high-speed testing device and a testing system.
  • the test project moves forward to the CP test stage.
  • the main factor affecting high-speed test performance comes from the probe card, and the high-speed performance of the probes in the probe card often directly determines the impedance and insertion loss of the probe card design. , return loss and other properties.
  • the high-speed signal test of the probe mainly uses a customized mechanical fixture of the probe station to connect to the network analyzer to test the S parameters to determine the high-speed performance.
  • the fixture and the test probe are The impedance of the probe contact part is difficult to control, so it can easily affect the probe high-speed test results.
  • embodiments of this specification provide a probe high-speed testing device and a testing system, which can achieve good impedance and loss control by arranging a first substrate, a second substrate and a high-speed radio frequency connector, and at the same time Design a high-precision de-embedding structure to ensure de-embedding accuracy, thereby achieving better test results that restore probe performance.
  • a probe high-speed testing device including: a second substrate, a probe head, a first substrate and at least two high-speed radio frequency connectors arranged sequentially along a first direction. At least two first pads are provided on a substrate, and the first pads are connected to the high-speed RF connector in a one-to-one correspondence through connecting lines, and a plurality of second pads are provided on the second substrate;
  • the probe head is provided with at least two probe mounting positions, the probe mounting positions are used to install the probe, and the second pad is used to connect the two probe tails.
  • the probe tip is electrically connected to the high-speed radio frequency connector through the first pad.
  • the device further includes: a positioning plate disposed between the probe head and the second substrate, the positioning plate being provided with a first positioning hole for positioning the probe head, the The positioning plate is provided with a first through slot for the probe to pass through.
  • the positioning accuracy of the first positioning hole relative to the probe head is plus or minus 2um.
  • the device further includes: a top plate disposed between the first substrate and the probe head, the top plate is provided with a first positioning groove for positioning the first substrate, and the first positioning groove is provided on the top plate. A second through-slot for the probe to pass through is opened in the positioning groove.
  • the positioning plate is provided with a second positioning hole for positioning the top plate to ensure that the first pad on the first substrate corresponds to the probe tip.
  • a first gasket with a first thickness is provided between the top plate and the positioning plate.
  • the first pad on the first substrate is aligned with the first gasket.
  • the distance between the probe tips is adjusted.
  • a first fine-tuning mechanism is provided on the top plate, and the first fine-tuning mechanism adjusts the position accuracy of the first substrate in the first positioning groove.
  • the device further includes: a bottom plate, the bottom plate is provided with a second positioning groove for positioning the second substrate.
  • the positioning plate is provided with a third positioning hole for positioning the base plate to ensure that the second pad on the second substrate corresponds to the pin tail of the probe.
  • a second gasket with a second thickness is provided between the bottom plate and the positioning plate.
  • the second pad on the second substrate is aligned with the second gasket. The distance between the probe needle tails is adjusted.
  • a second fine-tuning mechanism is provided on the bottom plate, and the second fine-tuning mechanism adjusts the position accuracy of the second substrate in the second positioning groove.
  • a test system the system includes a network analyzer and a device as described in any one of the above, and the network analyzer is electrically connected to the high-speed radio frequency connector.
  • the beneficial effects achieved by at least one of the above technical solutions adopted in the embodiments of this specification at least include:
  • the first soldering pad is connected through a connecting wire.
  • the disk is connected to the high-speed RF connector.
  • the first substrate, the second substrate and the high-speed RF connector can achieve good impedance and loss control.
  • a high-precision de-embedding structure can be designed to ensure de-embedding accuracy, thus achieving Better test results for restoring probe performance.
  • Figure 1 is a simplified connection schematic diagram of a probe high-speed testing device provided by the present invention
  • Figure 2 is a schematic diagram of the explosion structure of a probe high-speed testing device provided by the present invention.
  • Figure 3 is a schematic structural diagram of a probe high-speed testing device provided by the present invention after assembly
  • Figure 4 is a schematic diagram of the connection between the probe head and the positioning plate of a probe high-speed testing device provided by the present invention
  • Figure 5 is a schematic diagram of the connection between the probe head and the positioning plate of a probe high-speed testing device provided by the present invention
  • Figure 6 is a schematic diagram of the connection between the top plate and the positioning plate of a probe high-speed testing device provided by the present invention.
  • Figure 7 is a schematic diagram of the connection between the top plate and the positioning plate of a probe high-speed testing device provided by the present invention.
  • Second substrate 2. Probe head, 3. First substrate, 4. High-speed RF connector, 5. First pad, 6. Connecting wire, 7. Second pad, 8. Probe Needle, 9. Positioning plate, 10. Top plate, 11. Bottom plate, 12. First through slot, 13. First positioning hole, 14. Second positioning hole, 15. First positioning slot, 16. Second through slot, 17. The first fine-tuning mechanism, 18. The second positioning groove, 19. The second fine-tuning mechanism.
  • the impedance of the contact part between the fixture and the test probe and the probe is difficult to control, and the de-embedding of the fixture and the test probe is difficult, and the de-embedding is difficult to control, the result is that the high-speed test results of the probe are easily affected.
  • the cross-sectional size of the probe tip is generally between 25 and 50um, and the pitch (Pitch) between adjacent probes is usually between 40 and 100um. Small size and small pitch require high position control, so it is necessary to control the probe during testing. The position is difficult and easy to shift.
  • the probe is relatively fragile. It is difficult to accurately control the needle pressure (Overdrive) during testing. If the needle pressure is small, it will be difficult to complete the test. If the needle pressure is large, the probe may be damaged. At the same time, the length of the probe is short, and the tested S parameters are easily affected by the test environment. For example, if the test probe and fixture are not installed properly, the real probe parameters will not be restored.
  • a probe high-speed testing device includes: a second substrate 1, a probe head 2, a first substrate 3 and at least two high-speed radio frequency connectors 4 arranged sequentially along a first direction. At least two first soldering pads 5 are provided on the first substrate 3 , and the first soldering pads 5 are connected to the high-speed radio frequency connector 4 in one-to-one correspondence through connecting wires 6 .
  • the second substrate 1 is provided with a plurality of first soldering pads 5 .
  • the second soldering pad 7; the probe head 2 is provided with at least two probe mounting positions, the probe mounting positions are used to install the probe 8, and the second soldering pad 7 is used to connect two probes.
  • the pin tails of the probes 8 are connected to each other, and the tips of the probes 8 are electrically connected to the high-speed radio frequency connector 4 through the first pad 5 .
  • the first pad 5 is connected to the high-speed RF connector 4 with a connecting wire 6, which can form a loop between the two probes 8, and connect the high-speed RF connector 4 to the network analyzer through a high-speed RF cable. , it can test the S parameters of the probe 8 loop, the first substrate 3, the second substrate 1, the high-speed RF connector 4 and the high-speed RF cable part to embed the link S parameters.
  • the first substrate 3, the second substrate 1, The high-speed RF connector 4 and the high-speed RF cable can achieve good impedance and loss control.
  • the full-link S parameters are de-embedded, that is, the S parameter data of the two probes 8 are obtained.
  • the first substrate 3 , the second substrate 1, the high-speed RF connector 4 and the high-speed RF cable can design a high-precision de-embedding structure to ensure the de-embedding accuracy, thereby achieving a better test effect of restoring the performance of the probe 8.
  • the second substrate 1, the probe head 2, the first substrate 3 and the high-speed radio frequency connector 4 are arranged in sequence from bottom to top, and the probe 8 is installed through the mounting position of the probe head 2 Position the probe 8.
  • the probe 8 passes through the probe head 2.
  • the needle tail of the probe 8 is connected to the second pad 7 provided on the second substrate 1.
  • the needle head of the probe 8 is connected to the first pad 7 provided on the second substrate 1.
  • the first pads 5 on the substrate 3 are connected.
  • the probe head 2 includes a support plate, a number of through holes are opened on the support plate, and a number of probe mounting positions are formed on the support plate through a number of through holes.
  • the through hole is set according to the size and style of the probe 8 so that the through hole corresponds to the probe 8 to ensure that the probe 8 can pass through the through hole during testing and at the same time, the through hole can detect the probe 8 Play a positioning effect.
  • the device further includes: a positioning plate 9 disposed between the probe head 2 and the second substrate 1, with a positioning plate 9 disposed on it.
  • the positioning plate 9 is provided with a first through-slot 12 for the probe 8 to pass through.
  • the positioning plate 9 is used to carry and fix the probe head. 2
  • the first positioning hole 13 is opened on the positioning plate 9, and the support plate of the probe head 2 is provided with a first positioning hole 13 corresponding to the first positioning hole 13.
  • the positioning pin is inserted into the first positioning hole 13 through the first connection hole to complete the positioning connection between the probe head 2 and the positioning plate 9.
  • the positioning connection operation between the probe head 2 and the positioning plate 9 is completed. More convenient.
  • the positioning plate 9 is also provided with a first groove, and the first through groove 12 is provided in the middle of the first groove.
  • the probe head 2 When the probe head 2 is installed on the positioning plate 9, the probe head 2 is completely accommodated.
  • the probe 8 In the first groove, the probe 8 passes through the first through groove 12 and contacts the second substrate 1 .
  • the positioning accuracy of the first positioning hole 13 relative to the probe head 2 is plus or minus 2um.
  • the positioning accuracy of 13 is plus or minus 2um, which ensures the positioning accuracy between the probe head 2 and the positioning plate 9, thereby ensuring the position of the probe head 2 relative to the positioning plate 9.
  • the device further includes: a top plate 10 disposed between the first substrate 3 and the probe head 2, with the top plate 10
  • a first positioning slot 15 is provided for positioning the first substrate 3 .
  • the first substrate 3 is accommodated in the first positioning slot 15 .
  • the first substrate 3 is positioned through the first positioning slot 15 to ensure that the first substrate 3
  • the first positioning groove 15 is provided with a second through groove 16 for the probe 8 to pass through.
  • the second through groove 16 is provided in the first positioning groove 15 to facilitate the probe 8 to pass through. It is connected to the first pad 5 on the bottom of the first substrate 3 through the second through groove 16 .
  • the depth of the first positioning groove 15 is not less than the thickness of the first substrate 3 so that the first substrate 3 can be completely accommodated in the first positioning groove 15 .
  • the depth of the first positioning groove 15 can also be designed according to actual conditions.
  • the size of the first positioning groove 15 is slightly larger than the size of the first substrate 3 to facilitate fine adjustment of the first substrate 3 .
  • the positioning plate 9 is provided with a second positioning hole 14 for positioning the top plate 10, and the top plate 10 is provided with a second connection hole corresponding to the second positioning hole 14.
  • the positioning pin passes through the second connection hole and is inserted into the second positioning hole 14 to complete the positioning connection between the top plate 10 and the positioning plate 9, ensuring the relative position between the top plate 10 and the positioning plate 9, thereby ensuring that the first base plate 3 and The relative position of the probe head 2 is to ensure that the first pad 5 on the first substrate 3 corresponds to the tip of the probe 8 .
  • a first gasket with a first thickness is provided between the top plate 10 and the positioning plate 9 .
  • the thickness of the first gasket By adjusting the thickness of the first gasket, the surface of the first base plate 3 can be adjusted. The distance between the first pad 5 and the tip of the probe 8 is adjusted. By reserving the position of the first gasket between the top plate 10 and the positioning plate 9, the first gasket of a specific thickness can be customized. The distance between the top plate 10 and the positioning plate 9 is adjusted, thereby adjusting the distance between the first pad 5 on the first substrate 3 and the tip of the probe 8, so that the needle tip of the probe 8 can be accurately controlled when the probe 8 is pressed down. Measure the pressure and avoid damage to the probe 8 while ensuring that the test is not affected.
  • the thickness of the first gasket can be designed according to the actual situation to ensure that the first pad 5 and the tip of the probe 8 are in good contact without causing excessive downward pressure to damage the probe 8 .
  • first gaskets may be four, and the four first gaskets are respectively provided at the four corners of the bottom of the top plate 10 to ensure the adjustment effect.
  • a first fine-tuning mechanism 17 is provided on the top plate 10, and the first fine-tuning mechanism 17 adjusts the position accuracy of the first substrate 3 in the first positioning groove 15.
  • the position accuracy of the first substrate 3 can be adjusted by setting the first fine-tuning mechanism 17.
  • the position of the first substrate 3 can be adjusted through the first fine-tuning mechanism 17 to adjust the position of the first pad 5 so that the first pad 5 corresponds to the tip of the probe 8 to ensure good contact.
  • the first fine-tuning mechanism 17 includes a first fine-tuning bolt, and the position of the first base plate 3 in the first positioning groove 15 is fine-tuned through the first fine-tuning bolt.
  • the device further includes: a bottom plate 11, the bottom plate 11 is provided with a second positioning groove 18 for positioning the second substrate 1, and the depth of the second positioning groove 18 is Greater than the thickness of the second substrate 1 , the second substrate 1 is completely accommodated in the second positioning slot 18 , and the second substrate 1 is positioned through the second positioning slot 18 to ensure the positioning accuracy of the second substrate 1 .
  • the size of the second positioning groove 18 is slightly larger than the size of the second substrate 1 to facilitate fine adjustment of the second substrate 1 in the second positioning groove 18 .
  • the positioning plate 9 is provided with a third positioning hole for positioning the bottom plate 11, and the bottom plate 11 is provided with a third connection hole corresponding to the third positioning hole, and a positioning pin passes through the third connection hole. Insert into the third positioning hole to complete the positioning connection between the top plate 10 and the positioning plate 9, ensuring the relative position between the bottom plate 11 and the positioning plate 9, thereby ensuring the relative position between the second substrate 1 and the probe head 2, This is to ensure that the second pad 7 on the second substrate 1 corresponds to the pin tail of the probe 8 .
  • a second gasket with a second thickness is provided between the bottom plate 11 and the positioning plate 9 .
  • the thickness of the second gasket By adjusting the thickness of the second gasket, the surface of the second substrate 1 can be adjusted. The distance between the second pad 7 and the pin tail of the probe 8 is adjusted. By reserving the position of the second gasket between the base plate 11 and the positioning plate 9, the second gasket with a specific thickness can be customized. The distance between the bottom plate 11 and the positioning plate 9 is adjusted to adjust the distance between the second pad 7 on the second substrate 1 and the pin tail of the probe 8 to ensure that the pin tail of the probe 8 is connected to the second welding pad.
  • the pads 7 are in good contact, so that there is a sufficient safe distance between the second pad 7 and the probe head 2 to avoid damage to the probe 8 .
  • the thickness of the second pad can be designed according to the actual situation to ensure that the probe 8 will not be damaged when the second pad 7 and the tip of the probe 8 are in good contact.
  • the number of second gaskets may be four, and the four second gaskets are respectively provided at the four corners of the top of the base plate 11 to ensure the adjustment effect.
  • a second fine-tuning mechanism 19 is provided on the bottom plate 11 .
  • the second fine-tuning mechanism 19 adjusts the position accuracy of the second substrate 1 in the second positioning groove 18 .
  • the mechanism 19 can adjust the position accuracy of the second substrate 1.
  • the mechanism 19 adjusts the position of the second substrate 1 to adjust the position of the second pad 7 so that the second pad 7 corresponds to the pin tail of the probe 8 to ensure good contact.
  • the second fine-tuning mechanism 19 includes a second fine-tuning bolt, and the position of the second base plate 1 in the second positioning groove 18 is fine-tuned through the second fine-tuning bolt.
  • a hole is made in the probe head 2 according to the size and style of the probe 8 to be tested, the probe 8 is installed on the probe head 2, and the probe head 2 is installed on In the first groove on the positioning plate 9, position and install the probe head 2 through the first positioning hole 13 on the positioning plate 9, complete the positioning connection between the probe head 2 and the positioning plate 9, and connect the first substrate 3 is installed in the first positioning groove 15 on the top plate 10.
  • the first substrate 3 is accommodated in the first positioning groove 15.
  • the first substrate 3 is positioned through the first positioning groove 15 to ensure the positioning accuracy of the first substrate 3.
  • the second substrate 1 is completely accommodated in the second positioning groove 18, and the second substrate 1 is positioned through the second positioning groove 18 to ensure that the second substrate 1 is positioned in the second positioning groove 18.
  • the positioning accuracy of the second base plate 1 is to position and install the top plate 10 and the positioning plate 9 through the second positioning hole 14 to ensure the relative position between the top plate 10 and the positioning plate 9, thereby ensuring that the first base plate 3 and the probe head 2 to ensure that the first pad 5 on the first substrate 3 corresponds to the tip of the probe 8.
  • the thickness of the first gasket adjusts the distance between the top plate 10 and the positioning plate 9, thereby adjusting the distance between the first pad 5 on the first substrate 3 and the tip of the probe 8, so that the probe can be accurately controlled.
  • the needle measurement pressure when the needle 8 is pressed down avoids damage to the probe 8 while ensuring that the test is not affected.
  • the relative position between the boards 9 ensures the relative position between the second substrate 1 and the probe head 2 to ensure that the second pad 7 on the second substrate 1 corresponds to the pin tail of the probe 8, through the base plate
  • the position of the second gasket is reserved between 11 and the positioning plate 9.
  • the distance between the base plate 11 and the positioning plate 9 can be adjusted by customizing a second gasket with a specific thickness, thereby adjusting the second gasket on the second substrate 1. Adjust the distance between the pad 7 and the pin tail of the probe 8 to ensure good contact between the pin tail of the probe 8 and the second pad 7, so that there is sufficient safety between the second pad 7 and the probe head 2 distance to avoid damage to probe 8.
  • the present invention can achieve good impedance and loss control during testing, and can design a high-precision de-embedding structure to ensure de-embedding accuracy, thereby achieving a better test effect of restoring the performance of the probe 8, and can It supports bandwidth testing up to 40GHz and above.
  • the structural design has high alignment accuracy and can be adjusted according to the actual situation. It can meet the high-speed testing of probe 8 and probe 8 cards with the smallest size and small pitch.
  • the pins pressed down are The measuring pressure is controllable, which can effectively avoid damage to the probe 8 during the testing process.
  • inventions of this specification provide a test system.
  • the system includes a network analyzer and a device as described in any one of the above.
  • the electrical connection between the network analyzer and the high-speed radio frequency connector 4 is connect.
  • the high-speed performance of the probe 8 is tested by using the above device and a network analyzer.
  • the high-speed RF connector 4 is connected to the network analyzer through a high-speed RF cable, and the loop S parameters of the probe 8 can be measured.
  • the first substrate 3, the second substrate 1, the high-speed RF connector 4 and the high-speed RF cable are partially de-embedded to test the S parameters of the link.
  • the first substrate 3, the second substrate 1, the high-speed RF connector 4 and the high-speed RF cable can design a high-precision de-embedding structure to ensure de-embedding accuracy, thereby achieving better test results that restore the performance of the probe 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种探针高速测试装置及测试系统,探针高速测试装置包括:沿着第一方向依次设置的第二基板(1)、探针头(2)、第一基板(3)和至少两个高速射频连接器(4),第一基板(3)上设置有至少两个第一焊盘(5),第一焊盘(5)通过连接线(6)与高速射频连接器(4)一一对应连接,第二基板(1)上设置有若干第二焊盘(7);其中,探针头(2)上设有至少两个探针安装位,探针安装位用于安装探针(8),第二焊盘(7)用于将两根探针(8)针尾之间进行连接,探针(8)针尖通过第一焊盘(5)与高速射频连接器(4)之间电性连接。通过设置第一基板(3)、第二基板(1)和高速射频连接器(4)能够实现良好的阻抗和损耗控制,同时能够设计高精度的去嵌结构,保证去嵌精度,从而能够达到较好的还原探针(8)性能的测试效果。

Description

一种探针高速测试装置及测试系统 技术领域
本说明书涉及探针测试技术领域,具体涉及一种探针高速测试装置及测试系统。
背景技术
随着通信、大数据、射频等领域的不断发展,信号速率不断上升、芯片制程不断减小,使得芯片在Final test(最后试验)阶段的良品率、测试成本大大增加,因此需要将相关高速信号测试项目向前到CP测试阶段中,在CP测试阶段主要影响高速测试性能的因素来源于探针卡,而探针卡中探针的高速性能往往直接决定该探针卡设计的阻抗、插损、回损等性能。
现有技术中,对于探针的高速信号测试主要使用探针台定制机械夹具连接到网络分析仪来测试S参数确定高速性能,但是在探针的高速信号测试过程中,由于夹具及测试探头与探针接触部分的阻抗难以进行控制,因此极易影响探针高速测试结果。
发明内容
为了解决背景技术中中的问题,本说明书实施例提供一种探针高速测试装置及测试系统,通过设置第一基板、第二基板和高速射频连接器能够实现良好的阻抗和损耗控制,同时能够设计高精度的去嵌结构,保证去嵌精度,从而能够达到较好的还原探针性能的测试效果。
本说明书实施例提供以下技术方案:一种探针高速测试装置,包括:沿着第一方向依次设置的第二基板、探针头、第一基板和至少两个高速射频连接器,所述第一基板上设置有至少两个第一焊盘,所述第一焊盘通过连接线与所述高速射频连接器一一对应连接,所述第二基板上设置有若干第二焊盘;
其中,所述探针头上设有至少两个探针安装位,所述探针安装位用于安装 所述探针,所述第二焊盘用于将两根所述探针针尾之间进行连接,所述探针针尖通过所述第一焊盘与所述高速射频连接器之间电性连接。
优选的,所述装置还包括:设置于所述探针头和所述第二基板之间的定位板,所述定位板上设有对所述探针头定位的第一定位孔,所述定位板上开设有用于所述探针穿过的第一通槽。
优选的,所述第一定位孔相对于所述探针头定位精度为正负2um。
优选的,所述装置还包括:设置于所述第一基板和所述探针头之间的顶板,所述顶板上开设有对所述第一基板定位的第一定位槽,所述第一定位槽内开设有用于所述探针穿过的第二通槽。
优选的,所述定位板上设有对所述顶板定位的第二定位孔,以保证所述第一基板上的第一焊盘与所述探针针尖相对应。
优选的,所述顶板和所述定位板之间设有第一厚度的第一垫片,通过对所述第一垫片厚度的调整,以对所述第一基板上的第一焊盘与所述探针针尖之间的距离进行调整。
优选的,所述顶板上设有第一微调机构,所述第一微调机构对所述第一基板在所述第一定位槽内的位置精度进行调整。
优选的,所述装置还包括:底板,所述底板上开设有对所述第二基板定位的第二定位槽。
优选的,所述定位板上设有对所述底板定位的第三定位孔,以保证所述第二基板上的第二焊盘与所述探针针尾相对应。
优选的,所述底板和所述定位板之间设有第二厚度的第二垫片,通过对所述第二垫片厚度的调整,以对所述第二基板上的第二焊盘与所述探针针尾之间的距离进行调整。
优选的,所述底板上设有第二微调机构,所述第二微调机构对所述第二基板在所述第二定位槽内的位置精度进行调整。
一种测试系统,所述系统包括网络分析仪和如上述任一项所述的装置,所 述网络分析仪与所述高速射频连接器之间电性连接。
与现有技术相比,本说明书实施例采用的上述至少一个技术方案能够达到的有益效果至少包括:
通过在第二基板上设置与探针针尾相连接的第二焊盘,通过在第一基板上设置至少两个与探针针尖相连接的第一焊盘,同时通过连接线将第一焊盘与高速射频连接器之间相连接,第一基板、第二基板和高速射频连接器能够实现良好的阻抗和损耗控制,同时能够设计高精度的去嵌结构,保证去嵌精度,从而能够达到较好的还原探针性能的测试效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明提供的一种探针高速测试装置的简化连接示意图;
图2是本发明提供的一种探针高速测试装置的爆炸结构示意图;
图3是本发明提供的一种探针高速测试装置组装后结构示意图;
图4是本发明提供的一种探针高速测试装置探针头与定位板连接示意图;
图5是本发明提供的一种探针高速测试装置探针头与定位板连接示意图;
图6是本发明提供的一种探针高速测试装置顶板与定位板连接示意图;
图7是本发明提供的一种探针高速测试装置顶板与定位板连接示意图。
图中,1、第二基板,2、探针头,3、第一基板,4、高速射频连接器,5、第一焊盘,6、连接线,7、第二焊盘,8、探针,9、定位板,10、顶板,11、底板,12、第一通槽,13、第一定位孔,14、第二定位孔,15、第一定位槽,16、第二通槽,17、第一微调机构,18、第二定位槽,19、第二微调机构。
具体实施方式
下面结合附图对本申请实施例进行详细描述。
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本申请,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目和方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本申请的基本构想,图式中仅显示与本申请中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。
现有技术中,在对探针的高速信号测试过程中,一般都使用探针台定制机械夹具连接到网络分析仪来测试S参数确定高速性能,但是存在着如下的情况和问题:
1、由于夹具及测试探头与探针接触部分的阻抗难以进行控制,同时夹具及测试探头去嵌难度较大,去嵌不好控制,导致探针高速测试结果极易受到影 响。
2、探针针尖的截面尺寸一般都在25~50um之间,并且相邻探针之间的间距(Pitch)通常在40~100um,小尺寸、小Pitch,位置度控制要求高,测试时对位难度大,容易偏位。
3、探针相对较为脆弱,测试时下压的针测压力(Overdrive)难以精确控制,若针测压力较小,则难以完成测试,若针测压力较大,则有可能造成探针的损坏,同时探针的长度较短,测试的S参数容易受测试环境影响,例如测试探头及夹具安装处理不当将无法还原真实探针参数。
以下结合附图,说明本申请各实施例提供的技术方案。
如图1所示,一种探针高速测试装置,包括:沿着第一方向依次设置的第二基板1、探针头2、第一基板3和至少两个高速射频连接器4,所述第一基板3上设置有至少两个第一焊盘5,所述第一焊盘5通过连接线6与所述高速射频连接器4一一对应连接,所述第二基板1上设置有若干第二焊盘7;所述探针头2上设有至少两个探针安装位,所述探针安装位用于安装所述探针8,所述第二焊盘7用于将两根所述探针8针尾之间进行连接,所述探针8针尖通过所述第一焊盘5与所述高速射频连接器4之间电性连接。
通过在第二基板1上设置与探针8针尾相连接的第二焊盘7,通过在第一基板3上设置至少两个与探针8针尖相连接的第一焊盘5,同时将第一焊盘5用连接线6引出与高速射频连接器4之间相连接,可在两个探针8之间形成环路,通过高速射频电缆将高速射频连接器4与网络分析仪相连接,可进行探针8环路S参数、第一基板3、第二基板1、高速射频连接器4和高速射频电缆部分去嵌入链路S参数的测试,第一基板3、第二基板1、高速射频连接器4和高速射频电缆能够实现良好的阻抗和损耗控制,S参数收集完毕后将全链路S参数进行解嵌操作,即得到2个探针8的S参数数据,第一基板3、第二基板1、高速射频连接器4和高速射频电缆能够设计高精度的去嵌结构,保证去嵌精度,从而能够达到较好的还原探针8性能的测试效果。
需要说明的是,在本实施方式中,第二基板1、探针头2、第一基板3和高速射频连接器4从下至上依次排布,通过探针头2上的探针8安装位对探针8进行定位,探针8穿过探针头2,探针8的针尾与设置于第二基板1上的第二焊盘7相连接,探针8的针头与设置于第一基板3上的第一焊盘5相连接。
如图2所示,在一些实施方式中,所述探针头2包括支撑板,所述支撑板上开设有若干通孔,通过若干通孔在支撑板上形成若干探针安装位,所述通孔根据所述探针8的尺寸和式样进行设置,以使得所述通孔与所述探针8相对应,确保探针8测试时能够穿过通孔,同时通孔能够对探针8起到定位的效果。
如图2-图5所示,在一些实施方式中,所述装置还包括:设置于所述探针头2和所述第二基板1之间的定位板9,所述定位板9上设有对所述探针头2定位的第一定位孔13,所述定位板9上开设有用于所述探针8穿过的第一通槽12,通过定位板9用于承载固定探针头2的位置,并且将定位板9作为整个装置的结构基准,通过在定位板9上开设第一定位孔13,同时在探针头2的支撑板上开设有与第一定位孔13相对应的第一连接孔,通过定位销穿过第一连接孔插入第一定位孔13内,完成探针头2与定位板9之间的定位连接,探针头2与定位板9之间定位连接操作较为方便。
需要说明的是,定位板9上还开设有第一凹槽,第一通槽12设置于第一凹槽中部,当探针头2安装于定位板9上时,探针头2完全容置于第一凹槽内,探针8从第一通槽12内穿过与第二基板1相接触。
进一步的,所述第一定位孔13相对于所述探针头2定位精度为正负2um,通过对第一定位孔13的尺寸和位置进行限定,使得探针头2相对于第一定位孔13的定位精度为正负2um,保证探针头2与定位板9之间的定位精度,从而保证探针头2相对于定位板9的位置度。
如图2和图6-图7所示,在一些实施方式中,所述装置还包括:设置于所述第一基板3和所述探针头2之间的顶板10,所述顶板10上开设有对所述第一基板3定位的第一定位槽15,第一基板3容置于第一定位槽15内,通过第 一定位槽15对第一基板3进行定位,保证第一基板3的定位精度,所述第一定位槽15内开设有用于所述探针8穿过的第二通槽16,通过在第一定位槽15内开设第二通槽16,以便于探针8穿过第二通槽16与第一基板3底部的第一焊盘5相连接。
在本实施例中,第一定位槽15的深度不小于第一基板3的厚度,以便于第一基板3能够完全容置于第一定位槽15内。在其他实施例中,第一定位槽15的深度也可以根据实际情况进行设计。
需要说明的是,第一定位槽15的尺寸略大于第一基板3的尺寸,以便于对第一基板3进行微调。
如图2所示,进一步的,所述定位板9上设有对所述顶板10定位的第二定位孔14,顶板10上开设有与第二定位孔14相对应的第二连接孔,通过定位销穿过第二连接孔插入第二定位孔14内,完成顶板10与定位板9之间的定位连接,保证顶板10与定位板9之间的相对位置度,从而确保第一基板3与探针头2的相对位置度,以保证所述第一基板3上的第一焊盘5与所述探针8针尖相对应。
在一些实施方式中,所述顶板10和所述定位板9之间设有第一厚度的第一垫片,通过对所述第一垫片厚度的调整,以对所述第一基板3上的第一焊盘5与所述探针8针尖之间的距离进行调整,通过在顶板10和定位板9之间预留第一垫片的位置,可以通过定制特定厚度的第一垫片对顶板10和定位板9之间的距离进行调节,从而对第一基板3上的第一焊盘5和探针8针尖之间的距离进行调节,使得能够精确控制探针8下压时的针测压力,在保证测试不受影响的情况下避免对探针8造成损伤。
需要说明的是,第一垫片的厚度可以根据实际情况进行设计,确保第一焊盘5与探针8针尖在接触良好的情况下不会产生过大下压力损伤探针8。
还需要说明的是,第一垫片的数量可为四个,四个第一垫片分别设置在顶板10底部四角处,以保证调节效果。
如图2所示,进一步的,所述顶板10上设有第一微调机构17,所述第一微调机构17对所述第一基板3在所述第一定位槽15内的位置精度进行调整,通过设置第一微调机构17可对第一基板3的位置精度进行调节,在测试过程中,若发现第一基板3上的第一焊盘5与探针8针尖之间出现对位偏差,可通过第一微调机构17对第一基板3的位置进行调节,从而对第一焊盘5的位置进行调节,使得第一焊盘5与探针8针尖相对应,保证接触良好。
需要说明的是,在本实施例中,第一微调机构17包括第一微调螺栓,通过第一微调螺栓对第一基板3在第一定位槽15内的位置进行微调。
如图2所示,在一些实施方式中,所述装置还包括:底板11,所述底板11上开设有对所述第二基板1定位的第二定位槽18,第二定位槽18的深度大于第二基板1的厚度,第二基板1完全容置于第二定位槽18内,通过第二定位槽18对第二基板1进行定位,保证第二基板1的定位精度。
需要说明的是,第二定位槽18的尺寸略大于第二基板1的尺寸,以便于对第二基板1在第二定位槽18内进行微调。
进一步的,所述定位板9上设有对所述底板11定位的第三定位孔,底板11上开设有与第三定位孔相对应的第三连接孔,通过定位销穿过第三连接孔插入第三定位孔内,完成顶板10与定位板9之间的定位连接,保证底板11与定位板9之间的相对位置度,从而确保第二基板1与探针头2的相对位置度,以保证所述第二基板1上的第二焊盘7与所述探针8针尾相对应。
在一些实施方式中,所述底板11和所述定位板9之间设有第二厚度的第二垫片,通过对所述第二垫片厚度的调整,以对所述第二基板1上的第二焊盘7与所述探针8针尾之间的距离进行调整,通过在底板11和定位板9之间预留第二垫片的位置,可以通过定制特定厚度的第二垫片对底板11和定位板9之间的距离进行调节,从而对第二基板1上的第二焊盘7和探针8针尾之间的距离进行调节,保证探针8针尾与第二焊盘7之间接触良好,使第二焊盘7与探针头2之间有足够的安全距离,避免对探针8造成损伤。
需要说明的是,第二垫片的厚度可以根据实际情况进行设计,确保第二焊盘7与探针8针尖在接触良好的情况下不会损伤探针8。
还需要说明的是,第二垫片的数量可为四个,四个第二垫片分别设置在底板11顶部四角处,以保证调节效果。
进一步的,所述底板11上设有第二微调机构19,所述第二微调机构19对所述第二基板1在所述第二定位槽18内的位置精度进行调整,通过设置第二微调机构19可对第二基板1的位置精度进行调节,在测试过程中,若发现第二基板1上的第二焊盘7与探针8针尾之间出现对位偏差,可通过第二微调机构19对第二基板1的位置进行调节,从而对第二焊盘7的位置进行调节,使得第二焊盘7与探针8针尾相对应,保证接触良好。
需要说明的是,在本实施例中,第二微调机构19包括第二微调螺栓,通过第二微调螺栓对第二基板1在第二定位槽18内的位置进行微调。
请参阅图1-图7,本发明中,根据待测试探针8的尺寸和式样在探针头2上开孔,将探针8安装在探针头2上,将探针头2安装于定位板9上的第一凹槽内,通过定位板9上的第一定位孔13对探针头2进行定位安装,完成探针头2与定位板9之间的定位连接,将第一基板3安装在顶板10上的第一定位槽15内,第一基板3容置于第一定位槽15内,通过第一定位槽15对第一基板3进行定位,保证第一基板3的定位精度,将第二基板1安装在底板11上的第二定位槽18内,第二基板1完全容置于第二定位槽18内,通过第二定位槽18对第二基板1进行定位,保证第二基板1的定位精度,通过第二定位孔14将顶板10与定位板9之间进行定位安装,保证顶板10与定位板9之间的相对位置度,从而确保第一基板3与探针头2的相对位置度,以保证第一基板3上的第一焊盘5与探针8针尖相对应,通过在顶板10和定位板9之间预留第一垫片的位置,可以通过定制特定厚度的第一垫片对顶板10和定位板9之间的距离进行调节,从而对第一基板3上的第一焊盘5和探针8针尖之间的距离进行调节,使得能够精确控制探针8下压时的针测压力,在保证测试不受影 响的情况下避免对探针8造成损伤,通过第三定位孔将底板11和定位板9之间进行定位安装,保证底板11与定位板9之间的相对位置度,从而确保第二基板1与探针头2的相对位置度,以保证第二基板1上的第二焊盘7与探针8针尾相对应,通过在底板11和定位板9之间预留第二垫片的位置,可以通过定制特定厚度的第二垫片对底板11和定位板9之间的距离进行调节,从而对第二基板1上的第二焊盘7和探针8针尾之间的距离进行调节,保证探针8针尾与第二焊盘7之间接触良好,使第二焊盘7与探针头2之间有足够的安全距离,避免对探针8造成损伤。
综上所述,本发明在测试时能够实现良好的阻抗和损耗控制,并且能够设计高精度的去嵌结构,保证去嵌精度,从而能够达到较好的还原探针8性能的测试效果,可以支持到40GHz以上带宽测试,同时结构设计对位精度高,且可根据实际情况做调整,能够满足最小尺寸、小Pitch的探针8及探针8卡高速测试,在测试过程中下压的针测压力可控,可以有效避免测试过程中对探针8的损伤。
基于相同发明构思,本说明书实施例提供一种测试系统,所述系统包括网络分析仪和如上述任一项所述的装置,所述网络分析仪与所述高速射频连接器4之间电性连接。
需要说明的是,通过采用上述装置和网络分析仪对探针8高速性能进行测试,测试时通过高速射频电缆将高速射频连接器4与网络分析仪相连接,可进行探针8环路S参数、第一基板3、第二基板1、高速射频连接器4和高速射频电缆部分去嵌入链路S参数的测试,第一基板3、第二基板1、高速射频连接器4和高速射频电缆能够实现良好的阻抗和损耗控制,S参数收集完毕后将全链路S参数进行解嵌操作,即得到2个探针8的S参数数据,第一基板3、第二基板1、高速射频连接器4和高速射频电缆能够设计高精度的去嵌结构,保证去嵌精度,从而能够达到较好的还原探针8性能的测试效果。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相 似的部分互相参见即可,每个实施例侧重说明的都是与其他实施例的不同之处。尤其,对于后面说明的方法实施例而言,由于其与系统是对应的,描述比较简单,相关之处参见系统实施例的部分说明即可。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种探针高速测试装置,其特征在于,包括:沿着第一方向依次设置的第二基板、探针头、第一基板和至少两个高速射频连接器,所述第一基板上设置有至少两个第一焊盘,所述第一焊盘通过连接线与所述高速射频连接器一一对应连接,所述第二基板上设置有若干第二焊盘;
    其中,所述探针头上设有至少两个探针安装位,所述探针安装位用于安装所述探针,所述第二焊盘用于将两根所述探针针尾之间进行连接,所述探针针尖通过所述第一焊盘与所述高速射频连接器之间电性连接。
  2. 根据权利要求1所述的探针高速测试装置,其特征在于,所述装置还包括:设置于所述探针头和所述第二基板之间的定位板,所述定位板上设有对所述探针头定位的第一定位孔,所述定位板上开设有用于所述探针穿过的第一通槽。
  3. 根据权利要求2所述的探针高速测试装置,其特征在于,所述第一定位孔相对于所述探针头定位精度为正负2um。
  4. 根据权利要求2所述的探针高速测试装置,其特征在于,所述装置还包括:设置于所述第一基板和所述探针头之间的顶板,所述顶板上开设有对所述第一基板定位的第一定位槽,所述第一定位槽内开设有用于所述探针穿过的第二通槽。
  5. 根据权利要求4所述的探针高速测试装置,其特征在于,所述定位板上设有对所述顶板定位的第二定位孔,以保证所述第一基板上的第一焊盘与所述探针针尖相对应。
  6. 根据权利要求5所述的探针高速测试装置,其特征在于,所述顶板和所述定位板之间设有第一厚度的第一垫片,通过对所述第一垫片厚度的调整,以对所述第一基板上的第一焊盘与所述探针针尖之间的距离进行调整。
  7. 根据权利要求4所述的探针高速测试装置,其特征在于,所述顶板上设 有第一微调机构,所述第一微调机构对所述第一基板在所述第一定位槽内的位置精度进行调整。
  8. 根据权利要求2所述的探针高速测试装置,其特征在于,所述装置还包括:底板,所述底板上开设有对所述第二基板定位的第二定位槽。
  9. 根据权利要求8所述的探针高速测试装置,其特征在于,所述定位板上设有对所述底板定位的第三定位孔,以保证所述第二基板上的第二焊盘与所述探针针尾相对应。
  10. 根据权利要求9所述的探针高速测试装置,其特征在于,所述底板和所述定位板之间设有第二厚度的第二垫片,通过对所述第二垫片厚度的调整,以对所述第二基板上的第二焊盘与所述探针针尾之间的距离进行调整。
  11. 根据权利要求8所述的探针高速测试装置,其特征在于,所述底板上设有第二微调机构,所述第二微调机构对所述第二基板在所述第二定位槽内的位置精度进行调整。
  12. 一种测试系统,其特征在于,所述系统包括网络分析仪和如权利要求1-11中任一项所述的装置,所述网络分析仪与所述高速射频连接器之间电性连接。
PCT/CN2022/113303 2022-07-26 2022-08-18 一种探针高速测试装置及测试系统 WO2024021200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210885065.3 2022-07-26
CN202210885065.3A CN115236491B (zh) 2022-07-26 2022-07-26 一种探针高速测试装置及测试系统

Publications (1)

Publication Number Publication Date
WO2024021200A1 true WO2024021200A1 (zh) 2024-02-01

Family

ID=83675370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113303 WO2024021200A1 (zh) 2022-07-26 2022-08-18 一种探针高速测试装置及测试系统

Country Status (2)

Country Link
CN (1) CN115236491B (zh)
WO (1) WO2024021200A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258733A1 (en) * 1997-05-08 2002-11-20 Tokyo Electron Limited Prober and probe method
US6540524B1 (en) * 2000-02-14 2003-04-01 Advantest Corp. Contact structure and production method thereof
CN102539849A (zh) * 2012-01-12 2012-07-04 南京瑞尼特微电子有限公司 一种微探针阵列及其制作方法
CN103941049A (zh) * 2013-01-21 2014-07-23 华邦电子股份有限公司 探针卡
CN111443321A (zh) * 2020-03-13 2020-07-24 上海泽丰半导体科技有限公司 一种高速探针卡测试方法及测试系统
CN112285395A (zh) * 2020-10-30 2021-01-29 铭针微机电(上海)股份有限公司 一种探针卡及其制造方法
CN113484561A (zh) * 2021-07-07 2021-10-08 上海泽丰半导体科技有限公司 一种探针卡及晶圆测试系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532014B2 (en) * 2006-08-08 2009-05-12 Credence Systems Corporation LRL vector calibration to the end of the probe needles for non-standard probe cards for ATE RF testers
TWI564571B (zh) * 2014-11-14 2017-01-01 Mpi Corp Cantilever high frequency probe card
CN205229206U (zh) * 2015-12-18 2016-05-11 山东海量信息技术研究院 一种针对板内高速信号损耗测试设计的测试固定夹具
CN107390051B (zh) * 2017-07-03 2019-09-10 北京理工雷科电子信息技术有限公司 一种基于感性耦合原理的元器件在线特性测量方法及测量装置
CN109001617B (zh) * 2018-09-10 2023-08-01 上海泽丰半导体科技有限公司 Ate测试板及基于ate测试板的电子元器件设置方法
CN210665827U (zh) * 2019-08-23 2020-06-02 福州汇思博信息技术有限公司 一种测试双头探针性能的测试夹具
CN113671273B (zh) * 2021-08-30 2023-04-11 中国计量科学研究院 一种片上天线测量用探针馈电去嵌入方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258733A1 (en) * 1997-05-08 2002-11-20 Tokyo Electron Limited Prober and probe method
US6540524B1 (en) * 2000-02-14 2003-04-01 Advantest Corp. Contact structure and production method thereof
CN102539849A (zh) * 2012-01-12 2012-07-04 南京瑞尼特微电子有限公司 一种微探针阵列及其制作方法
CN103941049A (zh) * 2013-01-21 2014-07-23 华邦电子股份有限公司 探针卡
CN111443321A (zh) * 2020-03-13 2020-07-24 上海泽丰半导体科技有限公司 一种高速探针卡测试方法及测试系统
CN112285395A (zh) * 2020-10-30 2021-01-29 铭针微机电(上海)股份有限公司 一种探针卡及其制造方法
CN113484561A (zh) * 2021-07-07 2021-10-08 上海泽丰半导体科技有限公司 一种探针卡及晶圆测试系统

Also Published As

Publication number Publication date
CN115236491A (zh) 2022-10-25
CN115236491B (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
US6420884B1 (en) Contact structure formed by photolithography process
US6853205B1 (en) Probe card assembly
TW423121B (en) Packaging and interconnection of contact structure
US6452407B2 (en) Probe contactor and production method thereof
US6535003B2 (en) Contact structure having silicon finger contactor
US20020027444A1 (en) Packaging and interconnection of contact structure
US6252415B1 (en) Pin block structure for mounting contact pins
JP2010032531A (ja) 高性能テスターインタフェースモジュール
JPH02237131A (ja) 半導体icの試験装置及び試験方法
KR100791000B1 (ko) 웨이퍼의 고속 병렬검사를 위한 전기적 검사장치 및 검사방법
KR20040110033A (ko) 모듈기판 상에 실장된 볼 그리드 어레이 패키지 검사장치및 검사방법
US20010023770A1 (en) Packaging and interconnection of contact structure
US6798212B2 (en) Time domain reflectometer probe having a built-in reference ground point
WO2024021200A1 (zh) 一种探针高速测试装置及测试系统
US20190170809A1 (en) High speed chip substrate test fixture
KR20170010936A (ko) 무선 주파수 프로브 장치
CN115144805A (zh) 一种用于射频开关芯片测试的在线快速校准方法
US8466704B1 (en) Probe cards with minimized cross-talk
US9964573B2 (en) Method for measuring characteristic impedance of electric transmission line
JPS6171367A (ja) 固定ブロ−ブカ−ド
CN115128418B (zh) 一种晶圆级高速信号测试装置
TW202004205A (zh) 用於傳輸並供測試高速訊號的電路板
JP4418883B2 (ja) 集積回路チップの試験検査装置、集積回路チップの試験検査用コンタクト構造体及びメッシュコンタクト
JPS59208469A (ja) プロ−ブカ−ド
KR102044185B1 (ko) 회로기판 또는 프로그램 검사 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952642

Country of ref document: EP

Kind code of ref document: A1